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Contents of User’s Manual

This User’s Manual comprises five parts:

• Part 1: ATHLET Description

• Part 2: ATHLET Input Data Description

• Part 3: ATHLET Variables Description

• Part 4: Support Software Description

• Part 5: Output Description

Detailed lists of contents can be found at the beginning of each part.
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Preface

This User’s Manual has been prepared to assist users in the effective application of
the ATHLET computer code. ATHLET is an advanced best-estimate system code
which has been initially developed for the simulation of design basis and beyond
design basis accidents (without core degradation) in light water reactors, including
VVER and RBMK reactors. Furthermore, this program version enables the simulation
of further working fluids like helium, liquid metals, or molten salts.

The one-dimensional, two-phase fluid dynamic models are based on a five-equation
model supplemented by a full-range drift-flux model, including a dynamic mixture-level
tracking capability. Moreover, a two-fluid model based on six conservation equations
is provided. The heat conduction and heat transfer module allows a flexible simulation
of fuel rods and structures. Nuclear heat generation is calculated by a point-kinetics
model or with a coupled 3D neutron kinetics code. A general control simulation
module is provided for flexible modelling of BOP and auxiliary plant systems.

Systematic code validation is performed by GRS and independent organizations.

This manual is the first volume of the ATHLET Code Documentation comprising five
volumes. The User’s Manual contains the information necessary for successful code
application. It presents the main features of the physical and mathematical models
which the user should be familiar with in order to apply the code properly to his or her
simulation task. Practical instructions and guidelines are given that enable the user to
compile input data, to perform calculations, and to evaluate the results. The manual
includes a complete input data description and explains the pre- and post-processing
and other support software.

The ATHLET Code Documentation Package

The complete ATHLET Code Documentation consists of five volumes:

• GRS – P – 1 / Vol. 1: User’s Manual
The essential document for applying the code effectively. It contains the information
necessary to perform successful calculations. It includes explanations, guidelines
and instructions for modelling a reactor plant and running the code.

• GRS – P – 1 / Vol. 2: Programmer’s Manual
Companion document to the User’s Manual. It contains instructions for code
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installation and comprehensive lists of subroutines and variables.

• GRS – P – 1 / Vol. 3: Validation
It describes the strategy and the status of code validation. It documents the
validation calculations performed prior to the release of the current code version.

• GRS – P – 1 / Vol. 4: Models and Methods
Comprehensive description of the basic modelling assumptions, physical models
and correlations, and numerical methods in ATHLET.

• GRS – P – 1 / Vol. 5: Program Updates
This document includes a listing of major program modifications.

The ATHLET Code Documentation is available to all user organizations in possession
of a valid license for ATHLET.

About this Manual

The User’s Manual is the most important part of the whole ATHLET Code Doc-
umentation. It contains all information that a user must know to apply ATHLET
successfully.

Purpose, Scope and Structure of the Manual
A comprehensive User’s Manual was written with the intention to supply in one
volume all information necessary for applying a large simulation code to challenging
simulation tasks.

The first concern to the user is a practical one: How to achieve results within the
given limits of resources and time? Therefore, instructions are expected for compiling
an input model and for running the code effectively.

The second aspect, that should be of equal concern, is the quality of the calculated
results. The ATHLET code is generic in the sense that the user defines the specific
simulation model by means of the input to the code. Therefore, the results reflect
the combined effect of both the code and the user. It is not possible to eliminate this
user effect and its contribution to the overall uncertainty altogether. However, user
guidelines can keep this effect within tolerable bounds.

It is the purpose of this manual to support the user with respect to both aspects.

The scope of this manual follows the rule: Not more than necessary, but not less
either. From experience with the numerous applications inside and outside GRS, we

User’s Manual ATHLET 3.5



User’s Manual V

have learned that a correct input data description with some explanatory notes is
not enough by far. Users expect written instructions and guidelines. Moreover, in
order to be able to perform high-quality calculations independently, the user needs
background information about the underlying models and methods. It is an explicit
intention of this manual to raise the user’s understanding why components should be
modelled in a specific way, instead of merely telling him what to do. That is why we
have devoted as much space to explanations and descriptions as to instructions and
guidelines.

The manual is clearly structured. The main information about ATHLET is contained in
Part 1. The other four parts have specific auxiliary functions.

The structure of Part 1 is not rigid. Purposely we make no distinct separation between
explanations (What is ...?) and instructions (What to do ...?). For each subject, we
combine the explanation how the model works with practical instructions on its usage
and special hints or warnings. Thereby, we try to avoid the inconvenience of looking
for pieces of information to the same subject under different sections. Since this
problem cannot be completely avoided, we include references to related chapters in
the text, and we provide an Index at the end of Part 1.

For the same reason, we avoid a segregation between basic information for beginners
and detailed information for advanced users. To our experience, most of the users
start with rather ambitious tasks from the very beginning of their acquaintance with
ATHLET, i.e. their first subject of analysis is a complicated experiment or even a
reactor transient. Full information is therefore needed for all users.

Conventions used in this Manual
This manual uses several style elements like different formats, or script fonts. To
emphasize terms, they can be written bold, underlined or in italics.

Equations and formulas containing general physical expressions are written in Times
font in italics mode. Those of general importance are numbered to allow them to be
referenced, the others with only local significance are not:

Rg =
1

mg

·
∑

mgi ·Rgi

Equations and formulas containing mainly ATHLET-specific expressions are written
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in Courier font:

DUDT =
TSHN− THYN− TFRN

2π
60

· PTETA

ATHLET variable names are written in Courier type and always in CAPITAL LETTERS.
This is a uniformly spaced font like computers with FORTRAN programs will produce.
These variable names generally appear in the ATHLET print out or are part of the
input data and you should become familiar with them. The expressions written in
lower-case letters represent free (dummy) input. ATHLET input samples are written

in Courier type:

----- pc-name
@ IPRI0 ASYSO

-1 i
@ SBO0 ANAMO SEO0 IARTO

0.0 PIPE1 0.0 1
0.0 CROSSCONN 1.0 1
0.0 PIPE2 0.0 1

Also the ATHLET print output samples are written in Courier type but sometimes
with a smaller font size to enable more characters to appear in one line. Again,
expressions written in lowercase letters represent the actual numbers or text strings.

