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Zusammenfassung 

Das Analysewerkzeug SUSA ist eine etablierte Software zur Unsicherheits- und Sensi-

tivitätsanalyse, mit welcher Ungewissheiten in nuklearen Sicherheitsanalysen im Rah-

men von Best Estimate Plus Uncertainty (BEPU)-Ansätzen mittels Monte-Carlo-Simula-

tionen berücksichtigt werden können. In SUSA können Toleranzintervalle oder 

Sensitivitätsmaße der sicherheitsrelevanten Simulationsergebnisse berechnet werden, 

indem die unsicheren Eingangsparameter variiert und die entsprechenden Simulationen 

eines deterministischen Codes ausgeführt werden. Im Rahmen des Forschungs- und 

Entwicklungsvorhabens RS1599 wurden weitere Methoden entwickelt und in SUSA im-

plementiert, um einen Schätzer für die Wahrscheinlichkeit eines seltenen Ereignisses zu 

bestimmen und damit die Analyse zur Quantifizierung des Einflusses von Parametern zu 

unterstützen, die im Parameterraum der Einflussfaktoren in einem sehr geringen Wahr-

scheinlichkeitsbereich geschätzt werden. Hierbei handelt es sich um die Importance Sam-

pling (IS)-Methoden. 

In SUSA wurden zwei Ansätze implementiert, um eine optimale Importance Sampling-

Dichte zu schätzen: die Approximation einer multivariaten parametrischen Verteilung und 

die Kernel-Dichte-Schätzung. Voraussetzung für beide Methoden ist eine Stichprobe aus 

dem (in der Regel wenig wahrscheinlichen) Bereich im Parameterraum der Einflussfak-

toren. Eine solche Stichprobe kann z. B. aus den Ergebnissen eines adaptiven Monte-

Carlo-Simulationsverfahrens gewonnen werden. Ein weiterer Entwicklungsbereich be-

zieht sich auf Methoden für Zuverlässigkeitsanalysen. Das von der GRS entwickelte Pro-

gramm RAMESU (Reliability Analysis with Markov Models Extended by an Option for Sen-

sitivity and Uncertainty Analysis) wurde in SUSA integriert und über den bestehenden 

Funktionsumfang zur Zuverlässigkeitsanalyse hinaus um weitere Funktionalitäten ergänzt. 

Die Modularität von SUSA wurde nach der Richtlinie eines mehrschichtigen Ansatzes ver-

bessert, wobei die folgenden Bereiche berücksichtigt wurden: (1) grundlegende Python- 

oder FORTRAN-Routinen, (2) Funktionen oder Klassen auf höherer Ebene, die dem Be-

nutzer eine komfortable Schnittstelle bieten, (3) Jupyter Notebooks, die die Implementie-

rung einer ganzen Analysekette zeigen und dem Benutzer die Möglichkeit geben, den 

Analysevorgang interaktiv nachzuvollziehen und (4) eine grafische Benutzeroberfläche 

(GUI), die den Benutzern die Möglichkeit gibt, die Fähigkeiten von SUSA zu nutzen, ohne 

dass diese die Programmiersprache Python beherrschen muss. 
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Abstract 

The SUSA analysis tool is an established software for uncertainty and sensitivity analysis 

which can be used to consider uncertainties in nuclear safety analyses in the frame of Best 

Estimate Plus Uncertainty (BEPU) approaches using Monte Carlo simulations. Within 

SUSA, tolerance intervals or sensitivity measures of the safety relevant simulation results 

can be calculated by varying the uncertain input parameters and running the respective 

simulations of a deterministic code. Within the frame of the research and development 

project RS1599, further methods have been developed and implemented in SUSA to 

determine an estimator for the probability of a rare event and thus to support the analysis 

for quantifying the influence of parameters which are estimated in a very low probability 

range in the parameter space of the influencing factors. These refer to the Importance 

Sampling (IS) methods. 

Two approaches have been implemented in SUSA to estimate an optimal importance 

sampling density: the approximation of a multivariate parametric distribution and the ker-

nel density estimation. The requirement for both methods is a sample from the (usually low 

probability) range in the parameter space of the influencing factors. Such a sample can be 

obtained, for example, from the results of an adaptive Monte Carlo simulation procedure. 

Another area of development refers to methods for reliability analyses. The RAMESU 

program (Reliability Analysis with Markov Models Extended by an Option for Sensitivity and 

Uncertainty Analysis) developed by GRS has been integrated into SUSA and supple-

mented by further functionalities in addition to the existing range of functions for reliability 

analysis. 

The modularity of SUSA has been improved according to the guideline of a layered ap-

proach where the following aspects have been considered: (1) basic Python or FORTRAN 

routines, (2) higher-level functions or classes which provide a convenient interface to the 

user, (3) Jupyter notebooks which show the implementation of a whole analysis chain and 

give the user the ability to interactively understand the analysis procedure, and (4) a graphi-

cal user interface (GUI) which provides the opportunity to the users of employing the 

capabilities of SUSA without the need to be proficient in the Python programming lan-

guage. 
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1 Introduction and Objectives 

GRS has been developing and using the analysis tool SUSA (Software for Uncertainty 

and Sensitivity Analyses) for over 30 years to quantify the uncertainty associated with a 

simulation result and to determine the main causes of this uncertainty. The methods 

provided are based on probability calculations, Monte Carlo (MC) simulations and statis-

tical methods. Based on probability distributions for the input parameters of a simulation 

program that cannot be clearly defined (uncertain), SUSA can be used to play out pos-

sible value constellations for these parameters and thus start corresponding simulation 

runs. The simulation results obtained can then be statistically analysed with regard to 

safety significant issues. For example, SUSA can be used to calculate a tolerance inter-

val that covers a high proportion (generally > 95 %) of the possible values of a simulation 

result with high statistical certainty (generally > 95 %). SUSA thus provides important 

support in proving the acceptance criteria in the context of so-called BEPU analyses.  

In addition, the sensitivity analysis methods implemented in SUSA can be used to deter-

mine the (uncertain) input parameters having the most influence on the uncertainty as-

sociated with a simulation result. Due to the implementation of advanced selection pro-

cedures and machine learning methods, SUSA can now also be used to determine the 

probability of a critical result (e.g., exceeding numerical safety criteria, failure of safety 

systems, core damage, release of radionuclides) and the unfavourable constellations of 

input parameters associated with the critical result with a practicable computational ef-

fort. In addition, the limit range between favourable and unfavourable parameter constel-

lations, which is susceptible to cliff-edge effects (see /IAE 16/, p. 37, footnote 20), i.e. 

the range in which the system behaviour can change abruptly due to small fluctuations 

in the input parameters, can also be determined. The newly implemented methods can 

be used, e.g. to determine indicators for the safe operation of nuclear power plants or 

other criteria for risk management in accident sequences. SUSA consists of various plat-

form-independent modules (in FORTRAN or Python) that are called by a higher-level 

application program for the corresponding calculations. As the application program and 

therefore the functionality of SUSA was previously only available on MS Windows-based 

operating systems, a Python-based core connection and prototype applications based 

on Jupyter notebooks /KLU 16/ were developed for a platform-independent application 

of SUSA. This sustainable implementation strategy is ideal for validation tests of existing 

as well as newly developed methods and can already be used for the first SUSA appli-

cations. 
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SUSA is a comprehensive, flexible and user-friendly analysis tool for dealing with uncer-

tainties in the application of computational models. In order to maintain this status, it is 

to be continuously developed in line with the current state of knowledge and provide 

classic and advanced methods for uncertainty and sensitivity analyses. New methods 

are implemented in cases were the available implemented methods cannot be used to 

analyse the influence of uncertain input parameters on the simulation result for applica-

tions, either for reasons of practicability or because the corresponding methodological 

requirements are not met. New methods are implemented in a platform-independent 

manner to allow for a future use on Unix/Linux based computing clusters. SUSA is also 

being developed with regard to user-friendly access to the methods provided and the 

associated visualisation strategies as well as quality assurance standards in software 

development. 

The following objectives should be pursued in detail: 

1. The available options for reliability analysis should be extended. 

The RAMESU program developed by GRS /PES 91/ has been integrated into SUSA 

and supplemented by further functionalities in addition to the existing range of func-

tions for reliability analysis. The range of functions in RAMESU is already significantly 

more extensive than in freely available programs (e.g. in Python PyDTMC /BEL 20/), 

which generally only allow standard modelling such as Markov chains and Markov 

processes. In particular, the program offers the modelling of semi-Markov properties, 

the consideration of allowable outage times (permissible failure times) of certain com-

ponent states as well as the possibility of limiting the exponential growth of the state 

space by means of a so-called bound state.  

In addition, methods already developed at GRS for estimating distributions for relia-

bility parameters have been integrated into SUSA. This enables the user to carry out 

a reliability analysis with SUSA, taking epistemic uncertainties into account. The 

methods for estimating distributions can be used to quantify the uncertainties in the 

input data of a probabilistic safety analysis (PSA) in a more transparent and compre-

hensible way. By integrating these methods into the SUSA application environment, 

strategies for quantifying distributions for reliability parameters from the operating 

experience and expert knowledge are made available to a wider range of users and 

made applicable in a user-friendly manner through practical and methodological 

documentation. 
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2. The available methods for advanced Monte Carlo simulation with machine learning 

algorithms should be maintained, benchmarked and extended. 

In classic MC simulations, parameter constellations are (randomly) selected from a 

joint probability distribution and corresponding simulation runs are started. The re-

quired number of parameter constellations depends on the underlying question and 

the estimator that is to be calculated to answer the question. For example, to deter-

mine an estimator for the probability of a rare event, such a high number of parameter 

constellations must be selected that it is no longer practicable to carry out corre-

sponding simulation runs with a complex simulation code. Compared to classic MC 

simulation, advanced MC simulation requires only a relatively small number of pa-

rameter constellations and corresponding simulation runs.  

