

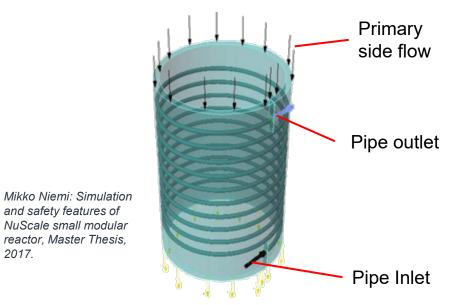
New Models and Features in ATHLET 3.4.0

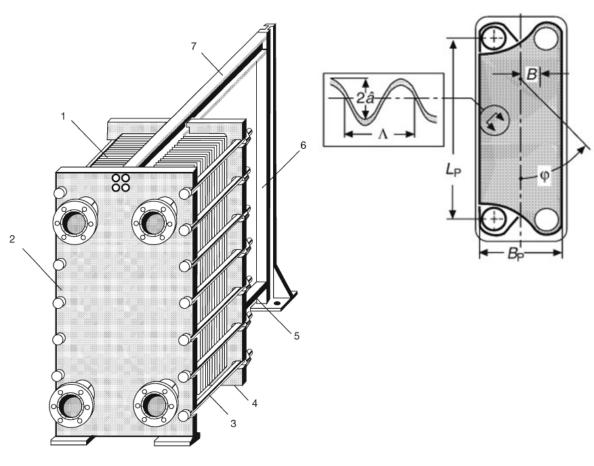
AC² User Meeting 27.11.2023, GRS Garching

Philipp Schöffel

Content

- New and Updated Models in ATHLET 3.4.0
 - Modelling of Compact Heat Exchangers
 - Reynolds Number Dependent Form Loss Calculation for Specific Geometries
 - Extended Fuel Rod Model
 - New Working Fluids and Improved Multicomponent Model
- Further Program Improvements, New Input Options and Output Data
- Conclusions


Component Model for Specific (Compact) Heat Exchanger Designs


Motivation: Innovative SMR concepts

- New designs of individual components such as compact heat exchangers
 - Little space required
 - High heat flux density

2017.

- NUWARD: Usage of plate heat exchanger
- NuScale: Helical coiled heat exchanger

General design of a plate heat exchanger¹

¹ Verein Deutscher Ingenieure (VDI), VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (GVC): VDI-Wärmeatlas, Mit 320 Tabellen. VDI-Buch, 11. Aufl., 1760 S., ISBN 978-3-642-19981-3, DOI 10.1007/978-3-642-19981-3, Springer Vieweg: Berlin, 2013.

Implemented Correlations for Plate Heat Exchanger

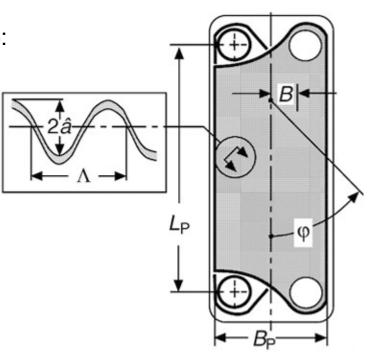
Correlation for pressure loss for single-phase flow (according to Martin/VDI¹):

$$\Delta p_{fric} = \lambda \cdot \frac{l}{d_h} \cdot \frac{\rho w^2}{2}$$
 with $\lambda = f(Re, \varphi), \varphi =$ Chevron angle

Correlation for pressure loss for two-phase flow (according to Huang²):

 $\Delta p_{fric} = f_{tp} \cdot \frac{l}{d_h A^2} \cdot \frac{GJ^2}{2\rho_m}$

$f_{tp} =$	$3.81 \cdot 10^4 F_{R,f}$		
	$\overline{Re_{tp}^{0.90}\left(\frac{\rho_l}{\rho_v}\right)^{0.16}}$		


 f_{tp} : Two-phase friction factor $F_{R,f}$: Geometry parameter

Specific HTC correlations for convection, condensation and evaporation (Huang²):

$$htc_{evap} = 1.18 \cdot 10^{-4} \cdot \left(\frac{\dot{q}D_h}{\lambda_l T_{sat}}\right)^{0.67} \cdot \left(\frac{rD_h^2 \rho_l^2 c_{p,l}^2}{\lambda_l^2}\right)^{0.42} \cdot \left(\frac{\rho_l}{\rho_g}\right)^{-0.1} \cdot Pr_l^{0.31}$$

² Huang, J.: Performance Analysis of Plate heat Exchangers used as Refrigerant Evaporators. University of the Witwatersrand: Johannesburg, August 2010.

