

Bewertung besonderer Belastungszustände von Brennelementen und Komponenten

Bewertung besonderer Belastungszustände von Brennelementen und Komponenten

Fachlicher Abschlussbericht

Kai Simbruner Johannes Nicol Kevin Lawless Tobias Grelle Florian Rowold

Oktober 2025


Anmerkung:

Das diesem Bericht zugrunde liegende Eigenforschungsvorhaben wurde mit Mitteln des Bundesministeriums für Umwelt, Klimaschutz, Naturschutz und nukleare Sicherheit (BMUKN) unter dem Förderkennzeichen 4722E03210 durchgeführt.

Die Verantwortung für den Inhalt dieser Veröffentlichung liegt bei der GRS.

Der Bericht gibt die Auffassung und Meinung der GRS wieder und muss nicht mit der Meinung des BMUKN übereinstimmen.

GRS - 824 ISBN 978-3-911727-17-4

Kurzfassung

Im Rahmen des Eigenforschungsvorhabens wurde eine umfassende strukturmechanische Analyse von Brennelementen, Brennstäben sowie Transport- und Lagerbehältern für Kernbrennstoffe unter Berücksichtigung vielfältiger realer Belastungsszenarien durchgeführt. Das zentrale Ziel bestand darin, das mechanische Verhalten und die Belastungsgrenzen dieser Komponenten bei Zwischenlagerung und anschließenden Handhabungsvorgängen zu bestimmen. Besonderes Augenmerk galt dabei Ereignissen wie einem Behälteraufprall aus 30 cm Höhe, die mittels Finite-Elemente-Methoden (FEM) modelliert und simuliert wurden.

Im methodischen Ansatz wurden für sämtliche relevante Behälterkomponenten spezifische Randbedingungen und Parameter abgeleitet, um die Wirkungen von normalen Transportprozessen sowie von außergewöhnlichen Vorfällen (wie Unfällen oder Stürzen) umfassend abzubilden. Ein Schwerpunkt lag auf der Entwicklung und Validierung von Rechenmodellen, welche die komplexen geometrischen Strukturen, Materialeigenschaften und Interaktionsmechanismen im System realitätsnah erfassen. Die Modelle wurden iterativ optimiert und anhand von experimentellen Daten sowie Literaturwerten verifiziert.

Die Simulationsergebnisse liefern belastbare Daten für die sicherheitstechnische Bewertung und schließen erste Wissenslücken bezüglich der Belastungszustände von Brennelementen nach verlängerter Zwischenlagerung. Insbesondere wurden kritische Lastfälle identifiziert, die als Grundlage für zukünftige Untersuchungen dienen können. Die Arbeit trägt somit entscheidend zur wissenschaftlichen Nachvollziehbarkeit und Dokumentation bei.

Abschließend zeigt die Studie, dass die entwickelten Methoden und Modelle eine sorgfältige Bewertung der mechanischen Integrität von Brennstäben, Brennelementen und Behältersystemen in Zwischenlagern ermöglichen. Die Ergebnisse unterstreichen die Notwendigkeit, verschiedene Lastszenarien und die komplexe Systeminteraktion in die Sicherheitsbewertung einzubeziehen und bieten eine belastbare Grundlage für weiterführende Forschung im Bereich der Zwischenlagerung abgebrannter Brennelemente.

Abstract

Within the scope of this research project, a comprehensive structural-mechanical analysis of fuel assemblies, fuel rods, and transport and storage casks for nuclear fuel was conducted, taking into account a variety of realistic loading scenarios. The central objective was to determine the mechanical behavior and stress limits of these components during interim storage and subsequent handling operations. Particular attention was given to events such as a container impact from a height of 30 cm, which were modeled and simulated using finite element methods (FEM).

Methodologically, specific boundary conditions and parameters were derived for all relevant components to comprehensively represent the effects of normal transport scenarios as well as handling incidents (e.g., accidents or drops). A key focus was the development and validation of computational models that realistically capture the complex geometrical structures, material properties, and interaction mechanisms within the system. The models were iteratively optimized and validated by comparison with experimental data and literature values.

The simulation results provide reliable data for safety assessments and close initial knowledge gaps regarding the stress states of fuel assemblies after extended interim storage. Critical load cases were identified that can serve as a basis for future studies. Consequently, this work makes a significant contribution to scientific transparency and documentation.

In conclusion, the study demonstrates that the developed methods and models enable a thorough assessment of the mechanical integrity of fuel rods, fuel assemblies, and cask systems in interim storage facilities. The results emphasize the necessity of including various load scenarios and the complex system interaction in safety evaluations and provide a sound foundation for further research in the field of interim storage of spent nuclear fuel.

Inhaltsverzeichnis

	Kurzfassung	l
	Abstract	III
1	Einleitung	1
2	Stand von Wissenschaft und Technik	3
2.1	Realversuche	3
2.1.1	Transportbelastungen bei Straßen-, Schienen- und Wassertransporte	n 3
2.1.2	Aufprallversuche der BAM mit Brennelement-/HAW-Transport- und	
	Lagerbehältern	12
2.1.3	Aufprallversuche an den Sandia National Laboratories in Kooperation mit ENSA und der BAM	
2.2	Finite-Element-Simulationen	26
2.2.1	Belastungszustände für Fallversuche aus 30 cm	26
2.2.2	Belastungszustände bei Transportvorgängen	30
2.3	Analytische Modelle	34
2.4	Fazit	38
3	Modellbeschreibung	39
3.1	Behältermodell	39
3.1.1	Behälterkörper	40
3.1.2	Brennelementtragkorb	41
3.1.3	Brennelemente	42
3.1.4	Betonboden	43
3.1.5	Kontakte, Anfangs- und Randbedingungen	44
3.2	Brennelementmodell	44
3.2.1	Brennstäbe und Führungsrohre	47
3.2.2	Obere und untere Abdeckplatte	48
3.2.3	Abstandshalter	49
3.2.4	Tragkorbzelle	53

3.2.5	Kontakte, Anfangs- und Randbedingungen	54
4	Ergebnisse	57
4.1	Behältermodell	57
4.1.1	Starrkörperverschiebung der Tragkorbzelle	58
4.1.2	Horizontaler Aufprall	60
4.1.3	Schräger und vertikaler Aufprall	63
4.2	Brennelementmodell	65
4.2.1	Vergleich des GRS- und PNNL-Modells	67
4.2.2	Horizontaler Aufprall	72
4.2.3	Vertikaler Aufprall	79
4.2.4	Schräger Aufprall	83
4.2.5	Vergleich der verschiedenen Aufprallorientierungen	89
4.2.6	Einfluss der Ausrichtung der Brennelemente	91
4.3	Analytische Betrachtung des Aufprallvorgangs	92
4.3.1	Feder-Masse-Modell	93
5	Zusammenfassung	101
	Literaturverzeichnis	105
	Abbildungsverzeichnis	111
	Tabellenverzeichnis	117

1 Einleitung

Zur Verbringung von radioaktiven Abfällen in ein Endlager muss gewährleistet sein, dass die strukturelle Integrität der Transport- und Lagerbehälter sowie relevanter Behälter-komponenten für mindestens einen Transport sowie diverse Handhabungsvorgänge gegeben bleibt. Bei den dafür notwendigen Handhabungs- bzw. Transportvorgängen nach einer verlängerten Zwischenlagerung kann es zu einer Reihe von Unfällen kommen (Absturz bei internen Transporten ohne Stoßdämpfer, Kippen von Behältern, Erschütterungen etc.) durch welche zusätzliche Lasteinträge auf die Brennelemente und relevante Behälterkomponenten wirken. Mögliche Konsequenzen sind dabei, die Verformung von bestrahlten Brennelementstrukturteilen und Brennstäben bei seitlichem/schrägem Aufprall oder Belastungen, die zum Bruch von Brennstäben führen.

Ziel des Eigenforschungsvorhabens war es das Verhalten von Behälterkomponenten eines Transport- und Lagerbehälters (TLB) in Folge eines 30 cm-Aufpralls abzubilden. Transportverpackungen für radioaktive Abfälle (u. a. Typ A, Typ B(U)/B(M), Typ C) müssen gemäß SSR-6, Rev. 1 /IAE 18/ so ausgelegt sein, dass sie unter anderem Aufprall-/Falltests aus 30 cm Höhe ohne Stoßdämpfer auf eine unnachgiebige Oberfläche unbeschadet überstehen. Diese Tests erfüllen die sog. Normalbedingungen des Transports und decken Handhabungsvorgänge bzw. Transportunfälle ab. Mit den Ergebnissen aus dem Eigenforschungsvorhaben sollen bestehende Wissenslücken hinsichtlich der Belastungszustände von Brennelementen in Folge von Unfällen bei Hebe- und Transportvorgängen im Zwischenlager geschlossen werden. Hierfür wurden Finite-Elemente-Modelle und analytische Ansätze entwickelt, mit denen mechanische Belastungszustände umfassend simuliert und bewertet werden können. Es wurden dabei realistische Belastungsszenarien berücksichtigt, wie sie im Lagerbetrieb, während des Transports oder im Zusammenhang mit außergewöhnlichen Ereignissen auftreten können. Erkenntnisse in Bezug auf das Verhalten der Behälterkomponenten bzw. der Brennelemente auf dieses normative Szenario sind essenziell, um einschätzen zu können, ob regulatorische Anforderungen eingehalten werden. Das übergeordnete Ziel besteht darin, mit den entwickelten Methoden belastbare und wissenschaftlich nachvollziehbare Aussagen zur mechanischen Sicherheit von Brennstäben, Brennelementen und Behältersystemen zu ermöglichen.

In Kapitel 2 wird hierfür der aktuelle Stand von Wissenschaft und Technik zu Realversuchen und Modellierungsansätzen von Aufprallvorgängen und Transportunfällen von Transport und Lagerbehältern zusammengetragen. Ziel war eine Identifikation von

Vorgängen, welche auf die Belastungszustände von Brennelementen bzw. Strukturkomponenten besonders kritisch sind. Kapitel 3 gibt einen Überblick über die Modellierungsansätze und Materialparameter, für die beiden im Vorhaben entwickelten FE-Modelle für das Brennelement und den Behälter. Kapitel 4 beschreibt und analysiert die aus der FE-Modellierung gewonnen Erkenntnisse zu den im Brennelement auftretenden Beschleunigungen und Dehnungen. Die Ergebnisse werden mit den aus Kapitel 2 zusammengetragen Ergebnissen aus Realversuchen bzw. aus Modellierungsansätzen anderer Forschungsinstitute verifiziert. Die Belastungszustände werden für einen Reihe von Aufprallorientierungen analysiert. So können für einzelne Behälterkomponenten besonders kritische Aufprallorientierungen identifiziert werden.

2 Stand von Wissenschaft und Technik

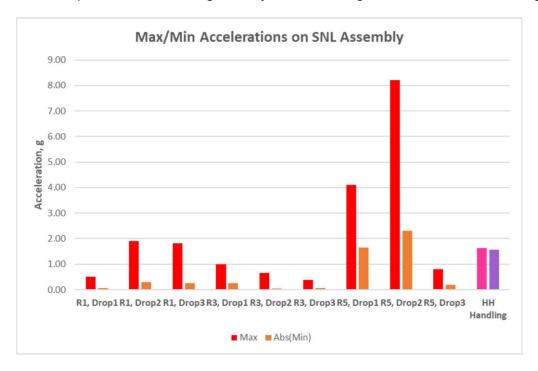
Die Betrachtung verschiedener Transport- und Handhabungsszenarien erfordert die Entwicklung passender Modelle zur Beschreibung der jeweiligen Anwendungsfälle. Die Herausforderung besteht darin, angemessene Ansätze zur Berechnung der Belastungszustände vom Behälter bis hin zum Brennstab zu finden, die jeweils alle gewünschten Effekte abbilden und in praktikabler Rechenzeit Ergebnisse erzeugen können. Entsprechende Versuchsergebnisse bestehen hauptsächlich aus zeitabhängigen Beschleunigungs- und Dehnungsmesswerten. Dabei spielt das Übertragungsverhalten eines Fahrzeugs von "Störungen" wie Straßenunebenheiten auf den Transportbehälter eine Rolle. Unabhängig vom Transportmedium kann das Übertragungsverhalten der Beschleunigungen vom Transportbehälter auf die Behälterkomponenten und die Brennelemente betrachtet werden.

2.1 Realversuche

Die nachfolgend beschriebenen Realversuche dienen der experimentellen Erfassung und Bewertung mechanischer Belastungen, denen TLB und Brennelemente während typischer Handhabungs- und Transportvorgänge ausgesetzt sind. Hierzu wurden in internationalen Versuchskampagnen verschiedene Transport- und Aufprallversuche durchgeführt, die unterschiedliche Belastungsszenarien abdecken. Die gewonnenen Messdaten bilden eine wesentliche Grundlage für die Beurteilung des mechanischen Integritätsnachweises der Brennelemente und erlauben eine Verifizierung der Annahmen zu den Belastungsgrenzen während der betrachteten Handhabungsvorgänge.

2.1.1 Transportbelastungen bei Straßen-, Schienen- und Wassertransporten

Im Jahr 2017 wurde eine Testreihe zu Transportbelastungen bei Straßen-, Schienenund Wassertransport mit einem ENSA ENUN-32P Transportbehälter durchgeführt. Das
Versuchsprogramm wurde durchgeführt bzw. unterstützt von Sandia National Laboratories (SNL), Pacific Northwest National Laboratory (PNNL), Equipos Nucleares Sociedad
Anónima (ENSA) und Transportation Technology Center Inc. (TTCI). Das Hauptziel bestand dabei darin, Dehnungen und Beschleunigungen von Ersatzbrennstäben unter normalen Transportbedingungen zu messen. Des Weiteren wurden die Beschleunigungen
an verschiedenen Stellen des Tragkorbs, des Behälters, des Behältergerüsts und der


Transportplattform aufgenommen /MCC 18/. Das vollständig instrumentierte Transportsystem – bestehend aus beladenem Behälter, Lagerungskorb und Stoßdämpfern – durchlief eine kombinierte Transportstrecke: zunächst per Schwerlast-LKW in Spanien, anschließend per Küstenschiff nach Belgien, von dort per Hochseeschiff in die Vereinigten Staaten (Baltimore), gefolgt von einem Eisenbahntransport zur Transportation Technology Center Inc. (TTCI) Testanlage in Colorado. Die Rückfahrt nach Baltimore erfolgte ebenfalls per Schiene, wobei auf dem Rückweg nur die ersten 1.125 Meilen messtechnisch erfasst wurden. Insgesamt umfasste der Transport eine Strecke von ca. 9.400 Meilen durch sieben Länder und zwölf US-Bundesstaaten innerhalb eines Zeitraums von 54 Tagen. Erstmals konnten dabei direkt an Ersatzbrennelementen Dehnungen und Beschleunigungen in einer realen Transportkonfiguration gemessen werden. Ergänzend dazu wurden Messungen an Korb, Behälter, Tragrahmen und Transportplattform vorgenommen.

Im Vorfeld der MMTT-Testreihe wurden am SNL und PNNL bereits Shaker-Tests an Ersatzbrennelementen durchgeführt, welche typische Beschleunigungsdaten von LKW simulieren sollten. Die Eingangsparameter für die Shaker Table Tests (vertikale Beschleunigungen) basierten auf Beschleunigungsmessungen an repräsentativen Behältern mit einem Gewicht von 20-25 Mg während eines 700 Meilen langen Straßentransports im Jahr 1977 /MAG 78/. Zudem wurde ein instrumentierter LKW-Transport eines Ersatzbrennelements durchgeführt, bei dem die Fahrt über 40 Meilen mit unterschiedlichen Straßenbedingungen führte. Die während dieses Tests maximal auftretende Dehnung betrug 143 με und wurde während des Transports auf einem unebenen Schotterweg gemessen. Die Ergebnisse konnten aufzeigen, dass die realistisch zu erwartenden Vibrationen und Stöße unter normalen Transportbedingungen zu Belastungen weit unterhalb der Dehn- und Ermüdungsgrenzen führten.

Der für die MMTT-Tests verwendete ENSA ENUN-32P Behälter wurde mit drei Ersatzbrennelementen (SNL, ENRESA KORAD/KAERI) und 29 Dummy-Brennelementen beladen /MCC 18/. Die Ersatzbrennelemente vom SNL bestanden überwiegend aus Kupferrohren, welche mit durchgehenden Bleistäben gefüllt waren. Zusätzlich wurden drei Stäbe mit einer Ummantelung aus Zircaloy-4 eingebracht, welche jeweils mit einem Bleistab, Bleipellets und mit Molybdänpellets befüllt waren /MCC 18/. Die Zircaloy-4-Stäbe wurden mit Sensoren instrumentiert /KAL 18/. Die Dehnmessstreifen und die Beschleunigungssensoren des Ersatzbrennelements wurden an den Stellen mit den höchsten erwarteten Belastungen positioniert /MCC 18/.

2.1.1.1 Handhabungsvorgänge im Zwischenlager

Die Behälterhandhabung wurde von drei verschiedenen Kranführern, die Erfahrungen im Transport von Trockenlagerbehältern haben, durchgeführt /MCC 18/. Dabei wurde der Behälter jeweils drei Mal angehoben, nach links oder rechts bewegt und wieder abgesenkt, jeweils mit einem unterschiedlichen Grad an Geschwindigkeit bzw. Aggressivität. Somit konnten Daten für unterschiedlich starke Stöße gesammelt werden. Abschließend wurde der Behälter in die Halterung abgesenkt und horizontal abgelegt /SNL 17/. In den Zwischenlager- und Transport-Handhabungstests wurden die kurzfristigen, meist stoßartigen Beschleunigungen des Behälters bei den Bewegungen mittels eines Krans untersucht. Da die Handhabungen mit höheren Geschwindigkeiten und einer höheren Aggressivität durchgeführt wurden, lagen die ermittelten maximalen Beschleunigungen des Ersatzbrennelements bei teils über 8 g. Ein Vergleich der Beschleunigungen, die beim Absetzen des Behälters durch verschiedene Operateure ermittelt wurden, mit den Beschleunigungen beim Drehen von der Vertikalen in die Horizontale sowie Absetzen in die Transportaufnahme im sog. "Heavy-Haul Handling Test", sind in Abb. 2.1 dargestellt.

Abb. 2.1 Maximale Beschleunigungen beim Absetzen (Drop) bzw. Drehen und Verladen (HH-Handling) des SNL-Ersatzbrennelements /MCC 18/

Auch bei diesem Test fallen die Beschleunigungen am Behälter relativ gering aus. Bei diesen Handhabungsoperationen wurden an den Ersatz-Brennelementen maximale

Dehnungen von 82 με beim Anheben/Absenken und 20 με beim Einsetzen in die Hängeeinrichtung gemessen.

2.1.1.2 LKW-Transport in Spanien

Während des 245 Meilen langen Schwerlasttransports in Nordspanien wurden insgesamt 36 Lastimpulse identifiziert. Davon waren 78 % der Ereignisse auf Unebenheiten der Fahrbahn zurückzuführen (Brückenübergänge, Fußgängerübergänge, Schlaglöcher etc.). Außerdem konnten erhöhte Beschleunigungen im Zusammenhang mit Kurvenfahrten identifiziert werden. Die maximal gemessene Beschleunigung an den Ersatz-Brennelementen betrug 0,52 g, die zugehörige maximale Dehnung lag bei 15,6 με.

2.1.1.3 Transport mit dem Schiff

Die während des Transports mit dem Küstenschiff sowie dem anschließenden Hochseeschiff gemessenen mechanischen Belastungszustände waren insgesamt sehr gering. Die maximale gemessene Beschleunigung betrug lediglich 0,12 g, während die maximale Dehnung mit 3,8 με ebenfalls im niedrigen Bereich lag. Wie in /KAL 23/ beschrieben, war die Transportplattform fest mit dem Schiffsdeck verbunden. Dies führte zu einer erheblichen Einschränkung ihrer Bewegungsfreiheit und wirkte somit stark dämpfend auf das dynamische Verhalten. Aufgrund eines Ausfalls des GPS-Systems während dieses Transportabschnitts konnte der exakte Ort der Messungen nur näherungsweise bestimmt werden.

2.1.1.4 Zugstrecke von Baltimore zum TTCI

Während des 1.950 Meilen langen Eisenbahntransports von Baltimore, Maryland zur Transportation Technology Center Inc. (TTCI) in Colorado wurden die wesentlichen dynamischen Lastimpulse durch zwei Hauptfaktoren verursacht:

- 629 registrierte Ereignisse von Weichenüberfahrten
- 1.029 Ereignisse von Bahnübergängen

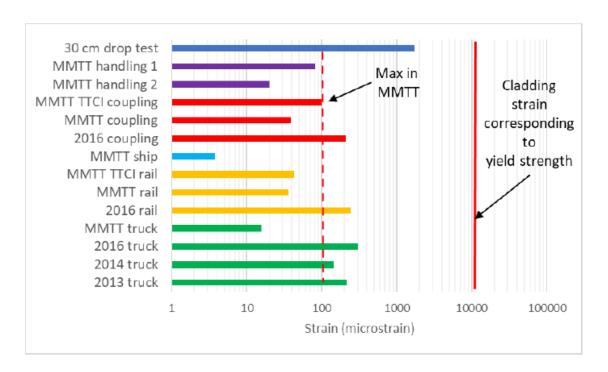
Das Ereignis mit der höchsten gemessenen Beschleunigung trat bei der Überfahrt einer sog. "diamond crossing" in Jacksonville, Illinois auf. Die Transportgeschwindigkeit betrug ca. 58 km/h. Dabei wurde eine maximale Beschleunigung von 0,95 g und eine maximale Dehnung von 20,7 µɛ aufgezeichnet. Die höchste gemessenen Dehnung trat bei der

Überfahrt einer Weiche in Kendall, Kansas auf. Bei einer Fahrgeschwindigkeit von etwa 72 km/h konnte eine maximale Beschleunigung von 0,66 g und eine Dehnung von 35,8 µε registriert werden.

2.1.1.5 TTCI-Versuchsergebnisse

Die Untersuchungen am TTCI stellen einen besonderen Teil des Transports dar, da entgegen den Transporten auf öffentlichem Gelände die Testparameter frei eingestellt werden können. Das Design der verschiedenen Teststrecken führt zu Belastungen, die eher etwas über den im normalen Zugbetrieb zu erwartenden Werten liegen. Die Tests stellen unterschiedliche Schienenkonfigurationen bzw. Hindernisse dar, wie sie üblicherweise auf Eisenbahnstrecken in den USA anzutreffen sind /KAL 18/. Nach den Tests am TTCI wurde der Behälter per Zug wieder zum Hafen von Baltimore gebracht. In Baltimore wurde das Testequipment entfernt und der Behälter zu ENSA nach Spanien zurückverschifft.

Am Transportation Technology Center Inc. (TTCI) wurden insgesamt acht Testreihen durchgeführt. Jede dieser Reihen bestand aus mehreren Einzeltests bei variierenden Fahrgeschwindigkeiten mit dem Ziel, typische Resonanzfrequenzen der Komponenten zu erfassen. Die TTCI-Versuche wurden unter kontrollierten Bedingungen mit bewusst überhöhten Randbedingungen durchgeführt. So lagen bspw. die Gleisbeschaffenheit, Zuggeschwindigkeit und Kupplungsgeschwindigkeiten oberhalb der im regulären Eisenbahnbetrieb genehmigten Werte. So konnte sichergestellt werden, dass eine konservative Abschätzung der realen Belastungen vorgenommen wurde.


Die im Rahmen der am TTCI durchgeführten Versuche gemessenen Dehnungen an den Ersatzbrennelementen überstiegen bewusst jene, die während des realen Bahntransports aufgezeichnet wurden. Als Belastungsintensivstes Szenario erwies sich der Kupplungstest bei einer Geschwindigkeit von 13 km/h. Hierbei wurde eine maximale Dehnung von 99 με an den Ersatzbrennelementen gemessen.

Während des anschließenden realen Eisenbahntransports auf der Strecke TTCI nach Baltimore wurden noch einmal 13 Kupplungsvorgänge registriert. Das Maximum der ermittelten Beschleunigungen an den Brennstäben lag hierbei bei 1,05 g. Die maximal auftretende Dehnung betrug 38 με. Diese Werte sind konsistent mit Werten, welche bei einer Kupplungsgeschwindigkeit von etwa 4 mph auftreten, was der zulässigen Höchstgeschwindigkeit im betrieblichen Eisenbahnverkehr entspricht.

Beim Twist-and-Roll-Test weisen die Brennelemente im direkten Vergleich zur Transportplattform verstärkte Beschleunigungswerte bei niedrigen Frequenzen bis 8 Hz und darüber deutlich gedämpfte Beschleunigungen (~Faktor 100) auf. Die Beschleunigungen bei höheren Geschwindigkeiten fallen mit bis zu 1,9 g höher aus, die Verhältnisse zwischen den Komponenten bleiben jedoch gleich /KAL 18b/. Die Brennelemente, der Behälter und die Aufhängung erfuhren dabei vertikale Beschleunigungen, die stets unterhalb von 2 g lagen.

Beim Single-Bump-Test zeigten die vordersten und hintersten Sensoren die größten Beschleunigungen, während auf die Mitte der Plattform und des Behälters geringe Beschleunigungen wirkten. Generell führten höhere Geschwindigkeiten zu höheren vertikalen Beschleunigungen. Im Coupling-Impact-Test wurden durch das Ankoppeln bei normalen bzw. erhöhten Geschwindigkeiten, Längskräfte in den Transportwagen eingeleitet. Die Beschleunigungen von Behälter und Tragkorb fallen, wie auch bei den anderen Tests, signifikant niedriger aus.

Aus der Analyse der Ergebnisse konnten die Belastungszustände der Ersatzbrennelemente während normaler Transportvorgänge ermittelt werden. Es zeigte sich dabei, dass die Dehnungen, welche unter normalen Transportbedingungen auftreten, relativ niedrig blieben und Werte von 100 $\mu\epsilon$ nicht überschritten /MCC 18/. Abb. 2.2 listet die maximal ermittelten Dehnungen für eine Reihe von Transportvorgängen auf. Die ermittelten Werte liegen deutlich unterhalb der Fließgrenze, welche laut /KAL 18/ bei ungefähr 9.000 $\mu\epsilon$ angesetzt werden kann. Die Belastungen für einen Aufprall aus 30 cm sind deutlich höher als für die Transportvorgänge. Allerdings liegt auch hier die maximale Dehnung mit einem Wert von 2.000 $\mu\epsilon$ noch immer weit unterhalb der plastischen Fließgrenze der Brennstäbe bzw. Führungsrohre.

Abb. 2.2 Maximale Belastungszustände der Brennstäbe aus verschiedenen Tests /KAL 23/

Außerdem konnte im Zusammenhang mit der MMTT-Versuchsreihe aufgezeigt werden, dass die einzelnen Komponenten eines Transport- und Lagerbehälters unterschiedlich auf Transientenanregungen reagieren. Diese Unterschiede wurden exemplarisch anhand der Stoßantwortspektren (Shock Response Spectra, SRS) aus einem Einzelstoßversuch am TTCI analysiert und sind in Abb. 2.3 dargestellt.

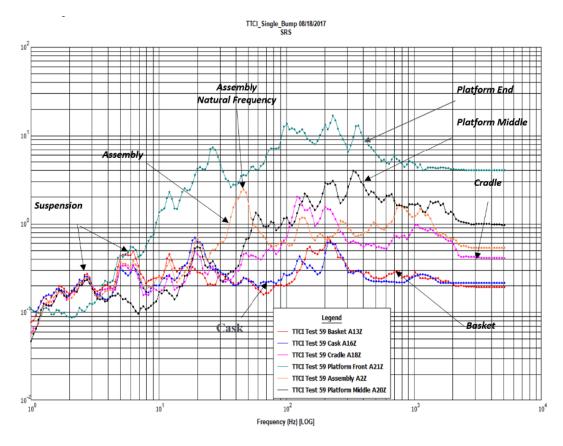


Abb. 2.3 Stoßantwortspektren für einen Einzelstoßversuch durchgeführt am TTCI

Im Frequenzbereich von 1-10 Hz zeigte sich eine Signalverstärkung im Bereich von 4 bis 55 Hz, wenn man die Resonanzfrequenz der Transportplattform mit anderen Komponenten des Transport- und Lagerbehälters vergleicht. Oberhalb von 55 Hz erfolgte die Signalantwort des Behälters zunehmend gedämpft. Eine Verstärkung der Anregungsfrequenz zwischen Behälter und Brennelementtragkorb bzw. dem Brennelement wurde insbesondere bei Frequenzen oberhalb von 5 Hz beobachtet. Darüber hinaus wurden einzelne Resonanzfrequenzen wie folgt identifiziert:

- Der SRS-Peak bei etwa 2,5 Hz korrespondiert mit der vertikalen Eigenfrequenz des Eisenbahnwagens (Federungssystem).
- Bei etwa 7 Hz ist der Peak auf die laterale Eigenfrequenz der Wagenaufhängung zurückzuführen.
- Der höchste Peak bei ca. 45 Hz entspricht der Eigenfrequenz der Ersatzbrennelemente.

Diese Ergebnisse zeigen, dass das Verhalten komplexer Transportsysteme frequenzabhängig betrachtet werden muss. Dies gilt insbesondere, wenn es um die Belastung empfindlicher Komponenten wie den Brennelementen geht.

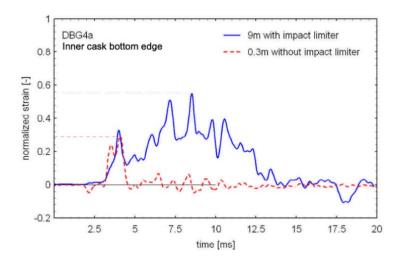
Erwähnenswert ist auch, dass die Ergebnisse aus Transportversuchen eines separaten Brennelements (Shaker Table Tests sowie Überland-Lkw-Test) /KLY 15/ höher waren, als jene, die während der MMTT-Versuchsreihe ermittelt wurden. Diese Abweichung lässt sich durch eine Dämpfung der mechanischen Anregungen erklären, welche vom Transport- und Lagerbehälter über das Brennelementtragkorbsystem auf das Brennelement ausgeübt wird. Wird das Brennelement direkt auf der Ladefläche montiert, erfolgt eine solche Dämpfung nicht. Eine uneingeschränkte Vergleichbarkeit der Ergebnisse ist somit nicht gegeben.

2.1.1.6 KORAD Untersuchungen

Auch vom Korea Atomic Energy Research Institute gibt es ein eigenes Untersuchungsprogramm, in dem die mechanischen Belastungszustände der Brennelemente für normale Transportvorgänge (Straßentransport, Seetransport) untersucht wurden /LIM 22/. Ähnlich wie im MMTT-Test wurden die Beschleunigungen und Dehnungen an unterschiedlichen Stellen des Behälterkörpers als auch im Brennelement gemessen. Ziel war es, die Dämpfungen und Verstärkungen zu ermitteln, welche zwischen Behälterkörper und Brennelement auftreten. Außerdem sollte ermittelt werden, welchen Einfluss die Position im Tragkorb auf die Belastungszustände der Brennelemente hat. Der Behälter war mit 19 Dummy-Brennelementen und zwei DWR-Ersatzbrennelementen bestückt. Die Dummy-Brennelemente bestanden aus Beton und entsprachen wie auch der Behälter mit allen Einbauten dem Gesamtgewicht der originalen Bauteile.

Der Straßentransporttest wurde auf dem Gelände des Behältermodellherstellers Doosan Heavy Industries and Construction (DOOSAN) durchgeführt. Der Behälter befand sich auf einem 10-achsigen Anhänger und wurde von einer Zugmaschine gezogen, die auf bis zu 30 km/h beschleunigen kann. Zudem wurden Behälterhandhabungen mit einem Kran durchgeführt, bei denen auch unüblich hohe Kranbeschleunigungen durchgeführt und unerfahrene Operateure oder Handhabungsfehler simuliert wurden. Die Handhabungen umfassten das vertikale Aufsetzen, das horizontale Senken auf die Behälterhalterung und die Be- und Entladung auf den Transporter. Die ermittelten maximalen Dehnungs- und Beschleunigungswerte an den Brennelementen für die einzelnen Tests sind in Tab. 2.1 aufgelistet.