Advanced selection methods are used, which are often combined with machine 

learning (ML) methods. Such an advanced selection method is the Importance Sam-

pling (IS) method in which the original joint probability distribution of the parameters 

is replaced by a distribution that weights parameter constellations in a certain range 

higher and thus makes their selection more probable. The IS method has been im-

plemented in this project. The implementation has been carried out in such a way 

that the method can be used both independently and based on the results of an 

adaptive MC simulation.  

Adaptive MC simulation uses advanced selection procedures in combination with ML 

methods. An iterative process is used to control the selection of parameters to a 

specific range of the input parameter space, which is characterised, for example, by 

the fact that the parameter constellations contained therein result in a critical simula-

tion result. The ML methods are used to determine a simple, fast-running replace-

ment model (metamodel) for the actual simulation code. These metamodels are used 

to quickly calculate the results for a large number of selected parameter constella-

tions.  

In addition to the methods already implemented, it is planned to integrate further ML 

methods for determining metamodels in SUSA. These include the support vector 

method and shallow neural networks (NNs). The properties of these methods as well 

as their advantages and disadvantages have been documented in order to provide 

support in the selection of a suitable metamodelling method for a specific application. 

The calculation results from the application of the metamodel are used to evaluate 

the associated parameter constellations according to their usefulness (i.e. their pos-
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sible affiliation to the parameter range of interest). A scoring function (learning func-

tion) is often used for this purpose. The parameters with the best scores are then 

selected as input for the actual simulation runs. The convergence criterion of the 

iterative process of an adaptive MC simulation depends on the metamodel used (ML 

method). 

3. The underlying source code of SUSA should be maintained, structured and devel-

oped towards platform independence and maintainability. 

The sustainable development of SUSA’s software architecture aims to make the 

comprehensive analysis tool available and executable in as many common environ-

ments as possible. In addition, the software is to be made even more modular in 

order to allow a simpler, continuous and flexible expansion of the range of methods, 

e.g. through the use of scientific Python libraries such as scikit-learn /PED 11/ or 

SciPy /VIR 20/. In addition, through targeted API (Application Programming Inter-

face) development and the necessary harmonisation, sufficient compatibility with ex-

ternal developments have been achieved to allow efficient comparative calculations, 

data exchange and collaboration between software packages.  

Other important goals are universal and easy handling as well as appropriate support 

for the user. In the project RS1559, the foundations were laid to ensure flexible and 

modern applicability of the functionalities in SUSA, regardless of the platform. The 

new developments in this project are built upon this basis in order to meet the afore-

mentioned objectives in compliance with the GRS software guidelines /GRS 20/. 

4. The feedback of experience resulting from the use of SUSA should be continuously 

analysed and implemented accordingly in order to further improve the specific work-

flow and the general quality of SUSA. 

5. The existing user documentation and method guide should be maintained. In accord-

ance with the GRS specifications for software development /GRS 20/, every SUSA 

user is provided with method (or program) and user documentation /KLO 23/ as well 

as installation documentation. The method documentation is an updated version of 

/KLO 21a/. Method and user documentation are continuously expanded in line with 

the newly implemented methods and functionalities. Furthermore, the method docu-

mentation is supplemented by exemplary and documented Jupyter notebooks so that 

the user can work through the scope of SUSA’s methods interactively and inde-
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pendently, using selected, simple examples. The installation documentation for the 

classic SUSA GUI should also be adapted. 
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2 Reliability Parameters 

2.1 Integration of the Functionality of the Markov Program RAMESU 

Within PSA, the reliability of technical systems is determined using fault tree analyses. 

These reach the limits of their modelling capabilities, e.g., 

− if there are dependencies of the stochastic component behaviour on the state of other 

components or on changing environmental conditions (e.g. increasing temperature), 

− if the dynamic behaviour of physical variables (e.g., pressure or temperature) is to be 

modelled, 

− if ’phased mission’ processes or switching of components take place at specific 

times, 

− if tolerable downtimes (allowable outage times, AOTs) exist in the system, 

− if repairs are carried out at certain times and the repairs are successful or not with 

certain probabilities, 

− if maintenance is carried out on components at certain times and the components 

are not available during this maintenance, etc. 

Using the RAMESU program developed and implemented in SUSA, dynamic processes 

of technical systems can be modelled and analysed in the form of Markov and semi-

Markov processes. This allows a more realistic modelling of the dependencies that often 

occur in system behaviour. By implementing the Markov program in SUSA, it is possible 

to carry out an uncertainty and sensitivity analysis with regard to the reliability (e.g. proba-

bility of failure) of the modelled system in a user-friendly and efficient way. Markov and 

semi-Markov processes can be applied in various areas of system modelling and can be 

used to calculate the reliability and availability of a system. Influences of common-cause 

failures (CCFs) can be included just as easily as the influence of different test, mainte-

nance and repair strategies, dependencies of the system on physical variables (such as 

pressure, temperature, etc.) and system states as well as influences of human actions 

and time-dependent phenomena. 

A particular advantage of the developed program is that semi-Markov properties of a 

system can also be modelled that are not defined by exponentially distributed transition 
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rates, such as system switchovers that are carried out at certain times and with certain 

probabilities of success. This alone distinguishes it from many commercial programs for 

Markov analysis. Using the semi-Markov properties of the program, it is also possible to 

take physical variables (temperature, pressure, flow rate, etc.) into account in discretised 

form. This allows dependencies of the failure behaviour of process variables to be mod-

elled and their dynamic behaviour to be analysed. 

Section 2.1.1 describes the methodology for calculating the state probabilities. Section 

2.1.2 contains a description of the user input. Section 2.1.3 lists various application ex-

amples. For reasons of better comprehensibility, the application examples are kept rela-

tively simple. 

2.1.1 RAMESU Methodology 

The aim of analysing technical systems using Markov processes is to calculate probabili-

ties for the occurrence of system states over time. In many applications, dependencies 

occur between the system states of subsequent points in time or subsequent action 

steps. In this situation, the temporal dependencies in the behaviour of the system com-

ponents must be taken into account. This cannot be modelled in sufficient detail using 

the classic method for determining the reliability of technical systems (e.g. fault tree 

analysis) as temporal dependencies can only be taken into account to a very limited and 

simplified extent. In order to consider these dependencies over time more precisely, 

mathematical methods of stochastic processes, for example, can be used. 

2.1.1.1 Modelling Markov Processes 

A stochastic process is defined as a set Xt, t ∈ T of random variables, where T describes 

a discrete or continuous parameter space, e.g. discrete time steps or a continuous time 

interval. The simplest dependency structure between time-dependent random variables 

is obtained if the Markov property applies. This states that the future of the process only 

depends on the state of the present and not on the states that the system has assumed 

in the past. Formally, this can be expressed by equation (2.1): 

𝑃(𝑋(𝑡𝑛) = 𝑖𝑛 ∣∣ 𝑋(𝑡𝑛−1) = 𝑖𝑛−1, 𝑋(𝑡𝑛−2) = 𝑖𝑛−2, … , 𝑋(𝑡0) = 𝑖0 ) =

𝑃(𝑋(𝑡𝑛) = 𝑖𝑛|𝑋(𝑡𝑛−1) = 𝑖𝑛−1)  (2.1) 

with tn > tn-1 > … t1 > t0 and n ≥ 1. 
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I.e., the probability of the state X(tn) = in at the time tn is only dependent on the last 

assumed state X(tn-1) = in-1 at the time tn−1 and not on the states assumed at previous 

times tn−2, …, t0 assumed states in−2, …, i0. 

In order to model a system using a Markov process, the possible states of the system 

must be defined. If the system to be analysed can assume the N different states Z1, …, 

ZN, hen the probability Pj(t) for the system state Zj, j = 1, …, N at any point in time t is 

obtained by applying a Markov model. 

In addition to the definition of the state space of the system, the calculation of the state 

probabilities Pj(t) also requires that: 

− the matrix of transition rates R = (rij) from state Zi to state Zj and 

− the initial state Z0(t = 0) of the system at the time t = 0 

must be specified. 

The elements rij in the rate matrix R (see equation 2.2) indicate the rate at which the 

process transitions from state Zi to state Zj. Since a Markov process is defined by the 

fact that a transition from one state Zi to another state Zj only occurs after exponentially 

distributed dwell times, each transition rate describes the parameter of an exponential 

distribution. 

The rate matrix has the form: 

(

 
 
−∑ 𝑟1,𝑘

𝑁
𝑘=2 𝑟1,2 … 𝑟1,𝑁

𝑟2,1 −∑ 𝑟2,𝑘
𝑁
𝑘=1,𝑘≠2 … 𝑟2,𝑁

⋮ ⋮ ⋮ ⋮
𝑟𝑁,1 𝑟𝑁,2 … −∑ 𝑟𝑁,𝑘

𝑁
𝑘=1,𝑘≠𝑁 )

 
 

 (2.2) 

First, the initial state Z0(t = 0) of a system at the time t = 0 and the probability of occur-

rence for the initial state are specified. With the RAMESU program, it is also possible to 

specify uncertainties regarding the probability of occurrence. This means that different 

values from an epistemic distribution are possible for the probability of occurrence. More 

details on the consideration of uncertainties are described in Section 2.1.3.8. 
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With the definitions of 

− the states Z1, …, Zn of the system to be calculated, 

− the matrix of transition rates R = (rij) from state Z1 to state Zj and 

− the initial state Z0(t = 0) of the system with the associated probability 

the state probabilities Pj(t), j = 1, …, N for any time t can be in principle be solved by 

the system of differential equations shown in equation 2.3: 

(

  
 

𝑑𝑃1(𝑡)

𝑑𝑡
𝑑𝑃2(𝑡)

𝑑𝑡

⋮
𝑑𝑃𝑁(𝑡)

𝑑𝑡 )

  
 
=

(

 
 
−∑ 𝑟1,𝑘

𝑁
𝑘=2 𝑟1,2 … 𝑟1,𝑁

𝑟2,1 −∑ 𝑟2,𝑘
𝑁
𝑘=1,𝑘≠2 … 𝑟2,𝑁

⋮ ⋮ ⋮ ⋮
𝑟𝑁,1 𝑟𝑁,2 … −∑ 𝑟𝑁,𝑘

𝑁
𝑘=1,𝑘≠𝑁 )

 
 
⋅ (

𝑃1(𝑡)

𝑃2(𝑡)
⋮

𝑃𝑁(𝑡)

) (2.3) 

The state space of the model can become very large when modelling systems using 

Markov models. In this case, finding a solution using a differential equation system be-

comes very difficult, therefore a different solution method was implemented to determine 

the time-dependent state probabilities. 