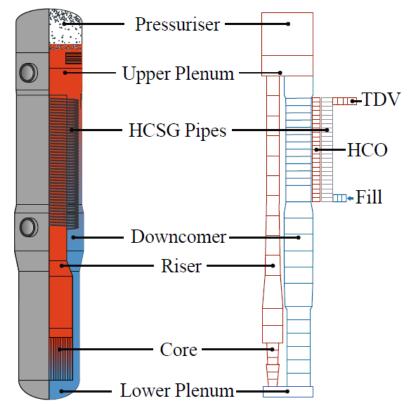
AC² User Meeting, 27.11.2023, New Models and Features in ATHLET 3.4.0

¹ Verein Deutscher Ingenieure (VDI), VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (GVC): VDI-Wärmeatlas, Mit 320 Tabellen. VDI-Buch, 11. Aufl., 1760 S., ISBN 978-3-642-19981-3, DOI 10.1007/978-3-642-19981-3, Springer Vieweg: Berlin, 2013.

Correlations for Helical Coiled Heat Exchangers

• HTC correlations for convective heat transfer to liquid and vapor according to Mori & Nakayama¹

$$Nu_{Mori,liquid} = 0,023 \cdot \left(1 + \frac{0,061}{\left(Re \cdot \left(\frac{D}{d_c}\right)^{2,5}\right)^{\frac{1}{6}}}\right) \cdot \left(\frac{D}{d_c}\right)^{\frac{1}{12}} \cdot Re^{0.833} \cdot Pr^{0,4}$$


- Modified Chen HTC for two-phase flow, using Nu_{Mori} as macroscopic HTC
- Shell side bundle heat transfer to liquid according to Zukauskas²

$$Nu_{Zukauskas} = C(s_{v}, s_{t}) \cdot Re_{max}^{m} \cdot Pr^{n} \cdot \left(\frac{Pr}{Pr_{w}}\right)^{0,25}$$

Model implementation and initial validation by RUB/Krieger

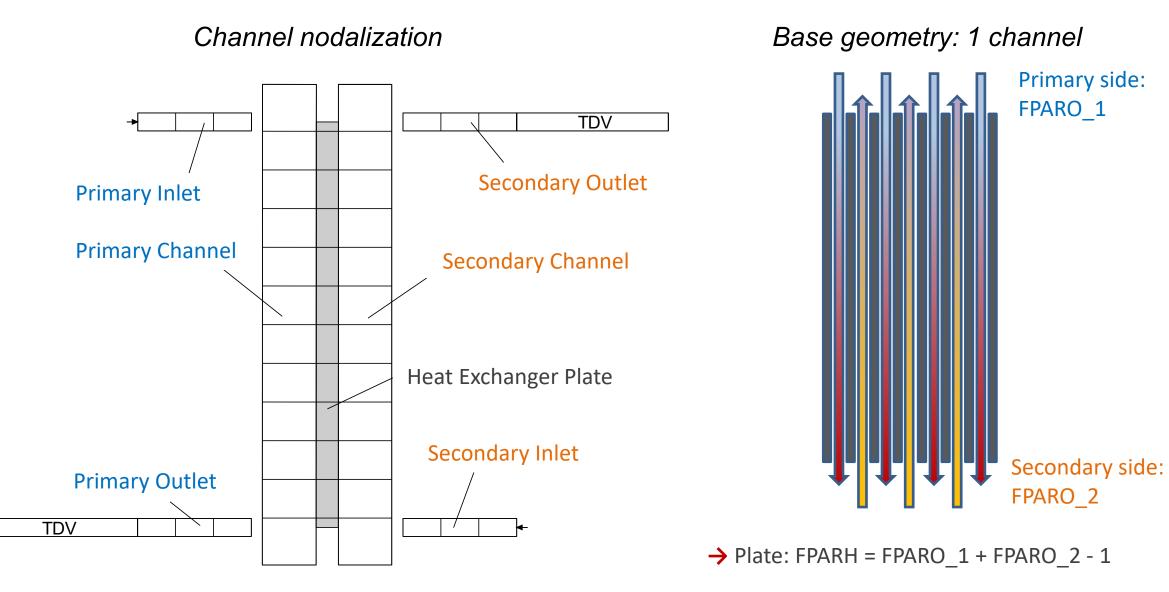
¹ Mori, Y., Nakayama, W.: Study of forced convective heat transfer in curved pipes (2nd report, turbulent region).