Tab. 2.1 Maximal ermittelte Dehnungen und Beschleunigungen bei den Straßentransporttests


Test	Max. Dehnung [με]	Max. Beschleunigung [g]
Rüttelschwelle	16,9	0,87
Spurwechsel	23,6	1,03
Bremsen	27,8	2,02
Ausweichen	26,8	0,80
Kreisfahrt	47,8	1,28

Die Abstände der Abstandshalter an den Brennelementen hatten signifikanten Einfluss darauf, wo die höchsten Belastungszustände auftraten. Weit auseinanderliegende, strukturelle Stützstellen führten folglich zum stärkeren Durchbiegen und Schwingen der Brennelemente. Durch Sensoren an unterschiedlichen Brennstäben konnte zudem gezeigt werden, dass die inneren Brennstäbe weniger Dehnungen als die äußeren Brennstäbe erfuhren. Die Auswertung der Behälterhandhabungen ergab erwartungsgemäß, dass die schneller durchgeführten Bewegungen zu höheren Dehnungen als die Handhabungen mit üblichen Geschwindigkeiten führten. Die höchste Dehnung wurde während der Drehung des Behälters in die Horizontale und während eines Handhabungsfehlers gemessen. Weiterhin konnte festgestellt werden, dass die Position der Brennelemente innerhalb der Aufnahmevorrichtung keinen signifikanten Einfluss auf die Deformation hat. Dagegen konnte festgestellt werden, dass längere Spannweiten, also Bereiche zwischen zwei Abstandshaltergittern, auch zu höheren Dehnungen führen.

2.1.2 Aufprallversuche der BAM mit Brennelement-/HAW-Transport- und Lagerbehältern

Im Zusammenhang mit dem Bauartprüfungsverfahren für den Behälter CASTOR® HAW28M der GNS wurden in den Jahren 2005 und 2006 durch die BAM verschiedene Aufprallversuche mit Modellbehältern des CASTOR® HAW/TB2 im Maßstab 1:2 durchgeführt /BAM 08/. Der Behältertyp ist für den Transport von verglasten hochradioaktiven Abfällen aus der Wiederaufbereitung von Brennelementen aus La Hague (Frankreich) und Sellafield (UK) vorgesehen. Im Zuge des Forschungsprojekts EBER wurden experimentell und numerisch die mechanischen Belastungszustände und Beschleunigungen vom Behälterkörper und den Behälterkomponenten für einen Aufprall ohne Stoßdämpfer ermittelt. Eine Erkenntnis aus diesen Versuchen war, dass hohe dynamische Spannungswellen bei einem Fall aus 30 cm erzeugt werden, welche hohe Spannungspeaks und hohe Dehnungsraten hervorrufen. Außerdem wurde ermittelt, dass die

Eigenschaften des Fundaments einen erheblichen Einfluss auf das Aufprallszenario und die Belastungszustände im Behälter ausüben. Die Testergebnisse für den Fall aus 30 cm ohne Stoßdämpfer wurden mit Fallversuchen aus 9 m Höhe mit Stoßdämpfer verglichen. Die normalisierten Dehnungsmessungen für den Fallversuch aus 9 m Höhe mit Stoßdämpfern und für den Fallversuch aus 0,3 m Höhe ohne Stoßdämpfer sind in Abb. 2.4 dargestellt.

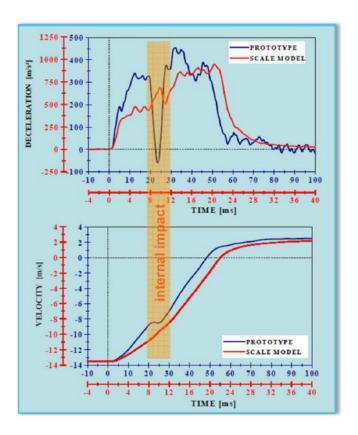


Abb. 2.4 Gegenüberstellung der Ergebnisse der Fallversuche aus 9 m Höhe mit Mantelstoßdämpfer und aus 0,3 m ohne Mantelstoßdämpfer

Trotz der großen Unterschiede in Fallhöhe und Aufprallenergie liegen die maximalen Hauptspannungen in einem ähnlichen Bereich. Die maximale Hauptspannung ist bei einem Fall aus 9 m am Behälterboden mit 69 MPa nur unwesentlich höher als die für den Fall aus 0,3 m Höhe ermittelten 61 MPa. Die Unterschiede im Dehnungsverhalten sind im Vergleich dazu signifikanter (vgl. Abb. 2.4). Zur Verifikation der experimentellen Ergebnisse wurden die Fallversuche aus 0,3 m Höhe ohne Stoßdämpfer mit einer FE-Analyse eines 3D-Behältermodells simuliert. Aufgrund der fehlenden Energieabsorption durch die Stoßdämpfer und den daraus resultierenden harten Aufprallbedingungen üben die Eigenschaften des Fundaments einen großen Einfluss auf die Belastungszustände des Behälterkörpers aus /BAM 08/. Eine grundlegende Erkenntnis der Fallversuche war, dass die mechanischen Belastungszustände, welche am Behälterkörper bei einem Fall aus 0,3 m ohne Stoßdämpfer auftreten, nicht zu plastischen Verformungen am Behälterkörper führen.

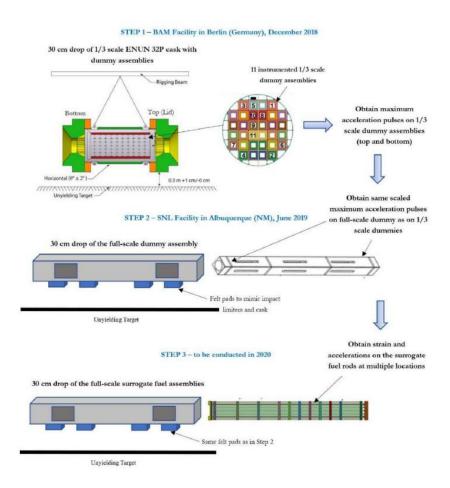
Eine weitere Erkenntnis aus den Aufprallversuchen der BAM bezog sich auf die Vergleichbarkeit der Ergebnisse von skalierten Modellen eines TLB im Vergleich zu Modellen im Originalmaßstab. Skalierte Modelle weichen in ihrem physikalischen Verhalten,

insbesondere bei dynamischen Vorgängen wie Aufprallversuchen, oftmals deutlich vom Originalmaßstab ab. In /QUE 07/ findet sich ein Vergleich zwischen experimentellen Ergebnissen für einen vertikalen Fallversuch aus 9 m mit einem TLB im Originalmaßstab und einem skalierten Modell im 1:3 Maßstab. Die signifikantesten Unterschiede (gelber Bereich in Abb. 2.5) zwischen dem Modell im Originalmaßstab und dem skalierten Modell treten beim sekundären Aufprall der Behälterkomponenten gegen den Behälterdeckel auf.

Abb. 2.5 Messung der Beschleunigung und Geschwindigkeit für einen vertikalen Fallversuch aus 9 m Höhe für zwei verschiedene Behälter

Besonders bei den Dehnungsmessungen ergeben sich signifikante Unterschiede im Bereich von 26 % bis 90 %. Die maximale und durchschnittliche Beschleunigung des skalierten Modells weicht um 17 % vom Modell im Originalmaßstab ab. Die Gründe für die Unterschiede sind dabei vielfältig. Während Längen linear skaliert werden, verhalten sich Massen kubisch zur Längenskalierung. Das Trägheitsmoment skaliert mit der fünften Potenz der Längenskala, ist also deutlich empfindlicher als die Masse selbst. Dieses Missverhältnis ist ein zentraler Grund, warum sich dynamische Vorgänge wie Aufprallverhalten nicht direkt skalieren lassen. Außerdem haben Materialien im skalierten Modell oft nicht exakt die gleichen Eigenschaften wie im Original (z. B. Streckgrenze, Dämpfung

etc.). Selbst wenn das gleiche Material verwendet wird, lassen sich strukturelle Verformungen und plastische Deformationen nicht proportional skalieren. Weiterhin ändern sich die Zeitskalen von Bewegungen und Schwingungen nicht linear. Ein kleineres Modell reagiert dadurch schneller, wodurch z. B. Schwingungen anders verstärkt bzw. abgedämpft werden. Ein weiterer Punkt ist, dass sich die relative Bedeutung der Gravitation im Vergleich zur Trägheit verändert. Dies führt zu einer verkürzten Aufprallzeit des skalierten Behälters, was wiederum dazu führt, dass die Zeitverläufe des Sekundäraufpralls nicht korrekt abgebildet werden. Darüber hinaus wird die Korngröße des Materials des Aufpralldämpfers nicht skaliert. Zusammenfassend lässt sich sagen, dass ein skaliertes Modell den Aufprall eines Modells im Originalmaßstab als zu weich abbildet. Weiterhin unterschätzt das skalierte Modell das Dehnungsverhalten einzelner Behälterkomponenten.


Tab. 2.2 Unterschiede im Aufprallverhalten für ein skaliertes Modell im Vergleich zu einem Modell im Originalmaßstab

Messwerte	Unterschiede des skalierten Behälter- modells
Maximale Geschwindigkeit	+ 9 %
Maximale Beschleunigung	- 17 %
Gesamtzeit des Aufpralls	+ 24 %
Ausdehnung am Behälterkörper	- 26 %
Biegedehnung am Primärdeckel	- 80 %
Axiale Dehnung am Primärdeckel	- 94 %

Skalierte Modelle liefern zwar wichtige qualitative Erkenntnisse, aber die Übertragung auf das Originalmaßstab-Modell ist nur mit aufwendiger physikalischer Skalierung und Validierung möglich – insbesondere bei sicherheitskritischen Systemen wie Transportund Lagerbehältern für radioaktive Stoffe. In der Entwicklungs- und Prüfphase technischer Systeme ist der Einsatz skalierter Modelle trotz ihrer Einschränkungen dennoch eine legitime Methode. Hier überwiegen wirtschaftliche Aspekte, da die Herstellung von Modellen im Originalmaßstab - besonders bei großen, komplexen und schweren Objekten wie TLB – mit hohen Kosten verbunden ist. Für eine abschließende Bewertung sicherheitsrelevanter Aspekte ist die Anwendung von Modellen im Originalmaßstab immer vorzuziehen.

2.1.3 Aufprallversuche an den Sandia National Laboratories in Kooperation mit ENSA und der BAM

Um genauer zu ermitteln, wie sich die Beschleunigungen und Belastungszustände vom Behälterkörper auf die Behälterkomponenten übertragen, wurden von den SANDIA National Laboratories, in Kooperation mit der BAM und ENSA, Fallversuche aus 30 cm mit einem skalierten Modell eines Transport- und Lagerbehälters im Maßstab 1:3 durchgeführt. Darüber hinaus wurden Fallversuche einmal mit einem Dummy und mit einem Ersatzbrennelement im Maßstab 1:1 durchgeführt. Die großangelegte Versuchsreihe kann in drei Testreihen unterteilt werden, welche schematisch in Abb. 2.6 dargestellt sind.

Abb. 2.6 Illustration der drei Versuchsreihen zur Ermittlung der Belastungszustände der Brennelemente für normale Transportvorgänge /KAL 19a/

Die drei Testreihen und deren Ergebnisse sollen im Folgenden kurz beschrieben werden.

2.1.3.1 Versuchsreihe I: Aufprallversuche mit einem ENSA ENUN-32P Behälter im 1:3 Maßstab

Im Dezember 2018 fanden insgesamt zwei Fallversuche an einem skalierten Modell eines ENSA ENUN 32P-Behälters im Maßstab 1:3 auf dem Gelände der BAM statt. Aufgrund der hohen Kosten für Tests mit einem Behälter im Originalmaßstab wurde auf ein skaliertes Modell eines ENSA ENUN 32P-Behälters, beladen mit Dummy-Brennelementen, zurückgegriffen.

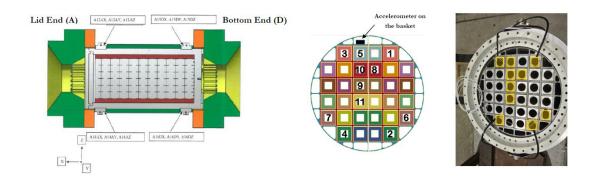
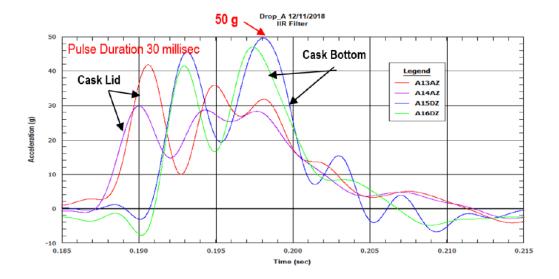
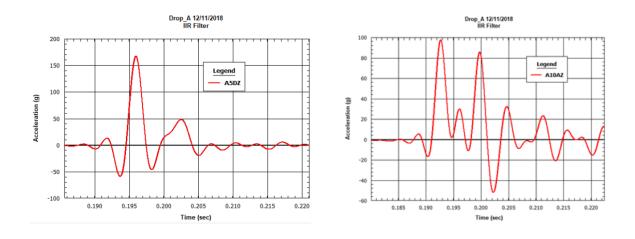


Abb. 2.7 Aufbau des 30 cm Fallversuchs durchgeführt auf dem Gelände der BAM /KAL 19a/

Wie in 2.1.2 beschrieben, lassen sich bei Fallversuchen eines skalierten Transport- und Lagerbehälters nur die Beschleunigungsmessungen auf Fallversuche im Originalmaßstab übertragen. Die Beschleunigungen müssen dabei mit dem inversen Größenfaktor multipliziert werden. Auf Dehnungsmessungen wurden in der ersten Versuchsreihe gänzlich verzichtet. Im ersten Fallversuch befand sich der Behälter in normaler Transportkonfiguration, im zweiten Fallversuch wurde der Behälter um 45° gedreht. Dies diente dazu, den Einfluss der Korborientierung auf die Beschleunigungsantwort zu ermitteln.


Für die Fallversuche wurde der Transport- und Lagerbehälter mit 32 Dummy-Brennelementen, ebenfalls im 1:3 Maßstab, beladen. Insgesamt wurden 34 Beschleunigungssensoren an 11 Dummy-Brennelementen angebracht. 12 Beschleunigungssensoren

wurden am Außenbehälter und 3 Beschleunigungssensoren am Tragkorb angebracht. Die ideale Positionierung der Beschleunigungssensoren wurde im Vorfeld durch Simulationen ermittelt /KLY 15/.


Abb. 2.8 Illustration der Position der Beschleunigungssensoren am Außenbehälter und am Dummy-Brennelement /KAL 19a/

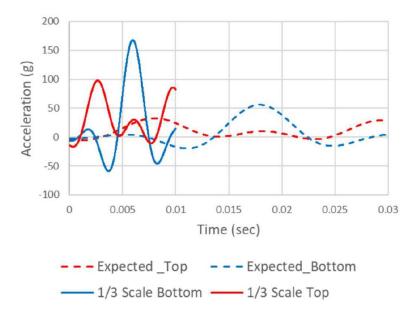
Die Datenerfassung erfolgte mit einer Abtastrate von 200 kHz. Aus den Zeitsignalen der Beschleunigungsmessungen konnte geschlossen werden, dass der Behälter auf dem Fundament mit einer leichten Neigung aufprallt. Die Vorderseite erreicht das Fundament früher und dementsprechend setzt die Bremsbeschleunigung der Behältervorderseite 2 ms vor der Behälterrückseite ein. Auf der Seite der geschweißten Bodenplatte wirkt eine höhere Beschleunigung als auf der Seite des Primärdeckels. Dies zeigt, dass der Behälterkörper beim horizontalen Fall leicht geneigt, mit der Behälterdeckelseite zuerst, auf dem Fundament aufprallt. In /KAL 19a/ wird erwähnt, dass horizontale Fallversuche fast niemals identisch verlaufen und man immer mit einem gewissen Neigungswinkel rechnen muss, welcher einen Einfluss auf das dynamische Aufprallverhalten hat. Aus den Messungen kann abgelesen werden, dass der Behälter beim ersten Fallversuch insgesamt 7-mal und beim zweiten Fallversuch (mit einem um 45° geneigten Brennelementtragkorb) insgesamt 5-mal aufprallt. Im Behälterdeckel konnten maximale Beschleunigungswerte in einem Bereich von 30-42 g ermittelt werden. Diese lassen auf eine Maximalbeschleunigung für den Deckel eines Transport- und Lagerbehälters im 1:1 Maßstab von 10-12 g schließen /KAL 19a/. Für den Behälterboden konnten maximale Beschleunigungswerte von 50 g ermittelt werden (vgl. Abb. 2.9).

Abb. 2.9 Die Verzögerungsverläufe während des ersten Aufpralls an der Behälterdeckelseite und Behälterbodenseite. Die maximale Verzögerung erreicht einen Wert von 50 g /KAL 19a/

Die maximale Beschleunigung in den Dummy-Brennstäben erreicht bodenseitig einen Wert von ungefähr 170 g (vgl. linkes Bild in Abb. 2.10). Deckelseitig wird eine maximale Beschleunigung von 100 g ermittelt (vgl. rechtes Bild in Abb. 2.10).

Abb. 2.10 Die maximalen Beschleunigungswerte an der Vorderseite (links: A5DZ) und an der Rückseite (rechts: A10AZ) der Ersatzbrennstäbe während des Fallversuchs aus 30 cm /KAL 19a/

In /KLY 20a/ sind die maximalen Beschleunigungswerte gemessen am Behälterkörper, den Brennstäben, dem Brennelement und am Brennelementtragkorb aufgelistet.


Vergleicht man die Werte aus Abb. 2.9 bzw. Abb. 2.10 (SNL-Report) mit den in Tab. 2.3 aufgelisteten Ergebnissen (PNNL-Report), so ergeben sich Unterschiede bzgl. der maximalen Beschleunigung, obwohl beide die gleichen Experimente beschreiben. Laut /KLY 20a/ ist dies auf eine unterschiedliche Auswertung der Testergebnisse zwischen SNL und PNNL zurückzuführen. Beide Forschungseinrichtungen nutzen bspw. unterschiedliche "bias-correction"-Verfahren zur Datenfilterung. Darüber hinaus erfassen die Daten vom PNNL nur den Erstaufprall. Belastungszustände, welche durch den Sekundäraufprall entstehen, finden sich dementsprechend nur in der Auswertung vom SNL wieder.

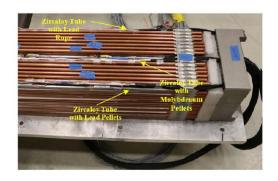
Tab. 2.3 Ergebnisse der Beschleunigungsmessung an verschiedenen Bereichen des Transport- und Lagerbehälters

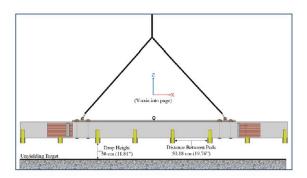
Bereich	Maximale Beschleuni- gung - parallel [g]	Maximale Beschleuni- gung - 45° rotiert [g]
Behälterkörper	51	42
Brennelementtragkorb	63	64
Brennstab	110	120
Brennelement	187	184

Die Beschleunigung, welche auf die Brennelemente einwirkt, ist um das Zweifache höher als auf dem Brennelementtragkorb und generell deutlich größer als am Behälterkörper. Bei der Bewegung von Behälterkörper und Brennelementtragkorb handelt es sich laut /KLY 20a/ um sog. "bulk-motions". Das heißt, dass sich die Komponenten hauptsächlich als Ganzes verschieben, ohne dass sie durch elastische oder plastische Verformungen gedämpft werden. Dies führt dazu, dass schnelle, hochfrequente Bewegungen (wie Schwingungen oder Stöße mit hohen Frequenzen) weniger gedämpft und somit direkter auf das Brennelement wirken. Die Beschleunigungen bzgl. der 0° und 45°-Orientierung des Brennelementtragkorbs unterschieden sich nicht signifikant. In der 45°-Orientierung wirken generell etwas geringere Beschleunigungen. Dies begründen /KAL 19a/ mit Unterschieden in der strukturellen Integrität der Stoßdämpfer. Der größte Einflussfaktor bzgl. der Belastungszustände auf das Brennelement hängt von der Größe des Spalts zwischen Behälterkörper und Brennelementtragkorb ab.

Aus den gemessenen maximalen Beschleunigungen an den verkleinerten Dummy-Brennstäben wurden die erwarteten Beschleunigungen bei Fallversuchen im Originalmaßstab berechnet, indem die Beschleunigungen um ein Drittel verringert und die Zeit um den Faktor 3 verlängert wurde. Die erwarteten Beschleunigungen im Originalmaßstab im Vergleich zu den gemessenen im Maßstab 1:3 sind in Abb. 2.11 dargestellt.

Abb. 2.11 Gemessene Beschleunigungen der Dummybrennstäbe im Maßstab 1:3 und erwartete Beschleunigungen im Originalmaßstab beim Fallversuch aus 20 cm


2.1.3.2 Versuchsreihe II: Zur Konfiguration der Dämpfungspads mit einem Dummy-Brennelement im Originalmaßstab


In einer zweiten Versuchsreihe (vgl. /KAL 20/) wurden Fallversuche mit einem Dummy-Brennelement im Originalmaßstab durchgeführt. Für die Realisierung der Fallversuche der Dummy und Surrogate-Brennelemente wurde ENSA vom SNL damit beauftragt, ein 17x17 DWR-Brennelementtragkorb aus Aluminium, versetzt mit Borkarbid, zu fertigen, um die Randbedingungen nachzuahmen, die auf das Brennelement während der Fallversuche wirken. Der Brennelementtragkorb wurde mit 4 Dämpfungsscheiben ausgestattet, um den Schockimpuls beim Aufprall zu absorbieren. Die Konfiguration der Dämpfungsscheiben wurde so gewählt, dass die Beschleunigungsimpulse, welche aus der ersten Testreihe am Testbehälter im verkleinerten Maßstab gemessen wurden, übereinstimmten. Die für das Brennelement im Maßstab 1:1 erwarteten Beschleunigungen wurden dafür berechnet. Ziel der zweiten Versuchsreihe war es, die Dämpfungsscheiben so zu konstruieren und anzubringen, dass diese den schockabsorbierenden Effekt des Behälterkörpers und der Stoßdämpfer imitieren. Die korrekte Konfiguration der Dämpfungsscheiben war Grundlage dafür, um in der dritten Versuchsreihe die Beschleunigungs-

und Dehnungsmessungen am Ersatz-Brennelement im 1:1 Maßstab vorzunehmen. Der Brennelementtragkorb wurde mit zwei triaxial messenden Beschleunigungssensoren und drei Dehnmessstreifen instrumentiert. Das Dummy-Brennelement wurde mit zwei einachsig messenden Beschleunigungssensoren ausgestattet. Es wurden die gleichen Sensoren eingesetzt, die auch beim 30 cm Aufprallversuch am Transport- und Lagerbehälter im Maßstab 1:3 eingesetzt wurden. Das vollständig instrumentierte Brennelement wurde in den Tragkorb eingebracht und zum Fallversuch von SNL auf dem Testgelände in Albuquerque transportiert. Die Anordnung der Dämpfungsscheiben, welche aus dem zweiten Testversuch ermittelt wurde, wurde in der dritten Testserie wiederholt. Das Testsetup wurde genutzt, um die Dehnungs- und Beschleunigungswerte an einem Ersatz-Brennelement zu ermitteln. Dieses bildet ein reales Brennelement besser als das sog. Dummy-Brennelement ab. Sog. Surrogat- oder Ersatz-Brennelemente besitzen ebenfalls die gleiche Masse und die gleichen Abmessungen, entsprechen in den Materialien jedoch eher richtigen Brennelementen, mit dem Unterschied, dass diese mit nicht radioaktiven Pellets aufgefüllt sind. Zusätzlich dazu sind Kopf- und Endstücke als auch Abstandshalter zwischen den Brennstäben verbaut.

2.1.3.3 Versuchsreihe III: Zur Bestimmung der Belastungszustände an einem Ersatzbrennelement im Originalmaßstab

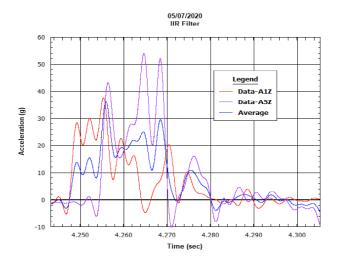

Bei der dritten Versuchsreihe ging es darum eine Stoßbelastung in einem Brennelement zu erzeugen, welche der Beschleunigung aus den Behälterfallversuchen entsprach, ohne jedoch Versuche mit einem vollständigen Transport- und Lagerbehälter durchzuführen. Das Ersatzbrennelement besteht aus einem 17x17 DWR-Brennelement, welches vollständig mit Ersatzbrennstäben aufgefüllt ist. Bei den Ersatzbrennstäben handelt es sich um mit Kupfer umhüllte Bleistäbe. Drei der Brennstäbe bestehen aus einer Zirkonlegierung. Diese drei mit Zirkon umhüllten Brennstäbe sind entweder mit Bleistäben, Blei-Pellets, oder Molybdän-Pellets gefüllt und für die Anbringung der Messsensoren konzipiert. An der Bodenseite sind für die Fallversuche insgesamt 8 Dämpfungspads, konfiguriert nach den Ergebnissen der Versuchsreihe II, angebracht, um die Dämpfung des Behälterkörpers zu simulieren (vgl. Abb. 2.12).

Abb. 2.12 Ersatzbrennelement im Originalmaßstab (links) und Illustration des Aufbaus für den 30 cm Fallversuchs (rechts) /KAL 21/

Am oberen Ende der Brennelemente betrug die Maximalbeschleunigung 38 g und am unteren Ende 54 g (vgl. Abb. 2.13). Das obere Ende prallt dementsprechend zuerst auf dem Boden auf, ähnlich zu den Beobachtungen der Fallversuche des Transport und Lagerbehälters im Maßstab 1:3 /KAL 19a/.

Abb. 2.13 Beschleunigungsmesssignale verschiedener Messstellen während des Aufpralls /KAL 21/

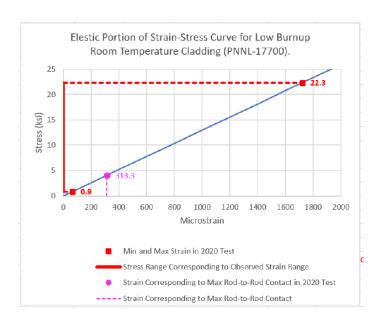

In Abb. 2.14 sind die maximalen Dehnungswerte im Zug- als auch im Druckbereich an verschiedenen Positionen der drei Ersatzbrennstäbe dargestellt. Die größte Dehnung in Zugrichtung wurde mit 1.723 $\mu\epsilon$ wurde an der Brennelementbodenseite am Dehnmessstreifen SG3-0 (im oberen Bereich im Brennstab 1) gemessen. Der größte Messwert bzgl. der Stauchung wurde 815 $\mu\epsilon$ hingegen am Sensor SG10-0 (an der Kopfseite am Brennstab 17) gemessen. Die maximale Spannung, welche der maximal gemessenen Dehnung entspricht, beträgt ungefähr 153,7 MPa.

Abb. 2.14 Die maximalen Dehnungswerte in Zug- als auch in Druckrichtung. Dehnmessstreifen mit einer 0°-Ausrichtung sind blau, mit einer 90°-Ausrichtung sind grün und mit einer 225°-Ausrichtung sind rot dargestellt

Neben der Erfassung der Dehnungs- und Beschleunigungsdaten wurde auch der Kontaktdruck zwischen zwei Brennstäben mit druckempfindlichem Papier ermittelt. Die Stärke des Kontaktdrucks wird durch einen Farbton angezeigt und kann anhand einer farblichen Vergleichsskala abgelesen werden. Die farblichen Werte sind dabei von der Temperatur und Luftfeuchte abhängig. Es konnte ein maximaler Kontaktdruck von 28,27 MPa ± 2,83 MPa ermittelt werden.

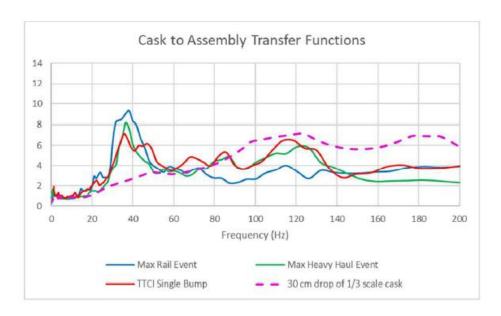
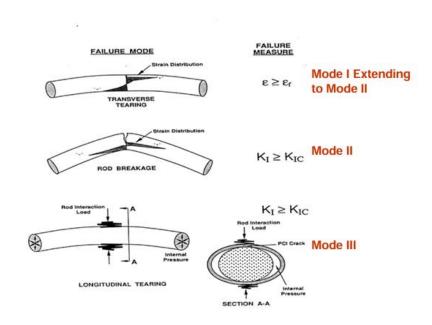

Abb. 2.15 zeigt den elastischen Teil einer Spannungs-Dehnungskurve bei Raumtemperatur für Hüllrohrmaterialen mit einem geringen Abbrand. Außerdem sind die aus den Experimenten bestimmten minimalen und maximalen Dehnungswerte und die daraus errechneten Spannungswerte gekennzeichnet. Zusätzlich dazu ist der maximale Kontaktdruck zwischen den Brennstäben abgebildet. Die indirekt gemessenen Spannungswerte liegen deutlich unter der Fließgrenze, welche für Hüllrohrmaterialien aus Zirkonlegierungen mit geringem Abbrand, gilt.

Abb. 2.15 Spannungs-Dehnungskurve mit gemessener Maximalspannung und dem maximalen Kontaktdruck zwischen zwei Brennstäben

2.1.3.4 Übertragungsfunktion der Beschleunigung vom Behälter auf die Behälterkomponenten

Von /KAL 19b/ wurde die Übertragungsfunktion, welche das Verhältnis der Beschleunigung des Behälterkörpers zu den Brennelementen angibt, für unterschiedliche Handhabungs- und Transportereignisse berechnet. Abb. 2.16 stellt die Übertragungsfunktionen der Beschleunigungen für verschiedene Transportereignisse aus der MMTT-Versuchsreihe als auch für einen Behälteraufprall aus 30 cm dar. 40 Hz entsprechen der natürlichen Schwingfrequenz des Brennelements. In diesem Bereich zeigt die Übertragungsfunktion eine Verstärkung in einem Bereich von 3 (30 cm-Fallversuche) bis 9 (Erschütterung durch Zugfahrt). Bei 20 Hz beträgt die Übertragungsfunktion nur ungefähr 1 - 3. Es zeigt sich bei allen Ereignissen, dass die Beschleunigung vom Behälterkörper, nach innen zu den Brennelementen deutlich verstärkt wird und man demzufolge auch mit höheren mechanischen Belastungen auf die Brennelemente im Vergleich zum Behälterkörper gerechnet werden muss.