The matrix P of the transition probabilities must first be calculated from the rate matrix. 

This can be done using the following calculation: 

𝑃 =
𝑅

𝑟𝑚𝑎𝑥
+ 𝐼𝑁 (2.4) 

where IN denotes the unit matrix and rmax is the maximum of the amount of the diagonal 

elements −ri,i of the rate matrix R. I.e., 

𝑟𝑚𝑎𝑥 = max(∑ 𝑟1,𝑘
𝑁
𝑘=2 ,  ∑ 𝑟2,𝑘

𝑁
𝑘=1,𝑘≠2 ,  … ,  ∑ 𝑟𝑁,𝑘

𝑁
𝑘=1,𝑘≠𝑁 ) (2.5) 

In the following, the state probability at a point in time t is briefly denoted as μ(t) = P1(t), 

…, PN(t) with T > 0. It is assumed that the state probability at a certain point in time ta < t 

has already been calculated, i.e. μ(ta) is known. 

Equation (2.6) is used to calculate the vector of state probabilities at any time t > ta: 

𝜇(𝑡) = exp(−(𝑡 − 𝑡𝑎) ⋅ 𝑟𝑚𝑎𝑥) ⋅ 𝜇(𝑡𝑎) ⋅ exp((𝑡 − 𝑡𝑎) ⋅ 𝑟𝑚𝑎𝑥 ⋅ 𝑃) (2.6) 
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where τ = (𝑡 − 𝑡𝑎) ⋅ 𝑟𝑚𝑎𝑥, μ(𝑡𝑎) ⋅ 𝑒𝑥𝑝((𝑡 − 𝑡𝑎) ⋅ 𝑟𝑚𝑎𝑥)  can be represented by the following 

Taylor series expansion around the development point τ: 

𝜇(𝑡𝑎) ⋅ exp(𝜏 ⋅ 𝑃) = ∑ 𝜇(𝑡𝑎)
∞
𝑖=0 ⋅

𝜏𝑖

𝑖!
⋅ 𝑃𝑖  (2.7) 

The series in equation 2.7 can be calculated by the following recursion: 

𝜈(0) = 𝜇(𝑡𝑎)  (2.8) 

𝜈(𝑛) =
𝜏

𝑛
⋅ 𝜈(𝑛−1) ⋅ 𝑃,  𝑛 > 0. 

The vector of state probabilities μ(t) at the time t is calculated from equation 2.9: 

𝜇(𝑡) = 𝑒𝑥𝑝(−(𝑡 − 𝑡𝑎) ⋅ 𝑟𝑚𝑎𝑥) ⋅ ∑ 𝜈(𝑖)𝑛
𝑖=0   (2.9) 

2.1.1.2 Modelling Semi-Markov Processes 

In addition to calculating the state probabilities of a system using a Markov process, the 

RAMESU program is characterised by the fact that certain semi-Markov properties of a 

system can also be modelled. Semi-Markov behaviour of a system exists when state 

transitions of the system do not occur after exponentially distributed dwell times as with 

Markov processes but instead occur at certain given times with the corresponding proba-

bilities. In order to take the semi-Markov behaviour of a system into account, so-called 

singular matrices are used. 

Let S1, …, Sm be the singular matrices that have been generated to describe the semi-

Markov behaviour of the system to be analysed. For each singular matrix Si, i = 1, …, m, 

times are specified at which Si is applied. A detailed description of how singular matrices 

are defined is given in Section 2.1.2.5. 

Let TR = t1, …, tn be the set of times at which the state probabilities are determined via 

the rate matrix R or via the matrix P of transition probabilities derived from it. The set of 

application times of the singular matrix Si is given by TSi = ti,1, …, ti,ni, i = 1, …, m. In order 

to cover all times at which calculations must be performed, the union is formed from 

these time sets, i.e.: 

𝑇 = 𝑇𝑅 ∪ 𝑇𝑆𝑖 ∪ …∪ 𝑇𝑆𝑚  (2.10) 
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For each time t ∈ T it is checked whether t ∈ TSi for i = 1, …, m. If t ∈ TSi, the state 

transitions that are carried out at the time t with probability p are determined from the 

information of the singular matrix Si. 

Let μ(t) = (q0, …, qn) be the vector of state probabilities at the time t and let the transition 

from state Zi to state Zj with probability p be defined by the singular matrix Si. Then, at 

the time t, the probabilities of the states Zi and Zj of the state vector are modified by the 

calculation: 

qij = qj + qi ⋅ p, 

qi = qi ⋅ (1 – p) (2.11) 

2.1.1.3 Modelling Fixed Transitions 

In addition to modelling Markov and semi-Markov processes, RAMESU offers the ability 

to also include transitions which always happen instantaneously, given a certain condi-

tion. 

2.1.2 RAMESU User Input 

In the input data set for the reliability analysis of a technical system, the system to be 

analysed and the system behaviour must be specified by the user. Currently, the input 

has to be provided in the form of a Python script, in future this will be simplified to improve 

usability also non-coding users. SUSA includes tests for its different components, also 

for RAMESU calculations. These tests provide good starting points for writing new 

RAMESU input. 

The input is created by calling the input constructor System for constructing a full system 

description: 

input_1 = System(), 

The following objects are then registered step by step in the input by passing the input 

object as an attribute to their constructors: 

• Input of the system components and states that the respective components can as-

sume (Section 2.1.2.1). 
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• Input of the initial state (Section 2.1.2.2). 

• Input of the times at which the state probabilities of the system are calculated (Sec-

tion 2.1.2.3). 

• Input of the transitions of states with associated transition rates (Markov), taking de-

pendencies into account. (Section 2.1.2.4). 

• Specification of the semi-Markov behaviour of the system to be analysed. The tran-

sitions of the semi-Markov behaviour are recorded in certain singular matrices Si, i = 

1, …, m (Section 2.1.2.5). 

• Specification of the fixed transitions, which happen whenever a certain condition is 

fulfilled with the probability 1 and instantaneously (Section 2.1.2.6). 

2.1.2.1 Component Definition 

Each component can be added to the system by calling the system function: 

add_component(name, states=(), description=””), 

where name is the name of the component and states should be a tuple (set in curved 

brackets) listing the different potential states of the component. The description is op-

tional; here, a short description of the component can be included as a string. 

A potential input line for a pump component with two states (on and failed) could look 

like this: 

system.add_component(’pump_1’, states=(1 , 2), description =’1-on 2- failed 

’). 

2.1.2.2 Definition of the Initial State 

The initial state should be defined by calling the system function: 

set_initial(name, states, prob),  

where name should be the name attached to the initial state, states should be a tuple 

specifying the state of each component and prob should be the probability of the initial 

state. The jth element of the vector [i1, i2, …, inK] indicates the state of the jth component 
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(j = 1, …, nK). The given state of each component should be included in the possible 

states for this component as specified in the component definition. 

Example: A system consists of two components K1 and K2. Both components should be 

intact at the beginning with probability 1, whereby an intact state is defined by the co-

dimension 0. The input for the initial state is then: 

set_initial(name, states=(0,0), prob=1.0).  

The probability of the initial state is not necessarily 1.0. Probability values < 1 can also 

be entered for the initial state. In this case, the existence of the initial state is regarded 

as aleatory. 

2.1.2.3 Definition of Calculation Times 

The calculation times should be defined by calling the following system function: 

add_calc_times( calculation_times ), 

where calculation_times can be a list of time points at which the state probability should 

be determined: 

calculation_times = [1, 2, 3.50 ], 

or a range of time points  

calculation_times = range( start_time, end_time, time_step ), 

where start_time, end_time and time_step can be float or integer numbers and the pro-

vided time points will range from start_time to end_time - time_step with intervals of size 

time_step. Several comma-separated time ranges can also be provided as calcula-

tion_times. 

2.1.2.4 Definition of Markov Transitions 

Markov transitions can be specified by calling the system function MarkovTransition: 

add_markov( conditions, transitions, rate ), 
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and providing the following attributes: 

• The conditions under which a Markov transition should be considered are to be de-

fined as value comparison in a Python expression. This could for example be the 

following string "pump_1 == 1", which compares the value of the component with the 

name "pump_1" to 1. Different value comparisons can be combined, for example by 

using the logical “and or”-operators. 

• The transitions which should be performed are to be entered as Python statement, 

initialising an existing component to another state. An example would be "pump_1 = 

2" in which the component with the name "pump_1" is set to the state 2. 

• The rate should be provided in a Python-readable number format. 

The following example 

system.add_markov( pump_1 == 1, pump_1 = 2, rate =1.e -3), 

describes the Markov transition which can only take place if pump_1 is in state 1. In this 

case, there will be a transition of pump_1 to the state 2 at a rate of 1.0 E-03. 

2.1.2.5 Semi-Markov Transitions 

Semi-Markov transitions can be specified by calling the following system function: 

     Semi-MarkovTransition: 

add_semi_markov(conditions, transitions, probability, transition_times ), 

and providing the following attributes: 

• Conditions and transitions can be provided as described above for Markov transi-

tions. 

• The transition probability should be provided in a Python-readable number format. 

• The times at which a semi-Markov transition should be regarded. As in Section 

2.1.2.3, the times can either be given in a Python list format or as the range between 

a start time and an end time. 
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2.1.2.6 Definition of Fixed Transitions 

Fixed transitions can be specified by calling the following system function: 

add_fixed ( conditions , transitions ), 

and providing the conditions and transition attributes as specified above in Section 

2.1.2.4. 

2.1.2.7 Running RAMESU 

The following example shows how RAMESU can be applied and the vector of state 

probabilities for all calculation times printed: 

ramesu = RAMESU( input ) 

ramesu.print_system_states() 

ramesu.print_state_prob() 

the input has to be defined following the instructions in Section 2.1.2. A list of TimeState 

objects (objects which have time and state as attributes) can be accessed using the 

p_result attribute: 

p_result = ramesu.p_result 

For each TimeState, object time and state can be accessed as attributes. 