² Zukauskas, A.: Heat Transfer from Tubes in Crossflow. Advances in Heat Transfer, vol. 8, pp. 93–160, DOI 10.1016/S0065-2717(08)70038-8, 1972.

Krieger et al.: Simulation of the experiment OSU-002 regarding the behavior of a helically coiled steam generator using AC²-ATHLET, ICONE30, 2023

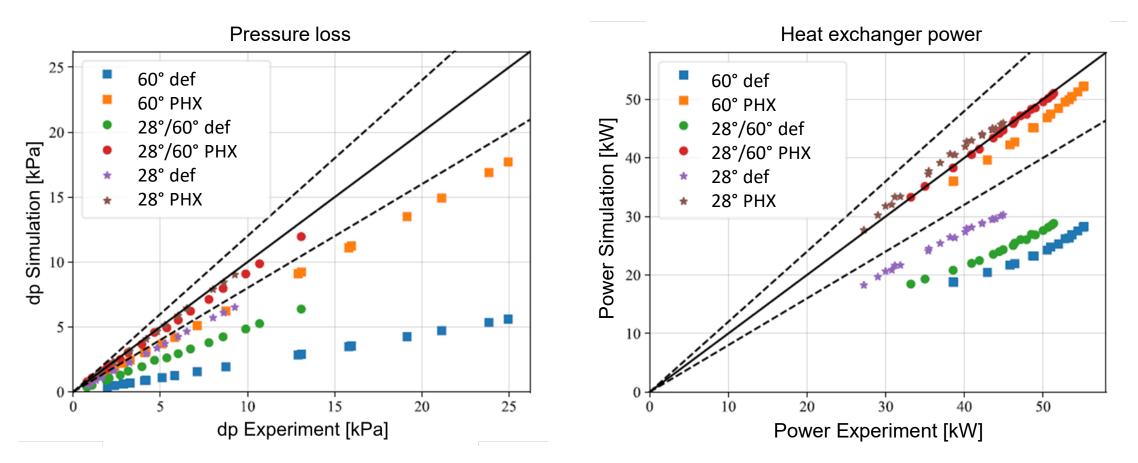
International Journal of Heat and Mass Transfer, vol. 10, no. 1, pp. 37–59, DOI 10.1016/0017-9310(67)90182-2, 1967.

AC² User Meeting, 27.11.2023, New Models and Features in ATHLET 3.4.0


Input data for compact heat exchangers

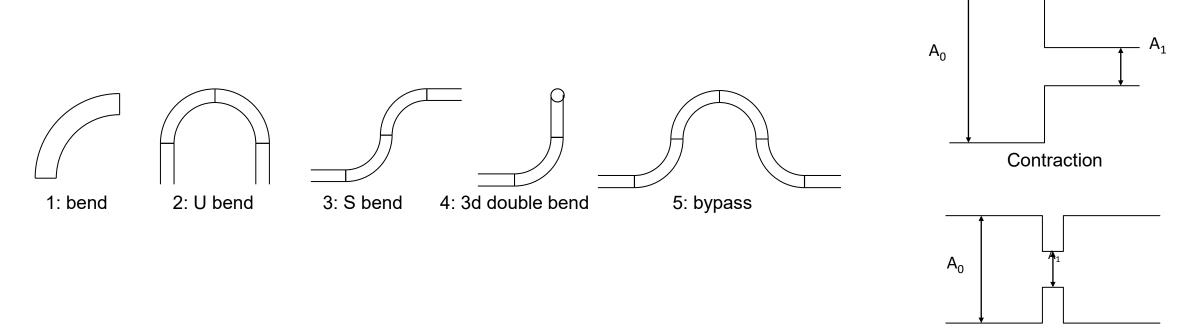
- CW STEAMGEN using the new PW HTEXDEF
 - IHTEXTYP: Type of specific heat exchanger
 - = 1: Plate heat exchanger
 - = 2: Helical heat exchanger
 - ANAMHTEX: Name of HCO(s) that represent the heat exchanger
 - HTEXPAR1: Geometry parameter
 - For plate heat exchangers: chevron angle
- By assigning an HCO a specific HTEX type,
 - connected TFOs (primary and secondary) will be automatically determined
 - dedicated correlations for pressure loss and heat transfer coefficient will be automatically applied
 - alternative HTC models can optionally be used via PW HTCCORR