Abb. 2.16 Übertragungsfunktion zwischen Behälterkörper und Brennelementen unter normalen Transport- und Unfallbedingungen

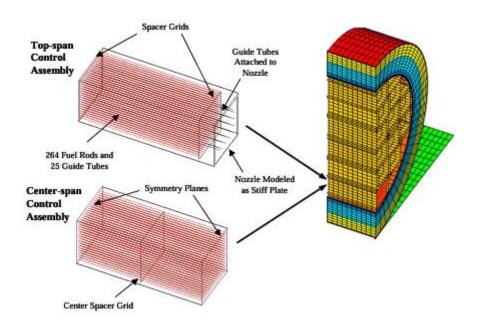

2.2 Finite-Element-Simulationen

Um die Belastungszustände hinreichend genau berechnen zu können, ist es wichtig zu klären, in welchem Detaillierungsgrad die Brennelemente bzw. der Behälterkörper simuliert werden müssen. /KLY 19/ konnten zeigen, dass bei normalen Transportbedingungen (NCT) ein einzelner Brennstab im Modell unter Umständen ausreichend sein kann, um Spannungen und Verformungen näherungsweise vorherzusagen. Beim vertikalen Aufprall kann, wie in NUREG-1864 /NRC 07/ ausgeführt, ein Einzelstabmodell ausreichend sein. Solch vereinfachte Betrachtungen kommen jedoch für andere Aufprallorientierungen bzw. sobald die Belastungen hinreichend hoch sind und es zu einem Kontakt zwischen den Brennstäben kommt, an ihre Grenzen. Auch können Sekundäraufpralleffekte, hervorgerufen durch den Spalt zwischen Tragkorbzelle und Brennelementtragkorb, nicht simuliert werden. Diese spielen jedoch eine wichtige Rolle und sollten nicht vernachlässigt werden /QUE 08/ /KLY 20a/. Um den 30 cm Aufprall abzubilden, ist laut /ADK 13/ daher ein vollständiges 3D-Modell derzeit die beste Option, da es auch reale laterale Verformungen abbildet.

2.2.1 Belastungszustände für Fallversuche aus 30 cm

In /RAS 07a/ wurde mittels FE-Simulation das mechanische Versagen von Brennstäben, Führungsrohren und Abstandshaltern entsprechend der Vorgaben aus 10 CFR 71.71

untersucht. 10 CFR 71.71 ist aus dem Code of Federal Regulations und beschreibt die sog. Normal Conditions of Transport (NCT) für Kernbrennstoffe und radioaktive Materialien. Die Vorgaben bewerten die strukturelle Integrität eines Transportbehälters unter normalen Handhabungs- und Transportbedingungen. Zur Erfüllung dieser Vorschriften, ist ein Fallversuch eines Transport- und Lagerbehälters ohne Stoßdämpfer aus einer Höhe von 30 cm auf eine unnachgiebige Oberfläche vorgesehen. Laut /SNL 92/ ist die ungünstigste Orientierung für Fallversuche ein horizontaler Aufprall, da hierbei die größten Belastungszustände für alle relevanten Deformationsmodi (vgl. Abb. 2.17) auftreten. In /RAS 07a/ und /RAS 07b/ wurde dementsprechend nur der horizontale Aufprall in Betracht gezogen.


Abb. 2.17 Relevante Versagensarten bei einem horizontalen Fall eines Transport- und Lagerbehälter /SNL 92/

Ein Schwerpunkt der Analyse lag darin, die Kontaktkräfte zwischen den einzelnen Brennstäben bei einem Behälteraufprall zu ermitteln. In den Untersuchungen von /RAS 07a/ wurde eine FE-Simulation des Aufpralls erstellt, bei welcher die Brennstäbe als Balkenelemente modelliert wurden. Die maximale laterale Kraft welche während des 30 cm Aufpralls auf die Brennstäbe wirkt, wurde in /RAS 07a/ mit 6,2 kN berechnet. Zusätzlich dazu wirken einmal eine axiale Kraft von 2,7 kN und ein Biegemoment von 19,8 Nm. Ein Versagen durch Rissbildung kann ausgeschlossen werden, da ein Sicherheitsfaktor von mindestens 2 gegen longitudinale Risse gegeben ist. Allerdings treten plastische Verformungen auf, die jedoch nicht zu einem Aufreißen der Hüllrohre führen. Laut /RAS 07a/

sind die Biegung und axialen Spannungen besonders kritisch im oberen Bereich der Brennelemente.

Die maximale Last, mit der die Führungsrohre eingedrückt werden, beträgt ca. 2,8 kN. Zusätzlich dazu wirkt auf diese eine axiale Kraft von 1,85 kN und ein Biegemoment von 39,3 Nm. Ähnlich zu den Brennstäben kommt es zu plastischen Verformungen.

Bzgl. der Abstandsgitter ergeben die Rechnungen von /RAS 07a/, dass die mechanischen Spannungen nicht groß genug sind, dass die Fließgrenze erreicht wird. Insgesamt wird geschlussfolgert, dass die Verformungen die strukturelle Integrität beeinträchtigen, es jedoch nicht zu einem strukturellen Versagen der Komponenten kommt. In den Berechnungen von /RAS 07a/ kommt es zu plastischen Verformungen der Führungsstäbe und Brennstäbe. Die Autoren schreiben, dass, eine Schadensinitiierung erwartbar ist, ein Fortschreiten der Schädigung bzw. Rissentwicklung jedoch ausgeschlossen werden kann da die Last vollständig erschöpft ist.

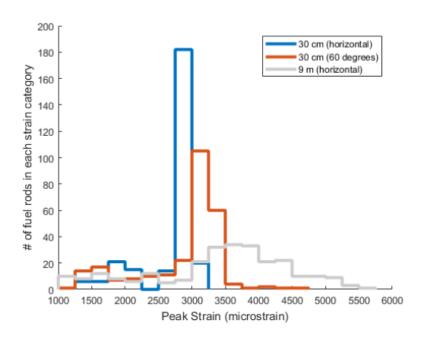


Abb. 2.18 FE-Modell eines 17x17-Brennelements und eines Ausschnitts des Behältermodells /RAS 07b/

Tab. 2.4 Vergleich der maximal auftretenden Kräfte und Biegemomente bei einem Fallversuch aus einer Höhe von 30 cm

Belastung bei 30 cm Fallversuch	Mitte des BE	Ende des BE
Kontaktkraft	Brennstab 6,2 kN	Führungsrohr 2,3 kN
	Führungsrohr 2,8 kN	
Axiale Belastung	Brennstab 2,67 kN	Führungsrohr 1,8 kN
Biegemoment	Brennstab 19,8 Nm	Führungsrohr 39,3 Nm

Dass in der Modellierung von /RAS 07a/ die Abstandshalter nach dem Aufprall aus 30 cm nur elastisch deformiert werden und in ihre ursprüngliche Form zurückkehren, ist ein signifikanter Unterschied zu den Berechnungen von /KLY 20a/. Weiterhin kommen /KLY 20a/ zum Schluss, dass der horizontale Behälteraufprall mitnichten die höchsten Belastungszustände erzeugt. In /KLY 20a/ wurden dafür zur Untersuchung unterschiedliche Aufprallszenarien simuliert. Unter anderem wurden ein vertikaler Aufprall, ein horizontaler Aufprall, sowie sog. Slap-down-Fallversuche aus 40° und 60° betrachtet. Eine weitere wichtige Ergänzung in den Berechnungen von /KLY 20a/ ist, dass die FE-Modelle mit vorher ermittelten experimentellen Testdaten für einen horizontalen Aufprall eines Transport- Lagerbehälters im Maßstab 1:3 validiert werden konnten. Ähnlich zu /RAS 07a/ wurden Materialparameter berücksichtigt, die Brennstäben bzw. Brennelementen mit einem niedrigen Abbrand entsprechen.

Abb. 2.19 Verteilung der maximalen Ausdehnungen der Brennstäbe in einem 17x17DWR-Brennelement für drei Behälterfallbedingungen. Die Ergebnisse wurden mit einer FE-Modellierung berechnet /KLY 20b/

Die mechanisch höchsten Belastungszustände werden für die Fallversuche aus 60° mit Hüllrohr-Dehnungen im Bereich von $4.500-4.700~\mu\epsilon$ ermittelt (vgl. Abb. 2.19). Für die horizontalen Fallversuche wurden deutlich geringere Hüllrohr-Dehnungen im Bereich von $1.133-3.122~\mu\epsilon$ ermittelt. Die Dehnungen der Brennstäbe lagen für alle Aufprallwinkel unterhalb der Fließgrenze, welche bei Raumtemperatur mit ungefähr $11.000~\mu\epsilon$ angenommen werden kann. Bei $200~^{\circ}$ C war die Belastung um nur in etwa 6,3~% höher. In Anlehnung an Arbeiten von /QUE 08/ wurde auch der Einfluss des Spalts zwischen Tragkorbzelle und Brennelementtragkorb untersucht. Hierbei konnte ermittelt werden, dass es ohne Spalt zu einer deutlich geringeren Belastung und nicht zu einer plastischen Abstandshalterverformung kommt. Mit Spalt hingegen wird eine bis zu 3,4-fach höhere Belastung berechnet.

2.2.2 Belastungszustände bei Transportvorgängen

Am PNNL wurden strukturdynamische Analysen an abgebrannten Brennelementen durchgeführt, welche mechanischen Schwingungen und Stößen ausgesetzt sind, wie sie unter normalen Transportbedingungen mit einem Schienenfahrzeug entstehen. Es wurde dabei ein Transport mit den speziell für Beladung mit abgebrannten Brennelementen entwickeltem Atlas Schienenfahrzeug untersucht und dafür die Messdaten und

-ergebnisse aus dem 2017 durchgeführten MMTT-Versuchsreihe verwendet. Das Modell des Schienenfahrzeugs wurde in der Software NUCARS entwickelt, um die Bewegungen bei verschiedenen Geschwindigkeiten und Schienenzuständen zu simulieren. Damit konnten die Behälterbewegungen ermittelt werden, welche als Randbedingungen in ein LS-DYNA Modell eines einzelnen Brennstabs eingingen /KLY 20c/.

Obwohl es mehrere Freiheitsgrade im Gesamtsystem gibt, hat sich gezeigt, dass die Bewegungsantwort der Brennelementhülle stark von der Starrkörperbewegung des Behälters abhängig ist. Die Analyse der MMTT-Daten hatte gezeigt, dass in den Brennstäben verhältnismäßig wenig Verformung auftritt. Aus diesem Grund wurde auf eine vereinfachte Modellierung des Brennstabs zurückgegriffen, um Dehnungen in der Brennstabhülle zu berechnen. Durch die Nutzung eines einfachen Modells ist jedoch keine Auswertung von Aufprall bzw. Unfallszenarien möglich /KLY 19/.

Das Modell wurde mit 17 verschiedenen in den USA genutzten Behältern erstellt. Das Vorgehen bei der Analyse und Modellierung kann in 4 Schritte unterteilt werden. In Schritt 1 wird eine strukturdynamische Analyse des Systems aus Behälter und Behälteraufnahme durchgeführt. Schritt 2 ist die dynamische Analyse des Schienenfahrzeugs, um die Bewegungsantwort des Systems auf unterschiedliche Schienenbedingungen und Geschwindigkeiten zu erhalten. Im nächsten Schritt wird eine strukturdynamische Analyse der Brennstabhülle durchgeführt. Im letzten Schritt wird die Ermüdung des Brennstabs durch die dynamischen Spannungen niedriger Amplituden untersucht und die Schädigung eines hypothetischen 2.000 Meilen langen Transports berechnet. /KLY 20c/. Es wurden für alle Kombinationen von Schienenbedingungen, Behältertypen und Geschwindigkeiten 10 s lange Beschleunigungs-Zeit-Datensätze generiert. Je schwerer der Behälter, desto niedriger fallen die Beschleunigungsantworten auf die Anregung aus. Die höchste Behälterbeschleunigung wurde für den "Pitch and Bounce"-Test ermittelt und lag bei 0,3 g bei 60 mph /KLY 20c/.

Weiterhin wurden zwei verschiedene Biegesteifigkeiten berücksichtigt. Zum einen eine niedrige Steifigkeit von 14,3 Nm², welche die MMTT-Testbedingungen mit einem niedrigen Abbrand, mit Brennstoffpellets, die sich in der Brennstoffhülle frei bewegen können nachbildet. Zum andern wurde mit einer hohen Steifigkeit von 50 Nm² gerechnet, welche einem hohen Abbrand entspricht. Hierbei sind die Pellets mit der Brennstabhülle fest verbunden sind und bilden eine Art Verbundwerkstoff. Die Ergebnisse konnten zeigen, dass die Wahl der Biegesteifigkeit keinen signifikanten Einfluss hat.

Die maximalen Werte für die drei Beanspruchungsszenarien, Pitch and Bounce, Single Bump bzw. Twist and Roll, sind in Tab. 2.5Zusammenfassung der Ergebnisse der Brennstabanalyse /KLY 20c/ dargestellt. Beim Pitch and Bounce handelt es sich um eine Kombination aus Längsrotation und vertikalen Bewegungen, welche typischerweise bei unebenen Strecken auftritt. Beim Single Bump handelt es sich um eine Simulation eines isolierten Stoßes, z. B. bei der Überfahrt über einen einzelnen Gleis oder eine Schwelle. Hierbei werden kurzfristige Belastungsspitzen erzeugt. Beim Twist and Roll handelt es sich um eine Kombination aus Torsion (Verdrehung um die Längsachse) und Kippbewegung (Querrotation); relevant bei diagonaler oder schräger Anregung der Transporteinheit. Alle ermittelten maximalen Durchbiegungen waren so gering, dass kein Kontakt zweier Brennstäbe auftritt /KLY 20c/.

Tab. 2.5 Zusammenfassung der Ergebnisse der Brennstabanalyse /KLY 20c/

Testszenario	Pitch and	Bounce	Single	Bump		Twist a	nd Roll	
Richtung	Ver	tikal	Verti	kal	Verti	kal	Late	ral
Steifigkeit	Niedrig	Hoch	Niedrig	Hoch	Niedrig	Hoch	Niedrig	Hoch
Dehnung [µm/m]	17	6	20	6	7	3	2	1
Dehnungsenergie [mJ]	0,86	0,31	0,93	0,28	0,67	0,24	0,52	0,15
Durchbiegung [mm]	0,23	0,079	0,24	0,080	0,2	0,06	0,04	0,01

Aus den rechnerisch ermittelten Dehnungswerten aus Tab. 2.5Zusammenfassung der Ergebnisse der Brennstabanalyse /KLY 20c/ konnten Ermüdungsanalysen durchgeführt werden. Hierbei wurde die aufsummierte Schädigung für einen 2.000 Meilen Transport per Zug ermittelt. Anhand der O'Donnell-Langer S-N Kurve kann dadurch der akkumulierte Ermüdungsschaden ermittelt werden. Der maximale Schädigungsanteil, der während eines Einzelereignisses berechnet wurde, beträgt 3,4E-16, was bedeutet, dass dieses Einzelereignis 1E+17-mal wiederholt werden müsste, um einen Ausfall des Hüllrohrs zu erwirken. Dies ist praktisch nicht möglich, da dies bei einer Ereignisdauer von 10 s einem Zeitraum von 1E+09 Jahren dauerhafter Beanspruchung entspräche /KLY 20c/.

In einer weiteren Untersuchung wurde in /JIA 16a/ das dynamische Antwortverhalten auf eine transiente Stoßbelastung einer Baugruppe für abgebrannte Brennelemente unter normalen Transportbedingungen untersucht. Für die Simulation wurde mit einer Beschleunigung von 0,5 g angeregt, welche die Anregungen unter normalen Transportbedingungen abbildet. Weiterhin wurde das Verhalten bei einer transienten Stoßbelastung von 3 g untersucht. Hierfür wurde ein FE-Modell basierend auf einem generischen

17x17 DWR-Brennelement erstellt. Das FE-Modell besteht aus Führungsrohren, Abstandshaltern, Brennstäben, einer oberen und unteren Abdeckplatte und der Wand des Brennelementtragkorbs, welcher das Brennelement im Transportbehälter fixiert (vgl. Abb. 2.20Abb. 2.20Teilstück eines Brennelementmodells für die FE-Berechnung /JIA 16b/). Weiterhin wurden detaillierte Modelle der Federn und Noppen innerhalb der Abstandshalter erstellt. Die Anregung wird auf die Wand des Tragkorbs als auch auf die obere und untere Deckplatte angewendet, um Transportvibrationen zu simulieren. Die Untersuchungen von /JIA 16b/ konnten zeigen, dass die Führungsrohre und Abstandshalter, aufgrund der horizontalen Ausrichtung, die Hauptlast aufnehmen. Es treten signifikante mechanische Spannungen und Verformungen am oberen und unteren Ende auf. Die maximale Spannung in den Führungsrohren erreicht dabei die Streckgrenze des Materials, was plastische Deformationen hervorruft.

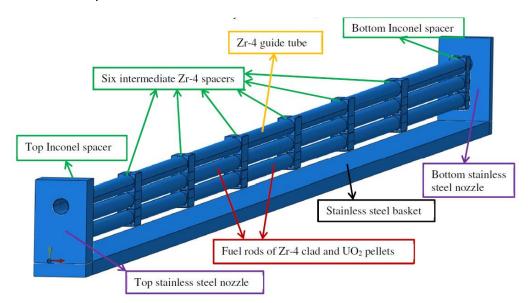


Abb. 2.20 Teilstück eines Brennelementmodells für die FE-Berechnung /JIA 16b/

Weiterhin konnte festgestellt werden, dass sich die oberen und unteren Abstandshalter aus Inconel plastisch verformen. Bei den Hüllrohren wird die Streckgrenze nicht überschritten und die Verformung bleibt elastisch. Zudem konnte ein Ablösen einiger der Abstandshalter von der Brennelementtragkorbwand festgestellt werden, was zu verstärkten Vibrationen führen kann. Durch ein Versagen der Führungsrohre bzw. der Abstandshalter können sich die Schwingungsfrequenzen verstärken, was sich wiederum langfristig auf die Stabilität der Brennelemente auswirken kann. Weiterhin kommt es zu einer Zunahme von Kontaktinteraktionen, was zu einer erhöhten Wahrscheinlichkeit eines Ermüdungsversagens führen kann.

Auch bei der transienten Stoßbelastung mit 3 g, tritt die Hauptlast an den Führungsrohren und im Bereich der unteren Inconel-Abstandshalter auf. Die mechanische Spannung in den Führungsrohren erreicht die Streckgrenze, jedoch kommt es auch hier nicht zu einem Versagen der Bauteile. Die mechanischen Spannungen in den Hüllrohren bleiben unterhalb der Streckgrenze, sodass die Brennstäbe intakt bleiben. Die Brennelementkorbwand und obere und untere Deckplatte verformen sich plastisch. Die strukturelle Integrität bleibt jedoch weitgehend erhalten. Weiterhin konnte festgestellt werden, dass die maximale Spannung in den Hüllrohren fast doppelt so hoch ist wie bei der 0,5 g-Belastung. Es kommt zu einem kritischen Anstieg des Kontaktdrucks, wobei interessanterweise das Maximum zwischen Führungsrohr und Brennstab auftritt und nicht zwischen Abstandsgitter und Behälterboden. Das Risiko eines Versagens der Abstandsgitter und Führungsrohre ist deutlich höher als für die 0,5 g Belastung. Wie zu erwarten, führt die 3 g-Schockbelastung deutlich höhere Spannungen, mit einem erhöhten Risiko für strukturelle Schäden. Eine 0,5 g-Belastung mit welcher normale Transportkonditionen simuliert werden sollen führt hauptsächlich zu einer plastischen Verformung des Abstandsgitters und der Führungsrohre, führt jedoch nicht zu einem kritischen Versagen.

Weiterhin wurde von /JIA 16b/ eine Modalanalyse der Anregungsfrequenzen durchgeführt. Es konnte eine Grundresonanz bei 2,4 Hz ermittelt werden, welche nahe an der Anregungsfrequenz durch Transportvibrationen liegt (0,5 g Sinuswelle, 5 Hz). Dies bedeutet, dass durch den Transport hervorgerufene langanhaltende Vibrationen eine Verstärkung der Schwingungen in den Behälterkomponenten bewirken können. Bei höheren Moden bzw. Frequenzen kommt es darüber hinaus zu einem Auseinanderlaufen der Komponenten. Ab einer Frequenz von ca. 20 Hz schwingen die Führungsrohre und Brennstäbe nicht mehr synchron. Bei höheren Moden bzw. Frequenzen von 93 bzw. 94 Hz dominieren die Schwingungen der Brennstäbe, was lokale Stoßbelastungen hervorrufen kann.

2.3 Analytische Modelle

In /QUE 08/ wurde ein analytisches Mehrfreiheitsgrad-Modell entwickelt, welches die Beschleunigungen und Belastungszustände für einen vertikalen Falltest aus 9 m abbildet. Das Modell nutzt dabei Massen und Federn, um Trägheiten und Verformungssteifigkeiten der Hauptkomponenten zu repräsentieren. In /WIL 73/ sind Berechnungen zu Verformungen und Verzögerungen von Transport- und Lagerbehältern durch stoßdämpfende Bauteile erstmalig dokumentiert. Es sei jedoch erwähnt, dass numerische

Verfahren einer genauen Verifikation bedürfen und dass vereinfachende Annahmen die Vorhersagbarkeit der Verfahren deutlich beeinflussen. Durch das Modell können die Beschleunigungen als auch die Belastungszustände der einzelnen Komponenten abgebildet werden. Außerdem ist es möglich Effekte durch den Sekundäraufprall, wie bspw. das zeitverzögerte innere Aufschlagen von Korb bzw. Brennelement auf den Primärdeckel, zu bestimmen. Eine schematische Skizze des Modells ist in Abb. 2.21 dargestellt.

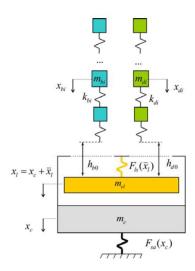
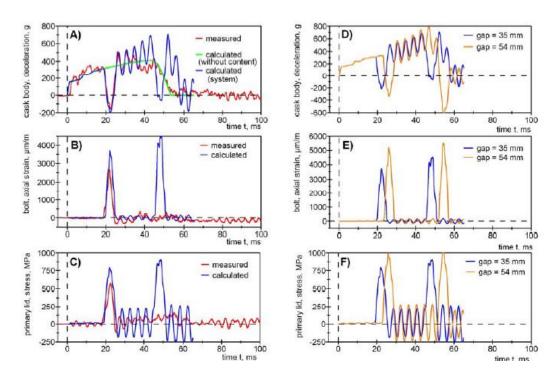



Abb. 2.21 Schematische Skizze eines Masse-Feder-Dämpfer-Systems /QUE 08/

Im analytischen Modell wird der deckelseitige Stoßdämpfer als masselose, nichtlineare Feder modelliert. Daran verknüpft ist die Masse als Summe aus Behälterkörper, Sekundärdeckel und bodenseitigem Stoßdämpfer. Der Brennelementtragkorb (mit 4-DOF) bzw. die Brennelemente (mit 6-DOF-degrees of freedom) werden als Mehrfreiheitsgrad-Modelle aus Massen mit linearen Federn abgebildet. Federsteifigkeiten und Massen ergeben sich segmentweise (Querschnitt, Länge, Dichte, Zusatzmassen) und werden für das Gesamtmodell aufsummiert. Die 48 Deckelschrauben werden als parallel geschaltete, masselose Federn modelliert, mit Vorspannkraft und nichtlinearer Federkennlinie des Schraubverbunds. Der Deckel selbst ist eine einfach gelagerte, kreisförmige Platte, die über einen äquivalenten SDOF-Oszillator (single degree of freedom) beschrieben wird. Durch Variation des Anfangsspalts konnten die in Fallversuchen beobachtete Verzögerung von 18 ms der Innenkollision reproduziert werden. Die Verzögerung wurde durch einen Abstand von ca. 35 mm zwischen Deckel und Brennelementtragkorb erreicht.

Abb. 2.22 Vergleich der experimentellen Fallversuche und der berechneten Beschleunigungen und Belastungszustände verschiedener Behälterkomponenten für den Fallversuch aus 9 m /QUE 08/

Das Modell bildet laut /QUE 08/ Deckelspannungen und Schraubenbeanspruchungen gut ab. Erhöht man die anfängliche Spaltgröße auf 54 mm, sagt das Modell eine für den Primärdeckel um +30 % und für die Schraubenlast eine um +45 % erhöhte Last aus. Die Autoren schlussfolgern, dass die Größe des Spalts zwischen Brennelementtragkorb bzw. Brennelement und Primärdeckel zu signifikanten Steigerungen im dynamischen Belastungsverhalten der Behälterkomponenten führen kann. Durch einen größeren Spalt können größere Beschleunigungen und demzufolge höhere Lasteinträge auf den Brennelementen erzeugt werden.

Dadurch, dass in der analytischen Lösung das dämpfende Einschwingverhalten nicht mitberücksichtigt wurde, zeigt das numerische Modell einen weiteren internen Aufprall zwischen Deckel und Tragkorb, welcher im Experiment als solcher nicht gemessen wurde. Dadurch ergibt sich ein weiterer Spannungspeak im Zugbereich sowohl in den Schrauben als auch im Primärdeckel (vgl. Abb. 2.22). Auch wird eine im Vergleich zum Experiment höhere Belastung des Primärdeckels und der Schrauben erreicht. Diese kann dadurch erklärt werden, dass der Sekundärdeckel mitsamt seiner abstützenden Funktion im numerischen Modell nicht mit einberechnet wurde. Laut /QUE 08/ beschreibt das Feder-Masse-Modell alle relevanten physikalischen Effekte während des vertikalen

Falls korrekt. Es kann somit als Verifikation von FE-Berechnungen oder für Parameterstudien herangezogen werden (Veränderungen des Spalts, Vorspannung der Schrauben etc.).

Ähnlich dazu wurde von /HAN 23/ ein Mehrfreiheitsgrad-Modell entwickelt, welches die Schwingungs- und Stoßantworten eines KORAD-21-Behälters unter normalen Transportbedingungen auf dem Seeweg als auch auf der Straße realitätsnah abzubilden. Für das Modell wurde der Behälter als einzelner starrer Körper mit sechs Freiheitsgraden modelliert. die Kopplung zur Umgebung erfolgt über eine lineare 6-Achs-Bushing-Kraft am Zentrum der Unterseite der Tie-Down-Struktur. Die Gesamtmasse des starren Körpers entspricht der Summe aus Behälter (118 Mg) und Befestigungsstruktur, mit der der Transportbehälter auf der Trägerplattform fixiert wird (9,2 Mg), sodass sich insgesamt 127,2 Mg ergeben.

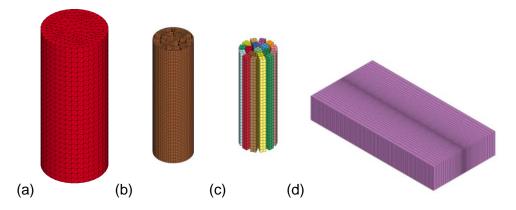
Um das dynamische Antwortverhalten korrekt abbilden zu können, wurden die Steifigkeiten und Dämpfungen des Systems so kalibriert, dass die ersten vier Eigenfrequenzen und Moden (quer, längs, gieren, vertikal) des vereinfachten Modells die Ergebnisse einer Modalanalyse aus FE-Rechnungen reproduzieren. Im vorliegenden Fall wurden dabei Anregungsfrequenzen von 13,6, 21,4, 33,0 und 55,7 Hz ermittelt. Damit lässt sich das dominante niederfrequente Antwortverhalten des Systems mit dem Starrkörpermodell erfassen.

Für Straßentransporte wurde ein 10-achsiger LKW modelliert. Die Aufhängungen werden als passive (lineare) Feder-Dämpfer-Systeme mit kinematischen Zwangsbeziehungen mittels sog. *Hard Points* implementiert. Um die statischen Durchbiegungszustände eines realen, mit KORAD-21 beladenen Trailers nachzubilden, wurden die Feder- und Dämpfungskoeffizienten gezielt erhöht. So wurde die Steifigkeit von 1.200 auf 4.755,0 N/mm und die Dämpfung von 50 auf 277,4 N/mm erhöht. Die Straßenanregung wird gemäß ISO 8608 über synthetisierte Profil-PSD (Straßenklasse B) erzeugt; die Geschwindigkeiten stammen aus GPS-Daten, welche über einen einfachen PI-Regler als Antriebskräfte umgesetzt werden. Untersucht wurden u. a. ein Speed-Bump-Szenario (~5 km/h) und ein Ausweichmanöver (~30 km/h), deren charakteristische räumliche Frequenzbereiche im Modell berücksichtigt sind.

Validiert wurde das Modell mit realen Transportdaten für einen Schiffstransport und einen Transport auf der Straße mittels LKW. Die gemessenen und simulierten 3-Achs-Beschleunigungen am Tragzapfen stimmen sowohl im Zeit- als auch im Frequenzbereich gut überein. Laut /HAN 23/ bleibt die Impulsantwort auch bei rauer See stimmig. Für einen Straßentransport bildet das Modell im Speed-Bump-Fall die prägenden 4 Hz-Anteile (insbesondere in Z) ab; die Peak-to-Peak-Abweichungen betragen etwa 7,65 % (X), 71,85 % (Y) und 25,72 % (Z). Die hohe Y-Abweichung wird auf die Vereinfachungen (rigides Transportmedium, identische passive Aufhängungen etc.) zurückgeführt. Im Ausweichmanöver liegen die Fehler bei ca. 33,72 % (X), 5,05 % (Y) und 60,52 % (Z). Insgesamt reproduziert das Mehrfreiheitsgrad-Modell die dominanten Antwortanteile beider Transportarten zuverlässig und liefert Belastungszustände, welche mit FE-Untersuchungen übereinstimmen.

2.4 Fazit

Die Recherche und Auswertung relevanter Fachliteratur umfasste aktuelle Forschungsarbeiten zur Durchführung von Transportversuchen sowie zur Analyse vorhandener Modellierungs- und Simulationsansätze zur Ermittlung des Verhaltens für Brennstäbe, Brennelemente sowie des gesamten Transport- und Lagerbehälters. Besonderes Augenmerk galt Berichten zu Transportversuchen von Versuchsbrennelementen über unterschiedliche Verkehrsträger, Fallversuchen an Behältern sowie Simulationen von Brennstab-Biegeversuchen. Diese Quellen lieferten zentrale Parameter und Erkenntnisse zu Beschleunigungen, Belastungszuständen, Frequenzspektren und Materialverhalten, die als Grundlage für die Modellentwicklung herangezogen wurden.


Die Experimente der MMTT-Versuchsreihe konnten zeigen, dass die Beschleunigungen und Deformationen, welche beim Transport eines TLB auf der Schiene bzw. auf der Straße auftreten gering sind. Die mechanischen Belastungen, welche bei einem Behälteraufprall aus 30 cm ohne Stoßdämpfer auftreten, sind im Vergleich dazu deutlich größer /KLY 20a/. Aus diesem Grund wurde es als sinnvoll erachtet, sich in der FE-Simulation auf einen Behälteraufprall aus 30 cm Höhe und nicht auf Anregungen durch Transportvorgänge zu fokussieren. Im Zuge der Literaturrecherche konnte festgestellt werden, dass die verschiedenen Teile des eines Transport- und Lagerbehälters unterschiedlich auf transiente Anregungen reagieren. Dies zeigt, wie wichtig eine korrekte Modellierung der einzelnen Komponenten ist.

3 Modellbeschreibung

In den folgenden Unterkapiteln werden die Modellierungsansätze, die Eingabebefehle und Materialparameter, für das Brennelement- und das Behältermodell beschrieben. Die getrennte Modellierung von Behälter und Brennelement erfolgt primär aus Gründen der Rechenzeiteffizienz. Da das detailliert aufgelöste Brennelementmodell sehr kleine Zeitschritte in der expliziten Berechnung erfordert, würde eine kombinierte Modellierung den Rechenaufwand erheblich erhöhen.

3.1 Behältermodell

Ziel der Modellentwicklung eines Transport- und Lagerbehälters war es, den Einfluss der Aufprallorientierung auf die Spannungszustände und Beschleunigungen eines generischen CASTOR® V/19-Behälters zu untersuchen und potenziell kritische Aufprallorientierungen für weiterführende Analysen zu identifizieren. Die Simulation berücksichtigt Gravitation, Anfangsgeschwindigkeit, Reibungskontaktbedingungen und realistische Materialmodelle für Beton und Boden.