2.1.2.8 Including Uncertainties 

To study the effect of uncertain input parameters, these input parameters need to be 

defined in the input definition as variables. For example, if the probability of a semi-Mar-

kov transition should be defined as uncertain, the probability needs to be set as parame-

ter: 

 system.add_semi_markov("pump_1 == 2 and pump_2 == 0 and switch == 0", 

                        "switch = 1", 

                        probablity = prob_sm_1 , 

                        calc_times = sm_markov_times ). 

In the example above, the probability is defined as variable prob_sm_1. The new SUSA 

sampling module described in Section 2.3 can be used to sample the uncertain input 
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parameter. The sampled input parameter can in turn be employed to generate a set of 

RAMESU inputs that serve to generate RAMESU outputs. 

2.1.3 RAMESU Examples 

Within PSA, the reliability of technical systems is determined using fault tree analyses. 

These analyses reach the limits of their modelling capabilities, e.g., 

− if there are dependencies of the stochastic component behaviour on the state of other 

components or on changing environmental conditions (e.g. increasing temperature), 

− if the dynamic behaviour of physical variables (e.g., pressure or temperature) is to be 

modelled, 

− if ‘phased mission’ processes or switching of components take place at specific 

times, 

− if tolerable downtimes (AOTs) exist in the system, 

− if repairs are carried out at certain times and the repairs are successful or not with 

certain probabilities, 

− if maintenance is carried out on components at certain times and the components 

are not available during this maintenance activities, etc. 

The RAMESU program developed and implemented in SUSA allows dynamic processes 

of technical systems to be modelled and analysed by means of Markov and semi-Markov 

processes. This allows a more realistic modelling of the dependencies that often occur 

in system behaviour. By implementing the Markov program in SUSA, it is possible to 

carry out an uncertainty and sensitivity analysis with regard to the reliability (e.g. proba-

bility of failure) of the modelled system in a user-friendly and efficient manner. 

Markov and semi-Markov processes can be applied in various areas of system modelling 

and can be used to calculate the reliability and availability of a system. Influences of 

CCFs can be included just as easily as the influence of different test, maintenance and 

repair strategies, dependencies of the system on physical variables (such as pressure, 

temperature, etc.) and system states as well as influences of human actions and time-

dependent phenomena. 
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2.1.3.1 System 1: Two Redundant Components 

System 1 consists of two redundant pumps that operate in ‘hot redundancy’ and have a 

failure rate of 0.001 each. The feed-in system is considered to be failed if both pumps 

have failed. Initially, both pumps are fully functional. The calculation times are calculated 

from 0 to 1000 h operational time in time steps of 50 h. The input file associated with this 

description is shown below: 

def test_input_system1 (): 

       

      r_input = RAMESUInput () 

      # ------------------------------------------------ 

      # COMPONENT - SECTION 

      # ------------------------------------------------ 

      r_input.add_component (’pump_1 ’, (0, 1) , ’0 - ok 1 -failed ’) 

      r_input.add_component (’pump_2 ’, (0, 1) , ’0 - ok 1 -failed ’) 

      # ----------------------------------------------- 

      # Initial State section 

      # ----------------------------------------------- 

      r_input.set_initial ((0 , 0) , 1.0) 

      # ----------------------------------------------------- 

      # Calculation Times t : 

      # ----------------------------------------------------- 

      r_input.add_calc_times ( range (0, 1001 , 1)) 

      # ------------------------------------------------------ 

      # TRANSITION SECTION 

      # ------------------------------------------------------ 

      r_input.add_markov (’pump_1 == 0’, ’pump_1 = 1’, 1.e -3) 

      r_input.add_markov (’pump_2 == 0’, ’pump_2 = 1’, 1.e -3) 

       

     return r_input 

The program can be executed using the following lines of code: 

ramesu = RAMESU ( test_input_system1 ()) 

As the matrix operations in this program are carried out using sparse matrices, the re-

duction of matrix elements achieved by the sparse matrix method used here is specified 

as information: 

− Number of elements in the original transition matrix: 16; 

− Number of elements in the sparse matrix: 8; 

− Sparse matrix reduction: 50 %. 

As the number of system states for this small system is very small, system 1 is suitable 

for describing the output in more detail. The system states can be explicitly listed in the 

output, using the following command: 
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ramesu.print_system_states() 

The resulting states are: 

Number of System States = 4 

Nbr          State of Components 

0            [0 0] 

1            [0 1] 

2            [1 0] 

3            [1 1] 

The output of the system states of the generated state space is used to check whether 

the system states generated from the user input are correct. If system states occur that 

should not occur or expected system states were not created, the user input may need 

to be modified. 

The system state number 0 is defined by the vector [0, 0]. The first element of the vector 

describes the state of the first component (i.e. pump 1) and the second element de-

scribes the state of the second component (i.e. pump 2). The system state [0, 0] thus 

expresses that both components are in the state 0 and are both in operation according 

to the definition in the input. In system state 1, component 1 is in operation (state 0), 

while component 2 has failed (state 1). This situation is expressed by the vector [0, 1]. 

In system state 2, component 1 has failed (state 1) and component 2 is in operation 

(state 0). In system state 3, both components have failed, which is expressed by the 

vector [1, 1]. 

As the number of states of system 1 is very small, the probabilities of all states can be 

output using the following command: 

 ramesu.print_state_prob() 

The resulting system probabilities are: 

Time dependent Probabilities of System 

               [0 0]         [0 1]           [1 0]         [1 1] 

time 

0            1.000000  0.000000  0.000000  0.000000 

1            0.998002  0.000998  0.000998  0.000000 

2            0.996008  0.001993  0.001993  0.000002 

3            0.994018  0.002985  0.002985  0.000006 
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4            0.992032  0.003974  0.003974  0.000012 

...           ...              ...              ...              ... 

996        0.136422  0.232803  0.232803  0.396582 

997        0.136150  0.232707  0.232707  0.397047 

998        0.135878  0.232610  0.232610  0.397513 

999        0.135606  0.232513  0.232513  0.397978 

1000      0.135335  0.232416  0.232416  0.398443 

 

[1001 rows x 4 columns ] 

For larger systems where the state space (i.e. the number of system states) is very large, 

such a list would be too confusing. In this case, the user can specify which of the system 

states are to be printed. As a rule, these will be the critical system states, e.g. states in 

which the system has failed. Information about a special state can be gathered by calling 

the function get_sys_state_info and passing a list of interesting system states as input. An 

example is given in the following line of code which prints the time dependent information 

about a system in which pump 1 is failed, and pump 2 is working. Since only one state 

is gathered, no summation of state probabilities is required: 

After 1000 h of operation, the system is in state [0, 0] with a probability of 0.1353, in state 

[0, 1] and in state [1, 0] with a probability of 0.2325 each and in state [1, 1] with a proba-

bility of 0.3995 that both components are failed. 

If only one component (pump 1) was operated, the failure probability of the component 

after 1000 h of operation would be 0.632 = 1 − exp(−0.001 ⋅ 1000). Redundancy with 

two components therefore reduces the probability of failure of the system after 1000 h of 

operation by approx. 37 %. 

2.1.3.2 System 2: Four Redundant Components 

System 2 is used to analyse the effects of extending the two times redundant system 1 

to a four times redundant system by adding two additional pumps. Pumps 3 and 4 have 

the same failure rates as pumps 1 and 2. The following changes must be made to the 

input data set for system 2 compared to system 1: 

def test_input_system2 (): 

 

   r_input = RAMESUInput () 

   # ------------------------------------------------ 

   # COMPONENT - SECTION 

   # ------------------------------------------------ 

   r_input.add_component (’pump_1 ’, (0, 1) , ’0 - ok 1 -failed ’) 

   r_input.add_component (’pump_2 ’, (0, 1) , ’0 - ok 1 -failed ’) 

   r_input.add_component (’pump_3 ’, (0, 1) , ’0 - ok 1 -failed ’) 

   r_input.add_component (’pump_4 ’, (0, 1) , ’0 - ok 1 -failed ’) 
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   # ----------------------------------------------- 

   # Calculation Times t : 

   # ------------------------------------------------ 

   r_input.add_calc_times ( range (0, 1050 , 50)) 

   # ----------------------------------------------- 

   # Initial State section 

   # ----------------------------------------------- 

   r_input.set_initial ((0 , 0, 0, 0) , 1.0) 

   # --------------------------------------------- 

   # TRANSITION SECTION 

   # --------------------------------------------- 

   r_input.add_markov (’pump_1 ==0 ’, ’pump_1 =1 ’, 1.e -3) 

   r_input.add_markov (’pump_2 ==0 ’, ’pump_2 =1 ’, 1.e -3) 

   r_input.add_markov (’pump_3 ==0 ’, ’pump_3 =1 ’, 1.e -3) 

   r_input.add_markov (’pump_4 ==0 ’, ’pump_4 =1 ’, 1.e -3) 

 

   return r_input 

 

In a Markov analysis, the time-dependent probabilities are calculated for each state that 

the system can assume. This also determines, for example, the probabilities that only 

one, two or three components of system 2 have failed. The probability that in system 2 

after 1.000 h operational time all four components have failed at the time t = 1000 h (state 

no. 15) is 0.159. Compared to system 1, this means a reduction in the system failure 

probability of approx. 60 %. Compared to a feed-in with only one pump, system 2 with 

four redundant pumps achieves an increase in system reliability of approx. 75 % after 

1000 h of operation. 