STEAM	GENERAT	OR MODE	L DATA			
@ +++++	+++++++++++++++++++++++++++++++++++++++					
@						
C STEAM	GEN					
@						
K HXPLA	TE					
@						
@ IQP0	ISRØ	QHEØ	FPSTG			
0	1	0.0	%FPARHPLA%			
@						
@ ANAMS(K)	SOS(I)		QSHE(I)			
'PLATE'			1.0			
'PLATE'			1.0			
a	0.000.0000		192 660			
HTEXDEF						
@ IHTEXTYP	ANAMHT	EX HTE	XPAR1			
Ŭ 1	'PLATE	. %AN	IGLE%			
	y					

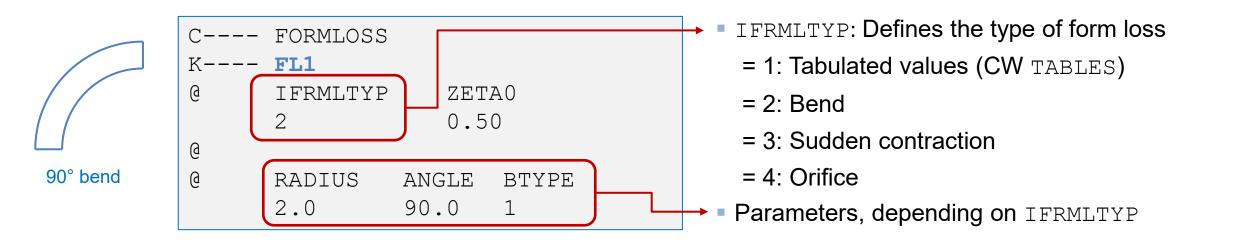

Plate Heat Exchanger – Modeling Approach

Model validation of single-phase correlations

- Johannesburg-Experiment¹ with stationary conditions using different chevron angles (working fluid: water)
- Significantly improved agreement with new correlations (PHX)



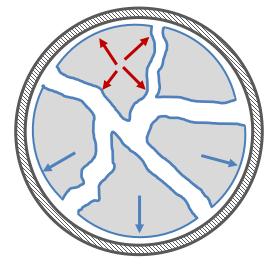
¹*Huang, J.: Performance Analysis of Plate heat Exchangers used as Refrigerant Evaporators. University of the Witwatersrand: Johannesburg, August 2010* AC² User Meeting, 27.11.2023, New Models and Features in ATHLET 3.4.0


Reynolds-Number Dependent Form Losses

- Motivation: More accurate modelling of local form losses
 - Start-up behavior of (passive safety) systems
- New option to specify form loss coefficients ζ dependent on Reynolds number (instead of constant values)
 - Tabulated data can be provided by the user
 - Dedicated correlations available for several component types

Form Loss Definition under New CW FORMLOSS

For TFOs under PW FRICTION:


- Like for constant values, the Re-dependent form loss must be assigned for each flow direction individually
- Constant and Re-dependent form losses can be combined
- The same form loss keyword can be assigned to an arbitrary number of junctions.

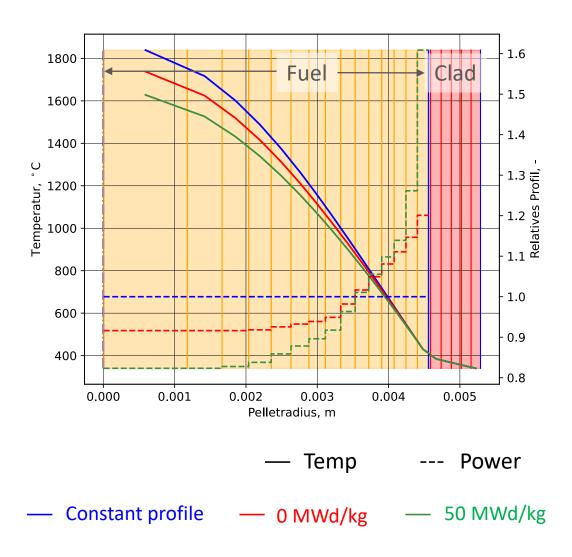
K-	P1-H	L				
· · · · · FRICTION						
g	ITPMO	ALAMO	ROUO			
	2	0.02	1.D-5			
g	SF0	SDFJO	ZFFJO	ZFBJ0		
	0.	0.0	5.0	1.5		
	5.0	0.0	FL1	FL1		
	9.190	0.0	FL2	0.		
	9.197	0.0	3.0	1.5		