VOLUME AND MASS SUMMED UP FOR TFO NAME CATEGORIES
_________________________________________________
ANAMO..... NUM. VOLUME TOTAL MASS

(M**3) (KG)
P......... 27 8.00501D+02 5.68129D+05
S......... 10 7.96716D+02 1.76575D+05
....................................
P0........ 6 4.26941D+02 2.99845D+05
P1........ 5 1.53645D+02 1.10157D+05
....................................
S1-SG..... 5 5.97537D+02 1.32431D+05
S2-SG..... 5 1.99179D+02 4.41437D+04
....................................
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A Personal Word to the User

This manual was written for you, the ATHLET user. Its only purpose is to help you to
prepare, execute and evaluate the calculations for your simulation task.

Knowing the complexity of nuclear power plants and the large variety of scenarios to
be simulated nowadays, we are fully aware of the challenging tasks you are confronted
with. Therefore, we have given much thought to the question: What does the user
really need to know, and which is the best structure for presenting the material. As
you can see from the size of this manual, we think that you need to know a lot in
order to fully profit from the code capabilities.

Much has been said about the user influence on code results, mostly criticizing that
too much freedom is left to the user. The fact remains, however, that with a general
and flexible code, the user must bear high responsibility for the calculated results.
That’s why we feel obliged to provide you with all the information necessary to meet
this responsibility.

If you are a first-time user of ATHLET, you should read the manual from the beginning.
The time spent there will pay off, since you can avoid problems from the start. We
strongly encourage also experienced users to review the entire manual in order to
enhance their knowledge. Becoming familiar with the whole volume will help you to
locate specific items quickly when using it as a reference manual whenever a need
arises.

We do not believe that a user’s manual can answer all questions. Further supplemen-
tary information can be found in the ATHLET user area at https://user-codes.grs.de.
The user area also offers a forum for posting questions to the developers and the
community and for notifying us of any inconsistencies and problems you observe in
the code behaviour.

Also, this edition of the ATHLET User’s Manual may contain deficiencies and errors.
Your comments and hints for improvements are highly welcome.

A successful application of large system codes cannot be learned from books alone.
Training and practical experience is necessary for you to become a skilful user.

We wish you a successful work with ATHLET!
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Document Updates

This document has been updated according to both the ATHLET developmental
progress from ATHLET 3.4 to ATHLET 3.5 and the advanced experience of the
program application. The following lists the sections modified. Please click them to
follow the link!

Document updates from ATHLET 3.4 to ATHLET 3.5:

5.4 3D heat conduction in structures by coupling of HCOs
13 Simulation of severe accident related phenomena
10.17 Heat pipe module
5.7.6.2 Thermal radiation between HCOs connected to different TFOs
5.3 Simulation of horizontal plate HCO coupled orthogonally to a vertical

TFO
5.6 Properties for new materials boron carbide (B4C), Inconel 600, and

Alumina (Al2O3)
13 ATHLET extensions to simulate severe accident related phenomena (up

until start of core degradation)
10.10 Modelling of spacer grids
3.8 Positioning and 3D Data for TFO
12.3.3 TFD system monitoring under keyword FLUIDBAL extended. TDV mass

and energy balance printed under TDVBAL.
10.5.2 Two-channel pressurizer model
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Abbreviations and Notations

List of abbreviations:

Abbreviation Meaning
1M Mixture momentum equations system
2E Two energy equations system
2M Two momentum equations system
AFK ATHLET function routine
ATF Accident tolerant fuel
ATWS Anticipated transient without scram
BOP Balance-of-plant
BWR Boiling water reactor
CD Critical discharge
CDR Critical discharge rate
CL Collapsed level
CSA Cross sectional area
CV Control volume (Finite-volume-approach)
CW Control word
DEB Double end break
DFFB Dispersed flow film boiling
DLL Dynamic link library
DNB Departure from nucleate boiling
ECC Emergency core cooling
EIMMB Extended integrated mass and momentum balances
Eq. Equation
FEBE Time integration module within ATHLET
FTRIX Sparse matrix package within ATHLET
FV Finite volume (numerical method)
GCR Gas cooled reactor
GCSM General control simulation module within ATHLET
HECU Heat conduction module within ATHLET
HCO Heat conduction object
HCV Heat conduction volume (heat slab)
HTC Heat transfer coefficient
HTEX Heat exchanger
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HW Heavy water
IMMB Integrated mass and momentum balances
IP Interfacial
KW Keyword
LM Liquid metal
LP Lower plenum
LW Light water
LWR Light water reactor
LOCA Loss-of-coolant accident
MC Multi-component
ML Mixture level
NC Non-condensable
NEUKIN Neutron kinetics module in ATHLET
NPP Nuclear power plant
ODE Ordinary differential equation(s)
PBR Pebble bed reactor
PC Priority chain (= iteration chain)
PHX Plate heat exchanger
PW Pseudo-keyword
PWR Pressurized water reactor
RBMK Graphite-moderated boiling water reactor (Russian type)
RV Reactor vessel
SG Steam generator
SJP Single junction pipe
SMR Small Modular Reactor
SO Shared object
SSC Steady state calculation
TFD Thermo-fluid dynamics
TFO Thermo-fluid dynamic object
TRISO Tristructural-isotropic
UH Upper head
UP Upper plenum
VVER Pressurized water reactor with horizontal steam generators (Russian

type)
ZB Zinc-borate
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List of notations:
Control Volume: Basic network element; spatial entity where mass and energy are
lumped.

Function Routine AFK: Tree of subprograms describing the relationship between
the thermal-hydraulic solution variables and the ODE system. If required, it also calls
for other independent modules (HECU, GCSM, etc.).

Input Model: All input data for all modules applied in the particular simulation (in-
cluding balance-of-plant models, user-supplied GCSM controllers and user-provided
plugins).

Junction: Basic network element; connection between CVs where mass and energy
are transported.

Simulated System: Domain of the power plant, test facility, etc., whose behaviour
shall be simulated.