Abb. 3.1 Gitternetze des generischen Transport- und Lagerbehälters (a), Tragkorbs (b), der Brennelemente (c) und des Bodens (d)

Ein LS-DYNA-Modell eines Transport- und Lagerbehälters im Originalmaßstab ohne Stoßdämpfer wurde entwickelt. Die Maße des Behältermodells orientieren sich an dem generischen Behältermodell eines CASTOR® V/19-Behälters, welches bereits in anderen Untersuchungen genutzt wurde /GRS 24/. Die Geometrieerstellung und -bearbeitung erfolgte mit Ansys SpaceClaim 2023 R2 /ANS 23a/, die Vernetzung wurde mit Ansys Mechanical 2023 R2 /ANS 23b/ ausgeführt und die Berechnungen erfolgten in LS-DYNA /LIV 23/. Der Modellierungsansatz orientiert sich an den Arbeiten von /KLY 20a/ zu

einem Behälter vom Typ ENSA ENUN-32P. Dabei wurden stark vereinfachte Geometrien genutzt, welche jedoch nur geringe Auswirkungen auf das strukturmechanische Verhalten des Gesamtsystems hatten. Mithilfe des Behältermodells wurden Informationen über die Bewegung des Behälterinventars für verschiedene Aufprallorientierungen des Behälters gewonnen. Die daraus abgeleiteten kinematischen Beziehungen wurden als Starrkörperbewegung für das Brennelementmodell genutzt (siehe Kap. 3.2 f.). Das Modell besteht aus dem Behälterkörper, dem Brennelementtragkorb, den Brennelementen und dem Boden. Die vier Komponenten des Behältermodells wurden durch Kontinuumselemente vom Typ *ELEMENT_SOLID modelliert und nutzen ELFORM 1.

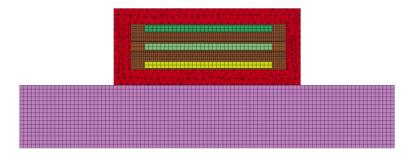


Abb. 3.2 Schnittdarstellung des Behältermodells

Die für das Behältermodell relevanten Komponenten werden in den folgenden Unterkapiteln näher erläutert. Sowohl Tragkorb als auch Brennelemente wurden mit einfachen geometrischen Formen approximiert, ohne die inneren Strukturen zu berücksichtigen. Die Brennelemente sind im Behältermodell vereinfacht durch massive Quader simuliert. Die Gesamtdimensionen, die Masse und Materialparameter wie bspw. Elastizitätsmodul bzw. Biegesteifigkeit entsprechen den Originalkomponenten.

3.1.1 Behälterkörper

Der TLB wurde als monolithischer, zylindrischer Körper mit zylindrischem Hohlraum ausgeführt. Alle Subkomponenten des Behälters, z.B. Deckel, Moderatorplatten, Moderatorstäbe, Befestigungselemente, Tragezapfen, usw., wurden im Behälterkörper zu einer homogenen Struktur zusammenfasst. Der Behälterkörper ist aus einem geschlossenen Hohlzylinder mit einer Länge von 5.942 mm und einem Außendurchmesser von 2.436 mm aufgebaut. Die Maße entsprechen einem generischen CASTOR® V/19-Modell.

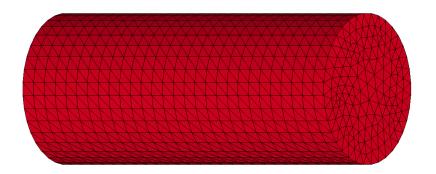


Abb. 3.3 FE-Netz des Behälterkörpers

Für die Vernetzung des Behälterkörpers wurden insgesamt 13.311 Tetraeder-Elemente mit jeweils acht Knoten verwendet. Für den Behälterkörper, bestehend aus Gusseisen mit Sphäroguss und der Materialbezeichnung EN-GJS-400, wurde das Materialmodell *MAT_PIECEWISE_LINEAR_PLASTICITY (024) mit dehnratenabhängigen Fließkurven aus /MEM 11/ genutzt (siehe Abb. 3.4). Die Dichte wurde so gewählt, dass sich eine plausible Gesamtmasse eines CASTOR® V/19-Behälterkörpers von ungefähr 99.500 kg ergibt. Der Elastizitätsmodul beträgt 165 GPa mit einer Querkontraktionszahl von 0,29. Die quasi-statische Fließgrenze ist mit 290 MPa definiert.

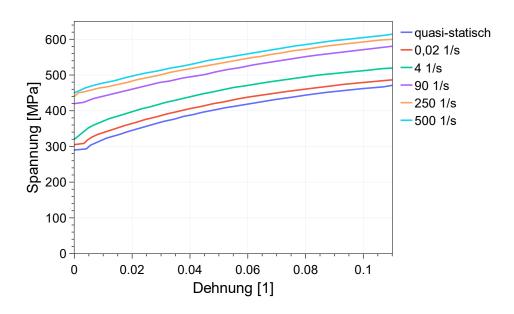
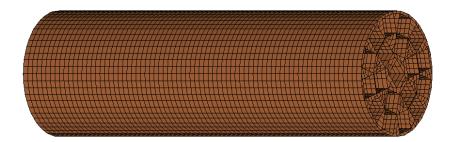



Abb. 3.4 Dehnratenabhängige Fließkurven des Behältermaterials /MEM 11/

3.1.2 Brennelementtragkorb

Der Brennelementkorb (vgl. Abb. 3.5) ist so ausgelegt, dass er 19 Brennelemente aufnimmt. Die Außenabmessungen des Brennelementtragkorbs betragen 4.939 mm in der

Länge und 1.476 mm im Durchmesser, der Zellabstand entlang der Mittelachsen beträgt 230 mm. Die Gesamtwandstärke des Korbs beträgt 35,7 mm. Der Brennelementkorb wurde als Festkörper *MAT_RIGID (020) durch 22.200 Kontinuumselemente modelliert. In Abb. 3.5 ist das vernetzte Modell des Brennelementtragkorbs mit den Aussparungen für die 19 Brennelemente dargestellt.

Abb. 3.5 FE-Modell des Brennelementtragkorbs

3.1.3 Brennelemente

Die Brennelemente wurden in der FE-Simulation als homogenisierte Quader mit identischen Abmessungen wie im detaillierten Brennelementmodell (vgl. 3.2) simuliert. Dabei wurde ein linear-elastisches Materialverhalten *MAT_ELASTIC (001) angenommen, um das mechanische Verhalten mit Fokus auf die Kinetik unter Belastung recheneffizient zu modellieren.

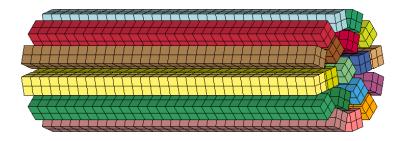


Abb. 3.6 FE-Modell der Brennelemente

Der Elastizitätsmodul beträgt 200 GPa und die Querkontraktionszahl beträgt 0,3. Die 19 Brennelemente sind in folgender Nummerierung, von LS-Dyna festgelegt, im Brennelementtragkörper angeordnet. Die Masse eines Brennelements beträgt ungefähr 663 kg.

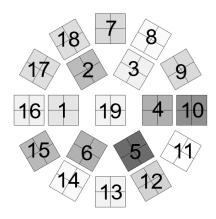


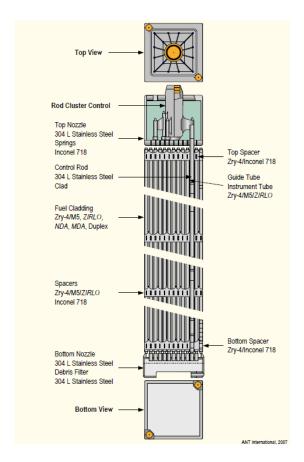
Abb. 3.7 Nummerierung der Brennelemente im Behältermodell

3.1.4 Betonboden

Für den Betonboden wurde das konstitutive WINFRITH-Modell (MAT_084) verwendet, welches speziell zur Beschreibung des mechanischen Verhaltens von Beton unter dynamischen Belastungen am UKAEA-Forschungszentrum entwickelt wurde. Das Modell basiert auf einem druckabhängigen, nichtlinearen elastisch-plastischen Verhalten und berücksichtigt die charakteristischen Unterschiede zwischen Zug- und Druckverhalten von Beton. Während Zugbelastungen zu einem spröden Versagen führen, zeigt es unter Druck duktiles Verhalten.

In der vorliegenden Parametrierung wurde eine Materialdichte von 2,4 g/cm³, typisch für normalgewichtigen Beton, verwendet. Der Elastizitätsmodul beträgt 26,4 GPa, bei einer Poissonzahl von 0,21. Für die uniaxiale Druckfestigkeit wurde ein Wert von 30 MPa angesetzt, während die uniaxiale Zugfestigkeit bei 3 MPa festgelegt ist. Dies entspricht einem realistischen Materialverhalten für Beton der Festigkeitsklasse C30/37 /INF 06/, /INF 23/. Typisch für Beton zeigt das Material eine deutlich höhere Tragfähigkeit unter Druck- als unter Zugbelastung. Das plastische Verfestigungsverhalten ist mit 0,135 definiert. Dieser beeinflusst die Steilheit des Spannungs-Dehnungs-Verlaufs im plastischen Bereich. Das Modell wurde mit dem Parameter RATE = 0 definiert, d. h. es berücksichtigt keine dehnratenabhängigen Effekte. Zur Beschreibung der plastischen Volumenänderung wurden die Parameter CONM = -3,0; CONL = 0,001 und CONT = 0,001 gewählt. Diese steuern die Druckverfestigung (CONM) sowie die Schädigungsentwicklung bei Druck (CONL) und Zug (CONT).

3.1.5 Kontakte, Anfangs- und Randbedingungen

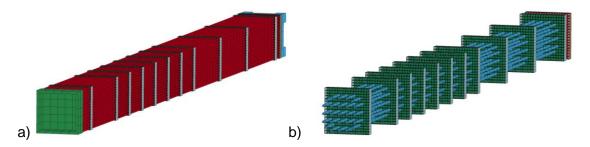

Aufgrund der zu erwartenden Bewegung und den zahlreichen Kontaktflächen im Verlauf der Simulationen wurde der automatische Kontaktalgorithmus *CONTACT_AUTOMATIC_SINGLE_SURFACE gewählt. Dieser bezieht pauschal alle Interaktionen zwischen den Bauteilen im Modell ein und ermöglicht eine automatische Erkennung von Kollisionen beliebiger Oberflächen innerhalb einer Struktur. Deshalb ist er besonders geeignet für komplexe Kontaktprobleme. Als Reibungsparameter wurde ein statischer Reibungskoeffizient von 0,15 und für den dynamische Reibungskoeffizient von 0,10 verwendet.

Aufgrund des vereinfachten, linear-elastischen Materialverhaltens fehlen im Modell dissipative Effekte. Zur Beseitigung von hohen Frequenzen wurde deshalb eine steifigkeitsproportionale Dämpfung verwendet. Über die Karte *DAMPING_PART_STIFFNESS wird dafür ein einheitenloser Dämpfungskoeffizient von 0,01 verwendet.

Über *BOUNDARY_SPC_SET werden die Ränder des Bodens in allen sechs Freiheitsgraden vollständig fixiert. Über die Karte *LOAD_BODY_Y wird eine konstante Beschleunigung aufgrund der Schwerkraft eingebracht. Zusätzlich dazu ist eine Anfangsgeschwindigkeit von $v_0 = -2.4$ m/s über *INITIAL_VELOCITY_GENERATION implementiert und wird auf alle Modellbestandteile außer dem Boden aufgeprägt.

3.2 Brennelementmodell

Für die Modellierung eines Brennelements wurde ein 17x17-Brennelement eines Druckwasserreaktors (DWR) betrachtet (vgl. Abb. 3.8). Sowohl die Ansätze der Modellierung, als auch Geometrie, Abmessungen und Eigenschaften der Komponenten der Brennstoffbaugruppe orientieren sich an /ADK 13/ und /KLY 20a/. Alle Berechnungen wurden mit der kommerziellen Software LS-DYNA in der Version 2023 R2 /LIV 23/ ausgeführt. In Abb. 3.8 ist ein typisches DWR-Brennelementmodell mit den verschiedenen Komponenten dargestellt. Die verwendeten Materialien für die einzelnen Komponenten sind in der Darstellung angegeben. Alle Materialdaten orientieren sich an den Werten aus /ADK 13/ und /KLY 20a/, wo die Werkstoffeigenschaften entweder für unbestrahltes Material oder geringen Abbrand bei einer Umgebungstemperatur von 293 K.

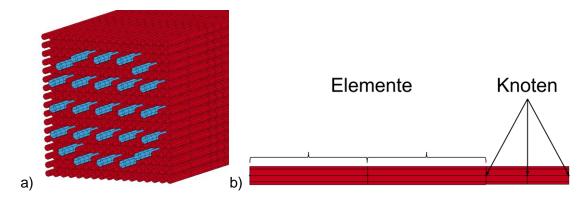

Abb. 3.8 Typisches DWR-Brennelementmodell

Die folgenden Strukturen wurden dabei für die Modellierung betrachtet: Die ober- und unterseitige Deck- und Bodenplatte, Brennstoffstäbe, Instrumentenführungs- bzw. Führungsrohre und Abstandshalter. Tab. 3.1 liefert eine Übersicht über die genannten Komponenten des Modells, die Anzahl der Einzelkomponenten und die verwendeten Materialien. Die Netze aller Komponenten, ausgenommen Deck- und Bodenplatte, wurden mithilfe eines Python-Codes erzeugt. Es wurden die Konfiguration des Brennelements und die wichtigsten Geometriedaten eingegeben. Der Code erzeugt dann die Bestandteile des Modells und stellt die wichtigsten Interaktionen und Verknüpfungen zwischen den Strukturen her. Die Ergebnisse wurden in zuvor hinterlegte LS-DYNA-konforme Vorlagedateien eingefügt.

Tab. 3.1 Beschreibung der Komponenten und Materialien der modellierten Brennstoffbaugruppe

Komponente	Anzahl	Material
Untere Abdeckplatte	1	Edelstahl 304
Obere Abdeckplatte	1	Edelstahl 304
Abstandshalter 1 (kurz)	1	Zircaloy-4
Abstandshalter 2 bis 12 (lang)	11	Zircaloy-4
Führungsrohre	25	Zircaloy-4
Brennstäbe	264	Zircaloy-4

In Abb. 3.9 ist das Brennelementmodell dargestellt. Die farbliche Gestaltung signalisiert die Zugehörigkeit zu sog. *Parts* und damit der internen Gruppierung in der LS-DYNA-Eingabedatei. Diese ist eine Textdatei und enthält die LS-DYNA-Keywords, welche jeweils durch * deklariert werden (in diesem Fall *PART). Auf Basis der Zuordnung zu einem *Part* erfolgen die Definition der Bauteilgeometrie und die Anwendung von physikalischen Eigenschaften in der Berechnung. Hieraus wird ersichtlich, dass allen Brennstäben in roter Farbe dieselben Eigenschaften zugewiesen wurden. Abb. 3.9 (b) erlaubt einen Einblick in das Innere des Brennelementmodells. Dasselbe Vorgehen der Zusammenfassung zu *Parts* wurde auf die Führungsrohre (blau) und weitere Komponenten angewendet.


Abb. 3.9 Darstellung des Brennelementmodells (a), Innenansicht ohne Darstellung der Brennstäbe, Boden- und Deckplatten (b)

Aufgrund der kurzen Dauer der zu simulierenden Fallvorgänge und der hohen Lastraten wird eine explizite Zeitintegration genutzt. Bei dieser Art der Zeitintegration unterliegt der maximale Zeitschritt dem Courant-Friedrichs-Levy-Stabilitätskriterium /WAG 17/. Durch verschiedene Modellierungstechniken können kleine Zeitschritte und daraus resultierende lange Berechnungszeiten vermieden werden. Die erste Möglichkeit ist die Verwendung größerer Elemente und einer gröberen Vernetzung. Weitere Möglichkeiten sind die Verringerung des Elastizitätsmoduls oder eine Erhöhung der Dichte in den

verwendeten Materialmodellen. Die Software bietet an dieser Stelle die Option zu so genanntem *Mass Scaling*, also dem Einführen künstlicher Masse im System. Für alle Komponenten werden die getroffenen Annahmen und Modellierungstechniken in den folgenden Unterkapiteln beschrieben. Diese dienen insbesondere der Vermeidung kleiner Zeitschritte und einem physikalisch sinnvollen Verhalten des Modells.

3.2.1 Brennstäbe und Führungsrohre

Das Modell enthält insgesamt 264 Brennstäbe. Die Masse der UO₂-Pellets wurde als verteilte Massendichte entlang der gesamten Hüllrohrlänge angenommen. Federn und Isoliertabletten, welche sich am oberen und unteren Ende eines Brennstabs befinden, wurden vernachlässigt. Weiter wurden eine nominale Dichte und ein nominaler Elastizitätsmodul angesetzt, welche das Hüllrohrmaterial und die UO₂-Pellets beinhalten. Die Dichte wurde so gewählt, dass die Gesamtmasse eines Brennstabs den in /ADK 13/ verwendeten Daten entspricht. Sowohl die Brennstäbe als auch Führungsrohre wurden mit Hughes-Liu-Balkenelemente mit zwei Knoten und vier Integrationspunkten vernetzt. Das Modell enthält insgesamt 264 Brennstäbe. Die Masse der UO₂-Pellets wurde als verteilte Massendichte entlang der gesamten Hüllrohrlänge angenommen. Federn und Isoliertabletten, welche sich am oberen und unteren Ende eines Brennstabs befinden, wurden vernachlässigt.

Abb. 3.10 Netz der Brennstäbe in Detailansicht (a), Anordnung der Elemente und Knoten auf einem Brennstab (b)

In Abb. 3.10 ist die Vernetzung der Brennstäbe und Führungsrohe dargestellt. Entlang der Abstandshalter wurde die Vernetzung verfeinert, um jeweils an den Rändern und der Mitte der Struktur einen Knoten vorzufinden. Zwischen den Abstandshaltern wurden acht Elemente genutzt. Die Geometrie der Balkenelemente wird als Teil von *SECTION_BEAM definiert. Für die Brennstäbe wurde ein Vollzylinder mit einem

Außendurchmesser von 9,144 mm und für die Führungsstäbe ein dünnwandiger Hohlzylinder mit 11,43 mm Innen- und 12,04 mm Außendurchmesser gewählt. Für beide Komponenten wurde das LS-DYNA-Materialmodell *MAT_PIECEWISE_LINEAR_PLASTICITY (024) genutzt. Dabei handelt es sich um ein elastisch-plastisches Materialmodell mit linear-elastischem Bereich und beliebiger Verfestigung, die stückweise linear definiert werden kann. In dieser Arbeit wurde jedoch eine einfache lineare Verfestigung angenommen, die über eine Fließspannung und einen Tangentenmodul definiert wird. Eine Übersicht der verwendeten Eingabewerte ist in Tab. 3.2 zusammengefasst. Die Materialdaten orientieren sich an den in /ADK 13/ und /KLY 20a/ verwendeten Werten.

Tab. 3.2 Materialdaten für Brennstab und Führungsrohr

	Brennstab	Führungsrohr
Dichte [g/mm3]	0,0095585	0,0065
Elastizitätsmodul [GPa]	145,5	90
Poisson-Zahl	0,33	0,33
Fließspannung [MPa]	985	906
Tangentenmodul [GPa]	13,4	13,4

3.2.2 Obere und untere Abdeckplatte

Auf der oberen und unteren Seite des Brennelements befinden sich aus Edelstahl 304 gefertigte Abdeckplatten. Die Vernetzungen und die geometrischen Spezifikationen der beiden Abdeckplatten sind in Abb. 3.11 dargestellt. Diese wurden mithilfe von Ansys SpaceClaim 2023 R2 /ANS 23a/ erstellt und mit Ansys Mechanical 2023 R2 /ANS 23b/ vernetzt. Für die Hexaeder-Elemente wurde der Standard-Elementtyp für dreidimensionale Elemente mit *SECTION_SOLID ELFORM 1 gewählt. Da die strukturelle Schädigung der Abdeckplatten hier nicht von Interesse ist, wurde ein linear-elastisches Materialverhalten *MAT_ELASTIC (001) angenommen. Die Werkstoffdaten wurden /ADK 13/ entnommen und die Dichten so angepasst, dass die Gesamtmassen der Komponenten den angegebenen Werten entsprechen. Die verwendeten Eingabedaten sind in Tab. 3.3 zusammengefasst. Die Führungsrohre sind mit den Abstandshaltern über Punktschweißverbindungen verbunden. Diese werden in LS-DYNA über die Kopplung von Freiheitsgraden auf der Oberfläche der Abdeckplatte durch die Funktion *CONTACT_TIED_NODES_TO_SURFACE_CONSTRAINED_OFFSET realisiert.

Tab. 3.3 Materialdaten für obere und untere Abdeckplatte

	Obere Abdeckplatte	Untere Abdeckplatte
Dichte [g/mm3]	0,0049	0,0039
Elastizitätsmodul [GPa]	200	200
Poisson-Zahl	0,3	0,3

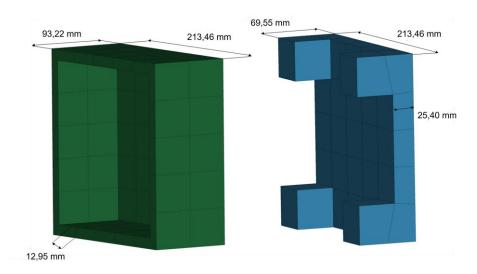


Abb. 3.11 Geometrische Dimensionen der oberen und unteren Abdeckplatte

3.2.3 Abstandshalter

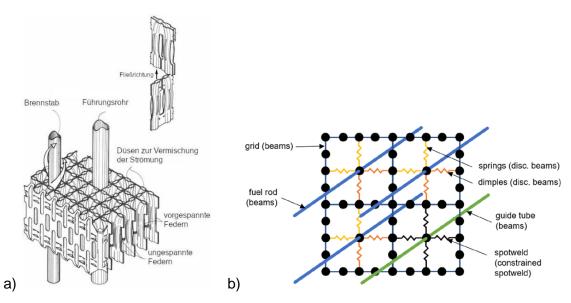


Abb. 3.12 a) Aufbau eines von Areva entwickelten HTP-Abstandshalters /GRS 596/,b) schematischer Aufbau des Abstandshaltermodells /KLY 20a/

Die 12 Abstandshalter bestehen aus Zircaloy-4 und besitzen zwei verschiedene Designs (vgl. Abb. 3.9, Abb. 3.13). Im Zuge der Literaturrecherche wurde festgestellt, dass in

früheren Modellierungen von /RAS 07b/ und /ADK 13/ Schalenelemente für die Abstandshaltermodelle verwendet wurden. Diese stellen eine zweidimensionale Repräsentation einer dünnen Struktur dar und besitzen mindestens 4 Knoten. Unter der Vorgabe der Vermeidung kleiner Elementkantenlängen zur Reduktion der Rechenzeit erlaubt dieser Elementtyp nur eine grobe Vernetzung.

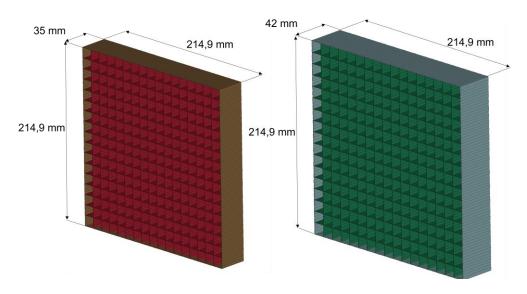
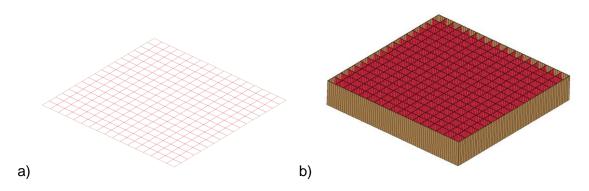
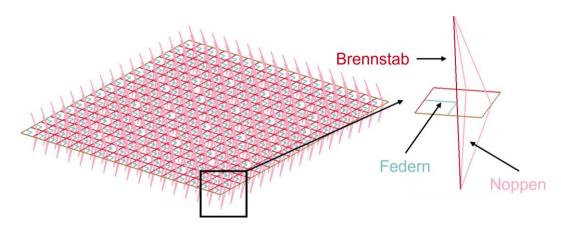



Abb. 3.13 Vernetzung und Maße der Abstandshalter

Tab. 3.4 Definitionen der Querschnitte für die Balkenelemente der Abstandshalter

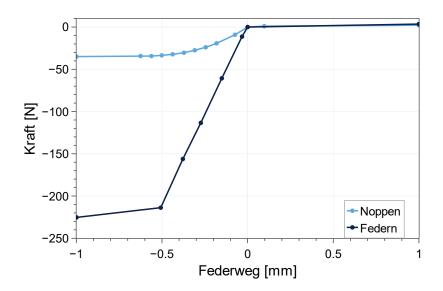
	Abstandshalter kurz	Abstandshalter lang
Innen	35 mm	42 mm
	0,457 mm	0,457 mm
Außen	35 mm	42 mm
	0,66 mm	0,66 mm

Laut /KLY 20a/ führt diese Art der Modellierung jedoch bei Einsatz des Modells zur Berechnung von Fallversuchen zu einer übermäßig steifen Repräsentation des Deformationsverhaltens, wodurch eine plastische Verformung und ein physikalisch sinnvolles Verhalten nicht erreicht werden. Stattdessen wurde das Modell der Abstandshalter unter Nutzung von Balkenelementen weiterentwickelt. In *SECTION_BEAM wurden rechteckige Querschnitte gemäß Tab. 3.4 definiert. Abb. 3.14 zeigt die Auswirkungen der Definition des Querschnitts. Die Definition der Elemente beinhaltet lediglich die Position der mittleren Balkenfaser (Abb. 3.14 a). Durch die Angabe der Balkengeometrie wird symmetrisch um das Balkenelement herum der Querschnitt erzeugt (Abb. 3.14 b).


Abb. 3.14 Netz der Abstandshalter des Balkenmodells ohne (a) und mit (b) Darstellung des Balkenquerschnitts definiert in *SECTION_BEAM

Um ein plausibles Knick- und Deformationsverhalten zu gewährleisten, wurde auch hier das Materialmodell *MAT_PIECEWISE_LINEAR_PLASTICITY (024) genutzt. Die verwendeten Eingabewerte sind in Tab. 3.5 zusammengefasst.

Tab. 3.5 Materialdaten der Abstandshalter


	Zry-4 Abstandshalter
Dichte [g/mm3]	0,0065
Elastizitätsmodul [GPa]	90
Poisson-Zahl	0,33
Fließspannung [MPa]	906
Tangentenmodul [GPa]	13,4

Die Abstandshalter als Gesamtstruktur, im Speziellen die Federn und Noppen, welche die Brennstäbe lagern, sind komplexe Strukturen (siehe Abb. 3.12a). Aus Abb. 3.12b wird ersichtlich, dass die Brennstäbe innerhalb der Abstandshaltergitter durch Federn beweglich gelagert sind, wohingegen die Führungsrohre durch Punktschweißverbindungen fest am Abstandshaltergitter fixiert ist. Eine detailgetreue Abbildung würde einen erheblichen Modellierungsaufwand und lange Berechnungszeiten verursachen. In /ADK 13/ wurden diesbezüglich vereinfachte Modelle mit detailgetreuen Modellen einzelner Abstandshalterschächte hinsichtlich ihres Deformationsverhaltens miteinander verglichen. Die daraus abgeleiteten Federkennlinien sind in Abb. 3.16 dargestellt.

Abb. 3.15 Netz der Abstandshalter mit detaillierter Darstellung der Verbindung zwischen Federn, Noppen, Brennstab und Abstandshaltegitter

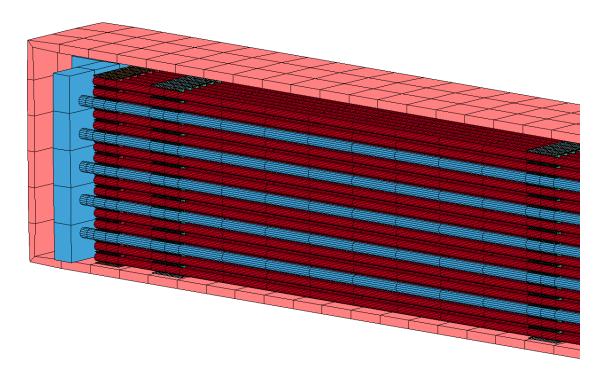
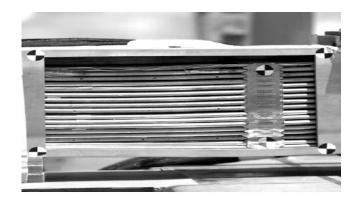

Die Umsetzung im Modell wurde mittels diskreter Federelemente *SECTION_BEAM ELFORM 6 realisiert. Diese besitzen zwei Knoten, die jeweils mit einem Brennstabelement und einem Gitterelement geteilt werden. Zusätzlich müssen Dichte und Volumen definiert werden, damit softwareintern der kritische Zeitschritt des Balkenelements berechnet werden kann. Für die Implementierung der Federkennlinie wurde das Materialmodell *MAT_GENERAL_NONLINEAR_1DOF_DISCRETE_BEAM (121) genutzt. Es erlaubt die Eingabe beliebiger tabellarischer Werte. Das gewählte Balkenelement erlaubt Materialgesetze mit bis zu 6 Freiheitsgraden, d.h. neben Kräften können auch Momente übertragen werden. Auf diese umfangreiche Definition wurde hier verzichtet, da die Rotationssteifigkeiten nicht bekannt waren. Außerdem können abweichende Pfade für Beund Entlastung, Dämpfungsparameter und Versagenskriterien definiert werden.

Abb. 3.16 Kennlinien der in den Abstandshaltern verwendeten Federn und Noppen aus /ADK 13/

Die Verbindung zwischen Abstandshalter und Führungsrohren wird über die Kopplung von Freiheitsgraden der benachbarten Knoten hergestellt. Dafür wurde die Funktion *CONSTRAINED_GENERALIZED_WELD_SPOT genutzt. Diese dient der Modellierung von Punktschweißverbindungen. Die Versagenskriterien, die entweder über Normal- und Scherkräfte oder die effektive plastische Dehnung gesteuert werden können, wurden hier ebenfalls nicht aktiviert.

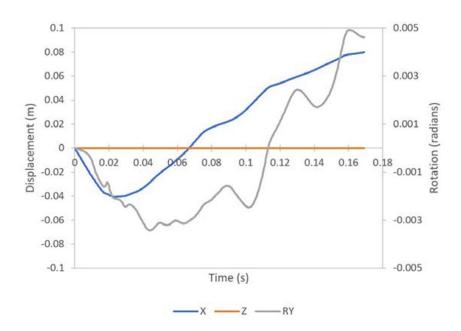
3.2.4 Tragkorbzelle

Abb. 3.17 Schnittdarstellung durch die Tragkorbzelle mit Innenansicht auf das Brennelementmodell


Die Tragkorbzelle ist kein Bestandteil des Brennelements, dient aber zur Anwendung der Randbedingung. Die Zelle wurde als Starrkörper *MAT_RIGID (020) mit Schalenelementen modelliert. Etwaige Verformungen der Wände der Tragkorbzelle wurden damit vernachlässigt. Abb. 3.17 zeigt einen Schnitt durch die Tragkorbzelle mit dem darin befindlichen Brennelement. Mit *BOUNDARY_PRESCRIBED_MOTION_RIGID wurde eine Starrkörperbewegung bestehend aus 3 Translationen und einer Rotation definiert, die verschiedene Fallkonstellationen ermöglicht.