Improved Fuel Rod Model – Overview *

- Motivation: Improved (best-estimate) prediction of DBA
 - Former implementation could yield unrealistic (often too conservative) results for clad temperature
 - Simplified models with regard to gap size and gap conductivity
- Fuel rod model was improved through implementation of several new models:
 - Prediction of fuel radial relocation, densification, and swelling effects
 - Evaluation of clad mechanical strain effects
 - Enhanced gas gap conductivity modeling
 - Goal: Better predicting gap conductivity & size

Fuel swelling and relocation

* Details see separate presentation by Anthony di Nora



Simulation of rod radial power distribution via user-defined profile

- Allows for the modeling of more realistic rod radial power profile (varying, e.g., with burnup)
- Local relative power vs. relative radial coordinate required
 - i.e., profile abscissas between 0 & 1
 - profile ordinates > 0, internally normalized to 1.0

	RADPOW		
Ø	RRP0 RRPWR		
	0.00000	0.83000	
	0.47059	0.84000	
	0.70588	0.92000	
	0.94118	1.18000	
	1.00000	1.80000	

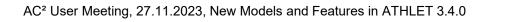
- Applied to the zone selected for the rod power generation (input parameter IPOWM0):
 - Planar, cylindrical, spherical geometries
 - Geometry factors are calculated internally

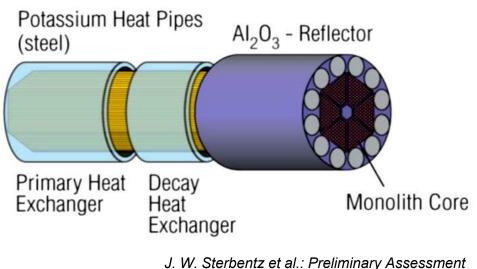
New Working Fluid Properties and NC Gas Components*

New Working Fluid Potassium

High-temperature heat pipes of advanced
 Micro Modular Reactors utilise K or Na

Updated Sodium Properties


- Correlation for η and λ of the vapour (constant before)
- → Correlations for all Na properties


Further working fluids via coupling interface available

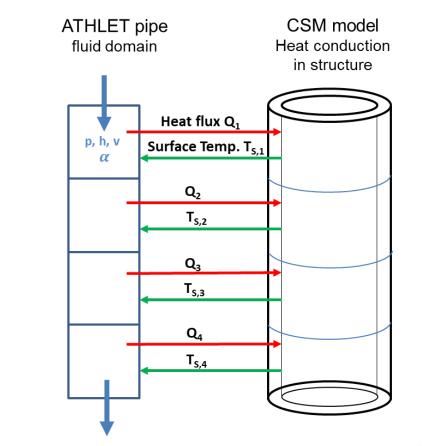
- Name AFLUID under CW WORKFLUID: EXTERNAL
 - Can be used for coupling to e.g. CoolProp library (http://www.coolprop.org/)
 - Config file to provide further settings required by CoolProp