Simulation Model: Combination of simulation program and input model.
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1 Overview of ATHLET

The thermal-hydraulic computer code ATHLET (Analysis of THermal-hydraulics of
LEaks and Transients) is being developed by the Gesellschaft für Anlagen- und
Reaktorsicherheit (GRS) for the analysis of operational conditions, abnormal transients
and all kinds of leaks and breaks in nuclear power plants. The aim of the code
development is to cover the whole spectrum of design basis and beyond design basis
accidents (without core degradation) for PWRs, BWRs, SMRs and future Gen IV
reactors with one single code.

The main code features are:

• advanced thermal-hydraulic modelling: compressible fluids, mechanical and
thermal non-equilibrium of vapor and liquid phase

• availability of diverse built-in working fluids: light or heavy water, helium, sodium,
potassium, lead or lead-bismuth eutectic, supercritical carbon dioxide, molten salts
as well as user-provided single-phase (non-boiling) working fluids

• heat generation, heat conduction and heat transfer to single- or two-phase fluid
considering structures of different geometry, e.g. rod or pebble bed

• interfaces to specialized numerical models such as 3D neutron kinetic codes or
3D CFD codes for coupled multiphysical or multiscale simulations

• control of ATHLET calculation by call backs to programming language independent
user code enabling the coupling of external models

• plugin technique for user provided code extensions

• modular code architecture

• separation between physical models and numerical methods

• numerous pre- and post-processing tools

• portability

• continuous and comprehensive code validation

ATHLET is applied by numerous institutions in Germany and abroad.

The development and validation of ATHLET is funded by the German Federal
Ministry for the Environment, Climate Action, Nature Conservation and Nuclear Safety
(BMUKN) based on decisions by the German Bundestag.
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1.1 Range of Applicability

ATHLET has been developed and validated to be applied for all types of design
basis and beyond design basis incidents and accidents without core melting in light
water reactors, like PWR, BWR, VVER, and RBMK. For accidents with core damage,
ATHLET-CD (Core Degradation) has been developed providing extensions for the
simulation of core melting and relocation, and debris bed formation. The simulation
of the mechanical fuel behaviour as well as fission product release and transport
within the reactor system is supported by both codes, ATHLET and ATHLET-CD.
ATHLET-CD uses the same input deck as ATHLET supplemented by data required
by the core degradation models.

The range of working fluids covers light and heavy water enabling the transition
between subcritical and supercritical fluid states. In addition, further coolants can
be simulated as working fluids: helium, sodium, potassium as well as the non-
boiling fluids liquid lead, lead-bismuth eutectic, molten salts and user-provided
fluids. These extensions, aiming at the simulation of future Generation IV reactor
designs, are still subject to further development and validation.

ATHLET is a 1D system code, ATHLET is not a 3D CFD code. ATHLET thermal
hydraulic models generally assume fully developed flow on dimensions (0.01 m to
10 m) and pressures (0.01 MPa to 30 MPa) typical of nuclear facilities. Details of
turbulence, of boundary layer, and viscous energy dissipation between flow layers are
neglected, interfacial area and momentum terms are treated in a simplified manner,
and 3D flow effects cannot be investigated in detail. Similarly, heat conduction in
structures generally is 1-dimensional using averaged, engineering level heat transfer
correlations. While ATHLET can be applied outside of these constraints with some
success, it has not been validated for them.

1.2 Code Structure

ATHLET is written in Fortran. The code features a modular code structure that
allows an easy maintainability and expandability of the modelling basis to satisfy the
demands of new applications and future reactor designs. The code is composed of
several basic modules that focus on the calculation of phenomena relevant for safety
analyses of a nuclear power reactor:

• Thermo-Fluid dynamics (TFD)
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• Heat Conduction and Heat Transfer (HECU)

• Fission Product Behaviour and Transport (FPB)

• Neutron Kinetics (NEUKIN)

• Control and Balance-of-Plant (GCSM)

Other independent modules (e.g. large models with own time advancement procedure)
can be coupled without structural changes in ATHLET by means of dedicated
interfaces.

1.3 Fluid Dynamics

The TFD module of ATHLET employs a modular network approach for the represen-
tation of a thermal-hydraulic system. A given system configuration can be simulated
just by connecting basic fluid dynamic elements, called thermo-fluid dynamic objects
(TFOs). There are several TFO types, each of them is applied with a selected fluid
dynamic model. All object types are classified into three basic categories:

• Pipe objects employ a one-dimensional TFD model describing the transport of
fluid. After nodalization according to input data, a pipe object can be understood
as a number of consecutive nodes (control volumes) connected by flow paths
(junctions). A special application of a pipe object, called single junction pipe,
consists of only one junction, without any control volumes.

• Branch objects consist of only one control volume. They employ a zero-
dimensional TFD-model of non-linear ordinary differential equations or algebraic
equations.

• Special objects are used for network components that exhibit a complex geometry,
e.g. the cross connection of pipe objects aligned in parallel for the generation of a
multidimensional network.

This object structure has been developed in order to allow the coupling of models of
different physical formulation and spatial discretization, which are to be employed in
certain network domains.

ATHLET offers two different sets of model equations for the simulation of the fluid-
dynamic behaviour:

• The 5-equation model with separate conservation equations for liquid and vapor
mass and energy, supplemented by a mixture momentum equation. It accounts
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for thermal and mechanical non-equilibrium and includes a mixture level tracking
capability.

• The two-fluid model with fully phase-separated conservation equations for liquid
and vapor mass, energy, and momentum (without mixture level tracking capability).

The spatial discretization is performed on the basis of a finite-volume staggered-grid
approach. The mass and energy equations are solved within control volumes, and
the momentum equations are solved over junctions connecting the centres of the
control volumes. The solution variables are the pressure, vapor temperature, liquid
temperature and vapor mass quality within a control volume, as well as the mass
flow rate (5-eq. model) or the phase mass velocities (6-eq. model) in a junction,
respectively.

Two types of control volumes are available. Within the so-called “ordinary” control
volume, a homogeneous mass and energy distribution is assumed. Within the
“non-homogeneous” control volume, a mixture level is modelled. Above the mixture
level, steam with water droplets, below the mixture level, liquid with vapor bubbles may
exist. The combination of ordinary and non-homogeneous control volumes provides
the option to simulate the motion of a mixture level through vertical components.