In a Markov analysis, the time-dependent probabilities are calculated for each state that 

the system can assume. The probability that all four components have failed at the time 

t = 1000 h is 0.159 (cf. Fig. 2.1). Compared to system 1, which features two redundant 

pumps, a reduction in system failure probability of approx. 60 % can be observed. Com-

pared to a feed-in with only one pump, system 2 with four redundant pumps achieves an 

increase in system reliability of approx. 75 % after 1000 h of operation. The final proba-

bility that exactly three components have failed is p = 0.3712, as visible in Fig. 2.2. The 

final probability that exactly two components have failed in system 2 after 1000 h of op-

eration is p = 0.324. The final probability that exactly one component is failed is 

p = 0.1259. 
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Fig. 2.1 Probability that all four components of system 2 are failed as a function of 

time 

 

Fig. 2.2 Probability that exactly three components of system 2 are failed as a func-

tion of time; the purple line marks the probability development curve of the 

sum of the four contributing states 

2.1.3.3 System 3: Common Failures 

For the for redundant pumps of system 2, only the failure rates for independent pump 

failures have been considered so far. In system 3, the CCF rates of a 2o4, 3o4 and 4o4 

failure are also considered. A kor failure means that k of r redundant components fail 
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simultaneously or within a short time interval due to a joint CCF phenomenon that affects 

all components equally. The following rates are assumed: 

𝜆2𝑜4 = 4.  0 ⋅ 10
−4, 𝜆3𝑜4 = 1.0 ⋅ 10

−4, 𝜆4𝑜4 = 2.5 ⋅ 10
−5 (2.12) 

If a ko4 failure occurs k = 2, 3, 4, k components fail simultaneously due to the underlying 

CCF phenomenon. Which components these are is normally random. For simplicity, it is 

however assumed for the model that pump 1 to pump k are affected by the kor CCF 

(German: GVA for gemeinsam verursachter Ausfall). In other words, in the event of a 

2o4 CCF, it is assumed that the pumps 1 and 2 are affected by the CCF and have failed. 

The input file for system 3 is shown in the code section below: 

def test_input_system3 (): 

 

    r_input = RAMESUInput () 

    # ------------------------------------------------ 

    # COMPONENT - SECTION 

    # ------------------------------------------------ 

    r_input.add_component(’pump_1 ’, (0, 1) , ’0 - ok 1 -failed ’) 

    r_input.add_component(’pump_2 ’, (0, 1) , ’0 - ok 1 -failed ’) 

    r_input.add_component(’pump_3 ’, (0, 1) , ’0 - ok 1 -failed ’) 

    r_input.add_component(’pump_4 ’, (0, 1) , ’0 - ok 1 -failed ’) 

    r_input.add_component(’gva ’,  

                          states =(0 , 1, 2, 3) ,  

                          description =’0 no GVA 1-2 v4 2-3 v4 3-4 v4 GVA 

’) 

    # ----------------------------------------------- 

    # Initial State section 

    # ----------------------------------------------- 

    r_input.set_initial ((0 , 0, 0, 0, 0) , 1.0) 

    # ----------------------------------------------------- 

    # Calculation Times t : 

    # ----------------------------------------------------- 

    r_input.add_calc_times ( range (0, 1050 , 50)) 

    # ------------------------------------------------------ 

    # TRANSITION SECTION 

    # ------------------------------------------------------ 

    # No GVA --> pumps fail independently 

    r_input.add_markov(’pump_1 == 0 and gva == 0’, ’pump_1 = 1’, 1.e -3) 

    r_input.add_markov(’pump_2 == 0 and gva == 0’, ’pump_2 = 1’, 1.e -3) 

    r_input.add_markov(’pump_3 == 0 and gva == 0’, ’pump_3 = 1’, 1.e -3) 

    r_input.add_markov(’pump_4 == 0 and gva == 0’, ’pump_4 = 1’, 1.e -3) 

    # with a rate of 4.E -4 a 2v4 GVA happens 

    r_input.add_markov(’gva == 0’, ’gva = 1’, 4.E -4) 

    # with a rate of 1.E -4 a 3v4 GVA happens 

    r_input.add_markov(’gva == 0’, ’gva = 2’, 1.E -4) 

    # with a rate of 2.5E -5 a 4v4 GVA happens 

    r_input.add_markov(’gva == 0’, ’gva = 3’, 2.5E -5) 

    # if 2v4 GVA happens , pump3 and 4 can fail independently with a rate 

1.E -3 

    r_input.add_markov (’gva == 1 and pump_3 == 0’, ’pump_3 = 1’, 1.E -3) 

    r_input.add_markov (’gva == 1 and pump_4 == 0’, ’pump_4 = 1’, 1.E -3) 

    # if a 2v4 GVA happens pump 1 and 2 will fail too 

    r_input.add_fixed (’gva == 1’, ’pump_1 = 1; pump_2 = 1’) 

    # if a 3v4 GVA happens pump 1, 2 and 3 will fail too 

    r_input.add_fixed (’gva == 2’, ’pump_1 = 1; pump_2 = 1; pump_3 = 1’) 

    # if a 4v4 GVA happens pump 1, 2, 3 and 4 will fail too 

    r_input.add_fixed (’gva == 3’,  
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                       ’pump_1 = 1; pump_2 = 1; pump_3 = 1; pump_4 = 1’) 

 

    return r_input 

 

The following failure states have been selected and regarded separately: 

State 15 = [1, 1, 1, 1, 0] - no GVA , 4 pumps fail independently 

State 19 = [1, 1, 1, 1, 1] - 2v4 - GVA ; 2 pumps also fail independently 

State 21 = [1, 1, 1, 1, 2] - 3v4 GVA and 1 pump also fails independently 

State 22 = [1, 1, 1, 1, 3] - 4v4 -GVA , i.e. all 4 pumps fail due to GVA 

Fig. 2.3 shows the time development of the different state probabilities and the sum over 

these individual probabilities. The sum corresponds to the probability that all four pumps 

are failed. 

 

Fig. 2.3 State probabilities for RAMESU system 3 (CCF) as a function of time 

The figure becomes more informative if the normalized state probability is shown as in 

Fig. 2.4. Whereas the relative probability of a complete 4o4 CCF decreases with time, 

the relative probabilities of a 2o4 CCF and a completely independent failure of all four 

pumps increase, the higher rates of independent pump failure start to dominate. 
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Fig. 2.4 Normalised state probabilities for RAMESU system 3 (CCF) as a function of 

time 

2.1.3.4 System 4: Dependency of the Failure Behaviour on the System Status 

System 4 is based on system 3. The difference is that the following dependencies exist 

in the failure behaviour in system 4: If a 2o4 CCF occurs and the pumps 1 and 2 fail the 

two remaining pumps 3 and 4 must ensure the required feed-in capacity and are used 

correspondingly more. The failure rate of the pumps 3 and 4 therefore increases from 

1 E-03 to 2 E-03 compared to system 3. 

If a 3o4 CCF occurs the failure rate of the remaining pump 4 increases from 1 E-03 to 

5 E-03 compared to system 3. 

def test_input_system4 (): 

 

    r_input = RAMESUInput () 

    # ------------------------------------------------ 

    # COMPONENT - SECTION 

    # ------------------------------------------------ 

    r_input.add_component(’pump_1 ’, (0, 1) , ’0 - ok 1 -failed ’) 

    r_input.add_component(’pump_2 ’, (0, 1) , ’0 - ok 1 -failed ’) 

    r_input.add_component(’pump_3 ’, (0, 1) , ’0 - ok 1 -failed ’) 

    r_input.add_component(’pump_4 ’, (0, 1) , ’0 - ok 1 -failed ’) 

    r_input.add_component(’gva ’, (0, 1, 2, 3) ,  

                          ’0 no GVA 1-2 v4 2-3 v4 3-4 v4 GVA ’) 

   # ----------------------------------------------- 

   # Initial State section 

   # ----------------------------------------------- 



 

26 

   r_input.set_initial((0 , 0, 0, 0, 0) , 1.0) 

   # ----------------------------------------------- 

   # Calculation Times t : 

   # ----------------------------------------------- 

   r_input.add_calc_times( range (0, 1050 , 50)) 

   # ---------------------------------------------- 

   # TRANSITION SECTION 

   # ----------------------------------------------- 

   # no GVA --> pumps fail independently 

   r_input.add_markov(’(pump_1 , gva) == (0, 0)’, ’pump_1 = 1’, 1.e -3) 

   r_input.add_markov(’(pump_2 , gva) == (0, 0)’, ’pump_2 = 1’, 1.e -3) 

   r_input.add_markov(’(pump_3 , gva) == (0, 0)’, ’pump_3 = 1’, 1.e -3) 

   r_input.add_markov(’(pump_4 , gva) == (0, 0)’, ’pump_4 = 1’, 1.e -3) 

 

   # with a rate of 4.E -4 a 2v4 GVA happens 

   r_input.add_markov (’gva == 0’, ’gva = 1’, 4.E -4) 

   # with a rate of 1.E -4 a 3v4 GVA happens 

   r_input.add_markov (’gva == 0’, ’gva = 2’, 1.E -4) 

   # with a rate of 2.5E -5 a 4v4 GVA happens 

   r_input.add_markov (’gva == 0’, ’gva = 3’, 2.5E -5) 

 

   # if 2v4 GVA happens , pump3 and 4 can fail independently 

   # with an increases rate 2.E -3 

   r_input.add_markov (’gva == 1 and pump_3 == 0’, ’pump_3 = 1’, 2.E -3) 

   r_input.add_markov (’gva == 1 and pump_4 == 0’, ’pump_4 = 1’, 2.E -3) 

 

   # if a 2v4 GVA happens pump 1 and 2 will fail too 

   r_input.add_fixed (’gva == 1’, ’pump_1 = pump_2 =1 ’) 

   # if a 3v4 GVA happens pump 1, 2 and 3 will fail too 

   r_input.add_fixed (’gva == 2’, ’pump_1 = pump_2 = pump_3 =1 ’) 

 

 

   # after a 3v4 GVA the failure rate of the remaining pump increases to 

5.E -3 

   r_input.add_markov (’gva == 2 and pump_4 == 0’, ’pump_4 = 1’, 5.E -3) 

    

# if a 4v4 GVA happens pump 1, 2, 3 and 4 will fail too 

   r_input.add_fixed (’gva == 3’,  

                      ’pump_1 =1; pump_2 = pump_3 = pump_4 =1’) 

    

   return r_input 

 

The generated space of system states corresponds to that of system 3. Fig. 2.5 shows 

the effects of increasing the independent failure rates when a CCF occurs on the proba-

bility of system failure. 
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Fig. 2.5 System failure rate of system 3 in comparison to that of system 4 

Due to the assumed increases in the failure rates still in operation when a CCF occurs, 

the failure probability of system 4 increases by approx. 30 % from 0.287 to 0.375 com-

pared to system 3 after 1000 h of operation. 