3.2.5 Kontakte, Anfangs- und Randbedingungen

LS-DYNA verfügt über zahlreiche Kontaktalgorithmen, die sich in der Erkennung von Kontakten und der Definition der kontaktierenden Flächen stark unterscheiden. Im Brennelementmodell interagieren viele Komponenten miteinander. Insbesondere im Bereich der Gitter der Abstandshalter ist nicht a priori bekannt, auf welchen Seiten der Bleche Kontakte auftreten. Durch die Nutzung von Balkenelementen für Abstandshalter und Brennstäbe/Führungsrohre, treten so genannte Balken-Balken-Kontakte auf. Deshalb wurde der Kontakttyp *CONTACT AUTOMATIC GENERAL genutzt. Für alle Kontakte wurden pauschal statische und dynamische Reibungskoeffizienten von 0,15 bzw. 0,1 festgelegt. Zur Stabilisierung und der Vermeidung hochfrequenter Schwingungen im Kontaktbereich wurde ein viskoser Dämpfungskoeffizient von 20 genutzt. Für alle dünnwandigen Komponenten wurde die Wandstärke explizit in der Definition von *PART_CONTACT angegeben. Dadurch wird eine korrekte Berechnung der Kontaktsteifigkeit sichergestellt. Eine Anfangsgeschwindigkeit von 2,43 m/s wurde mit *INITIAL VELOCITY auf alle Knoten des Brennelementmodells angewendet, um die Geschwindigkeit unmittelbar vor dem Aufprall zu simulieren. Darüber hinaus wurde ein konstantes Beschleunigungsfeld *LOAD_BODY angewendet, um die Schwerkraft zu simulieren.


Zur Implementierung der Randbedingungen für das detaillierte Brennelementmodell wurden zunächst experimentelle Daten aus dem Aufprallversuch eines Ersatz-Brennelements /KAL 19c/ genutzt. Diese Translations- und Rotationsdaten, welche für einen horizontalen Brennelementaufprall extrahiert wurden, konnten zur Validierung des in diesem Bericht beschriebenen Modells (GRS-Modell) und für einen Vergleich zwischen GRS- und PNNL-Modell genutzt werden (vgl. 4.2.1). In einem weiteren Ansatz wurden die Starrkörperbewegungsdaten der Tragkorbzelle jedoch auch simulationstechnisch generiert. Beide Ansätze sollen im Folgenden kurz beschrieben werden.

Da eigene experimentelle Daten fehlten, wurden zur Validierung des Modells die Bewegungsdaten bzw. Randbedingungen für einen Fallversuch eines Ersatz-Brennelements aus 30 cm aus /KLY 20a/ übernommen. Diese Bewegungsdaten der Tragkorbzelle basieren auf Ergebnissen eines Berichts aus /KAL 19d/, in welchem die Bewegungsdaten des Brennelements in einer Tragkorbzelle mit Hochgeschwindigkeitskameras aufgezeichnet wurden. Die Videokonfiguration umfasste mehrere Referenzmarken zur Positionsverfolgung der Brennstäbe und der Abstandshalter (vgl. Abb. 3.18). Die Bewegungsverfolgung erfolgte daher nachträglich anhand markanter Stellen im Videomaterial.

Abb. 3.18 Deformation der Brennstäbe und des Abstandshaltergitters aus dem experimentellen Fallversuch

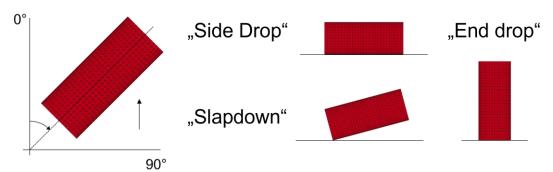
Die Daten konnten aus der Analyse kalibrierter Hochgeschwindigkeitsvideos gewonnen werden, welche Aufschluss auf die Translations- und Rotationsbewegung des Brennelementtragkorbs geben. Aufbauend auf den Positionsdaten aus zwei Videos während des Fallversuchs aus 30 cm Höhe konnten die Translations- und Rotationsdaten des Schwerpunkts des Brennelementtragkorbs abgeschätzt werden. Abb. 3.19 zeigt die ermittelten Bewegungskurven, welche als Starrkörperbewegung für die Validierungsrechnung auf die Tragkorbzelle übertragen wurden.

Abb. 3.19 Bewegungsverlauf des Brennelementtragkorbs ermittelt aus den Fallversuchen am Sandia National Laboratory /KLY 20a/

Außerdem wurden aus dem in Kapitel 3.1 beschriebenen FE-Behältermodell die Translations- und Rotationsdaten für verschiedene Orientierungen generiert. Diese

Bewegungshistorien wurden anschließend als Randbedingungen auf eine starre Tragkorbzelle angewendet, in die das detaillierte Brennstabmodell eingebettet ist. Die Bewegungsdaten sind also einmal aus einem Experiment und in einem zweiten Teil direkt aus dem Behältermodell abgeleitet worden. Die im Versuch eingesetzte Tragkorbzelle wurde im Behältermodell als Starrkörper modelliert, dessen Translations- und Rotationsbewegung als Randbedingung für das detaillierte Brennelementmodell vorgegeben wurde. Aus der Simulation des Behältermodells wurden für insgesamt 5 Aufprallorientierungen die Translation und Rotation des Körperschwerpunkts der Tragkorbzelle exportiert und als Randbedingung für das detaillierte Brennelementmodell implementiert. Auf die Ergebnisse aus der Berechnung der Starrkörperbewegung wird in Kapitel 4.1.1 im Detail eingegangen. Insgesamt wurde die Starrkörperbewegung der Tragkorbzelle für fünf verschiedene Aufprallorientierungen aus 0°, 30°, 45°, 60° und 90° berechnet. Auf die Ergebnisse dieser Rechnungen wird in Kapitel 4.1.1 genauer eingegangen.

4 Ergebnisse


30 cm-Fallversuche von TLB, welche die normal conditions of transport abbilden, erfolgen in der Regel horizontal bzw. müssen keine anderen Aufprallorientierungen berücksichtigen. Für den vorliegenden Bericht wurden dennoch mehrere Orientierungen in Betracht gezogen, um die ungünstigsten Konditionen zu ermitteln.

Für das Brennelementmodell wurden eine Reihe von Aufprallorientierungen modelliert, wodurch besonders kritische Belastungszustände der Brennelemente identifiziert werden konnten. Hierfür wurden neben dem vertikalen und horizontalen Aufprall auch zwei Slapdown-Aufprälle aus 45° und 60° simuliert.

4.1 Behältermodell

Das im Rahmen dieser Arbeit modellierte Aufprallverhalten eines Vollmodells eines generischen Modells eines Transport- und Lagerbehälters wurde für verschiedene Fallwinkel untersucht. Wie in Abschnitt 3.1 bereits erwähnt, war es das Ziel, die aus dem Behältermodell abgeleiteten kinematischen Beziehungen als Starrkörperbewegung für das Brennelementmodell zu verwenden.

Der Aufprall des Transport- und Lagerbehälters wurde aus einer Höhe von 30 cm einmal horizontal ohne Neigung (Side Drop), für einen schrägen Aufprall aus 45° bzw. 60° (Slapdown), als auch für den vertikalen Aufprall simuliert (vgl. Abb. 4.1).

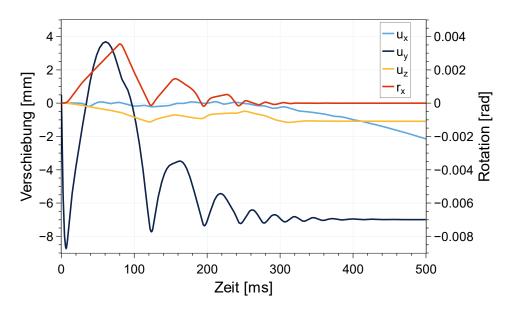
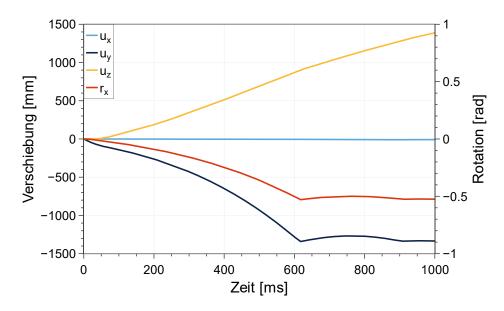


Abb. 4.1 Definition des Neigungswinkels während des Behälteraufpralls mit Angabe der Richtung des Bremsbeschleunigung und unterschiedliche Aufprallorientierungen des Behältermodells

4.1.1 Starrkörperverschiebung der Tragkorbzelle


Auf Grundlage der FE-Simulation des Behältermodells konnte unter anderem die Starr-körperbewegung der Tragkorbzelle für verschiedene Aufprallorientierungen ermittelt werden, um diese dann im detaillierteren Brennelementmodell als Randbedingung zu implementieren. Die Starrkörperbewegung der Tragkorbzelle wurde für fünf verschiedene Aufprallorientierungen aus 0°, 30°, 45°, 60° und 90° ermittelt. Auf die Starrkörperbewegung der Tragkorbzelle, für welche die drei translatorischen Freiheitsgrade u_x, u_y und u_z, sowie die Rotation um die Längsachse des Behälters r_x, relevant sind, soll einmal für 90° (vgl. Abb. 4.2) und einmal für 60° (vgl. Abb. 4.3) detailliert eingegangen werden.

Beim Behälteraufprall aus 90° tritt die dominante Verschiebung des Brennelementtragkorbs erwartungsgemäß entsprechend der Fallrichtung in y-Richtung auf. Die Verschiebung in y-Richtung zeigt das Verhalten eines unelastischen Stoßes. Nach der initialen Auslenkung klingt die Bewegung über einen Zeitraum von ca. 0,3 s merklich ab. Die Verschiebungen in den beiden übrigen translatorischen Freiheitsgraden u_x und u_z sind im Vergleich dazu deutlich geringer und liegen jeweils im Bereich unter ±1 mm. Die Translation in x-Richtung zeigt eine leichte Auslenkung in negative Richtung, während es zu einer geringfügigen, aber weitgehend konstante Absenkung in y-Richtung kommt. Die Rotation r_x um die x-Achse erreicht ihr Maximum bei ca. 0,0035 rad, das entspricht 0,2°. Der Verlauf ist durch ein kurzes, nichtperiodisches Ausschwingen charakterisiert, das nach etwa 0,2 bis 0,3 s abklingt. Diese Bewegung lässt sich auf ein kurzzeitiges Kippen des Tragkorbs infolge des Impakts zurückführen. Das Ausmaß der Rotation bleibt dabei deutlich kleiner als die Translationen, was auf eine überwiegend translatorische Bewegung des Tragkorbs hindeutet.

Abb. 4.2 Starrkörperbewegung der Tragkorbzelle ermittelt aus dem Behältermodell für eine 90°-Aufprallorientierung

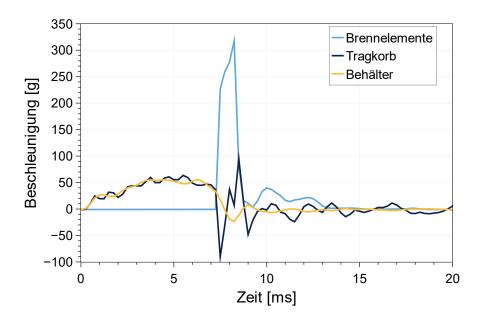

Die Starrkörperbewegung für die Aufprallorientierung aus 60° ist in Abb. 4.3 dargestellt. In y- als auch in z-Richtung kommt es zu einer Verschiebung um fast 15 mm. Die y-Richtung ist hierbei die relevante Verschiebung, da diese der Fallorientierung des gesamten Behälters entspricht. Im Gegensatz zur Starrkörperbewegung aus 90° kommt es bei der 60°-Orientierung nicht zu einem ausgeprägten Schwingungsverhalten der Verschiebung in y-Richtung. Nach der initialen Auslenkung, welche bei ungefähr 640 ms den Peak erreicht, bleibt die Verschiebung fortlaufend ungefähr konstant bei ungefähr - 1400 mm. Die Bewegungen in y-Richtung u_y und u_z verlaufen gegenläufig, was in Kombination mit der Rotation auf die komplexe Kippbewegung schließen lässt. Die Verschiebung in x-Richtung u_x ist zu vernachlässigen und liegt im Bereich unter ± 10 mm. Die Rotation r_x um die x-Achse erreicht ihr Minimum bei ca. -0,5 rad und ist damit ungefähr um einen Faktor 100 größer als beim Behälteraufprall aus 90°. Außerdem ist die Rotation r_x konsistent zum translatorischen Verhalten in y-Richtung. Das Ergebnis bzgl. der Rotation r_x unterstreicht, dass eine Schrägstellung des Behälters zu deutlich erhöhten lokalen Aufprallgeschwindigkeiten führen kann.

Abb. 4.3 Starrkörperbewegung der Tragkorbzelle ermittelt aus dem Behältermodell für eine 60°-Aufprallorientierung

4.1.2 Horizontaler Aufprall

Die zeitlich aufgelösten Ergebnisse der Beschleunigungssimulation zeigen, dass der Beschleunigungspeak bzw. die Verzögerung des Tragkorbs und des Schwerpunkts (oder ist das die gemittelte Beschleunigung) des Behälters nach einer Zeit von ungefähr 4 ms erreicht eintritt (Abb. 4.4). Der Beschleunigungspeak der Brennelemente ist leicht verzögert und wird nach einer Zeit von ungefähr 8 ms erreicht. Weiterhin ist auffällig, dass die Beschleunigung welche gemittelt im Brennelement auftritt (ungefähr 345 g) die maximale Beschleunigung des Tragkorbs und des Behälterkörpers (ca. 50 g) um einen Faktor von ungefähr 6 überschreitet.

Abb. 4.4 Modellierung der Beschleunigung der Brennelemente, des Tragkorbs und des Behälterkörpers für einen horizontalen Behälteraufprall aus einer Höhe von 30 cm

Auf die 19 Brennelemente im Behältermodell wirken für die jeweiligen Fallwinkel unterschiedliche Beschleunigungen. Die Nummerierung, welche von LS-Dyna für die einzelnen Brennelemente verwendet wird, ist in Abb. 4.5 aufgelistet. Betrachtet man die Beschleunigung an den unterschiedlichen Brennelementpositionen, so fällt auf, dass diese durchaus unterschiedlich ausfallen können.

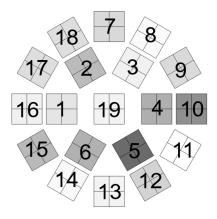


Abb. 4.5 Nummerierung der Brennelemente im Behältermodell

Zusätzlich zur Ermittlung der Beschleunigung, welche auf die einzelnen Behälterkomponenten wirkt, kann aus dem Behältermodell auch die Beschleunigung ermittelt werden, welche auf die einzelnen Brennelemente wirkt. Hierbei zeigt sich, dass die Brennelemente, welche auf der unteren Seite liegen (12, 13, 14) auch die größten

Beschleunigungen erfahren. Die Beschleunigungen erreichen an diesen drei BE-Positionen Werte in einem Bereich von 727 bis 886 g. Die Brennelementpositionen 5 und 6, welche darüber liegen, aber auch das zentrale Brennelement 19, erreichen ebenfalls hohe Beschleunigungen oberhalb von 200 g.

Die Zeitverläufe des horizontalen Aufpralls sind in Abb. 4.6 dargestellt. Der erste Ausschlag nach ungefähr 10 ms zeigt die auftretenden Beschleunigungen nach dem Erstaufprall des Behälters am Boden. Hierbei treten an allen Brennelementpositionen die jeweils höchsten Beschleunigungsspitzen auf. Die Maximalwerte wurden an den Positionen 12, 13 und 14 gemessen. Position 13 erfährt mit rund 886 g dabei die größte Beschleunigung, gefolgt von Position 12 mit ca. 750 g und Position 14 mit ca. 727 g. Diese Positionen befinden sich im unteren Bereich der Brennelementanordnung und sind bzgl. des Auftreffpunkts besonders exponiert. Geringere aber im Vergleich zu allen anderen Positionen immer noch hohe Beschleunigungen sind an den Positionen 5, 6 und 19 zu verzeichnen. Hier liegen die Maximalwerte bei in einem Bereich von 200 bis 260 g. An allen anderen Brennelementpositionen kommt es zu einer reduzierten Beschleunigung, was an diesen Stellen auf eine abgeschirmte Lage hindeutet. Nach dem Erstaufprall klingen die Beschleunigungswerte rasch ab, und ab etwa 50 ms sind nur noch geringe Restschwingungen zu erkennen. Die Kurven verlaufen danach weitgehend stationär um den Nullpunkt, was auf ein kurzzeitiges, aber sehr intensives dynamisches Lastereignis schließen lässt. Insgesamt ist eine stark positionsabhängige Lastverteilung innerhalb des Brennelementkorbs infolge des horizontalen Aufpralls zu erkennen.

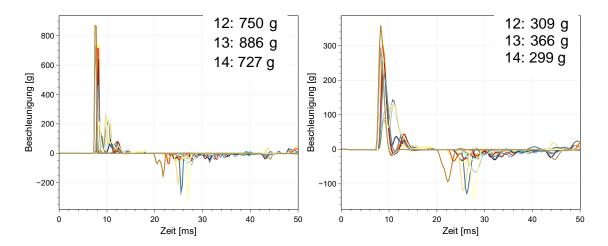
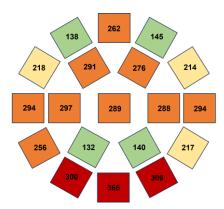



Abb. 4.6 Beschleunigung in Abhängigkeit der Brennelementpositionen (1 bis 19) für einen horizontalen Behälteraufprall ungefiltert (links) und gefiltert (rechts, Butterworth-Tiefpassfilter mit Grenzfrequenz 300 Hz)

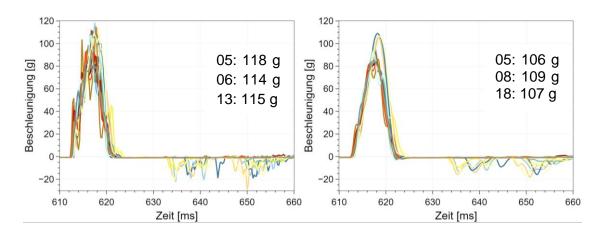

Abb. 4.7 zeigt eine schematische Draufsicht auf die maximal auftretenden Beschleunigungen für die unterschiedlichen Brennelementpositionen innerhalb des Behältermodells. Die farbliche Kennzeichnung verdeutlicht exemplarisch die Größenordnung der auftretenden Beschleunigungswerte: grün markierte Positionen repräsentieren niedrigere Beschleunigungen im Bereich von unter 150 g, gelbe Quadrate kennzeichnen mittlere Werte von 150 bis 250 g, orange eingefärbte Positionen stehen für erhöhte Beschleunigungen über 250 g. Die dunkelroten Felder markieren die maximal auftretenden Beschleunigungen über 300 g. In der Verteilung der Beschleunigungen ist auffällig, dass die maximal auftretenden Werte, wie zu erwarten, auf der unteren Seite auftreten. Weiterhin treten deutlich erhöhte Werte in der mittleren Ebene auf. Vereinzelt treten auf den Brennelementpositionen 5, 6, 8, 18 deutlich niedrigere Beschleunigungsspitzen auf, welche um den Faktor 2,77 geringere Maximalwerte aufweisen.

Abb. 4.7 Gefilterte Beschleunigungen der einzelnen Brennelemente aus einer horizontalen Aufprallorientierung. Der Aufprall erfolgt an der Unterkante

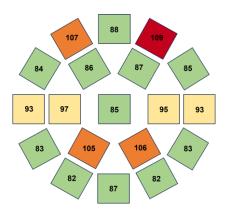

4.1.3 Schräger und vertikaler Aufprall

Abb. 4.8 stellt den zeitlich aufgelösten Beschleunigungsverlauf für alle Brennelementpositionen im Falle des Behälteraufpralls aus 60° dar. Die über das gesamte Brennelement gemittelte Beschleunigung hängt, wie zu erwarten, stark von der Position der Brennelemente im Behälterkorb ab. Der Slapdown setzt nach einer Zeit von ungefähr 600 ms ein. Die Brennelemente 5, 8 und 13 weisen mit Werten zwischen 106 und 109 g jeweils die höchste Spitzenbeschleunigung auf. Dabei handelt es sich um diejenigen Positionen, welche im horizontalen Aufprall (Abb. 4.7) die geringsten Beschleunigungen aufwiesen.

Abb. 4.8 Beschleunigung aller Brennelementpositionen für einen 60°-Behälteraufprall: ungefiltert (links) und gefiltert (rechts, Butterworth-Tiefpassfilter mit Grenzfrequenz 300 Hz)

Abb. 4.9 illustriert die maximal auftretenden Beschleunigungswerte pro Brennelementposition: grün markierte Positionen repräsentieren niedrigere Beschleunigungen im Bereich von unter 90 g, gelbe Quadrate kennzeichnen mittlere Werte von 90 bis 100 g,
orange eingefärbte Positionen stehen für erhöhte Beschleunigungen größer 100 g. Das
dunkelrote Feld markiert die maximal auftretende Beschleunigung mit einem Wert von
109 g. Auffällig ist, dass die höchsten Beschleunigungen nicht am äußeren Rand, sondern in der mittleren Zone des Behälters auftreten. Die äußeren Positionen auf der Unterseite sind überwiegend durch vergleichsweise geringe Beschleunigungen charakterisiert. Insgesamt zeigt sich, dass die dynamischen Beanspruchungen im Inneren des
Behälters deutlich ausgeprägter sind als an den äußeren Brennelementpositionen.

Abb. 4.9 Gefilterte Beschleunigungen der einzelnen Brennelemente aus einer 60°-Aufprallorientierung.

Die maximal auftretenden Beschleunigungen für die Behälter und Komponenten sind in Abb. 4.10 für verschiedene Aufprallorientierungen dargestellt. Die Ergebnisse

ermöglichen eine Abschätzung über die Aufprallorientierungen, die im Hinblick auf die auftretenden Belastungszustände besonders kritisch sind. Dadurch ist es möglich, besonders ungünstige Orientierungen zu identifizieren und in weiterführende Analysen genauer zu betrachten. Es wurden insgesamt 6 Fallorientierungen mit einer Spannbreite von einer vertikalen bis zu einer horizontalen Lage des Behälters simuliert. Für die Simulationen wurde angenommen, dass jegliche Spalte zwischen Brennelementtragkorb, Brennelementen und Behälterkörper zu Beginn vernachlässigbar klein ist und ein nahezu vollständiger Kontakt zwischen den Komponenten besteht. Dadurch ist gewährleistet, dass keine Sekundäraufpralle auftreten. Außerdem wurden Rotationsbewegungen des Tragkorbs vernachlässigt, da vorangegangene Arbeiten von /KLY 20a/ gezeigt haben, dass deren Einfluss auf die Beschleunigung der Brennelemente gering ist.

Auffällig ist, dass die größten Beschleunigungen nicht für den Fall des Slapdowns auftreten, sondern für den horizontalen bzw. vertikalen Aufprall auftreten. Weiterhin ist auffällig, dass die Beschleunigungen in den Brennelementen gerade für die Aufprallwinkel 0° und 90° deutlich größer sind als in im Behälterkörper bzw. im Tragkorb. Beim horizontalen Aufprall unterscheiden sich die Beschleunigungen teilweise um einen Faktor 7.

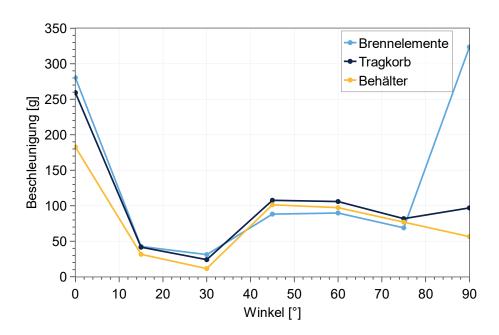


Abb. 4.10 Maximal auftretende Beschleunigung in Abhängigkeit vom Fallwinkel

4.2 Brennelementmodell

Die wichtigsten Komponenten des Brennelementmodells sind in Abb. 4.11 noch einmal dargestellt. Wie in Kapitel 3.2 bereits beschrieben, ist es zusammengesetzt aus

Brennstäben und Führungsrohren. Die Brennstäbe sind über diskrete Balkenelemente an die Abstandshalter gekoppelt. Zusätzlich dazu gibt es die Tragkorbzelle welche in Abb. 4.12 aus Gründen der Darstellbarkeit nicht miteingefügt wurde.

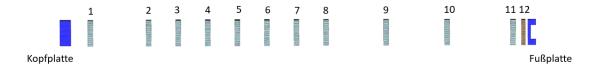



Abb. 4.11 Relevante Komponenten des Brennelementmodells

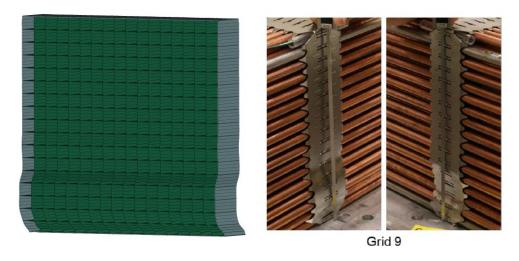

Das Brennelementmodell wurde mit uneinheitlichen Abständen zwischen den Abstandshaltern aufgebaut. Durch die unterschiedlichen Abstände hat die Ausrichtung des Brennelements einen signifikanten Einfluss auf das mechanische Antwortverhalten. So können an den Abstandshaltern in Bereichen verlängerter Spannweiten deutlich höhere Biegespannungen in den Brennstäben auftreten, was zu erhöhten Hüllrohrdehnungen führt. Die für die folgende Auswertung zugrundeliegende Nummerierung der Abstandshalter von 1 bis 12 ist in Abb. 4.12 dargestellt. Die Abstände zwischen den Abstandshaltern 1 und 2 betragen 497 mm. Zwischen den Abstandshaltern 8 und 9 beträgt der Abstand 512 mm, zwischen den Abstandshaltern 9 und 10 520 mm und 562 mm zwischen den Abstandshaltern 10 und 11. Die eher kurzen Abstände im Bereich der Abstandshalter 2 bis 8 betragen jeweils 252 mm. Zwischen den Abstandshaltern 11 und 12 beträgt der Abstand 88,5 mm. Die Abstände zwischen der Kopfplatte bzw. Abstandshalter 1 beträgt 37,4 mm. Zwischen der Fußplatte und Abstandshalter 12 liegen 166 mm.

Abb. 4.12 Darstellung der Kopf- und Fußplatte und Nummerierung der 12 Abstandshalter

4.2.1 Vergleich des GRS- und PNNL-Modells

In einer ersten Untersuchung zur Validierung des GRS-Brennelementmodells wurde es mit dem vom PNNL entwickelten FE-Modell als auch mit experimentellen Daten aus /KAL 20/ verglichen. Im Folgenden soll hier auf die Vergleichbarkeit bzgl. der bleibenden Verformung der Abstandshalter eingegangen werden. In Abb. 4.13 (links) ist die simulierte bleibende Verformung des Abstandshaltergitters 9 dargestellt. Zum Vergleich dazu sind in Abb. 4.13 rechts die aus /KLY 20a/ entnommenen experimentellen Versuchsergebnisse desselben Abstandshalters dargestellt. Der Grad der Abstandshalterverformung in dem Fallversuch und der Simulation ist relativ ähnlich. Im Realexperiment als auch in den Simulationsergebnissen kommt es zu einem ähnlichen Ausbeulen und einer bleibenden plastischen Verformung im unteren Bereich des Abstandshalters.

Abb. 4.13 Modellierung und Realexperiment der Stauchung des Abstandshaltergitters für den horizontalen Fallversuch

In Tab. 4.1 sind für den horizontalen Behälteraufprall aus 90° die bleibenden Deformation aller 12 Abstandshalter einmal für die experimentell ermittelten Werten aus /KAL 20/ und aus den FE-Modellen der GRS als auch vom PNNL aufgelistet. Da die relevanten Materialdaten und Dimensionen des Brennelementmodells des PNNL-Modells

/KLY 20a/ mit dem GRS-Modell übereinstimmen lassen sich die Ergebnisse hier miteinander vergleichen.

Tab. 4.1 Vergleich der Abstandshalterdeformation zwischen dem experimentellen Fallversuch eines Ersatz-Brennelements und den FE-Modellen vom PNNL und der GRS

Pos.	Test [mm]	PNNL-Modell [mm]	GRS-Modell [mm]
1	0,6	0,0	0,8
2	1,5	0,0	1,0
3	1,6	0,1	0,5
4	0,9	0,2	0,8
5	1,2	1,1	1,0
6	1,0	0,6	0,7
7	2,0	0,9	1,0
8	2,3	1,4	0,9
9	3,6	5,5	2,6
10	5,8	5,0	3,3
11	1,3	0,0	0,2
12	0,6	0,0	0,2

Grundsätzlich gibt es eine gute Übereinstimmung zwischen dem GRS-Modell, dem PNNL-Modell und den experimentellen Daten. In Abb. 4.14 ist zu erkennen, dass das PNNL-Modell insbesondere bei den ersten als auch bei den letzten beiden Abstandshaltern keine plastischen Deformationen aufweist. Im Vergleich dazu zeigen die experimentellen Daten jedoch, dass es in allen 12 Abstandshaltern zu bleibenden Deformationen kommt. Die Gitter mit den höchsten Deformationen sind in allen Fällen die Abstandshaltergitter 9 und 10. Für diese beiden Abstandshalter wird die Verformung bzw. Stauchung, welche im Realexperiment auftritt, vom GRS-Modell deutlich unterschätz. Das GRS-Modell zeigt hier auch geringere Verformungen im Vergleich zum PNNL-Modell auf (2,6 und 3,3 gegenüber 5,5 und 5,0), womit sich ein insgesamt weniger konservatives Modellverhalten ergibt. Dies könnte auf lokale Überreaktionen im Modell hindeuten, möglicherweise bedingt durch unzureichend abgebildete Dämpfungs- oder Steifigkeitseigenschaften in diesem stark belasteten Bereich.

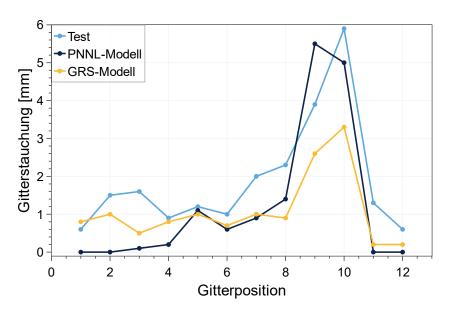
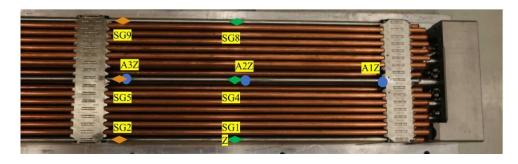



Abb. 4.14 Vergleich der bleibenden Deformation/Knickung der Abstandshalter in mm

Während die berechneten Werte in den Abstandshaltern 1 bis 8 durchweg unterhalb der gemessenen Werte liegen, weisen diese einen ähnlichen Trend auf und bewegen sich tendenziell im gleichen Größenordnungsbereich. Die Abweichungen sind dabei vergleichsweise gering. Zusammenfassend lässt sich festhalten, dass beide FE-Modelle, das PNNL-Modell als auch das GRS-Modell, für nahezu alle Abstandshalter geringere bleibende Deformationen als im Experiment vorhersagt. Die beobachteten Differenzen zwischen Test und Simulation unterstreichen die Bedeutung einer Validierung numerischer Modelle, insbesondere bei der Bewertung sicherheitsrelevanter Komponenten. Es wird vermutet, dass die Gitter im Modell im Bereich kleiner Verformungen zu steif sind und mehr hochfrequente Anteile des Stoßes übertragen. Dies könnte auch die Unterschätzung, die im Modell kleiner bleibenden Verformungen (< 2 mm), erklären.

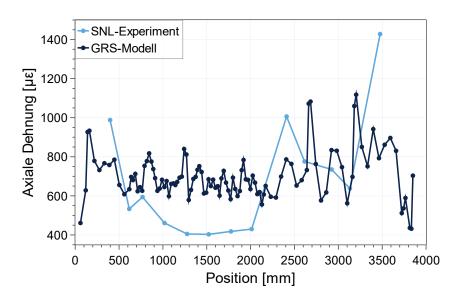

Weiterhin wurde das FE-Modell hinsichtlich der Berechnungen zu den Dehnungsmessstreifen untersucht.