A full-range drift-flux model is available for the calculation of the relative velocity
between the fluid phases. The model comprises all flow patterns from homogeneous
to separated flow occurring in vertical and horizontal two-phase flow. It also takes
into account counter current flow limitations in different geometries.

Moreover, both fluid-dynamic options allow for the simulation of non-condensable
gases. This applies for water as well as for the liquid metal and molten salt working
fluids. Fluid properties are provided for hydrogen, nitrogen, oxygen, air, helium, argon,
krypton, xenon, carbon monoxide, and carbon dioxide. Additional mass conservation
equations can be included for the description of boric acid or zinc borate transport
within a coolant system as well as for the transport and release of nitrogen dissolved
in the liquid phase of the coolant.

Both the 5-equation model and the two-fluid model employ the one-dimensional
conservation equations for mass, momentum and energy. By means of a spatially
two- or three-dimensional TFO arrangement, these models allow for a simplified
multidimensional simulation. In order to enhance the capability of ATHLET with regard
to the simulation of complex, multidimensional flow phenomena, a thermal-hydraulic
2D/3D model has been developed. It extends the balance equations of the two-fluid
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model. Both 2D and 3D momentum equations for liquid and vapor are available.

For pipe objects applying the 5-equation model, there is also the possibility to use
the method of integrated mass and momentum balances (EIMMB), an option for
fast-running calculations, mainly in the frame of a nuclear plant analyser. With
the application of the EIMMB method, the solution variables are now the average
object pressure, the mass flows at pipe inlet and outlet, and the local qualities and
temperatures. The local pressures and mass flow rates are obtained from algebraic
equations as a function of the solution variables.

Another fluid-dynamic option, applied exclusively for the steady state calculation,
consists of a 4-equation model with balance equations for liquid mass, vapor mass,
mixture energy and mixture momentum. The solution variables are the pressure,
vapor mass quality and enthalpy of the dominant phase within a control volume, and
the mass flow rate in a junction. The entire range of fluid conditions, from subcooled
liquid to super-heated vapor including thermal non-equilibrium is taken into account,
assuming the non-dominant phase to be at saturation.

1.4 Numerical Methods

The time integration of the thermo-fluid dynamic model is performed with the general-
purpose ODE-solver FEBE (Forward-Euler, Backward-Euler). It provides the solution
of a linear system of ordinary differential equations (ODE) of first order, splitting it into
two subsystems, the first being integrated explicitly, the second implicitly. Generally,
the fully implicit option is used in ATHLET. Each thermo-fluid dynamic object
provides a subset of the entire ODE system, which is integrated simultaneously by
FEBE.

The linearization of the underlying model equation system is done numerically by
calculation of the Jacobian matrix. A block sparse matrix package (FTRIX) is
available to handle the repeated evaluation of the Jacobian matrix as well as the
solution of the resulting system of linear equations in an efficient way. Alternatively,
scalable solvers from the PETSc and MUMPS libraries can be used for the numerical
calculations via the Numerical Toolkit (NuT) plugin.

A rigorous error control is performed based on an extrapolation technique. Accord-
ing to the error bound specified by the user, the time step size and the order of the
method (> 2) are adequately determined by FEBE for every integration step.
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1.5 Heat Conduction and Heat Transfer

The simulation of the heat conduction in structures, heat exchangers, fuel rods,
electrical heaters and spheres (pebble bed) is performed by the basic module
HECU. It permits the user to assign heat conduction objects (HCOs) to all thermal-fluid
dynamic objects of a given network.

The heat conductor module HECU provides the simulation of the temperature profile
and the energy transport in solid materials. The model has the following characteris-
tics:

• The shape of a HCO is constant in time.

• The model can simulate the one-dimensional temperature profile and heat con-
duction in plates normal to the surface, as well as in hollow or full cylinders and
spheres in the radial direction.

• Optionally, two-dimensional heat conduction can be simulated considering the
axial direction of plates and cylinders.

• Optonally for coupled plate-type HCOs, the three-dimensional heat conduction
can be calculated by applying dedicated solution algorithms from NuT.

• In each HCO, several material zones can be modelled. A material zone is
simulated by a user-defined number of temperature layers. The material zones can
be separated by a geometrical gap and a corresponding heat transfer coefficient.
Furthermore, the model enables the calculation of the temperature in TRISO
coated particles.

• The HCOs can be coupled on left and/or right side to TFOs by consideration of
the energy transport between heat conductor surface and the surrounding fluid. It
is also possible to simulate a fluid temperature as boundary condition for the HCO
by means of control (GCSM) signals.

• The HCOs are automatically split into heat conduction volumes (HCVs) according
to the nodalization of the adjacent TFOs and to user input.

• Heat generation can be considered in material zones. The specific heat generation
rate per volume unit is assumed to be distributed uniformly either within a material
zone or a temperature layer.

• Radiation heat transfer between different HCOs can be taken into account.
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The heat transfer package covers a wide range of single-phase and two-phase
flow conditions of water. Correlations for critical heat flux and minimum film boiling
temperature are included. Evaporation and condensation directly at heating or cooling
surfaces are calculated. A quench front model for bottom and top reflooding is also
available. Special heat transfer correlations are available for supercritical water, liquid
metal working fluids and helium considering specific geometries (e.g. rod bundle or
pebble bed).

1.6 Nuclear Heat Generation

The nuclear heat generation is generally modelled by means of the neutron kinetics
module NEUKIN. For the simulation of electrically heated rods or for a simplified,
straight-forward representation of a reactor core, the total generated power as a
function of time or any other quantity can optionally be given.

The generated nuclear reactor power consists of two parts: the prompt power
from fission and decay of short-lived fission products, and the decay heat power
from the long-lived fission products. The steady-state part of the decay heat and
its time-dependent reduction after a reactor scram are provided in form of a GCSM
signal. The time-dependent behaviour of the prompt power generation is calculated
either by a point kinetics model or by coupling to a 3D neutron kinetics code. An
input-specified fraction of the total power is assumed to be produced not in the fuel
but directly in the coolant.