2.1.3.5 System 5: Cold Redundancy of Two Redundant Components 

System 5 consists of two redundant components that are in operation at the same time 

(‘hot redundancy’). System 5 differs from system 1 in that the two redundant components 

operate in ‘cold redundancy’. This means that pump 1 runs first while pump 2 is in ‘stand-

by’ idle mode. As soon as pump 1 fails, the system automatically switches over to 

pump 2, which then resumes operation. In this case, it is assumed that the switchover to 

pump 2 is successful with a probability of 95 % and fails with a probability of 5 %. If the 

switchover is not successful, pump 2 is not activated and is therefore not available for 

further operation. The failure of pump 2 can therefore be caused by the following two 

situations: (i) switchover to pump 2 works and pump 2 fails in the operational state at a 

rate of 1 E-03, and (ii) switchover to pump 2 does not work, and thus pump 2 is not 

available for further operation. 

The system is considered to be failed if pump 1 and pump 2 are failed or are unavailable. 
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In this system modelling, the semi-Markov property is used the first time. The switchover 

to pump 2 does not take place via an exponentially distributed random time, but at the 

point in time at which pump 1 fails. The semi-Markov properties of a system are defined 

via singular matrices that are applied at specific points in time. As pump 1 can fail at any 

time in this example, a small value (here 1 h) is selected for the period of the application 

times of the singular matrix in order to achieve the best possible approximation to the 

continuous failure time of pump 1. An even smaller value could have been used for the 

period, but this would have no relevant influence on the results. 

For system 5, three components were defined, two pumps and a switch (Swtch) for the 

changeover. For pump 1, two states are defined: 1 –running and 2 – failed. For pump 2, 

four states are defined: 0 – stand-by, 1 – running, 2 – failed and 3 – not available, as the 

switchover has not taken place. The switch has three states: 0 – inactive, 1 – switchover 

successful and 2 – switchover not successful. The initial state is [1, 0, 0], i.e. pump 1 is 

running, pump 2 is in stand-by mode, and the switch is inactive. When pump 1 is running, 

it can fail with a rate of 1 E-03 per hour. As long as pump 1 is running, pump 2 is in stand-

by mode. 

def test_input_system5 ( prob_sm_1 = 0.95 , prob_sm_2 = 0.05) : 

 

    r_input = RAMESUInput () 

    # ------------------------------------------------ 

    # COMPONENT - SECTION 

    # ------------------------------------------------ 

    r_input.add_component(’pump_1 ’, (1, 2) , ’1-on 2- failed ’) 

    r_input.add_component(’pump_2 ’, (0, 1, 2, 3),  

                          ’1-on 2-failed 3-failure due to switch-over’) 

    r_input.add_component (’switch ’, (0, 1, 2),  

                           ’0- idle 1-ok 2-failed ’) 

    # ----------------------------------------------- 

    # Initial State section 

    # ----------------------------------------------- 

    r_input.set_initial((1 , 0, 0) , 1.0) 

    # ----------------------------------------------------- 

    # Calculation Times t : 

    # ----------------------------------------------------- 

    r_input.add_calc_times( range (0, 1050 , 50)) 

    # ------------------------------------------------------ 

    # TRANSITION SECTION 

    # ------------------------------------------------------ 

    r_input.add_semi_markov(’pump_1 == pump_2 == switch == 0’,  

                            ’switch = 1’, prob_sm_1 ,  

                            calc_times = range (0, 1001 , 1)) 

    r_input.add_semi_markov(’pump_1 == 2 and pump_2 == switch == 0’,    

                            ’switch = 2’, prob_sm_2,       

                            calc_times = range (0, 1001 , 1)) 

 

    r_input.add_markov(’pump_1 == 1’, ’pump_1 = 2’, 1.e -3) 

    r_input.add_markov(’pump_2 == switch == 1’, ’pump_2 = 2’, 1.e-3) 

 

    r_input.add_fixed(’pump_2 == 0 and switch == 1’, ’pump_2 = 1’) 

    r_input.add_fixed(’pump_2 == 0 and switch == 2’, ’pump_2 = 3’) 
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    r_input.add_fixed(’pump_1 == 1’, ’pump_2 = switch = 0’) 

     

    return r_input 

 

The condition for the switchover is defined by the first singular matrix. The switch is in 

the inactive state 0 until pump 1 fails. As soon as pump 1 fails, the switch is activated 

and successfully switches to pump 2 with a probability of 0.95. If the switchover is suc-

cessful, the switch assumes state 1. With a probability of 0.05 the switchover is not suc-

cessful. In this case, the switch is set to state 2. This is defined by the conditions of the 

second singular matrices. If the switchover is successful and the switch is in state 1, 

pump 2 is set from stand-by to operational state (i.e. from state 0 to state 1), this is de-

fined in the first fixed transition. If pump 2 is in the stand-by state and the switchover is 

not successful after pump 1 fails, the switch is set to state 2 (see second added semi-

Markov transition). If the switch is in state 2, pump 2 is set to state 3, which describes 

the unavailability of pump 2 due to the faulty switchover (see second fixed transition). If 

pump 2 has been successfully switched over to pump 1 after pump 2 has failed, pump 2 

can fail randomly during its operational state with a failure rate of 1 E-03 (see second 

Markov transition). 

System 5 is considered to have failed if pump   has failed, and pump 2 is in state 2 or 

state 3. Pump 2 is in state 3 if it is not possible to switch to pump 2 due to the defective 

switch. The failure probabilities of system 1 (hot redundancy) and system 5 (cold redun-

dancy) are shown graphically in Fig. 2.6 below. 
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Fig. 2.6 Comparison of the system state probability, for a hot redundancy system 

(blue) and for a cold redundancy system (red) 

Due to the cold redundancy, the failure probability of system 5 can be reduced by 30 % 

from approx. 0.4 (system 1) to 0.28 (system 5) after 1000 h of operation compared to 

system 1. This improvement in reliability was achieved even though a failure probability 

of 0.05 was assumed for the switchover to pump 2. 

2.1.3.6 System 6: Cyclic Switching of the Pumps at Specific Times 

Unlike in system 5, the switchover does not only take place when pump 1 fails, but at 

certain points in time when the system switches between pumps 1 and 2 cyclically. At 

the beginning, pump 1 is in operation, while pump 2 is in stand-by mode. After 250 h of 

operation, pump 1 switches over to pump 2 if pump 1 has not failed in the meantime. If 

the switchover is successful (p = 0.95) pump 2 is activated, and pump 1 is set to stand-

by. Pump 2 also remains in operation for 250 h. Pump 1 is then switched back to pump 2, 

provided pump 2 has not failed in the meantime, and pump 2 is set to the stand-by state. 

It is assumed that the individual switchovers are each 95 % successful and that there is 

a 5 % probability of failure. If the switchover is unsuccessful, the pump in operation at 

that time will continue to operate up to the end as the switch for the switchover is as-

sumed to have failed. 



 

31 

The pumps are not maintained during the stand-by phases. However, it is assumed that 

the failure rates of the pumps are reduced in their stand-by phases. It is assumed that 

the failure rate of the stand-by phase is only 1/5 of the failure rate of the operational 

phase, i.e. λ𝑠𝑡𝑎𝑛𝑑𝑏𝑦 = 0.2 ⋅ λ𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛. In other words, the failure rate in the operational 

phase is 1 E-03, the failure rate in the stand-by phase is 2 E-04. If the switchover to pump 

2 (or pump 1) is not successful, pump 2 (or pump 1) is considered unavailable for further 

operation. The system is considered to be failed if both pumps fail or are unavailable 

during their respective operating phases. Due to the more complex behaviour of sys-

tem 6, the modelling of the singular matrices and the transition section are explained in 

detail. 

The switchovers take place with a period of 250 h until the end of the calculation time. 

The switch can fail with a probability of 0.05 for each changeover in which the switch 

becomes active. This is modelled in the first two singular matrices. As it is assumed that 

the switch can only fail at the changeover times, the application times of these matrices 

start at T_start = 250 h and have a period of 250 h until the end of the time. The second 

semi-Markov transition is only used when pump 1 is in operation, pump 2 is in stand-by 

and the switch is intact, i.e. the system state [1, 0, 1] is present. This state can be present 

at the times t = 250 h and t = 750 h. The third semi-Markov transition is used when the 

system state [0, 1, 1] is present, i.e. pump 1 is in stand-by, pump 2 is in operation and 

the switch is intact. This state can be present at the times t = 500 h and t = 1000 h due 

to the cyclical switchovers. It should be noted that the same values for T_start, T_end and 

Period have been set in these semi-Markov transitions. This means that the correspond-

ing changeovers are carried out at exactly these points in time. 