Abb. 4.15 Darstellung des Ersatz-Brennelements mit einer Übersicht zur Positionierung der Beschleunigungssensoren und Dehnungsmessstreifen /KAL 20/

Abb. 4.15 zeigt eine Übersicht zur Positionierung der Beschleunigungssensoren und Dehnungsmessstreifen am Ersatzbrennelement für den 30 cm Fallversuch /KAL 20/. Für die Verifizierung der Modellierungsergebnisse wurden die Daten der Dehnungsmessstreifen SG1 und SG2 des Brennstabs (Abb. 4.15) herangezogen.

Die Dehnungsmessstreifen, die am mit Zirkonium umhüllten und mit Blei-Pellets gefüllten Brennstabbündel montiert waren, zeigten eine unstetiges Maß an Übereinstimmung mit den FE-Rechnungen (vgl. Abb. 4.16).



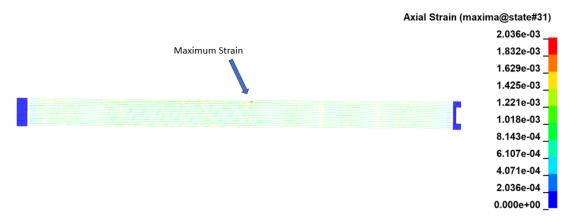
Abb. 4.16 Vergleich der Dehnungsmessungen am Brennstab 17 mit den ermittelten Werten der FE-Rechnungen

Der Trend der Dehnung, welche im Experiment ermittelt wird, wird vom FE-Modell korrekt abgebildet. Das FE-Modell erfasst ungefähr die Position, an welcher die höchsten Dehnungswerte ermittelt werden, allerdings berechnet das Modell hier um 75 % zu niedrige Dehnungswerte. Im Bereich von 500 bis 2.000 mm, dem Bereich, in dem die

Abstandshalter relativ eng beieinander sind, sagt das Modell eine im Schnitt um 40 bis 50 % zu niedrige Dehnung voraus. Hier überschätzt das FE-Modell die Dehnung im Durchschnitt um etwa 200 bis 250 με.

Die am Brennelement montierten Beschleunigungssensoren aus /KAL 20/ zeigten im Vergleich zu den maximalen Beschleunigungen, ermittelt aus dem Brennelementmodell des entsprechenden Brennstabs, eine gute Übereinstimmung mit den Modellergebnissen. Der Durchschnitt der Spitzenwerte der Sensoren betrug 60,13 g. Die im Modell ermittelte Beschleunigung liegt in fast allen Bereichen deutlich darunter. Einzig im Bereich der beiden Peaks bei ungefähr 3.000 mm (vgl. Abb. 4.17) liegt die Beschleunigung des GRS-Modells über den experimentell ermittelten Werten. Die Übereinstimmung deutet darauf hin, dass das dynamische Verhalten des Brennelementmodells repräsentativ für das getestete Brennelement ist.

Abb. 4.17 Vergleich der Beschleunigungsmessungen am Brennstab 8 mit den ermittelten Werten der FE-Rechnungen


Ein möglicher Grund für die Abweichungen in der Berechnung der Dehnung ist, dass die Brennstäbe im Modell ein hochfrequentes Antwortverhalten auf die Anregung zeigen. Wird auf die Daten eine Tiefpass-Grenzfrequenz von 300 Hz angewandt, wird diese hochfrequente Antwort praktisch entfernt und es ergeben sich für die Ergebnisse unter Umständen Abweichungen. Grundsätzlich zeigen die Brennelementbeschleunigung, Dehnungsberechnungen und Gitterstauchungen gute Übereinstimmungen mit dem FE-Modell. Die hier präsentierten Berechnungsergebnisse zu den Dehnungen zeigen Abweichungen auf. Die Ergebnisse ließen sich weiter verfeinern, wenn das FE-Modell die

Kontaktkräfte zwischen den Brennstäben bzw. zwischen Brennstab und Brennelementtragkorb verfeinert ausgibt. Außerdem könnten die Versagenskriterien, hier im Modell lokales Fließen, welche im Modell angewandt werden, weiter verfeinert werden. Für eine genauere Abbildung des Experiments müssten außerdem die Bodeneigenschaften genauer bestimmt werden. Diese haben, je nach Nachgiebigkeit, einen großen Einfluss auf die Beschleunigungen und Spannungszustände, welche im Behälter auftreten. Außerdem fehlt es an Materialkennlinien der im Ersatz-Brennelement verwendeten Materialien. Für diese gibt es sehr wahrscheinlich Abweichungen zwischen GRS-Modell und Experiment.

4.2.2 Horizontaler Aufprall

4.2.2.1 Brennstäbe

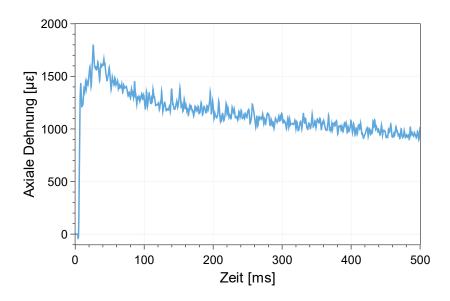

In Abb. 4.18 ist eine Queransicht der Brennstäbe dargestellt, in welcher die maximale axiale Dehnung (2.036 με) markiert ist. Diese tritt ungefähr in der Mitte des Brennelements auf. Bei diesem Wert handelt es sich um den ungefilterten Wert der maximalen Dehnung. Interessanterweise liegt die maximale Dehnung der Brennstäbe im oberen mittleren Bereich des Brennelements in einer Zone, in der die Abstände zwischen den Abstandshaltern klein sind. Im unteren linken Bereich sind die Werte dagegen deutlich geringer.

Abb. 4.18 Räumlich aufgelöster Verlauf der axialen Hüllrohrdehnung zum Zeitpunkt der maximalen Dehnung (90°-Orientierung)

Die zeitlich aufgelöste maximal auftretende axiale Dehnung über alle Hüllrohre zeigt einen Peak in der axialen Dehnung von ca. 1.700 με gleich nach dem ersten Aufprall nach ungefähr 20 ms. Danach kommt es über eine Zeit von 500 ms zu einer allmählichen Abnahme der Amplitude auf ca. 1.000 με (vgl. Abb. 4.19). Die Abweichung im

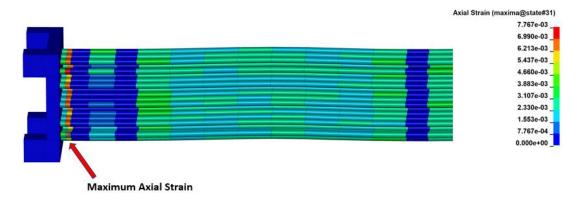

Maximalpeak zwischen dem räumlich und zeitlich aufgelöstem Signal kommt aufgrund der Verwendung eines Butterworth-Tiefpassfilters (Grenzfrequenz von 300 Hz) zustande, welcher beim zeitlich aufgelösten Signal angewandt wird und die hohen Frequenzen filtert, die Maximalwerte jedoch absenkt. Gefilterte Daten werden mit dem Kürzel bw bezeichnet.

Abb. 4.19 Zeitlich aufgelöster Verlauf der auftretenden maximalen axialen Brennstabdehnung (bw gefiltert) für die 90°-Aufprallorientierung

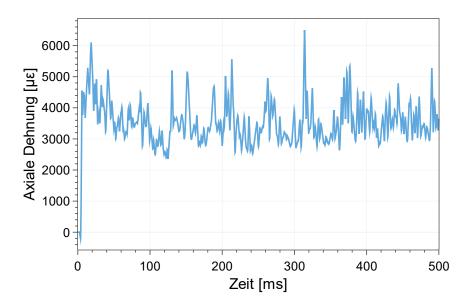

4.2.2.2 Führungsrohre

Abb. 4.20 zeigt die axiale Dehnung, welche in den Führungsrohren infolge eines horizontalen Aufpralls aus einer Fallhöhe von 30 cm auftritt. Entlang des Brennelements lassen sich periodisch Absenkungen in den Dehnungen (blau markiert) erkennen, die mit den Positionen der Abstandshaltergitter korrelieren. Farblich rot markiert ist das Element mit der höchsten Dehnung (ca. 7.770 με). Die größte Dehnung tritt im Bereich zwischen der unteren Abdeckplatte und dem ersten Abstandshalter auf. Unmittelbar daneben (blau markiert) ist ein Bereich, in welchem eine geringe, bis keine Dehnung zu verzeichnen ist.


Abb. 4.20 Räumlich aufgelöster Verlauf der axialen Dehnung der Führungsrohre zum Zeitpunkt der maximalen Dehnung (90°- Orientierung)

Abb. 4.21 zeigt den zeitlich aufgelösten Verlauf der axialen Dehnung in den Führungsrohren. Unmittelbar nach dem ersten Aufprall nach ungefähr 20 ms ist ein Anstieg der axialen Dehnung auf über 6.000 με zu beobachten. Anschließend zeigt das Signal ein nichtperiodisches, stark oszillierendes Verhalten mit deutlichen Schwankungen zwischen etwa 2.000 με und 6.000 με. Auch hier sind die Abweichungen in den maximalen Dehnungen zwischen den orts- und zeitlich aufgelösten Messwerten (vgl. Abb. 4.21 und Abb. 4.22) wieder mit der Verwendung eines Butterworth-Tiefpassfilters zu erklären. Die Dehnung nimmt im Mittel leicht ab, wobei mehrere lokale Maxima und Minima über die gesamte Dauer auftreten. Im Vergleich zu den Dehnungen der Brennstäbe (vgl. Abb. 4.19) kommt es bei den Führungsrohren nicht zu einer allmählichen Abnahme der Amplitude über den gesamten Zeitbereich.

Abb. 4.21 Zeitlich aufgelöster Verlauf der zu jedem Zeitpunkt auftretenden maximalen axialen Dehnung (bw gefiltert) der Führungsrohre (90°-Orientierung)

Die maximal auftretende axiale Dehnung der Führungsrohre ist mit ungefähr 7.770 με deutlich höher als die der Brennstäbe. Wie in Abb. 4.22 zu sehen, kommt es in dem Bereich zwischen Fußplatte und dem ersten Abstandshalter zu einer plastischen Verformung an drei Führungsrohren.

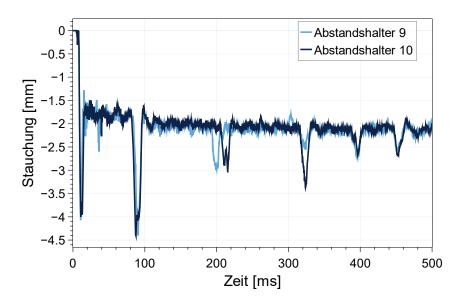


Abb. 4.22 Räumlich aufgelöster Verlauf des Bereichs in welchem plastische Verformung der Führungsrohre auftritt (90°-Orientierung)

4.2.2.3 Abstandshaltergitter

Für den horizontalen Aufprall sind die plastischen Verformungen in den Abstandshaltern 9 und 10 am größten. Dies deckt sich mit entsprechenden Ergebnissen aus Realversuchen /KAL 21/. Die Abstandshaltergitter 9 und 10 weisen verbleibende Stauchungen im Bereich von 2 mm bis 3,5 mm auf. Die Deformation der Abstandshalter ist je nach Position unterschiedlich ausgeprägt. Der Großteil der Abstandshalter weist eine moderate verbleibende Stauchung im Bereich bis 0,8 mm auf.

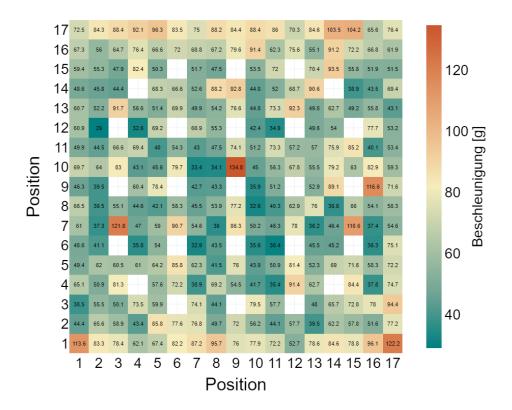
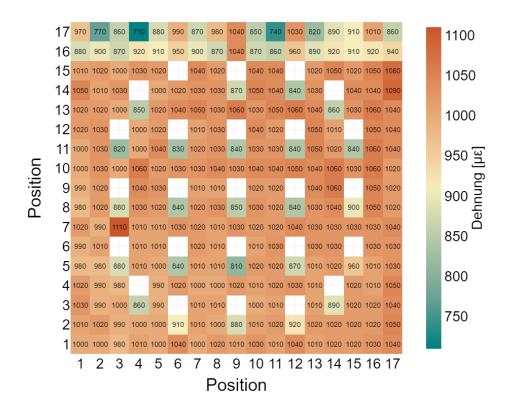

Die unterschiedlichen Verformungen der Abstandshalter deuten auf eine heterogene mechanische Beanspruchung entlang der Brennelementachse hin. Bei Gittern mit höherer Stauchung liegen die Abstände zu den benachbarten Abstandshaltern weiter auseinander. Abb. 4.23 zeigt die zeitlich aufgelöste Gitterstauchung in Folge des horizontalen Aufpralls. Die erste Deformation tritt nach ungefähr 10 bis 20 ms auf, in guter Korrelation mit dem erwarteten Moment des ersten Aufpralls. Innerhalb der ersten 100 ms kommt es in den Abstandshaltern 9 und 10 zu zwei Peaks, die anzeigen, dass die beiden Abstandshalter jeweils um ungefähr 4 mm gestaucht werden.

Abb. 4.23 Zeitverhalten der Verformung der Abstandshaltergitter für den horizontalen Behälteraufprall


4.2.2.4 Beschleunigungs- und Dehnungsverteilung im 17x17-Brennelement

Durch das Brennelementmodell lässt sich auch die Verteilung der Beschleunigung über die einzelnen Brennstäbe treffen. Von der pro Brennstab maximal auftretenden Beschleunigung wurde eine Heatmap (vgl. Abb. 4.24) erstellt, auf welcher sich die Verteilung der Maxima und Minima räumlich aufgelöst ablesen lässt. Die berechneten Spitzenbeschleunigungen betrugen zwischen 134,8 g und 29 g. Diese Beschleunigungswerte sind vergleichbar mit denen aus dem FE-Modell, welches am PNNL entwickelt wurde /KLY 20a/. Wie zu erwarten ist die höchste Beschleunigungsdichte im unteren Bereich des Brennelements, im Bereich des direkten Impacts, zu erwarten.

Abb. 4.24 Heatmap zur Verteilung der maximalen Beschleunigung im Brennelement für den horizontalen Aufprall (bw gefiltert)

Die höchsten Beschleunigungen korrelieren nur bedingt mit der Verteilung der Dehnungen, welche in Abb. 4.25 beobachtet werden. Die niedrigsten Dehnungen treten stets unterhalb der Führungsrohre und in den obersten zwei Brennstabreihen auf. Insbesondere die Maxima und Minima treten nicht an denselben Stäben auf. Die Position (10, 9) mit der größten Beschleunigung 134,9 g zeigt eine Dehnung von 1.030 $\mu\epsilon$ und die Position (7, 3) mit der größten Dehnung 1.110 $\mu\epsilon$ erfährt eine Beschleunigung von 121,8 g. Die Position (12, 2) mit einer Beschleunigung von 29 g zeigt jedoch eine erhöhte Dehnung von 1.030 $\mu\epsilon$ und die Position (17, 4) mit 701 $\mu\epsilon$ erfährt eine Beschleunigung von 92,1 g. Somit lassen sich die Brennstäbe mit den höchsten Lasten nicht direkt aus den Informationen über die Beschleunigungen ableiten. Hervorzuheben sind ebenfalls die Positionen unterhalb der Führungsrohre, welche, bis auf eine Ausnahme, bis zu 210 $\mu\epsilon$ geringere Dehnungen als die benachbarten Positionen in der horizontalen Ebene zeigen.

Abb. 4.25 Heatmap zur Verteilung der maximalen Dehnungen im Brennelement für den horizontalen Aufprall (bw gefiltert)

Beschleunigung der Kopf- und Fußplatte

Der Beschleunigungspeak der Kopfplatte, direkt zu Beginn des Aufpralls, erreicht einen Maximalwert von ungefähr 110 g und deutet auf einen unmittelbaren Kontakt der Kopfplatte mit dem Boden hin (vgl. Abb. 4.26). Im Anschluss an diesen Initialstoß fällt die Beschleunigung auf einen Wert zwischen etwa 60 g und 20 g ab. Die kleineren Ausschläge im Verlauf deuten auf ein Nachschwingen bzw. auf Dämpfungsprozesse hin. Der Beschleunigungsverlauf der Fußplatte zeigt ein anderes Verhalten und deutlich geringere Werte. Die Beschleunigung erreicht hier mehrere moderate Maxima zwischen etwa 20 und 26 g, wobei der erste auffällige Anstieg erst nach etwa 80 bis 100 ms auftritt. Besonders auffällig ist ein weiterer ausgeprägter Peak bei etwa 300 ms, der wahrscheinlich auf einen Sekundäraufprall innerhalb des Behälters hindeutet. Danach folgt auch hier eine Phase mit abnehmender Beschleunigung. Der direkte Vergleich zeigt, dass die Kopfplatte durch den primären Aufprall stark und unmittelbar belastet wird, während die Fußplatte eher verzögert und wahrscheinlich durch einen Sekundäraufprall des Brennelements beeinflusst wird. Die gemessenen Beschleunigungswerte an der Kopfplatte sind insgesamt deutlich höher als jene an der Fußplatte.

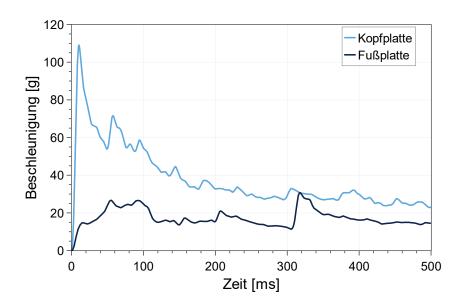
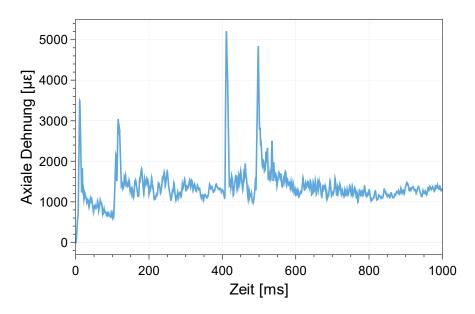



Abb. 4.26 Zeitlich aufgelöste Beschleunigung der Kopf- und Fußplatte

4.2.3 Vertikaler Aufprall

4.2.3.1 Brennstäbe

Für die 0°- Aufprallorientierung ist die zeitlich aufgelöste maximal auftretende axiale Dehnung über alle Brennstäbe in Abb. 4.27 dargestellt. Zu sehen sind mehrere Peaks, welche nach ungefähr 100 ms, 200 ms, 400 ms und 500 ms auftreten. Beim dritten als auch beim letzten Peak werden die höchsten Werte von ca. 5.300 μ E bzw. 4.900 μ E erreicht. Danach kommt es zu einer Abnahme der Amplitude auf ca. 1.200 μ E.

Abb. 4.27 Maximale axiale Dehnung für die 0°-Aufprallorientierung der Brennstabelemente, welche zu jedem Zeitpunkt die höchsten Dehnungswerte aufweisen (bw gefiltert)

4.2.3.2 Führungsrohre

Die höchste axiale Ausdehnung der Führungsrohre tritt für den 0°-Fall unterhalb der Fußplatte auf (vgl. Abb. 4.28). Hier kommt es auch in der Umgebung zu einer plastischen Verformung von ungefähr 18 %.

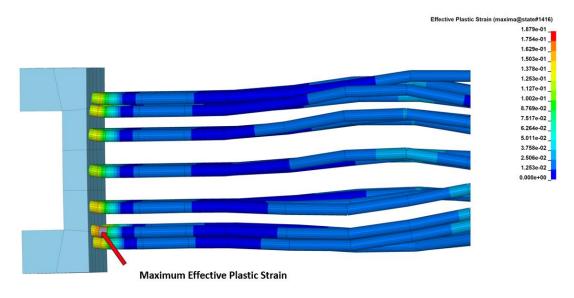
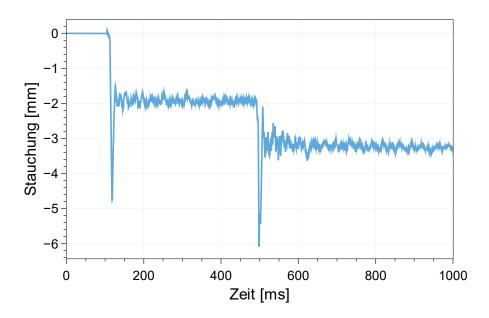



Abb. 4.28 Dehnung der Führungsrohre nach dem ersten Aufprall

Durch den Aufprall der Führungsrohre direkt auf der Abdeckplatte werden diese gestaucht und es kommt zu einem Einknicken der Führungsrohre. Dies führt zu einem Kontakt zwischen Brennstäben und Führungsrohren. Die axiale Dehnung in den Führungsrohre ist im Vergleich zu den Brennstäben deutlich größer, da diese mit der Kopfbzw. Fußplatte über sog. *Spotwelds* direkt verbunden sind und die Kraft beim Aufprall auf diese direkt übertragen wird. Die Brennstäbe schwingen im Gegensatz zu den Führungsrohren frei durch und es kommt nicht zum direkten Kontakt zwischen Brennstab und Abdeckplatten. Die hohen Dehnungswerte, welche beim vertikalen Aufprall auftreten, lassen allerdings nicht automatisch auf eine damit verbundene hohe Wahrscheinlichkeit zum Aufreißen der Brennstäbe bzw. Führungsrohre schließen.

4.2.3.3 Abstandshaltergitter

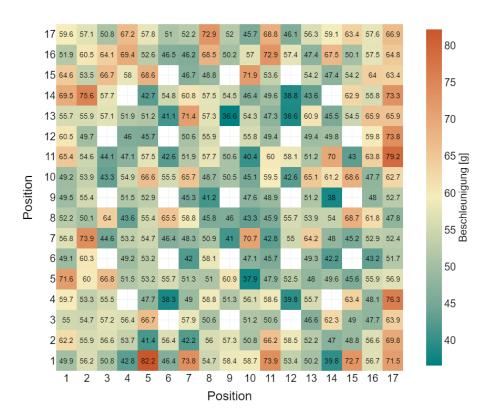

In Abb. 4.29 ist zu erkennen, dass es zu zwei signifikanten Impacts kommt, durch die eine maximale Stauchung von einmal 4,8 mm und 6,2 mm erreicht wird. Die Stauchung in Folge des zweiten Impacts ist also noch einmal deutlich größer. Im Vergleich zum horizontalen Aufprall beschränkt sich die maximal auftretende Verformung für den vertikalen Aufprall nur auf den Abstandshalter 1, welcher direkt oberhalb der Fußplatte liegt. Die Stauchung der verbleibenden Abstandshalter 2 bis 11 verbleibt insgesamt unter einem Wert von 0,2 mm, ist also vernachlässigbar. Die verbleibende Deformation in den Abstandshaltern beträgt für den vertikalen Behälteraufprall nur 3,2 mm.

Abb. 4.29 Zeitverhalten der Verformung des Abstandshalters 1 für den vertikalen Behälteraufprall aus 30 cm

4.2.3.4 Beschleunigungs- und Dehnungsverteilung im 17x17-Brennelement

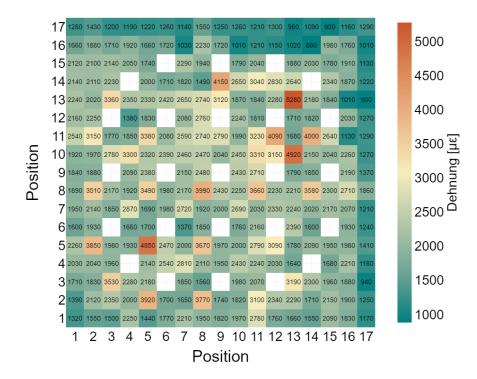
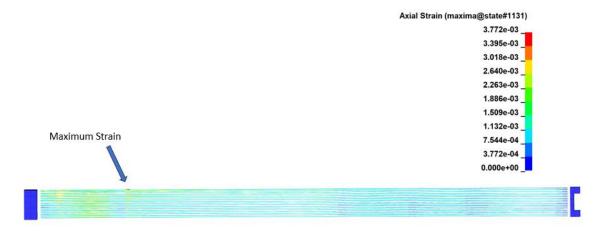

Durch die vertikale Behälterorientierung ändert sich die Betrachtungsweite auf die Bremsbeschleunigung. Diese wird weiterhin in Fallrichtung gemessen, welche nun mit der axialen Richtung des Brennelements koinzidiert. Die Auswertung der Beschleunigungsverteilung infolge des vertikalen Aufpralls zeigt eine deutlich heterogene Belastung über den Querschnitt. Im zentralen Bereich des Brennelements treten vergleichsweise geringe Beschleunigungen im Bereich von 38 (4, 6) bis maximal 82,2 g (1, 5) auf. An den Randzonen hingegen ist eine Zunahme der Beschleunigungswerte zu erkennen. Besonders die äußeren Reihen und Ecken zeigen lokal erhöhte Werte. Auffällig ist zudem eine leichte Asymmetrie in der Verteilung mit besonders hohen Beschleunigungen im unteren und oberen rechten Bereich des Brennelements.

Abb. 4.30 Beschleunigungsverteilung des 17x17-Brennelements für den vertikalen Behälteraufprall (bw gefiltert)

Schaut man sich die Verteilung der axialen Dehnung über das 17x17-Brennelement an, (vgl. Abb. 4.31) so fällt auf, dass die höchsten Werte im zentralen Bereich in der Nähe der Führungsrohre auftreten. Das Maximum von 5280 $\mu\epsilon$ tritt an der Position (13, 13) auf. In den Randbereichen sind die axialen Dehnungswerte deutlich geringer und liegen in einem Bereich von ungefähr 1.000 $\mu\epsilon$ bis 2.000 $\mu\epsilon$. Die Verteilung ist also heterogen

und der Trend verhält sich entgegengesetzt zu den Beschleunigungen. Vergleicht man die Verteilung der Beschleunigung (Abb. 4.30) mit der Verteilung der axialen Dehnung (Abb. 4.31), so korrelieren die Bereiche der Maxima und Minima nicht miteinander. Es ist zu erkennen, dass man aus hohen Beschleunigungswerten auch im vertikalen Fall nicht auf hohe Dehnungswerte und damit einhergehend auf hohe Spannungswerte schließen kann.

Abb. 4.31 Verteilung der maximalen axialen Dehnung für die 0°-Aufprallorientierung der Brennstabelemente (bw gefiltert)


4.2.4 Schräger Aufprall

Weiterhin wurden die Beschleunigung und die Belastungszustände für die Aufprallwinkel 45° und 60° untersucht. Die Ergebnisse unterstreichen, dass eine Schrägstellung des Behälters gegenüber einem horizontalen Aufprall zu erhöhten lokalen Aufprallgeschwindigkeiten bzw. Beschleunigungen führt, die dann meist auch in Verbindung mit gesteigerten lokalen Belastungen stehen. Da beim so genannten Slapdown der Behälterschwerpunkt nicht direkt über der Aufprallstelle liegt, kommt es zu einer Rotationsbewegung des Behälters. Die Aufprallgeschwindigkeit des anschließenden Zweitaufpralls des Behälters ist infolgedessen mit einer erhöhten Anfangsgeschwindigkeit verbunden. Auf die zeit- und ortsaufgelösten Belastungszustände der einzelnen

Bauteile für die Aufprallorientierungen von 45°, und 60° soll im folgenden Abschnitt genauer eingegangen werden.

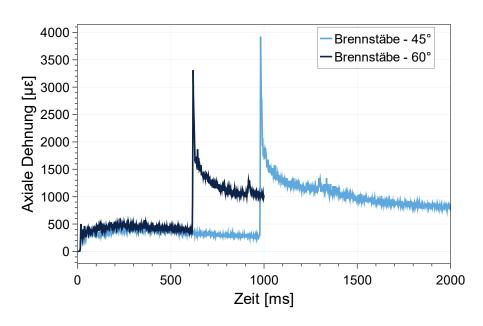

4.2.4.1 Brennstäbe

Abb. 4.32 zeigt eine Queransicht der Brennstäbe, in welcher die maximal auftretende axiale Dehnung $(3.772~\mu\epsilon)$ für die Aufprallorientierung 60° markiert ist. Hierbei handelt es sich um den ungefilterten Wert der maximalen Dehnung. Insgesamt liegen die Positionen, an denen die höchste Dehnung auftritt im oberen mittleren Bereich des Brennelements, d. h. näher an der Kopfplatte als an der Fußplatte.

Abb. 4.32 Axiale Dehnung für die 60°-Aufprallorientierung mit Hervorhebung des Elements 7.284, welches die höchsten axialen Dehnungswerte aufweist

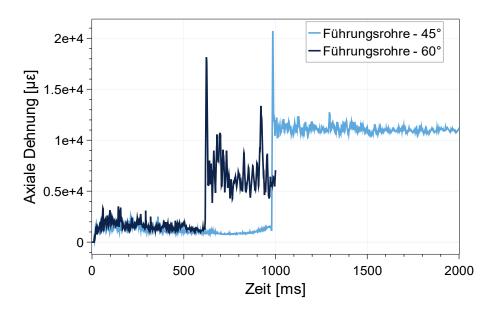

Für einen Behälteraufprall aus 60° zeigt die zeitlich aufgelöste axiale Dehnung über alle Brennstäbe einen Peak von ca. 3.300 με nach ungefähr 600 ms. Danach kommt es zu einer allmählichen Abnahme der Amplitude auf ca. 1.000 με (vgl. Abb. 4.33). Zusätzlich ist in Abb. 4.33 auch die axiale Dehnung für den 45°-Behälteraufprall dargestellt. Für 45° wird ein Maximalpeak von 4.800 με erreicht der im Vergleich zu 60° jedoch verzögert auftritt. Der Verlauf der beiden Kurven für die axiale Dehnung ist sonst ähnlich. Auch hier kommen die Abweichungen im Maximalpeak zwischen räumlich und zeitaufgelöstem Signal aufgrund der Verwendung eines Butterworth-Tiefpassfilters (Grenzfrequenz von 300 Hz) zustande.

Abb. 4.33 Axiale Dehnung der Brennstäbe für einen Aufprall aus 60° (bw gefiltert)

4.2.4.2 Führungsrohre

Die Dehnung in den Führungsrohren ist für die Aufprallorientierungen 45° und 60° im Vergleich zur axialen Dehnung der Brennstäbe deutlich größer und beträgt im Maximum 21.000 $\mu\epsilon$ für die 45°-Aufprallorientierung und 18.000 $\mu\epsilon$ für die 60° (vgl. Abb. 4.34). Dadurch kommt es zu einer plastischen Dehnung von 8.000 $\mu\epsilon$ für 60° und 12.200 $\mu\epsilon$ für 45° (vgl. Abb. 4.35).

Abb. 4.34 Axiale und plastische Dehnung der Führungsrohre (bw gefiltert)

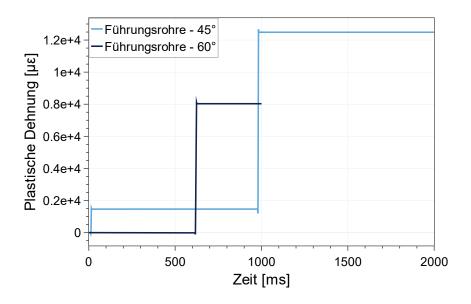


Abb. 4.35 Plastische Dehnung der Führungsrohre (bw gefiltert)

4.2.4.3 Abstandshaltergitter

Neben den Führungsrohren sind die Abstandshalter diejenigen Bauteile im Brennelement, bei denen es für die Aufprallorientierungen 45° und 60° zu einer plastischen Verformung kommt. Für den 60°-Aufprall ist die Stauchung des Abstandshaltergitters 1, welcher die höchste Stauchung aufweist, in Abb. 4.36 dargestellt. Für die Fallwinkel 45° bzw. 60° wird eine verbleibende Verformung der Abstandshalter von 8,84 mm bzw. 11,6 mm erreicht (vgl. Abb. 4.36). Die Abstandshaltergitter, in welchen die größten Deformationen beobachtet werden, variieren dabei je nach Fallwinkel.