The point kinetics model is based on the application of the well-known kinetics
equations for one group of prompts and for six groups of delayed neutrons. The
reactivity changes due to control rod movement or reactor scram are given by a
GCSM signal. The reactivity feedback effects for fuel temperature, moderator density
and moderator temperature are calculated either by means of dependencies given by
input tables or with reference reactivity coefficients. If the boron tracking model is
applied, the reactivity feedback due to changes in the boron concentration will be
also taken into account.

The module NEUKIN also offers a general interface for coupling of 3D neutronic
models. Several 3D codes for rectangular and hexagonal geometries have been suc-
cessfully coupled to ATHLET with this interface, e.g., FENNECS; QUABOX/CUBBOX,
TORT-TD, PARCS or DYN3D.
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1.7 Simulation of Components

Specific models are provided for the simulation of valves, pumps, accumulators,
steam separators, steam and gas turbines, compressors, steam condensers,
heat pipes, single and double-ended breaks, fills, leaks, and boundary condi-
tions for pressure and enthalpy. The steam separator model is an empirical approach
for the calculation of carry-over and carry-under flows by means of input functions
of the inlet mass flow rates, of the void fraction in the separator region, and of the
mixture level outside the separator. Abnormal separator conditions like flow reversal
or flooding can be simulated.

In general, major plant components (e.g., pressurizer, steam generators) can be
modelled by connecting thermo-fluid dynamic objects (TFOs) and heat conduction
objects (HCOs) via input data. For compact heat exchanger designs like plate heat
exchanger or helical coil heat exchanger dedicated models are available.

Critical flow, e.g., discharge flow, is calculated by a one-dimensional thermal
non-equilibrium model with consideration of the given flow geometry. The module
CDR1D generates automatically tables of critical mass fluxes applied in ATHLET for
the interpolation of the critical mass flow rates. Optionally, a homogeneous equilibrium
model and the Moody discharge model are available.

1.8 Simulation of Control and Balance-of-Plant

The simulation of balance-of-plant (BOP) systems within ATHLET is performed by the
basic module GCSM (General Control Simulation Module). GCSM is a block-oriented
simulation language for the description of control, protection and auxiliary systems.

The user can model control circuits or even simplified fluid systems just by connecting
basic functional blocks (e.g., switch, adder, integrator). Most of the system variables
calculated within the fluid dynamics, neutron kinetics or within other ATHLET modules
can be selected as input to these functional blocks (process variables). The output of
such control blocks can be fed back to the thermo-fluid dynamics in form of hardware
actions (e.g., valve cross sectional area, control rod position) or boundary conditions
(e.g., temperature, heat and mass sources).

The GCSM module allows for the representation of fluid dynamic systems (e.g., steam
line, condensate system) in a very simplified way (quasi stationary approach) with
the advantage of requiring very little computing time in comparison with the fluid
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dynamics module.

GCSM also provides an interface to a library that contains detailed models with fixed
structure and own input data for plant components (e.g., heat exchanger or even
containment model) or for control systems (e.g., power control or system pressure
control for typical power plants).

The GRS containment codes CONDRU and COCOSYS have been coupled to
ATHLET by means of this interface. In addition, GCSM comprises a flexible interface
that enables the coupling of ATHLET with user provided code, that implements
external models, new controller types, specific signals, or complete BOP models.

1.9 Code Handling

ATHLET provides a free-format, hierarchically structured input. Both the generation
and the maintenance of the ATHLET input decks are facilitated by several copy
functions and by the use of a flexible parameter technique during input data processing,
which helps to avoid the repeated typing of identical or similar input data and adaptation
of existing inputs to different configurations. An extended checking of both the input
data and the program processing helps the user to discover input errors or modelling
weakness-es affecting both code performance and physical results.

ATHLET provides a restart capability. The program execution can be parallelized
on computers with shared memory architecture using the Fortran OpenMP standard.
ATHLET runs under different computer operational systems (MS Windows®, Linux).

The ATHLET Program Package comprises a series of auxiliary programs to support
both the ATHLET users and developers in the application and development of ATHLET:

• AGM: ATHLET GCSM Modeler for graphical setup and testing of control systems
and generation of GCSM input data.

• AIG: ATHLET Input Graphics for graphical representation of the TFO and HCO
network specified in the input model.

• GIG: GCSM Input Graphics for graphical representation of the structure of GCSM
controllers.

• Several programs for the post-processing of plot data (concatenation, merging,
algebraic operations, . . . )

• Batchplot: Platform-independent, Python-based plotting tool that generates time
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and space diagrams exploiting the structure of the input model.

• ATLAS: Dynamic visualization of the simulation results on the basis of AIG and
GIG pictures.

• Several programs for the analysis of the Jacobian matrix (interdependencies,
Eigenvalues, . . . ), mainly for code development and debug purposes.

• Furthermore, ATHLET can be applied as process model of the ATLAS/ATLASneo
plant simulator providing full interaction and extended data visualization. ATLAS
and ATLASneo are also components of the AC2 software package.

ATHLET is also closely linked with the GRS computer programs SUSA and MCDET.
Both enable uncertainty and sensitivity analyses of ATHLET simulation results.

1.10 Code Coupling

ATHLET is part of the AC2 software package, which comprises the GRS codes ATH-
LET, ATHLET-CD and COCOSYS, includes the 3D nodal neutronics code FENNECS
and is complemented by the interactive simulator software ATLAS/ATLASneo and
some productivity tools.

To allow multiphysical or multiscale simulations, ATHLET has been coupled
successfully to various computer codes by means of dedicated coupling interfaces.
The following figure depicts the essential interfaces that are realized for ATHLET.
Depending on the characteristic time constants of the coupled processes, the coupling
techniques used range from weak form (e.g., data transfer after completed time step)
to strong or semi-implicit form (i.e., mutual iteration of the codes’ results for each
FEBE time step, used for coupling with CFD codes).
Moreover, ATHLET can be extended by user provided feature implementations. The
plugin concept enables the users to apply ATHLET more individually by either
requesting a specific extension from GRS or even by developing the needed feature
on their own. Such plugins have to be created as separate shared libraries on Linux
systems or DLLs under Windows. In case a plugin binary is placed within the plugin
directory of an ATHLET installation, ATHLET will register it at start up and invoke it if
the applied input file demands its use. The parts or phases of the simulation that can
be extended by plugins are specified by ATHLET.