If the switch has failed and it is therefore not possible to switch over to the pump that is 

in stand-by, this pump is considered unavailable in the further course and is set from 

state 0 to state 3. In this case, the running pump remains in operation. This situation is 

modelled by two fixed transitions. 

def test_input_system6 (): 

 

    r_input = RAMESUInput () 

    # ------------------------------------------------ 

    # COMPONENT - SECTION 

    # ------------------------------------------------ 

    r_input.add_component (’pump_1 ’, (0, 1, 2, 3) , ’0- stand by 1-on 2- 

failed 3-not available’) 

    r_input.add_component (’pump_2 ’, (0, 1, 2, 3) ,’0- stand by 1-on 2- 

failed 3-not available’) 

    r_input.add_component (’switch ’, (1, 2) ,’1-ok 2- failed ’) 

    # ----------------------------------------------- 
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    # Initial State section 

    # ----------------------------------------------- 

    r_input.set_initial ((1 , 0, 1) , 1.0) 

    # ----------------------------------------------------- 

    # Calculation Times t : 

    # ----------------------------------------------------- 

    r_input.add_calc_times ( range (0, 1050 , 50)) 

    # ------------------------------------------------------ 

    # TRANSITION SECTION 

    # ------------------------------------------------------ 

    # The switch can fail with a probability of 0.05 for each 

    # changeover in which the switch becomes active 

    r_input.add_semi_markov(’(pump_1, pump_2, switch) == (1 ,0 ,1) or ’ 

                            ’(pump_1 , pump_2 , switch) == (0 ,1 ,1)’, 

                            ’switch = 2’, 

                            prob =0.05 , 

                            calc_times = range (250 , 1250 , 250)) 

    # The second semi - markov transition is only used when pump 1 is in 

    # operation , pump 2 is in standby and the switch is intact 

    r_input.add_semi_markov(’(pump_1 , pump_2 , switch) == (1 ,0 ,1)’,  

                            ’pump_1 = 0; pump_2 = 1’, 

                            prob =1. , 

                            calc_times =[250 , 750] ,) 

    # The third semi - markov transition is only used pump 1 is in standby 

, 

    # pump 2 is in operation and the switch is intact 

    r_input.add_semi_markov(’(pump_1 , pump_2 , switch) == (0 ,1 ,1) ’, 

                            ’pump_1 = 1; pump_2 = 0’, 

                            prob =1. , 

                            calc_times =[500 , 1000]) 

    # The failure rate in the operating phase is 1.E -3 

    r_input.add_markov(’(pump_1 , pump_2 , switch ) == (1 ,0 ,1) or ’ 

                       ’(pump_1 , pump_2 , switch ) == (1 ,3 ,2) ’, 

                       ’pump_1 = 2’, rate =1.e -3) 

    r_input.add_markov (’(pump_1 , pump_2 , switch ) == (0 ,1 ,1) or ’ 

                        ’(pump_1 , pump_2 , switch ) == (3 ,1 ,2) or ’ 

                        ’(pump_1 , pump_2 , switch ) == (2 ,1 ,1) or ’ 

                        ’(pump_1 , pump_2 , switch ) == (1 ,2 ,1) ’, 

                        ’pump_2 = 2’, rate =1.e -3) 

 

    # The failure rate in the standby phase is 4.E -4 

    r_input.add_markov (’(pump_1 , pump_2 , switch ) == (0 ,1 ,1) ’, 

                        ’pump_1 = 2’, rate =2.e -4) 

    r_input.add_markov (’(pump_1 , pump_2 , switch ) == (1 ,0 ,1) ’, 

                        ’pump_2 = 2’, rate =2.e -4) 

 

 

     

    # If the switch has failed or one pump is in standby and one failed 

    # and it is therefore not possible to switch , the standby – pump is 

considered 

    # unavailable in the further course, is set from state 0 to state 3 

    r_input.add_fixed (’(pump_1 , pump_2 , switch) == (1 ,0 ,2) or ’ 

                       ’(pump_1 , pump_2 , switch) == (2 ,0 ,1) ’, 

                       ’pump_2 = 3’) 

    r_input.add_fixed (’(pump_1 , pump_2 , switch ) == (0 ,1 ,2) or ’ 

                       ’( pump_1 , pump_2 , switch ) == (0 ,2 ,1) ’, 

                       ’pump_1 = 3’) 

 

    return r_input 
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Eleven different system states can be reached: 

1. [1, 0, 1] pump 1 is running, pump 2 is in stand-by, and the switch is intact. 

2. [2, 3, 1] pump 1 fails before the time of switchover. Although the switch is intact, 

pump 2 cannot be activated and is set to not available (= 3). This state is considered 

a system failure. 

3. [0, 1, 1] pump 1 is on stand-by while pump 2 is running. The switch is in a functional 

state. 

4. [3, 2, 1] pump 2 fails before the switchover time. Since the switchover time is not 

reached due to the premature failure of pump 2, pump 1 cannot be activated and is 

set to not available (= 3). This state is regarded as a system failure. 

5. [2, 1, 2] pump 1 fails in the stand-by phase while pump 2 is in operation. The switch 

is in ok state. When the system reaches the switchover time, pump 2 continues to 

run. 

6. [1, 2, 1] pump 2 fails in the stand-by phase while pump 1 is in operation. The switch 

is intact. When the system reaches the switchover point, pump 1 continues to run. 

7. [1, 3, 2] switchover to pump 2 does not work because the switch is defective. pump 1 

therefore continues running. 

8. [2, 3, 2] switchover to pump 2 does not work because the switch is defective. While 

pump 1 continues to operate, pump 1 fails. This state is considered a system failure. 

9. [3, 1, 2] switchover to pump 1 does not work because the switch is defective. Pump 2 

therefore continues running. 

10. [3, 2, 2] switchover to pump 1 does not work because the switch is defective. While 

pump 2 continues to operate, pump 2 fails. This state is considered a system failure. 

11. [2, 2, 1] one of the two pumps fails in the stand-by phase (see state 4 or 5), the other 

pump fails while it is in operation. 

Another way of verifying the model is to check the plausibility of the state probabilities. 

For example, the system state [3, 2, 1] has the probability 0 up to the first switchover 

time t = 250 h, as pump 2 is not in operation during this time period and therefore cannot 

fail during operation. For the same reason, the state [3, 2, 2] also has a probability of 0. 

The progression of the state probabilities over time is shown in Fig. 2.7. 
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Fig. 2.7 Development of the state probability for state [3, 2, 1] (pump 2 fails before 

switchover time) and state [3, 2, 2] (switchover to pump 1 does not work be-

cause the switch fails) 

The development over time of the probabilities of ‘state [2 3 1]’ and ‘state [3 2 1]’ (Fig. 

2.7) also indicates the correctness of the model. For example, the influence of the switch-

overs on the probability curve can be recognised in these two states. In the time ranges 

in which the probabilities of ‘state [2 3 1]’ increase because pump 1 is in operation and 

can fail, the probabilities of ‘state [3 2 1]’ remain constant because pump 2 is in stand-

by. The reverse is also true. In the time ranges in which the probabilities of ‘state [3 2 1]’ 

increase, the probabilities of ‘state [2 3 1]’ remain constant, as pump 1 is in stand-by 

during these time ranges. This figure clearly shows that the failures that occur in the 

operational state of the pumps provide the largest contribution to the system failure. This 

can be explained by the fact that the failure of one pump in the operational state results 

in the simultaneous unavailability of the other pump, as the switchover no longer occurs 

due to the failure. This is also associated with a system failure. The failures that occur 

during the stand-by phase of the pumps or due to a faulty changeover, on the other hand, 

provide a relatively small contribution to the system failure. 
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2.1.3.7 System 7: Influence of Repair 

System 7 consists of two pumps with ‘hot redundancy’, i.e. both pumps run simultane-

ously. If both pumps run together, the failure rate is 0.001. If one of the two pumps fails, 

the failure rate of the other pump still running increases by 50 % to 0.0015. 

The pumps are tested sequentially with a period of 200 h. In other words, pump 1 is 

tested at the time t = 200h, pump 2 after t =400 h, pump 1 after t = 600 h and pump 2 

after t = 800 h. If the tested pump is in a failed state, it is repaired at a repair rate of 0.05, 

i.e. the average repair time is 20 h. As soon as the repair of the failed pump has been 

completed, it is switched on again and is assumed to be ‘as good as new’. When both 

pumps are running together again, the failure rate of both pumps is again 0.001. 

It is assumed that at the later test times t = 600 h and t = 800 h the failure of the tested 

pump is recognised with a reduced probability of 90 %. This means that with a probability 

of 10 %, the failure remains undetected, and no repair takes place. System 7 is failed if 

both pumps are in a failed state. The variable ‘Repair’ was defined to indicate when the 

respective pumps are in the repair state. This variable indicates whether a failure has 

been detected, and a repair is required (1 – repair demanded) or not (0 – no repair). The 

‘Repair’ variable therefore serves as an indicator variable here. 

The initial state [1, 1, 0], which has a probability of 1, indicates that both pumps are in 

operation at the same time. In the singular matrices SM 1 – SM 4, the system checks at 

certain points in time whether the component being checked at that time is in a failed 

state. If so, the variable ‘Repair’ is set to state 1. For example, SM 1 is to be interpreted 

as follows: If pump 1 is in a failed state at the time t = 200 h and pump 2 is still in opera-

tion, the variable ‘Repair’ is set to the value 1 with probability 1. This means that the 

failure and the need for repair is recognised with certainty at this point in time. The situ-

ation is slightly different at the time t = 600 h, when the failure of pump 1 is only recog-

nised with a probability of 90 %. The variable ‘Repair’ is used in the TRANSITION-

SECTION to indicate that the corresponding component needs to be repaired. 

def test_input_system7(): 

 

    r_input = RAMESUInput () 

    # ------------------------------------------------ 

    # COMPONENT - SECTION 

    # ------------------------------------------------ 

    r_input.add_component(’pump_1 ’, (1, 2) , ’1-on 2- failed ’)  

    r_input.add_component(’pump_2 ’, (1, 2) , ’1-on 2- failed ’)  
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    r_input.add_component(’repair ’, (0, 1) , ’1-no repair, 2- repair 

demanded ’) 

    # ----------------------------------------------- 

    # Initial State section 

    # ----------------------------------------------- 

    r_input.set_initial((1 , 1, 0) , 1.0) 

    # ----------------------------------------------------- 

    # Calculation Times t : 

    # ----------------------------------------------------- 

    r_input.add_calc_times( range (0, 1050 , 50)) 

    # ------------------------------------------------------ 

    # TRANSITION SECTION 

    # ------------------------------------------------------ 

    r_input.add_semi_markov(’(pump_1 , pump_2 , repair ) = (2 ,1 ,0)’,  

                            ’repair = 1’, 1., calc_times =[200 , 600]) 

    r_input.add_semi_markov(’(pump_1 , pump_2 , repair ) = (1 ,2 ,0) ’, 

                            ’repair = 1’, 1., calc_times =[400 , 800]) 

    # ----------------------------------------------------- 

    # Specification of Markov Transitions 

    # ----------------------------------------------------- 

    # Failure rate if both pumps run at the same time 

    r_input.add_markov(’pump_1 == pump_2 == 1’,’pump_1 = 2’, 1.e -3) 

    r_input.add_markov(’pump_1 == pump_2 == 1’,’pump_2 = 2’, 1.e -3) 

    # Failure rate if one pump is failed 

    r_input.add_markov(’(pump_1 , pump_2 ) == (1 ,2) ’,’pump_1 = 2’, 1.5e -

3) 

    r_input.add_markov(’(pump_1 , pump_2 ) == (2 ,1) ’,’pump_2 = 2’, 1.5e -

3) 

    # Repair of pump1 happens with rate 0.05 if pump1 found failed at 

testing time 

    r_input.add_markov(’(pump_1 , pump_2 , repair ) = (2 ,1 ,1) ’, ’pump_1 

= 1’, 0.05) 

    # Repair of pump2 happens with rate 0.05 if pump2 found failed at 

testing time 

    r_input.add_markov(’(pump_1 , pump_2 , repair ) = (1 ,2 ,1) ’, ’pump_2 

= 1’, 0.05) 

    # ------------------------------------------------------- 

    # Specification of Fixed Transitions 

    # ------------------------------------------------------- 

    # If one pump has been repaired and other pump is not yet failed set 

repair to 0 

    r_input.add_fixed (’pump_1 == pump_2 == repair == 1’, ’repair = 0’) 

     

    return r_input 

 

Fig. 2.8 shows the course of the probabilities for those states that lead to system failure. 