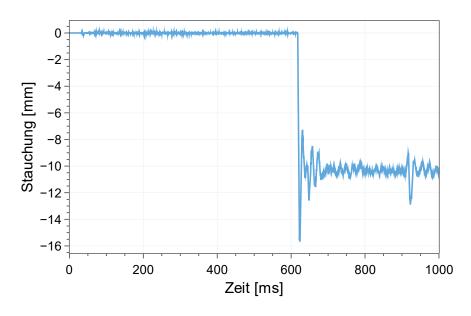
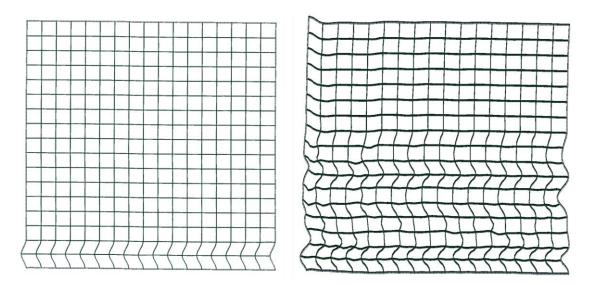
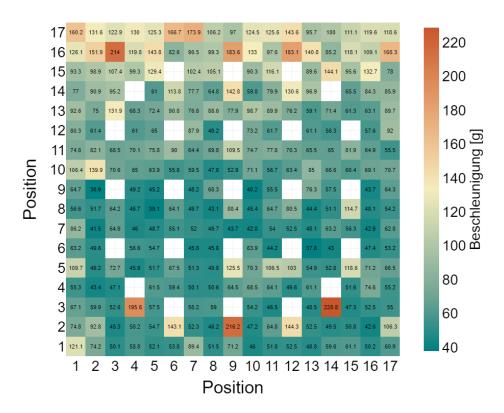



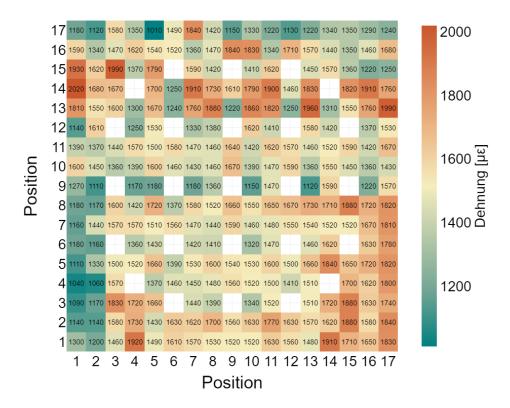
Abb. 4.36 Verformung des Abstandshaltergitters 1 für den 60°-Behälteraufprall

In Abb. 4.37 sind die verbleibenden plastischen Deformationen der Abstandshalter für den Behälteraufprall aus 60° und 90° gegenübergestellt. Für einen Aufprallwinkel aus 60° kommt es in einem großen Bereich des Abstandshalters zu plastischen Verformungen. Im Vergleich dazu kommt es beim horizontalen Aufprall in den Abstandshaltern mit den größten Verformungen nur in den unteren beiden Gitterzellen einer plastischen Verformung. 60° ist dabei der kritische Fallwinkel, bei welchem die größten Deformationen zu verzeichnen sind.


Abb. 4.37 Vergleich der Deformation der Abstandshaltergitter für den horizontalen 90°- Behälteraufprall und aus 60°

Für den horizontalen Behälteraufprall beträgt die maximal auftretende Deformation im Vergleich dazu nur 2,1 mm. Der horizontale Behälteraufprall ist für die Abstandshaltergitter am unkritischsten, da andere Brennelementkomponenten den Aufprall gut absorbieren. Die Abstandshaltergitter weisen jedoch eine plastische Ausdehnung auf, die abhängig von ihrer Position im Brennelement unterschiedlich groß ausfällt.

4.2.4.4 Beschleunigungs- und Dehnungsverteilung im 17x17-Brennelement


Die Verteilung der maximalen Beschleunigung innerhalb des Brennelements (vgl. Abb. 4.38) zeigt eine ausgeprägte Heterogenität. Besonders hohe Beschleunigungen im Bereich von 200 g treten an insgesamt drei Brennstäben an den Positionen (2, 9), (3, 14), (16, 3) auf. Über das gesamte Brennelement sind die Peaks in den Beschleunigungen nicht gleichmäßig verteilt. Die vereinzelt hohen Werte können auf Überlagerungen von direkten Stoßimpulsen mit reflektierten oder gedämpften Schwingungen zurückzuführen sein. Interessanterweise sind tendenziell höhere Beschleunigungswerte in den oberen

zwei Brennstabreihen der Matrix (Zeilen 16 und 17) zu verzeichnen. Dies ist der Bereich, welcher sich am weitesten entfernt von der Aufprallfläche befindet.

Abb. 4.38 Heatmap zur Verteilung der maximalen Beschleunigung im Brennelement für den 60^-Aufprall aus 60° (bw gefiltert)

Die Verteilung der maximalen Dehnungen (vgl. Abb. 4.39) weicht deutlich von der Verteilung der Beschleunigungen ab. Die Spalten 1 und 2 zeigen in den unteren Brennstabreihen niedrige Werte, wobei das Minimum von 1.010 με an der Position (17, 5) auftritt. Die Zeilen 13 bis 15 weisen die höchsten Dehnungswerte auf mit dem Maximum von 2.020 με an Position (14, 1). Des Weiteren tritt eine leichte Überhöhung in der unteren Hälfte des rechten Viertels auf. Die Position der maximalen Beschleunigung ist in der Auswertung der Dehnungen hingehen unauffällig.

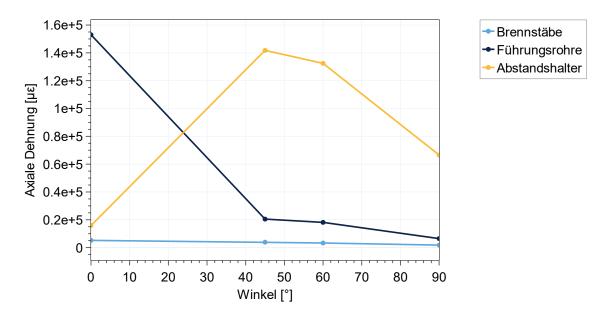


Abb. 4.39 Heatmap zur Verteilung der maximalen Dehnungen im Brennelement für den Aufprall aus 60° (bw gefiltert)

4.2.5 Vergleich der verschiedenen Aufprallorientierungen

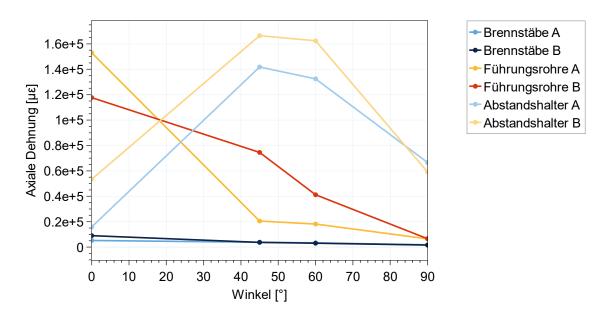
Insgesamt wurden für das Brennelementmodell Simulationen in vier Aufprallorientierungen (0°, 45°, 60° und 90°) ausgeführt, wodurch besonders kritische Belastungszustände einzelner Bauteile identifiziert werden konnten. Die maximal auftretenden axialen Dehnungen für die Brennstäbe, die Führungsrohre und die Abstandshalter sind Abb. 4.40 und Tab. 4.2 aufgetragen.

Generell konnte festgestellt werden, dass die axiale Dehnung der Brennstäbe für alle untersuchten Aufprallorientierungen, deutlich unterhalb der Schwelle liegt, wo es zu plastischer Verformung kommt. Die Fließgrenze der Brennstäbe liegt, wie in Tab. 3.2 aufgeführt, bei 985 MPa. Die maximal auftretende Vergleichsspannung in den Brennstäben, welche für den vertikalen Behälteraufprall verzeichnet wird, beträgt dagegen etwa 795 MPa, was etwa 80 % davon entspricht.

Abb. 4.40 Axiale Dehnung des Brennelements, der Führungsrohre und der Abstandsgitter in Abhängigkeit vom Aufprallwinkel

Für den vertikalen Aufprall konnten insgesamt die höchsten axialen Dehnungen in den Brennstäben (5.200 $\mu\epsilon$) als auch in den Führungsrohren ermittelt werden. Bei den Brennstäben und den Führungsrohren nimmt die maximal auftretende axiale Dehnung für einen größer werdenden Aufprallwinkel konstant ab. Für den horizontalen Aufprall, welcher generell als Referenzszenario gilt, werden bzgl. der Brennstäbe (1.800 $\mu\epsilon$) als auch für die Führungsrohre (6.490 $\mu\epsilon$) die geringsten axialen Dehnungen ermittelt.

Außerdem konnte festgestellt werden, dass es bei allen Aufprallorientierungen zu einer plastischen Verformung der Abstandshalter kommt. Im Vergleich zum horizontalen Aufprall sind die für den 45°- als auch den 60°-Aufprall erreichten axialen Dehnungen der Abstandshalter noch einmal um einen Faktor 2 bis 2,5 größer. Die geringen Dehnungen, die für den horizontalen Aufprall erreicht werden, sind vermutlich dadurch zu erklären, dass durch ein plastisches Verformen der Abstandshalter beim Aufprall ausreichend kinetische Energie in plastische Deformationsenergie umgewandelt wird. Allerdings kann es durch ein Zusammenstauchen der Abstandshalter zu einer Verringerung des Abstands der Brennstäbe kommen. Dadurch erhöht sich die Wahrscheinlichkeit, dass es zu Brennstab-zu-Brennstab-Kontakten kommt. Eine entsprechende Modellierung des Kontaktdrucks fehlt momentan noch im GRS-Modell.


Tab. 4.2 Übersicht der maximalen Dehnungen für unterschiedliche Aufprallorientierungen

Aufprallwinkel	Max. Dehnung Brennstäbe	Max. Dehnung Führungsrohre	Max. Dehnung Abstandshaltergitter
0°	5,2 E-3	153 E-3	15,89 E-3
45°	3,9 E-3	20,5 E-3	141,8 E-3
60°	3,31 E-3	18,14 E-3	132,45 E-3
90°	1,8 E-3	6,49 E-3	66,59 E-3

4.2.6 Einfluss der Ausrichtung der Brennelemente

Für den Slapdown-Aufprall wurde außerdem der Einfluss der Ausrichtung der Brennelemente um ihre Längsrichtung analysiert. Dadurch, dass die Abstandshalter über das Brennelement asymmetrisch verteilt sind, spielt die Ausrichtung, in welcher das Brennelement auf den Boden schlägt, eine signifikante Rolle und beeinflusst die auftretenden Belastungszustände. Für den horizontalen Aufprall ist dies unerheblich. Im Falle des Slapdown-Aufpralls ergeben sich jedoch deutliche Unterschiede.

Für die Analyse wurde der 60°-Aufprall mit der üblichen Ausrichtung (Ausrichtung A) und zusätzlich mit einer um 180° um ihre Längsachse gedrehten Brennelementanordnung (Ausrichtung B) modelliert. Die Ergebnisse sind in Abb. 4.41 und Tab. 4.3 zusammengefasst. Die maximalen axialen Dehnungen der Hüllrohre, Führungsrohre und Abstandshalter für beide Ausrichtungen der Brennelemente weisen zwar einen qualitativ ähnlichen Verlauf aber mitunter signifikante quantitative Abweichungen auf. Besonders die Abstandshalter und Führungsrohre zeigen deutliche Unterschiede. Für die gedrehte Brennelementausrichtung (Ausrichtung B), bei welcher die Seite der Fußplatte durch den Slapdown auf den Boden prallt, kommt es mit Ausnahme des vertikalen Behälteraufpralls für alle Aufprallwinkel zu einer geringeren axialen Dehnung der Abstandshalter. Auch bzgl. der axialen Dehnung der Führungsrohre kommt es mit Ausnahme des vertikalen Behälteraufpralls zu einer geringeren Dehnung. Auf die Dehnung der Brennstäbe hat die Ausrichtung des Brennelements nur einen geringen Einfluss. Nur beim vertikalen Behälteraufprall kommt es zu einer Abweichung.

Abb. 4.41 Einfluss der Orientierung des Brennelements und der Aufprallwinkel auf die axiale Dehnung für die drei Behälterkomponenten (Brennstäbe, Führungsrohre und Abstandshalter)

Für die plastische Verformung der Abstandshalter konnte kein eindeutiger Trend in Abhängigkeit zur Ausrichtung festgestellt werden. Es wird angenommen, dass dieses Verhalten maßgeblich von der Stärke des Sekundärstoßes zwischen Tragkorb und Brennstäben beeinflusst wird.

Tab. 4.3 Einfluss der Positionierung auf die maximalen Dehnungen für unterschiedliche Aufprallorientierungen

Win- kel	Orientie- rung A Brenn- stäbe	Orientie- rung B Brenn- stäbe	Orientie- rung A Führungs- rohre	Orientie- rung B Führungs- rohre	Orientierung A Abstands- halter	Orientierung B Abstands- halter
0°	5,2 E-3	9 E-3	153 E-3	117,69 E-3	15,89 E-3	53.43 E-3
45°	3,9 E-3	3,7 E-3	20,5 E-3	74,55 E-3	141,80 E-3	166,45 E-3
60°	3,31 E-3	3,06E-3	18,14 E-3	41,20 E-3	132,45 E-3	162,45 E-3
90°	1,8 E-3	1,6 E-3	6,49 E-3	6,59 E-3	66,59 E-3	59,19 E-3

4.3 Analytische Betrachtung des Aufprallvorgangs

Die Ergebnisse der numerischen Modellierung konnten zeigen, dass damit verschiedene Unfallszenarien (bspw. Aufprall auf reale Fundamente) gut abgeschätzt und Vergleichswerte für reale Experimente erzeugt werden können. Durch eine Vielzahl an Parametern, welche die numerische Modellierung beeinflussen, ist eine rein analytische Betrachtung

der Fallversuche jedoch nicht zielführend. Die Autoren empfehlen diese in Kombination mit realen Fallversuchen vorzunehmen, um unter anderem die Auswirkungen des internen Aufpralls in einer realistischen Art abschätzen zu können.

Die Durchführung von Fallversuchen mit Transport- und Lagerbehältern ist mit hohen wirtschaftlichen Kosten verbunden, sodass Belastungszustände der Behälter und Komponenten mittels Simulationen analysiert werden müssen. Ziel ist die Entwicklung eines einfachen und ressourcenschonenden Berechnungsmodells für die Übertragungseigenschaften von Behälter und Komponenten. Zur Analyse wurde ein Starrkörper-Mehrfreiheitsgradsystem (MDOF), wie in 2.3 beschrieben, übernommen und angepasst. Dieses Modell soll zum Vergleich mit FEM-Simulationsrechnungen genutzt werden oder für neue Konfigurationen erste Ergebnisse liefern.

4.3.1 Feder-Masse-Modell

Eine schematische Darstellung des mechanischen Ersatzsystems ist in Abb. 2.21 Schematische Skizze eines Masse-Feder-Dämpfer-Systems /QUE 08/ dargestellt. Zur Vereinfachung wurde der Behälterkörper als Einzelmasse angenommen. Der Stoßdämpfer wurde in der Literaturvorlage aufgrund seiner, im Vergleich zum Behälterkörper, deutlich geringeren Masse und erhöhten Steifigkeit als masselose Feder modelliert. Druckversuche an Holzproben lieferten dabei wertvolle Daten bzgl. des nicht-linearen Dehnungsverhaltens der Stoßdämpfer /KIS 07/. Bei der Implementierung in dieser Arbeit wurde auf die Berücksichtigung eines Stoßdämpfers verzichtet und die Federkraft so angepasst, dass sich eine plausible Bremsbeschleunigung für einen Behälterabsturz aus 30 cm Fallhöhe ergibt.

Die Masse m_c , welche mit der Feder $F_{sa}(x_c)$ verbunden ist, schließt dabei die Masse des Behälterkörpers, des Sekundärdeckels und der Bodenseite des Stoßdämpfers mit ein. Für die numerische Analyse wird ein Dummy-Brennelement bestehend aus n_b = 69 hohlen Aluminium-Hohlprofilen aufgefüllt mit n_d = 69 Dummy-Brennstäben aus Stahl angenommen. Damit die Masse derer eines realen Brennelements entspricht.

Der Primärdeckel ist mit dem Behälterkörper über 48 Schrauben fixiert. Im Vergleich zur Masse des Deckels fällt die Masse der Schrauben jedoch nicht weiter ins Gewicht und es wurden die Schraubverbindungen als parallelgeschaltete masselose Federn angenommen. Weiterhin wurde für die Simulation die Biegedehnungen der Schrauben vernachlässigt und nur die Deformation in Zug- bzw. Druckrichtung berücksichtigt. In einer

weiteren Vereinfachung wurde das Deckelsystem als elastische kreisförmige Scheibe mit konstanter Dicke angenommen. Übereinstimmend mit /BAM 12/, kann für die Ermittlung des Einschwingverhaltens des Primärdeckels ein Feder-Masse-Modell mit nur einem Freiheitsgrad angenommen werden.

Das in /QUE 08/ beschriebene Feder-Masse-Modell wurde im Projekt übernommen und weiterentwickelt. Für die Brennelemente als auch für den Brennelementtragkorb gilt, dass die Länge im Vergleich zum Durchmesser deutlich größer ist. Außerdem wurde über die Länge eine homogene Verteilung der Steifigkeit angenommen. Die elastische Reaktion solch stabförmiger Bauteile kann ebenfalls durch eine Reihe von Feder-Masse-Modellen angenähert werden. Der Korb wird durch ein System mit 4 Freiheitsgraden dargestellt. Die Brennelemente besitzen mehr Unregelmäßigkeiten in den Materialeigenschaften und werden daher als System mit 6 Freiheitsgraden abgebildet. Die Kopplung von Primärdeckel und Korb sowie Brennelementen wird über die Federkonstanten, unter Berücksichtigung der Materialeigenschaften gewährleistet. Für das Modell wurden die Verformungseigenschaften durch lineare und nichtlineare Kennlinien abgebildet. Damit können elastische und plastische Deformationen und der Übertrag von Energie auf andere Komponenten beschrieben werden. Aufbauend auf einem System gekoppelter, gewöhnlicher Differentialgleichung wurde das Modell von /QUE 08/ weiterentwickelt. Ergänzend zu /QUE 08/ wurde in den Gleichungen 4.4 und 4.6 die Koordinate des letzten Elementes des Tragkorbes bzw. des Brennelementes mit dem in Abhängigkeit des vorherigen Elementes gekoppelt.

$$(m_c + m_{lr})\ddot{x}_c + F_{sq}(x_c) - F_{ls}(\bar{x}_l) = 0 (4.1)$$

$$m_{el}x_l + F_{ls}(\bar{x}_l) - F_{b1}(\Delta_{b1}) - F_{d1}(\Delta_{d1})$$

$$= -a\ddot{x}_c m_{b1}\ddot{x}_{b1} + F_{b1}(\Delta_{b1}) - k_{b2}(x_{b2} - x_{b1}) = 0$$
(4.2)

$$m_{b1}\ddot{x}_{b1} + F_{b1}(\Delta_{b1}) - k_{b2}(x_{b2} - x_{b1}) = 0 (4.3)$$

$$m_{b2}\ddot{x}_{b2} + k_{b2}(x_{b2} - x_{b1}) - k_{b3}(x_{b3} - x_{b2}) = 0 (4.4)$$

. . .

$$m_{d5}\ddot{x}_{d5} + k_{d5}(x_{d5} - x_{b4}) - k_{d6}x_{d6} = 0 (4.5)$$

$$m_{d6}\ddot{x}_{d6} + k_{d6}(x_{d6} - x_{d5}) = 0 (4.6)$$

Die Wechselwirkung zwischen Boden und Behälter wird durch die Kraft $F_{sa}(xc)$ abgebildet. Auf eine Modellierung des Bodens wurde verzichtet und stattdessen eine geschwindigkeitsabhängige Dämpfung in den Term zur Berechnung der Federkraft eingeführt. Die Dämpfungskonstante beruht auf der kritischen Dämpfung des Systems und wurde durch manuelle Anpassung so festgelegt, dass sich eine plausible Höhe nach dem ersten Aufprall des Behälters ergibt. Der Behälterkörper (c), der Primärdeckel (el), Tragkorb (b) sowie die Brennelemente (d) werden als Starrkörper dargestellt. Dies ermöglich die Modellierung der gemeinsamen Bewegung, ohne dass Verformungen miteinbezogen werden. Die Kopplung des Primärdeckels mit dem Sekundärdeckel wird über die Kraft $F_{ls}(\bar{x}_l)$ dargestellt. Die Antwort des Tragkorbs und der Brennelemente wird über die Kräfte F_b und F_d abgebildet.

Für das numerische Modell wurde ein vertikaler Aufprall aus einer Höhe von 30 cm angenommen. Das Behältermodell trifft dabei mit einer Anfangsgeschwindigkeit von 2,43 m/s auf den Boden. Um den ersten Aufprall zu simulieren, wurde eine Starthöhe von 1 mm gewählt. Die genutzten Eingabewerte für die MDOF-Simulation sind in Tab. 4.4 dargestellt.

Tab. 4.4 Verwendete Eingabewerte für die MDOF-Rechnung

Parameter	Eingabewert
m_c [kg]	94.500
m_l [kg]	6.544
m_b [kg]	4.580
m_d [kg]	2.348
k [N/m]	7,12E+10
F_{sa} [N]	$k * x_c + 0.0839 * d_{krit}(k) * v_c$
d_{krit} [Ns/m]	$2*\sqrt{k*(m_c+m_l)}$
$F_{ls}(\bar{x}_l)$ [N]	8,982E+11 N/m· \bar{x}_l
K_d [N/m]	2,99E+12

Parameter	Eingabewert
K_b [N/m]	2,79E+13

In Abb. 4.42 sind die gemittelten Beschleunigungen der Komponenten des MDOF-Systems während des ersten Aufpralls dargestellt. Der Behälter reagiert erwartungsgemäß als erstes auf den Aufprall. Die an den Behälter gekoppelten Komponenten (Brennelemente und Tragkorb) zeigen eine um etwa 0,16 ms verschobene Beschleunigungsantwort, was die mechanische Kopplung im System und die Übertragung der Aufprallenergie zeigt. Die Kurvenverläufe verdeutlichen die dynamische Wechselwirkung des Systems. Im Gegensatz zum relativ glatten Beschleunigungsverlaufs des Behälterkörpers, zeigen der Brennelementtragkorb und die Brennelemente eine höhere Bremsbeschleunigung. Außerdem ist eine Schwingung der beiden Komponenten zu sehen.

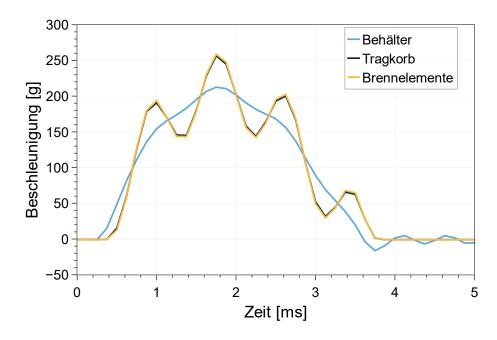
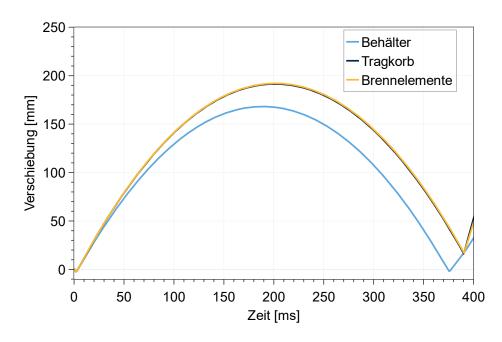
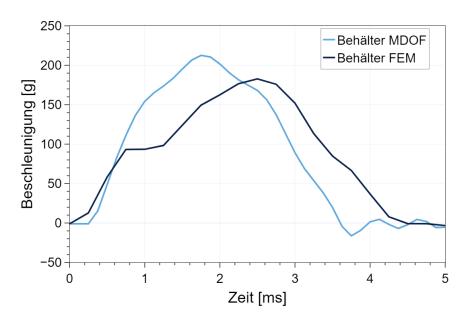
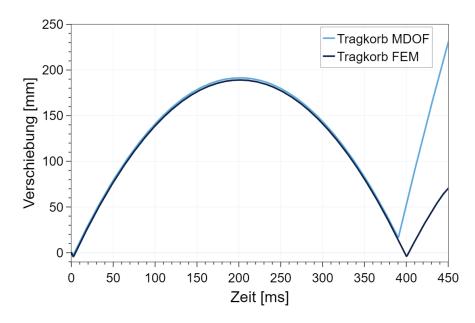



Abb. 4.42 Gemittelte Beschleunigungswerte des MDOF-Systems


In Abb. 4.43 ist die Verschiebung der drei Komponenten nach dem ersten Aufprall bis über einen Zeitraum von 450 ms dargestellt. Die drei simulierten Komponenten Behälter, Tragkorb und Brennelemente starten bei der gleichen Verschiebung. Wie in Abb. 4.42 zeigt sich auch hier die Verzögerung der gekoppelten Komponenten Tragkorb und Brennelemente. Ähnlich zum Beschleunigungsverhalten des Behälters zeigt sich auch bei der Verschiebung eine im Vergleich zum Tragkorb und den Brennelementen geringere Auslenkung. Nach einer Zeit von ungefähr 400 ms kommt es zu einem erneuten Anstieg, welcher für die Auswertung außer Acht gelassen wurde. Dieser dritte Anstieg in

der Verschiebung kommt, nach Meinung der Autoren, vor allem dadurch zustande, dass das numerische Modell die Dämpfung nicht miteinbezieht. Die Auswertung des entwickelten und simulierten MDOF-Systems zeigt ein physikalisch plausibles Verhalten nach dem Aufprall. Das verzögerte Verhalten des Tragkorbs und der Brennelemente sowie die höheren Amplituden lässt sich durch die korrekte Schwingungsantwort dieser Komponenten erklären.


Abb. 4.43 Verschiebung des MDOF-Systems nach dem ersten Aufprall

Zur weiteren Verifikation des numerischen Modells, wurde das dynamische Verhalten mit den Ergebnissen des Behältermodells aus Kap. 4.1 verglichen. Dabei wurden exemplarisch die Beschleunigungen der Behälter und die Verschiebung des Tragkorbes verglichen. Die Beschleunigungsverläufe des Behälters zwischen FE-Modell und numerischem Modell (vgl. Abb. 4.44) zeigen eine gute Übereinstimmung im zeitlichen Verlauf des Aufpralls als auch für die maximale Beschleunigung, welche für den Behälter berechnet wird. Ähnlich zu den Berechnungen für das numerische Modell zeigen auch die FE-Berechnungen für einen vertikalen Aufprall (vgl. Abb. 4.10), dass die Beschleunigungen des Tragkorbs (260 g) und der Brennelemente (280 g) im Vergleich zum Behälter größer sind. Das MDOF-System zeigt eine minimal früher eintretende Beschleunigung und ein Nachschwingverhalten, welches in der FE-Simulation nicht zu beobachten ist.

Abb. 4.44 Exemplarischer Vergleich der Beschleunigungen der FEM-Simulation mit dem MDOF-System

Auch bei den in Abb. 4.45 dargestellten Verschiebungen ergibt sich ein ähnliches Bild. Die Berechnungen des MDOF-Modells und des FE-Modells zeigen einen nahezu einen identischen Verlauf für den Brennelementtragkorb nach dem ersten Aufprall.

Abb. 4.45 Exemplarischer Vergleich der Verschiebung der FEM-Simulation mit dem MDOF-System

In Tab. 4.5 sind die maximalen Beschleunigungen sowie die maximale Auslenkung des MDOF-System im Vergleich zur FEM-Simulation dargestellt. Hierzu wurden die jeweiligen Maximalwerte der entsprechenden Kurven ermittelt und dokumentiert.

Tab. 4.5 Auswertung maximaler Beschleunigung/Auslenkung des numerischen Modells im Vergleich zum FE-Modell

	Max. Beschleunigung [g]		Max. Auslenkung [mm]		
	MDOF	FEM	MDOF	FEM	
Behälter	212,56	182,75	168,16	189,98	
Tragkorb	256,54	259,26	191,45	189,12	
Brennelemente	258,65	280,34	192,09	274,42	

Der Vergleich der maximal auftretenden Beschleunigungen beider Modelle ergibt für den Tragkorb eine Abweichung von 1,2 % auf. Die Abweichungen für die Beschleunigungen des Behälters sind mit 8,0 % bzw. mit 14,2 % für die Brennelemente signifikant höher. Die maximale Verschiebung des Tragkorbs weist eine Abweichung von 1,1 % auf. Die Abweichungen für die Verschiebungen des Behälters sind mit 12 % bzw. 30 % für die Brennelemente deutlich höher.

Insgesamt reproduziert das MDOF-System das Verhalten der FEM-Simulation gut. Eine Ursache für die Abweichungen kommt dadurch zustande, dass die Brennelemente im 6-MDOF-System als auch im Behältermodell stark vereinfacht modelliert werden. Eine Weiterentwicklung des numerischen Modells kann mit Sicherheit die Abweichungen weiter verringern. Es lassen sich also wertvolle Rückschlüsse und Vorhersagen für weitergehende FE-Analysen ableiten.

5 Zusammenfassung

In der vorliegenden Arbeit wurde der Stand von Wissenschaft und Technik zu Realversuchen sowie zu Modellierungs- und Simulationsansätzen bzgl. der Belastungszustände für Transport- und Lagerbehälter und für Behälterkomponenten für normale Transportvorgänge und Unfälle bei der Handhabung untersucht. Für die Literaturrecherche wurden neben Berichten zu Transportversuchen vor allem Veröffentlichungen zu Fallversuchen zusammengetragen. Die Ergebnisse lieferten wichtige Parameter und Erkenntnisse zu Belastungen, Frequenzen und Materialverhalten, die wiederum als Grundlage und zur Validierung für die eigene Modellentwicklung genutzt werden konnten.

Es wurden umfangreiche Finite-Elemente-Modelle auf Basis der Software LS-Dyna und Ansys-Mechanical erstellt. In einem zweistufigen Ansatz wurden zunächst TLB, Tragkorb, Brennelemente und ein Betonfundament modelliert. Anschließend wurden relevanten Behälterkomponenten wie Brennstäbe, Abstandshalter und Tragkörbe in hohem Detailgrad mittels Kontinuums-, Balken- und Schalenelementen modelliert, um die mechanischen Eigenschaften und Kontaktbedingungen realitätsnah abzubilden. Ein eigens entwickelter Python-Code ermöglichte die automatisierte, parametrische Erstellung und Vernetzung von Brennstab- und Abstandshaltermodellen und erhöhte damit die Effizienz sowie die Wiederverwendbarkeit der Modelle erheblich. Zur Reduzierung der Rechenzeiten und Erhöhung der numerischen Stabilität wurden verschiedene Strukturkomponenten durch Balkenelemente substituiert, wodurch der Rechenaufwand signifikant gesenkt wurde, ohne die Aussagekraft der Simulationsergebnisse einzuschränken. Parallel hierzu wurde ein Starrkörper-Mehrfreiheitsgrad-System (MDOF) implementiert, in welchem Behälterkomponenten durch Punktmassen mit Feder- und Dämpfungselementen repräsentiert wurden. Damit konnten die dynamischen Wechselwirkungen zwischen Brennelementen, Tragkorb und Behälter unter spezifischen Randbedingungen untersucht werden. Zur Abbildung nichtlinearer Kraft-Weg-Relationen sowie des Einschwing- und Antwortverhaltens wurde auf numerische Integrationsverfahren zurückgegriffen.