Another option for controlling the simulation by user code is offered by using the
shared library version (MS Windows: dll / Linux: so) of ATHLET. This library provides

User’s Manual ATHLET 3.5



User’s Manual 15

Fig. 1.1 GRS nuclear simulation chain and code coupling

the main entry of ATHLET via the exported routine symbol athlet_. This variant allows
to implement a user program that calls ATHLET as a subroutine. In this case the
simulation process can be controlled in an "event oriented" manner by associating
the so-called call back routines before calling ATHLET. An event can be considered
as a certain and named point in the simulation flow, like input done, begin of timestep,
end of timestep. These points have been made available as the so-called hooks, at
which a user might associate routines that instruct ATHLET what to do at this point
before continuing the simulation. Hash maps, which include pointers to exported
ATHLET variables, are accessible by both the user code and ATHLET. They enable
inter-code data transfer of e.g., physical fields or GCSM control block states.

1.11 Validation

The development of ATHLET was and is accompanied by a systematic and compre-
hensive validation program. The validation is mainly based on pre- and post-test
calculations of separate effects tests, integral system tests including the major Inter-
national Standard Problems, as well as on actual plant transients. A well-balanced
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set of tests has been derived from the CSNI Code Validation Matrix emphasizing
the German combined ECC injection system. The tests cover phenomena which are
expected to be relevant for all types of events of the envisaged ATHLET range of
application for all common LWRs including advanced reactor designs with up-to-date
passive safety systems, spent fuel pool applications as well as research reactors.
The validation of ATHLET for SMR designs and future Gen IV reactors is underway.
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2 The Modular Code Structure

The ATHLET code has a modular structure. The organization of the overall code
firstly corresponds to the main physical processes to be simulated:

• thermo-fluid dynamics (module TFD)

• heat conduction, heat transfer (module HECU)

• fission product behaviour and transport (module FPB)

• neutron kinetics (module NEUKIN)

• control and balance-of-plant (module GCSM)

Secondly, a modular subdivision is also applied to collect program parts which
contribute to a specific task:

• time integration of the ODEs (module FEBE)

• program control and organization (module A...)

Thirdly, the code is modular with respect to program parts which are not directly
involved in the ATHLET network. Since the data exchange happens only via the
subprogram dummy argument list they can be easily exchanged:

• physical models

• (reactor) component simulation models

Modules can be partitioned into sub-modules. Each module and sub-module have its
own leading identification (ID) letters (one for a module, two for a sub-module).

Each subprogram name starts with the identification letter of that module to which
the program is assigned to. The same applies to the names of modules, where the
first letter always is a ’C’ and the second (and third, resp.) are the (sub-)module
identification.

This allows a lexical ordering of the program parts and is very useful for the manage-
ment of the source code of a large computer program like ATHLET. This classification
of subprograms by letters is also helpful for better understanding of the printout,
since messages and other information are often accompanied by the name of the
subprogram initiating it.

The following table Tab. 2.1 contains all ATHLET code modules and their identification
letters.
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Tab. 2.1 ATHLET Modules

ID letter Module Function
A ATHLET control and organization module
AI - input
AO - output
AP - parallel processing
C used only for Fortran modules
D TFD thermal-hydraulics module
E HEAT adapted HEIZ module (ATHLET-CD)
EF FIPREM fission product release
F FEBE time integration module
G GCSM general control simulation module
H HECU heat conduction module
K reactor component models
KB - boron transport model
KC - compressor model
KP - pump model
KR - heater or fuel rod model
KS - solute transport model
KT - turbine model
KV - valve model
M models
MC - critical flow models
MD - correlations for drift, slip, relative velocities
MF - pressure drop (friction) correlations
MG - interfacial mass and energy exchange models
MH - heat transfer models
MP - properties
M1 - CDR1D model
N NEUKIN neutron kinetics
NP - point kinetics
N3 - interface to 3-dimensional kinetics
S service programs for general use
SO - service programs for output (print and plot)
T SAFT transport of fission products and aerosols (also ATHLET-CD)

User’s Manual ATHLET 3.5



User’s Manual 19

TM THEMEC thermo-mechanical fuel rod behaviour
V vessel failure module
VE burn-up and radionuclide inventory calculation (VENTINA)
Z key-file, units, interface to nuclear plant analyser ATLAS

The following table shows the naming rules for subprograms and modules. The letter
’x’ represents a free alpha-numeric character.

Tab. 2.2 Naming rules for subprograms and FORTRAN modules

Assignment Subprogram Module name
Module Mxxxxx CMxxxx
Sub-module MUxxx CMUxxx
None of the above - CCxxx
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18 History of ATHLET Development

Predecessor codes
When GRS was founded in 1977 by fusing the Laboratorium für Reaktorregelung und
Anlagensicherheit (LRA) in Garching and the Institut für Reaktorsicherheit (IRS) in
Cologne, it inherited a number of simulation codes. These were, as it was usual at
the time, codes for specific reactor types and accident scenarios like ATWS or LOCA.
Codes developed at LRA included the BRUCH codes /KAR 69/, /KAR 70/ from the
1960s and the DRUFAN code /WOL 75/, /BUR 79/ for blowdown analyses, ALMOD
/FRI 77/, /FRI 78/ and ALMOS /PET 75/, /PET 77/ for transient analyses, DAPSY
for pressure wave analyses /GRI 83/ and neutronics codes like QUABOX/CUBBOX
/LAN 78/, which would later influence ATHLET development.

Already in 1975, DRUFAN participated in the USAEC Standard Problem 1 and
achieved reasonable results /WOL 75/ with a focus on blowdown scenarios /WOL 76/.
Its further development for two-phase flow problems was achieved within GRS.
DRUFAN 01 in 1979 was based on a 4-equation model allowing thermal non-
equilibrium conditions /BUR 79/, /GRS 79/ and used some constitutive models from
e.g. the BRUCH codes. The HECU code /DAS 76/ was already integrated /ENI 78/,
as was a point kinetics model from ALMOS-2.