Properties for additional NC gas components implemented: XENON and KRYPTON

* Details see separate presentation by Daniel Eckert

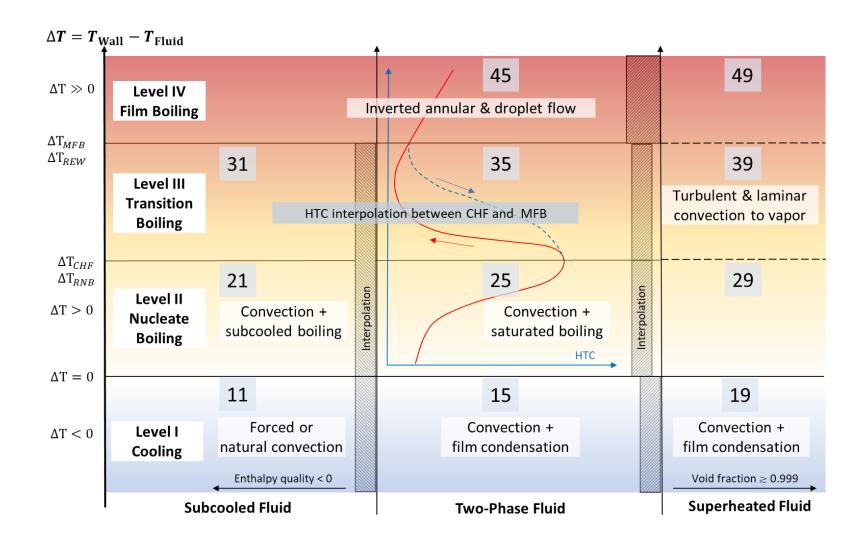
J. W. Sterbentz et al.: Preliminary Assessment of Two Alternative Core Design Concepts for the Special Purpose Reactor. Idaho National Laboratory (INL), INL/EXT-17-43212 Revision 1, 2018

Gas Mixture Initialization: Input under CW MULTICOMP


 New: Initialization of NC gas mixtures Arbitrary mixture of available NC gases In single TFOs or complete TFD-systems To initialize all TFOs of a TFD-system: ANAMO = "TFDSYS_<system-name>"</system-name> MCLN ALIQ MCLN ALIQ MCLN ALIQ MCLN ALIQ MCN AGAS PW INITGAS Defines first gas component and total gas volume fraction XQVMCI Mew PW INITXVMC Allows to initialize the mass ratio XVMCI of the second, third etc. gas component to the total gas mass 	- Nouve Initialization of NC and mixtures	C	MULTICOMP		
 In single TFOs or complete TFD-systems To initialize all TFOs of a TFD-system: ANAMO = "TFDSYS_<system-name>"</system-name> PW INITGAS Defines first gas component and total gas volume fraction XQVMCI New PW INITXVMC Allows to initialize the mass ratio XVMCI of the second, third etc. gas component to the 	New: Initialization of NC gas mixtures	Q	NMCSYS	AMCSYS	
 To initialize all TFOs of a TFD-system: ANAMO = "TFDSYS_<system-name>"</system-name> PW INITGAS Defines first gas component and total gas volume fraction XQVMCI New PW INITXVMC 	 Arbitrary mixture of available NC gases 		1	1	
 Io initialize all TFOs of a TFD-system: ANAMO = "TFDSYS_<system-name>"</system-name> PW INITGAS Defines first gas component and total gas volume fraction xQVMCI New PW INITXVMC 	 In single TFOs or complete TFD-systems 	Q	MCVN	AGAS	
 PW INITGAS Defines first gas component and total gas volume fraction xQVMCI Mew PW INITXVMC Allows to initialize the mass ratio XVMCI of the second, third etc. gas component to the Mex PW INITXVNC Allows to initialize the mass ratio XVMCI of the second, third etc. gas component to the Mex PW INITXVNC Allows to initialize the mass ratio XVMCI of the second, third etc. gas component to the Anamo AGASO XVMCI Anamo AGASO XVMCI		Q	MCLN		ARGON
 Defines first gas component and total gas volume fraction XQVMCI New PW INITXVMC Allows to initialize the mass ratio XVMCI of the second, third etc. gas component to the ANAMO AGASO XQVMCI ANAMO AGASO 1.0 ANAMO AGASO 1.0 ANAMO AGASO 1.0 ANAMO AGASO XQVMCI ANAMO AGASO XVMCI ANAMO AGASO 0.01 		Q			
- Defines first gas component and total gas GM_V1 NITROGEN 1.0 - New PW INITXVMC INITXVNC INITXVNC - Allows to initialize the mass ratio XVMCI of the second, third etc. gas component to the @ INITXVNC @ INITXVNC @ INITXVNC	• PW INITGAS		INITGAS		
volume fraction XQVMCI GM_V1 NITROGEN 1.0 • New PW INITXVMC @ - Allows to initialize the mass ratio XVMCI of the second, third etc. gas component to the @ 0	 Defines first gas component and total gas 	Ø	ANAMO	AGASO	XQVMCI
 New PW INITXVMC Allows to initialize the mass ratio XVMCI of the second, third etc. gas component to the ANAMO AGASO XVMCI of GM_V1 ARGON 0.01 			GM_V1	NITROGEN	1.0
 New PW INITXVMC Allows to initialize the mass ratio XVMCI of the second, third etc. gas component to the ANAMO AGASO XVMCI of GM_V1 ARGON 0.01 	~		GM_V1HC	NITROGEN	1.0
 Allows to initialize the mass ratio XVMCI of @ ANAMO AGASO XVMCI the second, third etc. gas component to the GM_V1 ARGON 0.01 		Ø			
the second, third etc. gas component to the GM_V1 ARGON 0.01	• New PW INITXVMC		INITXVNC		
	– Allows to initialize the mass ratio XVMCI of	Q	ANAMO	AGASO	XVMCI
total gas mass GM_V1HC ARGON 0.01	the second, third etc. gas component to the		GM_V1	ARGON	0.01
	total gas mass		GM_V1HC	ARGON	0.01