Im dritten Arbeitspaket wurden die zuvor entwickelten Finite-Elemente-Modelle sowie ergänzende analytische Modelle eingesetzt, um umfangreiche numerische Simulationen der Belastungszustände von Brennelementen sowie den zugehörigen Transport- und Lagerbehältern durchzuführen. Hierbei standen Störfallszenarien in Folge von Handhabungsfehlern im Vordergrund. Es wurden variierende Aufprallorientierungen simuliert

und dabei die auftretenden Beschleunigungen und Belastungszustände am Transport- und Lagerbehälter als auch am Brennelement ausgewertet. Anhand der Ergebnisse konnten repräsentative Belastungsprofile für kritische Bauteile bzw. kritische Fallorientierungen identifiziert werden. Da für die Validierung der Simulationen keine eigenen Experimente herangezogen werden konnten, erfolgte diese durch einen Vergleich mit Ergebnissen aus den im AP1 dokumentierten Realexperimenten. Die hohe Übereinstimmung bestätigte die Plausibilität und Verlässlichkeit der numerischen Modelle, sodass diese als belastbare Grundlage für weiterführende Bewertungen genutzt werden konnten. Von besonderer Bedeutung war die Analyse der dynamischen Bewegungen und Wechselwirkungen innerhalb des Behälters, deren Ergebnisse als Randbedingungen für detaillierte Brennelementmodelle dienten. Die aus der Literatur zusam-Werte für die Beschleunigung und Dehnung mengetragenen Ersatz-Brennelements für einen horizontalen Aufprall aus 30 cm /KAL 20/ zeigten im Vergleich zu den berechneten Werten des FE-Brennelementmodell eine gute Übereinstimmung.

Die Analyse im Rahmen des Eigenforschungsvorhabens konnten zeigen, dass die horizontale Aufprallorientierung bzgl. der Belastungszustände nicht das ungünstigste Szenario darstellt. Die Belastungszustände der Behälterkomponenten wird häufig in Form der maximalen Hüllrohrdehnung beschrieben. Dieser Wert beschreibt die maximale auftretende axiale Dehnung an einer beliebigen Stelle des Brennstabs und zu jedem Zeitpunkt während des Aufprallereignisses. Diese maximale auftretende axiale Dehnung umfasst Zug-Druck- sowie Biegeeffekte, wobei die Dehnung typischerweise von der Biegung dominiert wird.

Je nach Behälterkomponente gibt es unterschiedliche Aufprallorientierungen für die höchsten Belastungszustände verzeichnet werden. Der vertikale Aufprall ist bspw. für die Führungsrohre besonders kritisch. Hier werden plastische Verformungen von bis zu 18 % erreicht. Auch bei den Brennstäben werde axiale Dehnungen von 5.200 $\mu\epsilon$ erreicht. Bzgl. der Abstandshalter ist hingegen ein Aufprallwinkel von 60° am kritischsten. Hier kommt es bei den Abstandshaltern zu einer maximalen plastischen Verformung von 10,5 %. Im Vergleich dazu, tritt beim horizontalen Behälteraufprall nur eine effektive plastische Verformung von 5,29 % auf. Die maximale axiale Dehnung der Brennstäbe liegt für die 60° Aufprallorientierung bei 3.772 $\mu\epsilon$. Damit liegen die Werte für die axiale Dehnung deutlich höher als die für die horizontalen Aufprallorientierung berechneten Spitzenwerte von 1.700 $\mu\epsilon$.

Bei den Brennstäben bleibt, trotz der relativ hohen axialen Dehnungswerte, immer noch ein signifikanter Sicherheitsabstand zu den Streckgrenzen- und Bruchdehnungen. In keinem der berechneten Fälle kommt es zu einer plastischen Verformung der Brennstäbe. Für die Führungsrohre und Abstandshalter gilt dies nicht. Da die Berechnungen mit Materialwerten für Komponenten ohne strahleninduzierte Schädigung durchgeführt wurden, sei erwähnt, dass keine Aussagen zum Verhalten von Komponenten bei hohem Abbrand gemacht werden können. Hier können sich die berechneten axialen Dehnungen und damit ein potenzielles Erreichen der Versagenskriterien deutlich unterscheiden.

Abschließend wurden die Ergebnisse der FE-Modelle den Berechnungen des MDOF-Modells für den primären Aufprall des TLB auf ein Betonfundament gegenübergestellt. Der Vergleich der maximal auftretenden Beschleunigungen beider Modelle ergibt für den Tragkorb eine Abweichung von 1,2 %. Die Abweichungen für die Beschleunigungen des Behälters sind mit 8,0 % bzw. mit 14,2 % für die Brennelemente signifikant höher. Die maximale Verschiebung des Tragkorbs weist eine Abweichung von 1,1 % auf. Die Abweichungen für die Verschiebungen des Behälters sind mit 12 % bzw. 30 % für die Brennelemente deutlich höher. Insgesamt reproduziert das MDOF-System das Verhalten der FEM-Simulation gut. Eine Ursache für die Abweichungen kommt dadurch zustande, dass die Brennelemente im 6-MDOF-System als auch im Behältermodell stark vereinfacht modelliert werden. Eine Weiterentwicklung des numerischen Modells kann mit Sicherheit die Abweichungen weiter verringern. Es lassen sich also wertvolle Rückschlüsse und Vorhersagen für weitergehende FE-Analysen ableiten.

Die Ergebnisse lassen den Schluss zu, dass eine ausreichende Sicherheitsmarge gegenüber einem Versagen der Führungsrohre bzw. der Brennstäbe während eines Unfalls unter normalen Transportbedingungen besteht. Zukünftig soll auch der Einfluss des Abstands zwischen Brennelement und Tragkorbzelle genauer analysiert werden. Die Größe des Spalts kann, wie aus Untersuchungen von /QUE 13/ /KLY 20a/ zu entnehmen, einen signifikanten Einfluss haben, welcher zu höheren Belastungszuständen führen kann.

Literaturverzeichnis

/ADK 13/ Adkins, H., Geelhood, K., Koeppel, B., Coleman, J., Bignell, J., Flores, G., Wang, J.-A., Sanborn, S., Spears, R., Klymyshyn, N.: Used Fuel Disposition Campaign, Used Nuclear Fuel Loading and Structural Performance under Normal Conditions of Transport—Demonstration of Approach and Results on Used Fuel Performance Characterization. U.S. Department of Energy (DOE), FCRD-UFD-2013-000325, 2013.

/ANS 23a/ ANSYS, Inc.: SpaceClaim. Version 2023 R2, Ansys, 2023.

/ANS 23b/ ANSYS, Inc.: Mechanical. Version 2023 R2, Ansys, 2023.

- /BAM 08/ Völzke, H., Qiao, L., Zencker, U., Wolff, D., Feutlinske, K., Musolff, A. (Hrsg.): Topical BAM cask design evaluation using drop tests and numerical calculations: accidental cask drop without impact limiters onto storage building foundation. Bundesanstalt für Materialforschung und -prüfung (BAM), Packaging, Transport, Storage & Security of Radioactive Material, 2008.
- /BAM 12/ Ballheimer, V.: Simplified modelling of a cask lid in internal collision problem, unpublished note. Bundesanstalt für Materialforschung und -prüfung (BAM), 2012.
- /GRS 24/ Braunroth, T., Rowold, F.: Weiterentwicklung des Standes von Wissenschaft und Technik bei der Sicherheit der Behandlung bestrahlter Brennelemente, Wärme entwickelnder radioaktiver Abfälle mit vernachlässigbarer Wärmeentwicklung, Teilbericht zum AP 1.6: Methodenbewertung zerstörungsfreier Prüfmethoden. Gesellschaft für Anlagen- und Reaktorsicherheit, GRS, Bd. 716, GRS-716, 75 S., Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH: Köln, Garching b. München, Berlin, Braunschweig, Januar 2024.
- /HAN 23/ Han S., Jeong G.E., Lee H., Choi W.S., Kim J.G.: Multi-body dynamics model for spent nuclear fuel transportation system under normal transport test conditions. Nuclear Engineering and Technology, Nr. 55, S. 4125–4133, 2023.

- /IAE 18/ IAEA International Atomic Energy Agency: Regulations for the Safe

 Transport of Radioactive Material 2018 Edition, Specific Safety Requirements No. SSR-6 (Rev. 1). 190 S., 2018.
- /INF 06/ InformationsZentrum Beton GmbH: Industrieböden aus Beton, Zement-Merkblatt Tiefbau. 2006.
- /INF 23/ InformationsZentrum Beton GmbH: Beton der Druckfestigkeitsklasse C30/37, UMWELT-PRODUKTDEKLARATION nach ISO 14025 und EN 15804+A2. 2023.
- /JIA 16a/ Jiang, H., Wang, J., Wang, H.: The impact of interface bonding efficiency on high-burnup spent nuclear fuel dynamic performance. Nuclear Engineering and Design, Bd. 309, S. 40–52, 2016.
- /JIA 16b/ Jiang, H., Wang, J.: Spent nuclear fuel system dynamic stability under normal conditions of transportation. Nuclear Engineering and Design,, Nr. 310, S. 1–14, 2016.
- /KAL 18/ Kalinina, E. A., Wright, C., Lujan, L., Gordon, N., Saltzstein, S. J., Norman,
 K. M.: Data Analysis of ENSA/DOE Rail Cask Tests, Spent Fuel and Waste
 Disposition. Sandia National Laboratories (SNL), 19. November 2018.
- /KAL 19a/ Kalinina, E., Ammerman, D., Grey, C., Arviso, M., Saltzstein, S., Wille F., Quercetti T., Palacio, A., Perez I., Klymyshyn, N., Ross, S.: Horizontal 30 cm Drop Test of 1/3 Scale ENSA ENUN 32P Dual Purpose Cask | INMM Resources. 2019.
- /KAL 19b/ Kalinina, E. A., Ammerman, D., Grey, C., Flores, G., Saltzein, S.: Full-Scale Assembly 30 cm Drop Test. MRS Advances, 2019.
- /KAL 19c/ Kalinina, E., Ammerman, D., Grey, C., Arviso, M., Saltzein, S.: 30 cm Drop Tests. Hrsg.: Sandia National Laboratories, SAND2019-15256R, 103 S., 2019.

- /KAL 19d/ Kalinina, E. A., Ammerman, D., Grey, C. A., Arviso, M., Wright, C., Lujan, L., Saltzstein, S. J., Ross, S., Klymyshyn, N., Hanson, B., Palacio, A., Fernandez, I., gonzalez, R., Calleja, G., Choi, W.: International Multi-Modal Spent Nuclear Fuel Transportation Test: The Transportation Test Triathlon. 2019.
- /KAL 20/ Kalinina, E., Ammerman, D., Grey, C., Flores, G., Lujan, M., Saltzstein, S., Michel, D.: Surrogate 30 cm Drop Test. Sandia National Laboratories: Albuquerque, 2020.
- /KAL 21/ Kalinina, E. A., Ammerman, D., Grey, C., Flores, G., Lujan, L., Saltzstein, S., Michel, D. (Hrsg.): 30 CM HORIZONTAL DROP OF A SURROGATE 17X17 PWR FUEL ASSEMBLY. Pressure Vessels & Piping Conference, 2021.
- /KAL 23/ Kalinina, E., Ammerman, D., Grey, C., Flores, G., Saltzstein, S., Lujan, L., Arviso, M. (Hrsg.): RESULTS OF THE NORMAL CONDITIONS OF TRANSPORT OF SPENT NUCLEAR FUEL MULTI-YEAR EXPERIMENTAL PROGRAM. PATRAM 22, Juan-les-Pins, 2023.
- /KIS 07/ Kishimoto J. (Hrsg.): Dependency of Temperature on Wooden Materials' Mechanical Property and Effect of Impact Energy Absorption of Shock Absorbers. Packaging and Transportation of Radioactive Materials, Miami, 2007.
- /KLY 15/ Klymyshyn NA, PJ Jensen, and NP Barrett: Shaker Table Modeling Support Task, PNNL-24735. Richland Washington, 2015.
- /KLY 19/ Klymyshyn, N., Ivanusa, P., Kadooka, K., Spitz, C.: Modeling Shock and Vibration of Used Nuclear Fuel Rods During Normal Conditions of Transportation. 17th International High-Level Radioactive Waste Management Conference (IHLRWM 2019), 2019.
- /KLY 20a/ Klymyshyn, N., Kadooka, K., Ivanusa, P., Spitz, C., Fitzpatrick, J.: 30 cm Drop Modeling, Spent Fuel and Waste Disposition. Hrsg.: Department of Energy (DOE), PNNL, 2020.

- /KLY 20b/ Klymyshyn, A.: Developing an Analytical Framework for Cumulative Effects, Spent Fuel and Waste Disposition. 64 S., 2020.
- /KLY 20c/ Klymyshyn, N., Kadooka, K., Ivanusa, P., Spitz, C.: Mechanical Shock and Vibration Analysis of Spent Nuclear Fuel Carried by the Atlas Railcar. Proceedings of the ASME Pressure Vessels & Piping Conference, 2020.
- /LIM 22/ Lim, J., Choi, W.: Preliminary data analysis of surrogate fuel-loaded road transportation tests under normal conditions of transport. Nuclear Engineering and Technology, Bd. 54, Nr. 11, S. 4030–4048, DOI 10.1016/j.net.2022.06.023, 2022.
- /LIV 23/ Livermore Software Technology: LS-DYNA. Version 2023 R2, 2023.
- /MAG 78/ Magnuson, C. E.: Shock and vibration environments for a large shipping container during truck transport (Part II). DOI 10.2172/7030481, 1978.
- /MCC 18/ McConnell, P. E., Ross, S., Grey, C. A., Uncapher, W. L., Arviso, M., Garmendia, R., Fernandez Perez, I., Palacio, A., Calleja, G., Garrido, D., Rodriguez Casas, A., Gonzalez Garcia, L., Chilton, L. W., Ammerman, D., et al.: Rail-Cask Tests: Normal-Conditionsof- Transport Tests of Surrogate PWR Fuel Assemblies in an ENSA ENUN 32P Cask. Sandia National Laboratories (SNL), DOI 10.2172/1418119, 16. Januar 2018.
- /MEM 11/ Memhard, D., Andrieux, F., Sun, D.-Z., Häcker, R.: Development and verification of a material model for prediction of containment safety of exhaust turbochargers. 2011.
- /NRC 07/ U.S. Nuclear Regulatory Commission (U.S.NRC): A Pilot Probabilistic Risk Assessment of a Dry Cask Storage System at a Nuclear Power Plant. NUREG-1864, 2007.
- /QUE 07/ Quercetti, T., Müller, K., Schubert, S. (Hrsg.): Comparison of Experimental Results from Drop Testing of a Spent Fuel Package Design Using a Full-Scale Prototype Model and a Reduced-Scale Model. PATRAM, Bd. 2007, 2007.

- /QUE 08/ Quercetti, T., Müller, K., Schubert, S. (Hrsg.): Comparison of experimental results from drop testing of spent fuel package design using full scale prototype model and reduced scale model. Packaging and Transportation of Radioactive Materials, Miami, 2008.
- /QUE 13/ Quercetti, T., Ballheimer, V., Droste, B., Müller, K. (Hrsg.): Internal cask content collisions during drop test of transport casks for radioactive materials. Packaging, Transport, Storage & Security of Radioactive Material, ISBN 10.1179/1746510913Y.0000000032, 2013;
- /RAS 07a/ Rashid, J.: Spent Fuel Transportation Applications Assessment of Cladding Performance: A Synthesis Report. Hrsg.: Electric Power Research Institute (EPRI), Nr. 1015048, 92 S., 2007.
- /RAS 07b/ Rashid, J.: Spent-Fuel Transportation Applications Normal Conditions of Transport, 1015049. Electric Power Research Institute (EPRI), 58 S.: San Diego, 2007.
- /SNL 92/ Sandia National Laboratories (SNL): A Method for Determining the Spent-Fuel Contribution to Transport Cask Containment Requirements.", SAND90-2406. 555 S.: Albuquerque, 1992.
- /SNL 17/ Bonano, T.: Multi Modal Transportation Test Set-Up and Handling Test.

 Präsentation, SNL, Korea Atomic Energy Research Institute Visit to SNL,

 12. Juni 2017.
- /WAG 17/ Wagner, M.: Lineare und nichtlineare FEM, Eine Einführung mit Anwendungen in der Umformsimulation mit LS-DYNA®. Springer Fachmedien Wiesbaden, Lehrbuch, 314 S., ISBN 978-3-658-17865-9, DOI 10.1007/978-3-658-17866-6, Springer Vieweg: Wiesbaden, Heidelberg, 2017.
- /WIL 73/ Wilkins M., Guinan M.: Impact of cylinders on a rigid boundary. Journal of Applied Physics, Nr. 44, 1973.

Abbildungsverzeichnis

Abb. 2.1	Maximale Beschleunigungen beim Absetzen (Drop) bzw. Drehen und Verladen (HH-Handling) des SNL-Ersatzbrennelements /MCC 18/5
Abb. 2.2	Maximale Belastungszustände der Brennstäbe aus verschiedenen Tests /KAL 23/
Abb. 2.3	Stoßantwortspektren für einen Einzelstoßversuch durchgeführt am TTCI
Abb. 2.4	Gegenüberstellung der Ergebnisse der Fallversuche aus 9 m Höhe mit Mantelstoßdämpfer und aus 0,3 m ohne Mantelstoßdämpfer
Abb. 2.5	Messung der Beschleunigung und Geschwindigkeit für einen vertikalen Fallversuch aus 9 m Höhe für zwei verschiedene Behälter 14
Abb. 2.6	Illustration der drei Versuchsreihen zur Ermittlung der Belastungszustände der Brennelemente für normale Transportvorgänge /KAL 19a/
Abb. 2.7	Aufbau des 30 cm Fallversuchs durchgeführt auf dem Gelände der BAM /KAL 19a/
Abb. 2.8	Illustration der Position der Beschleunigungssensoren am Außenbehälter und am Dummy-Brennelement /KAL 19a/
Abb. 2.9	Die Verzögerungsverläufe während des ersten Aufpralls an der Behälterdeckelseite und Behälterbodenseite. Die maximale Verzögerung erreicht einen Wert von 50 g /KAL 19a/
Abb. 2.10	Die maximalen Beschleunigungswerte an der Vorderseite (links: A5DZ) und an der Rückseite (rechts: A10AZ) der Ersatzbrennstäbe während des Fallversuchs aus 30 cm /KAL 19a/
Abb. 2.11	Gemessene Beschleunigungen der Dummybrennstäbe im Maßstab 1:3 und erwartete Beschleunigungen im Originalmaßstab beim Fallversuch aus 20 cm
Abb. 2.12	Ersatzbrennelement im Originalmaßstab (links) und Illustration des Aufbaus für den 30 cm Fallversuchs (rechts) /KAL 21/
Abb. 2.13	Beschleunigungsmesssignale verschiedener Messstellen während des Aufpralls /KAL 21/
Abb. 2.14	Die maximalen Dehnungswerte in Zug- als auch in Druckrichtung. Dehnmessstreifen mit einer 0°-Ausrichtung sind blau, mit einer 90°- Ausrichtung sind grün und mit einer 225°-Ausrichtung sind rot dargestellt

Abb. 2.15	Spannungs-Dehnungskurve mit gemessener Maximalspannung und dem maximalen Kontaktdruck zwischen zwei Brennstäben	25
Abb. 2.16	Übertragungsfunktion zwischen Behälterkörper und Brennelementen unter normalen Transport- und Unfallbedingungen	26
Abb. 2.17	Relevante Versagensarten bei einem horizontalen Fall eines Transport- und Lagerbehälter /SNL 92/	27
Abb. 2.18	FE-Modell eines 17x17-Brennelements und eines Ausschnitts des Behältermodells /RAS 07b/	28
Abb. 2.19	Verteilung der maximalen Ausdehnungen der Brennstäbe in einem 17x17-DWR-Brennelement für drei Behälterfallbedingungen. Die Ergebnisse wurden mit einer FE-Modellierung berechnet /KLY 20b/	30
Abb. 2.20	Teilstück eines Brennelementmodells für die FE-Berechnung /JIA 16b/	33
Abb. 2.21	Schematische Skizze eines Masse-Feder-Dämpfer-Systems /QUE 08/	35
Abb. 2.22	Vergleich der experimentellen Fallversuche und der berechneten Beschleunigungen und Belastungszustände verschiedener Behälterkomponenten für den Fallversuch aus 9 m /QUE 08/	36
Abb. 3.1	Gitternetze des generischen Transport- und Lagerbehälters (a), Tragkorbs (b), der Brennelemente (c) und des Bodens (d)	39
Abb. 3.2	Schnittdarstellung des Behältermodells	40
Abb. 3.3	FE-Netz des Behälterkörpers	41
Abb. 3.4	Dehnratenabhängige Fließkurven des Behältermaterials /MEM 11/	41
Abb. 3.5	FE-Modell des Brennelementtragkorbs	42
Abb. 3.6	FE-Modell der Brennelemente	42
Abb. 3.7	Nummerierung der Brennelemente im Behältermodell	43
Abb. 3.8	Typisches DWR-Brennelementmodell	45
Abb. 3.9	Darstellung des Brennelementmodells (a), Innenansicht ohne Darstellung der Brennstäbe, Boden- und Deckplatten (b)	46
Abb. 3.10	Netz der Brennstäbe in Detailansicht (a), Anordnung der Elemente und Knoten auf einem Brennstab (b)	47
Abb. 3.11	Geometrische Dimensionen der oberen und unteren Abdeckplatte	49

Abb. 3.12	a) Aufbau eines von Areva entwickelten HTP-Abstandshalters /GRS596/, b) schematischer Aufbau des Abstandshaltermodells /KLY 20a/ 49
Abb. 3.13	Vernetzung und Maße der Abstandshalter50
Abb. 3.14	Netz der Abstandshalter des Balkenmodells ohne (a) und mit (b) Darstellung des Balkenquerschnitts definiert in *SECTION_BEAM5
Abb. 3.15	Netz der Abstandshalter mit detaillierter Darstellung der Verbindung zwischen Federn, Noppen, Brennstab und Abstandshaltegitter
Abb. 3.16	Kennlinien der in den Abstandshaltern verwendeten Federn und Noppen aus /ADK 13/
Abb. 3.17	Schnittdarstellung durch die Tragkorbzelle mit Innenansicht auf das Brennelementmodell
Abb. 3.18	Deformation der Brennstäbe und des Abstandshaltergitters aus dem experimentellen Fallversuch
Abb. 3.19	Bewegungsverlauf des Brennelementtragkorbs ermittelt aus den Fallversuchen am Sandia National Laboratory /KLY 20a/ 55
Abb. 4.1	Definition des Neigungswinkels während des Behälteraufpralls mit Angabe der Richtung des Bremsbeschleunigung und unterschiedliche Aufprallorientierungen des Behältermodells
Abb. 4.2	Starrkörperbewegung der Tragkorbzelle ermittelt aus dem Behältermodell für eine 90°-Aufprallorientierung59
Abb. 4.3	Starrkörperbewegung der Tragkorbzelle ermittelt aus dem Behältermodell für eine 60°-Aufprallorientierung
Abb. 4.4	Modellierung der Beschleunigung der Brennelemente, des Tragkorbs und des Behälterkörpers für einen horizontalen Behälteraufprall aus einer Höhe von 30 cm
Abb. 4.5	Nummerierung der Brennelemente im Behältermodell6
Abb. 4.6	Beschleunigung in Abhängigkeit der Brennelementpositionen (1 bis 19) für einen horizontalen Behälteraufprall ungefiltert (links) und gefiltert (rechts, Butterworth-Tiefpassfilter mit Grenzfrequenz 300 Hz) 62
Abb. 4.7	Gefilterte Beschleunigungen der einzelnen Brennelemente aus einer horizontalen Aufprallorientierung. Der Aufprall erfolgt an der Unterkante

Abb. 4.8	Beschleunigung aller Brennelementpositionen für einen 60°- Behälteraufprall: ungefiltert (links) und gefiltert (rechts, Butterworth- Tiefpassfilter mit Grenzfrequenz 300 Hz)	64
Abb. 4.9	Gefilterte Beschleunigungen der einzelnen Brennelemente aus einer 60°- Aufprallorientierung.	64
Abb. 4.10	Maximal auftretende Beschleunigung in Abhängigkeit vom Fallwinkel	65
Abb. 4.11	Relevante Komponenten des Brennelementmodells	66
Abb. 4.12	Darstellung der Kopf- und Fußplatte und Nummerierung der 12 Abstandshalter	67
Abb. 4.13	Modellierung und Realexperiment der Stauchung des Abstandshaltergitters für den horizontalen Fallversuch	67
Abb. 4.14	Vergleich der bleibenden Deformation/Knickung der Abstandshalter in mm	69
Abb. 4.15	Darstellung des Ersatz-Brennelements mit einer Übersicht zur Positionierung der Beschleunigungssensoren und Dehnungsmessstreifen /KAL 20/	70
Abb. 4.16	Vergleich der Dehnungsmessungen am Brennstab 17 mit den ermittelten Werten der FE-Rechnungen	70
Abb. 4.17	Vergleich der Beschleunigungsmessungen am Brennstab 8 mit den ermittelten Werten der FE-Rechnungen	71
Abb. 4.18	Räumlich aufgelöster Verlauf der axialen Hüllrohrdehnung zum Zeitpunkt der maximalen Dehnung (90°-Orientierung)	72
Abb. 4.19	Zeitlich aufgelöster Verlauf der auftretenden maximalen axialen Brennstabdehnung (bw gefiltert) für die 90°-Aufprallorientierung	73
Abb. 4.20	Räumlich aufgelöster Verlauf der axialen Dehnung der Führungsrohre zum Zeitpunkt der maximalen Dehnung (90°-Orientierung)	74
Abb. 4.21	Zeitlich aufgelöster Verlauf der zu jedem Zeitpunkt auftretenden maximalen axialen Dehnung (bw gefiltert) der Führungsrohre (90°-Orientierung)	74
Abb. 4.22	Räumlich aufgelöster Verlauf des Bereichs in welchem plastische Verformung der Führungsrohre auftritt (90°-Orientierung)	75
Abb. 4.23	Zeitverhalten der Verformung der Abstandshaltergitter für den horizontalen Behälteraufgrall	76

Abb. 4.24	Heatmap zur Verteilung der maximalen Beschleunigung im Brennelement für den horizontalen Aufprall (bw gefiltert)	77
Abb. 4.25	Heatmap zur Verteilung der maximalen Dehnungen im Brennelement für den horizontalen Aufprall (bw gefiltert)	78
Abb. 4.26	Zeitlich aufgelöste Beschleunigung der Kopf- und Fußplatte	79
Abb. 4.27	Maximale axiale Dehnung für die 0°-Aufprallorientierung der Brennstabelemente, welche zu jedem Zeitpunkt die höchsten Dehnungswerte aufweisen (bw gefiltert)	80
Abb. 4.28	Dehnung der Führungsrohre nach dem ersten Aufprall	80
Abb. 4.29	Zeitverhalten der Verformung des Abstandshalters 1 für den vertikalen Behälteraufprall aus 30 cm	81
Abb. 4.30	Beschleunigungsverteilung des 17x17-Brennelements für den vertikalen Behälteraufprall (bw gefiltert)	82
Abb. 4.31	Verteilung der maximalen axialen Dehnung für die 0°-Aufprallorientierung der Brennstabelemente (bw gefiltert)	83
Abb. 4.32	Axiale Dehnung für die 60°-Aufprallorientierung mit Hervorhebung des Elements 7.284, welches die höchsten axialen Dehnungswerte aufweist	84
Abb. 4.33	Axiale Dehnung der Brennstäbe für einen Aufprall aus 60° (bw gefiltert)	85
Abb. 4.34	Axiale und plastische Dehnung der Führungsrohre (bw gefiltert)	85
Abb. 4.35	Plastische Dehnung der Führungsrohre (bw gefiltert)	86
Abb. 4.36	Verformung des Abstandshaltergitters 1 für den 60°-Behälteraufprall	86
Abb. 4.37	Vergleich der Deformation der Abstandshaltergitter für den horizontalen 90°- Behälteraufprall und aus 60°	87
Abb. 4.38	Heatmap zur Verteilung der maximalen Beschleunigung im Brennelement für den 60^-Aufprall aus 60° (bw gefiltert)	88
Abb. 4.39	Heatmap zur Verteilung der maximalen Dehnungen im Brennelement für den Aufprall aus 60° (bw gefiltert)	89
Abb. 4.40	Axiale Dehnung des Brennelements, der Führungsrohre und der Abstandsgitter in Abhängigkeit vom Aufprallwinkel	90

Abb. 4.41	Einfluss der Orientierung des Brennelements und der Aufprallwinkel auf die axiale Dehnung für die drei Behälterkomponenten	
	(Brennstäbe, Führungsrohre und Abstandshalter)	92
Abb. 4.42	Gemittelte Beschleunigungswerte des MDOF-Systems	96
Abb. 4.43	Verschiebung des MDOF-Systems nach dem ersten Aufprall	97
Abb. 4.44	Exemplarischer Vergleich der Beschleunigungen der FEM-Simulation mit dem MDOF-System	98
Abb. 4.45	Exemplarischer Vergleich der Verschiebung der FEM-Simulation mit dem MDOF-System	98

Tabellenverzeichnis

Tab. 2.1	Maximal ermittelte Dehnungen und Beschleunigungen bei den Straßentransporttests	12
Tab. 2.2	Unterschiede im Aufprallverhalten für ein skaliertes Modell im Vergleich zu einem Modell im Originalmaßstab	15
Tab. 2.3	Ergebnisse der Beschleunigungsmessung an verschiedenen Bereichen des Transport- und Lagerbehälters	20
Tab. 2.4	Vergleich der maximal auftretenden Kräfte und Biegemomente bei einem Fallversuch aus einer Höhe von 30 cm	29
Tab. 2.5	Zusammenfassung der Ergebnisse der Brennstabanalyse /KLY 20c/	32
Tab. 3.1	Beschreibung der Komponenten und Materialien der modellierten Brennstoffbaugruppe	46
Tab. 3.2	Materialdaten für Brennstab und Führungsrohr	48
Tab. 3.3	Materialdaten für obere und untere Abdeckplatte	49
Tab. 3.4	Definitionen der Querschnitte für die Balkenelemente der Abstandshalter	50
Tab. 3.5	Materialdaten der Abstandshalter	51
Tab. 4.1	Vergleich der Abstandshalterdeformation zwischen dem experimentellen Fallversuch eines Ersatz-Brennelements und den FE-Modellen vom PNNL und der GRS	68
Tab. 4.2	Übersicht der maximalen Dehnungen für unterschiedliche Aufprallorientierungen	91
Tab. 4.3	Einfluss der Positionierung auf die maximalen Dehnungen für unterschiedliche Aufprallorientierungen	92
Tab. 4.4	Verwendete Eingabewerte für die MDOF-Rechnung	95
Tab. 4.5	Auswertung maximaler Beschleunigung/Auslenkung des numerischen Modells im Vergleich zum FE-Modell	99

Gesellschaft für Anlagenund Reaktorsicherheit (GRS) gGmbH

Schwertnergasse 1 **50667 Köln**

Telefon +49 221 2068-0 Telefax +49 221 2068-888

Boltzmannstraße 14

85748 Garching b. München

Telefon +49 89 32004-0 Telefax +49 89 32004-300

Kurfürstendamm 200

10719 Berlin

Telefon +49 30 88589-0 Telefax +49 30 88589-111

Theodor-Heuss-Straße 4

38122 Braunschweig

Telefon +49 531 8012-0 Telefax +49 531 8012-200

www.grs.de