DRUFAN 02 included numerous model improvements, a relative velocity model,
a mixture level tracking model for vertical geometries and allowed for mechanical
non-equilibrium conditions, included improved control module, critical discharge
models, and separator models /LER 85/. The code assessment of DRUFAN was
based on tests like Battelle RS Tests and HDR tests, mainly blow-down tests, and
integral tests at LOFT, LOBI, SEMISCALE, and PKL.

In parallel, ALMOD /GRA 86/ and its BWR variant ALMOS had also been further
improved. While still assuming a 3-equation homogenized equilibrium model with
a drift-flux approach for fluid dynamics, the code included the GCSM module used
for both I&C representation and for simplified system models and the NEUKIN
module with point kinetics and 1D kinetics options. In addition, the IMMB approach
(integrated mass and momentum balances) was available to reduce computational
costs. ALMOD had been validated against separate effect tests, LOFT and LOBI
tests as well as several plant transients in German NPP /FRI 85/.

In addition, development of the FLUT code using a two-fluid 6-equation model /HIC 85/
for analyses of the refilling and long-term phases after the blowdown phase was
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progressing well. Notably, FLUT already included a quenching model as well as
a water level tracking model, and had been successfully validated against FEBA,
FLECHT, PKL and SCTF tests. Moreover, a transition procedure from DRUFAN to
FLUT was established.

With the development of multiple codes ongoing at GRS and with several tasks for
the implementation of models and codes performed by specialists in the IT division
of GRS, a systematic and quality assured development process was necessary.
Therefore, roles for developers and code maintainers were clearly defined, version
control was implemented by clear procedures for the modification of the code and
transfer into the main development and release branches. Logs for code changes
were accompanied by internal communications and technical notes for documenting
development, verification and validation activities. Moreover, regular meetings of
development teams ensured communication between the main developers and
validation specialists.

ALMOD/ALMOS and DRUFAN had been distributed by GRS to numerous partners,
notably the German TÜV and several national and international research organizations.
DRUFAN was also available via the OECD/NEA code data bank.

Recognizing the need for one system code for these different application areas, GRS
decided in 1984 to combine its extant system codes into one advanced system code.
With concepts and a code specification drawn up by mid-1985 /WOL 85/, the codes
DRUFAN, ALMOD and FLUT were combined into the new, yet unnamed system
code, with a first internal version available in 1986 /WOL 86b/ and the final name
established towards the end of 1986 /WOL 86a/. The first validation calculation with
ATHLET published as a project report was on the Marviken test in 1987 /RIN 87/.

First ATHLET version
The first ATHLET version, ATHLET MOD1, was released in 1988 /GRS 88/, /BUR 89/.
Overall, ATHLET was based on DRUFAN using the non-equilibrium fluid dynamics and
mixture level tracking and the common HECU and FEBE modules while fully importing
the GCSM and NEUKIN models from ALMOD/ALMOS. Simplified fluiddynamic
models from ALMOD were initially retained. ATHLET used FORTRAN 77 and was
implemented on mainframes as well as PC computers. In the meantime, FLUT
development was continuing and the existing coupling of DRUFAN to FLUT was
transferred to ATHLET. In conjunction with the release of ATHLET MOD1, further
substantial validation and verification was initiated by GRS, which also involved
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external organizations from German TSOs (TÜVe) and research institutions, e.g.
Ruhr-Universität Bochum (RUB). This effort did not only include a substantial amount
of validation cases from the recently defined validation matrices /NEA 87/, it did also
include an external review of the models and coding of certain ATHLET modules,
e.g. GCSM /BAU 93/ and HECU /LIN 93/. Highlights of the further development of
ATHLET are depicted in Fig. 18.1.

Fig. 18.1 Timeline of ATHLET development

The initial development progress was quite high. ATHLET version 1.0E introduced a
5-equation model with separate energy balance equations for gas and liquid phase
in 1991 /BAL 91/. Further improvements included introduction of cross-connection
objects, improvements in the separator model and a Zr oxidation model /TES 96/.
ATHLET 1.1 from June 1993 included improvements to the 5-equation model, replacing
the 4-equation model as standard option, improvements to mixture level and interfacial
models, a quench front model and the coupling to the containment code CONDRU
via GCSM. CONDRU /TIL 78/ was one of the containment codes developed by GRS
before COCOSYS and had also been validated against e.g. OECD NEA standard
problems /TIL 79/, /ERD 81/. Into this version also a first 6-equation model adapted
from the FLUT code based on a two-fluid model with separated balance equations for
the two phases and considering thermal and mechanical non-equilibrium conditions
to calculate the mass, momentum and energy exchange between water and steam
was implemented and made available internally at GRS. This model was further
elaborated and complemented with improved interfacial friction and condensation
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models and extended to non-condensable gases /TES 96/. Similarly, radiation heat
transfer and boron transport were added /PET 94/. A large factor in improving
numerical stability was increased control over the Jacobian matrix and its updates.

Another important strain for the development and validation of ATHLET was the scien-
tific cooperation with Eastern European countries operating VVER and RBMK reactor
designs, which had started already in 1987 with intergovernmental agreements with
the Soviet Union and also Eastern Germany. These activities led to the development
of nodalization schemes for VVER /TES 92/, /STE 93/ and RBMK /LAN 93/, extended
the validation base of ATHLET by experiments e.g. at the ISB, KSB and PMK facilities
as well as plant transients and motivated the inclusion of specific models like the
graphite reflector feedback, specific CHF-correlations for RBMK and VVER, and
improved correlations for horizontal steam generators. Cooperation with partners in
Belarus, Bulgaria, Czech Republic, Hungary, Lithuania and Slovakia further extended
the user group and specific validation activities.