Further Model Improvements in ATHLET 3.4

- New correlations for Austenitic and Ferritic steels oxidation (CW HEATCOND, PW ZROXIDAT)
- Updated T-Model: applicable with 2M-model, considers pressure drop/increase in 2M main pipe
- New CHF correlation proposed by Song et al.¹
 - Mainly developed for high pressure conditions: $p > 0.7 p_{crit}$
 - Can be activated by input parameters ICHF1/6 = 13 (see CW HEATCOND, PW CHFREWET)
- New interfaces to external models
 - Coupling Interface to 3D-NK code FENNECS
 - PreCICE adapter for coupling of ATHLET with other codes
 - E.g. for coupling with 3D CSM solver CALCULIX


¹Song, M., Liu, X., Cheng, X.: Prediction of critical heat flux (CHF) for the high-pressure region in uniformly heated vertical round tubes. Annals of Nuclear Energy, Bd. 158

Extended MHTCEXT Plug-in for User-provided HTC Correlation

- MHTCEXT plug-in comprises a set of interfaces for various heat transfer regimes and working fluids
- Extensions:
 - Interface for film-boiling (Mode 45)
 - SC water: updated parameter list: bulk viscosity, specific heat capacity and heat conductivity (Mode 21, 25)
 - Convective heat transfer interface usable
 for any working fluid (Mode 11, 15, 21, 25)

Extended Input Checks

- The basic syntax for all CW is checked. In particular it is checked:
 - If only legal CW are used, and only (sub-/pseudo-) keywords allowed for a CW are present
 - Under CW OBJECT, legal PW are identified based on ITYPO
 - If all PW are input strictly in the order they are mentioned in the Input Data Description
 - Checks apply to ATHLET-CD CWs as well
- In most CW all inputs are checked if they correspond to valid options. Error messages explain the problem.
 - For input blocks with a fixed number of cards, it is checked if spurious input is present
 - Strings with more than 10 characters lead to an error, except where longer strings are allowed

Note: Most error print outputs come with the information on the questionable input deck line

Input and Output Data Changes

- Optionally, SWs can be introduced
 - under CW PARAMETERS to organize parameters and to easily (de-)activate complete sets of parameters
 - under CW HEATCOND to structure the list of HCOs
 - check the Program Updates Manual for further changes of input and output data!
- Input data deviations from default values are printed to the log-file*
- Additional data in the hdf-5 file: TFO/HCO geometry data; units for all quantities **
- In order to harmonize the key file and the requirements of hdf-5 data, all "/" in ATHLET and ATHLET/CD output variables have been replaced by "_"
 - E.g. HECU quantities TT_, TTRISO_, QAXH_
- Where there were leading "0" for the quantity, now the actual number will be output left-aligned without leading zeros: E.g. RMVMC_1 instead of RMVMC/001
- * Details see separate presentation by Andreas Wielenberg
- ** Deails in presentation by Markus Junk

Conclusions

Numerous new and improved models included in ATHLET 3.4.0

- Heat transfer and pressure loss correlations for compact heat exchangers in SMRs
- Improved consideration of form losses
- Widely updated fuel rod model for DBA analyses
- New two-phase working fluids and NC gas components
- Divers model updates, e.g. T-junction model, oxidation model
- User support by additional error checks and expanded output data
 - Extensive input data checks for the complete ATHLET and ATHLET-CD input deck
 - Information on input data deviations from default values
 - Various new input data options
 - Expanded output data in hdf-5 file and in print output for further analyses

The development and validation of AC²/ATHLET are supported by the German Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection.

Supported by:

Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection

based on a decision of the German Bundestag