The possibility to simulate a complete LOCA process within ATHLET led to increased
international interest in the code, with over 20 external users in Germany and nearly
30 users abroad, mainly in Europe and Asia. Version ATHLET 1.1C was released in
October 1995 /TES 97/. In order to simplify the modelling of non-condensable gases,
phase enthalpies were replaced by temperatures as solution variables. In addition
to a boron transport model, a 3D neutronics interface and component models for T-
junctions and pressurizers, several code and tool optimizations were realized. ATHLET
1.2 was released in 1998 /TES 97/, /TES 01/ providing the 6-equation model also for
external users. In addition, it included further improvements like improved models
for interfacial processes in the presence of non-condensable gases, computation of
heat transfer in the fuel gap, specific heat transfer correlations for horizontal heat
exchangers of VVER reactors, and improved integration routines with partial Jacobian
updates. Notably, this was the first release version for PCs, so that ATHLET was now
being developed for both Windows and Unix/Linux systems. The code version 1.2C
from November 2000 included a first implementation of coupling between ATHLET
and COCOSYS. Moreover, a jet condensation model, better interfacial friction models,
CHF correlations for RMBK and research reactors, gas mixture transport properties
and improved mass conservation had been realized. In addition, the source code had
been transferred to the Fortran 90 standard with free format input. In particular, the
modules for ATHLET global variables were introduced and allocatable arrays were
introduced /DEI 99/, removing most hard-coded restrictions on problem size.
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ATHLET version 2
In 2003, ATHLET 2.0A was released. It included further improvements to the models
for condensation, mass and energy transfer at the phase interface, transport of
dissolved nitrogen, and introduced parameters. Improved cross-connection object
flexibility enabled the simulation of cross flows to better represent multidimensional
flow behaviour in large components such as the RPV. Also, this was the first
version accompanied by the complete code documentation: a user’s manual, a
programmer’s manual, one volume on validation and one on the applied models and
methods /TRA 04/. With this version, a first GUI for Windows, tools like ATHLET input
graphics and GCSM input graphics and the interactive simulator interface ATLAS
were distributed. Since then, ATHLET and ATHLET-CD were released jointly with the
same version number.

ATHLET 2.1A from 2006 extended the parameter range for water to supercritical
pressures, including the calculation of material properties and heat transfer correla-
tions. In addition to numerous general improvements to different models, this version
automatically switched to the 3-equation model for single-phase flow, integrated the
CRD1D model for critical flow calculation, added a Zr oxidation model in the presence
of oxygen, provided an interface of uncertainty analyses /TRA 09/ and introduced
a model to simulate the clogging of pipes /LER 06/. The models for supercritical
fluid including specific heat transfer correlations and sump strainer clogging were
further improved in ATHLET 2.2A /GLA 12/, /LER 09/ released in 2009. This version
also included a model for diffusion of gas components, allowed consideration of fuel
burnup for neutron kinetics, introduced additional material properties for UO2 and
MOX, and allowed binary operations with parameters. Importantly, this was the first
ATHLET version allowing partial parallelization, it established the coupling to the CFD
code ANSYS CFX®. The following release was ATHLET 2.2B /GLA 12/ in 2011, which
included heavy water as a working fluid (derived from light water properties), improved
steady state calculation, consideration of burn-up in fuel thermal conductivity, and
further improvement in specific models. In addition, the input deck could use includes
and pipes connected at their ends in priority chains were automatically coupled.

ATHLET version 3
The next major release was ATHLET 3.0A in 2012, which introduced the new working
fluids heavy water, liquid lead, sodium, helium and lead bismuth eutectic. This
version also added the option to utilize 2D or 3D momentum equations as well as
the possibility to simulate pebble bed reactors. Additionally, new models for spray
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condensation and turbines were implemented /GLA 12/, /LER 12/. With this version,
ATHLET was maintained in a subversion repository, so that all commits to the current
master version are fully traceable. ATHLET 3.1A from 2016 implemented a model for
axial heat transfer in heat conduction objects, improved the 3D momentum models
and added an option to use cylindrical coordinates. Turbine models were further
improved, and argon was added as a new non-condensable gas. This version also
introduced the plugin technique to allow for easier coupling with external modules
/SCH 15/, /LER 16/. More than 50 organizations held a license for ATHLET 3.1A.

Since 2016 much effort was spent on improved code coupling and the plugin concept
was further enhanced and several new plugin interfaces were made available in
ATHLET, enabling the user to extend ATHLET capabilities by using their own models
or correlations, e.g. for material properties, heat transfer or critical heat flux calculation
/LER 19/. Further improvements were implemented with a view to advanced Gen-
III/III+ LWRs, SMRs and also Gen-IV reactor designs with a specific focus on passive
safety systems /SCH 18/. These developments are included in ATHLET version
3.2, which was released in June 2019 as part of the software package AC2 2019.
It also introduced supercritical CO2 and molten salts as working fluids and offered
the Numerical Toolkit (NuT), which allows access to alternative numerical solvers to
speed up calculations.

In the year 2021, ATHLET 3.3 was released. It came with an optional new water
property package developed by HSZG, geometric reactivity feedback for liquid
metal reactors, additional heat transfer correlations for passive systems, new non-
condensable gases, as well as multiple code improvements.

ATHLET 3.4 was released in 2023. ATHLET 3.4 comprises an extended fuel rod
and gap conductivity model, that is capable to consider fuel swelling, densification,
and radial relocation. In addition, dedicated heat transfer coefficient and friction
factor correlations for compact heat exchangers such as plate heat exchangers are
included, which allow an improved simulation of e.g. SMR reactor designs. Potassium
is introduced as new two-phase working fluid. Further working fluids are available
through the property package library CoolProp, which can be coupled to ATHLET.
Krypton and xenon are offered as further non-condensable gas components.

The current version ATHLET 3.5 was released in 2025. It allows more than three
material zones in HECU objects and heat conduction between HCOs and it includes
a dedicated heat pipe module. Moreover, flow regimes are now calculated centrally
and consistently for all models. Additionally, 3D position data can be specified for
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TFO and 3D data in a vtm format can be obtained for TFO and HCO. Furthermore,
ATHLET 3.5 includes the first results of the integration of ATHLET-CD models: a
blockage model for fuel rods up to cladding burst, radiation heat transfer between
HCOs, and fission product transport is available via the SAFT module. Moreover,
VENTINA can be used to define radionuclide inventories and compute their decay in
an initial version.
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