These are the states [2, 2, 0] (state 4) and [2, 2, 1] (state 5). The probability of failure of 

the system is given by the sum of the probabilities of states 4 and 5 at the respective 

calculation times. The influence of repairs is not clearly visible in this figure, as only failed 

states are shown. 
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Fig. 2.8 Development of the state probabilities for system 7 for states in which the 

system is already failed 

The influence of the repairs can be recognised more clearly for those states in which the 

system has not yet failed, for the states [1, 1, 0] (state 0), [2, 1, 0] (state 1) and [1, 2, 0] 

(state 2), as shown in Fig. 2.9. 
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Fig. 2.9 Development of the state probabilities for system 7 for states in which the 

system has not yet failed 

For all three states, for which probability curves are provided, the influence of the repairs 

at the respective maintenance times is clearly recognisable. For state 0, in which both 

pumps are intact, the probability increases slightly immediately after the maintenance 

times. This slight increase in probability can be explained by the repair of the failed pump. 

With regard to states 1 and 2, the staggered repair of the pumps at the respective mainte-

nance times can be clearly recognised. Up to the first maintenance at the time t = 200 h, 

condition 1 and condition 2 have the same probability curve, as the same failure rates 

were assumed for both pumps. Up to this point in time, the probabilities of states 1 and 

2 increase to 0.14. After 200 h, maintenance is carried out on pump 1, the failure of which 

is recognised and subsequently repaired with an exponentially distributed repair time of 

20 h. At this point, the probability of state 1 decreases from 0.14 to 0, while the probability 

of state 2 continues to rise to 0.215 up to the maintenance time t = 400 h. The same 

applies to state 2 at the maintenance time t = 400 h. 

For the maintenance times t = 600 h and t = 800 h, it can be seen that the probabilities 

of states 1 and 2 are slightly higher than 0 after the repairs. This is due to the fact that at 
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these times the failure of the respective component is not recognised with a 10 % proba-

bility and in this case no repair takes place. 

The following description refers to the representation of the probability curve shown be-

low. During the maintenance of pump 2 at the time t = 400 h, the failure of this pump is 

recognised and changes to the repair state, which is defined by the system state [1, 2, 1] 

(state 3). At this time, state [1, 2, 0] (state 2) has a probability of 0 and state [1, 2, 1] a 

probability of 0.215. Due to the exponentially distributed repair time with a rate of 0.05, 

the probability of state [1, 2, 1] decreases to 0 until the next maintenance of pump 2 at 

the time t = 800 h, while the probability of state [1, 2, 0] rises to approx. 0.169 by this 

time. As the failure is recognised with a probability of 0.9 during the second maintenance 

of pump 2, the probability of the repair state [1, 2, 1] of pump 2 at the time t = 800 h is 

approx. 0.152, while the probability of the state [1, 2, 0] at this point in time does not 

decrease to 0 but to a value of approx. 0.017. 

To determine the probability of pump 2 being in the failed state while pump 1 is still in 

operation, the probabilities of states 2 and 3 must be added up. The sum of the proba-

bilities of these two states is also shown in Fig. 2.10. The probability behaviour for the 

failure of pump 1 can be explained in the same way as the probability behaviour for the 

failure of pump 2. The corresponding maintenance times for pump 1 are t = 200 h and 

t = 600 h. 

 

Fig. 2.10 Development of the state probabilities for system 7 for state 2 and state 3 
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2.1.3.8 Consideration of Uncertainties 

In this section, uncertainties relating to system 7 are to be taken into account. The table 

below lists the distributions that are assumed for the uncertainties of system 7. There is 

no uncertainty with regard to the probability of the initial state. 

Tab. 2.1 Probability distributions for the uncertainties of system 7 

No. Parameter Distribution 

1 Failure rate pump 1 if both pumps are working Gamma(1.5; 1000) 

2 Failure rate pump 2 if both pumps are working Gamma(1.5; 1000) 

3 Failure rate pump 1 if pump 2 is failed Gamma(2.5; 1000) 

4 Failure rate pump 2 if pump 1 is failed Gamma(2.5; 1000) 

5 Repair time pump 1 tW1 ~ U(150; 250) 

6 Repair time pump 2 tW2 ~ U(350; 450) 

7 Time second repair pump 1 tW3 ~ U(500; 700) 

8 Time second repair pump 2 tW3 + tW4 ~ U(50; 200) 

9 Probability for passing to repair state tW1 U(0.8; 1.0) 

10 Probability for passing to repair state tW2 U(0.8; 1.0) 

11 Probability for passing to repair state tW3 U(0.6; 1.0) 

12 Probability for passing to repair state tW4 U(0.6; 1.0) 

13 Repair rate pump 1 Gamma(1.0; 20) 

14 Repair rate pump 2 Gamma(1.0; 20) 

def test_input_system7_uncertain ( rate_fail_p1_b =1.e -3,  

                                   rate_fail_p2_b =1.e -3, 

                                   rate_fail_p1_s =1.5e -3, 

                                   rate_fail_p2_s =1.5e -3, 

                                   t_repair_p1 =200,  

                                   t_repair_p2 =400, 

                                   t2_repair_p1 =600,  

                                   t2_repair_p2=800, 

                                   p_repair_tr1 =1.,  

                                   p_repair_tr2 =1., 

                                   p_repair_tr3 =0.9,  

                                   p_repair_tr4=0.9, 

                                   rate_repair_p1 =0.05,  

                                   rate_repair_p2 =0.05) : 

    r_input = RAMESUInput () 

    # ------------------------------------------------ 

    # COMPONENT - SECTION 

    # ------------------------------------------------ 

    r_input.add_component (’pump_1 ’, (1, 2) , ’1-on 2- failed ’) 

    r_input.add_component (’pump_2 ’, (1, 2) , ’1-on 2- failed ’) 

    r_input.add_component (’repair ’, (0, 1) , ’1-no repair 2- repair 

demanded ’) 
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    # ----------------------------------------------- 

    # Initial State section 

    # ----------------------------------------------- 

    r_input.set_initial ((1 , 1, 0) , 1.0) 

    # ----------------------------------------------------- 

    # Calculation Times t : 

    # ----------------------------------------------------- 

    r_input.add_calc_times ( range (0, 1050 , 50)) 

    # ------------------------------------------------------ 

    # TRANSITION SECTION 

    # ------------------------------------------------------ 

    r_input.add_semi_markov(’pump_1 == 2 and pump_2 == 1 and repair==   0’, 

’repair = 1’, p_repair_tr1 , calc_times =[ t_repair_p1 ]) 

    r_input.add_semi_markov(’pump_1 == 1 and pump_2 == 2 and repair== 0’, 

’repair = 1’, p_repair_tr2 , calc_times =[ t_repair_p2 ]) 

    r_input.add_semi_markov(’pump_1 == 2 and pump_2 == 1 and repair== 0’, 

’repair = 1’, p_repair_tr3 , calc_times =[ t2_repair_p1 ]) 

    r_input.add_semi_markov(’pump_1 == 1 and pump_2 == 2 and repair== 0’, 

’repair = 1’, p_repair_tr4 , calc_times =[ t2_repair_p2 ]) 

   -------------------------------------------------------------- 

   # Specification of Markov Transitions 

   -------------------------------------------------------------- 

   # Failure rate if both pumps run at the same time 

   r_input.add_markov(’pump_1 == 1 and pump_2 == 1’,’pump_1 = 2’, 

rate_fail_p1_b ) 

   r_input.add_markov(’pump_1 == 1 and pump_2 == 1’,’pump_2 = 2’, 

rate_fail_p2_b ) 

   # Failure rate if one pump is failed 

   r_input.add_markov(’pump_1 == 1 and pump_2 == 2’,’pump_1 = 2’, 

rate_fail_p1_s ) 

   r_input.add_markov(’pump_1 == 2 and pump_2 == 1’,’pump_2 = 2’, 

rate_fail_p2_s ) 

   # Repair of pump1 happens with rate 0.05 if pump1 found failed at 

testing time 

   r_input.add_markov(’pump_1 == 2 and pump_2 == 1 and repair == 1’, 

’pump_1 = 1’,                      rate_repair_p1 ) 

   # Repair of pump2 happens with rate 0.05 if pump2 found failed at 

testing time 

   r_input.add_markov(’pump_1 == 1 and pump_2 == 2 and repair == 1’, 

’pump_1 = 1’, rate_repair_p2 ) 

-------------------------------------------------------------- 

# Specification of Fixed Transitions 

------------------------------------------------------------- 

# If one pump has been repaired and other pump is not yet failed set       

# repair to 0 

  r_input.add_fixed(’pump_1 == 1 and pump_2 == 1 and repair == 1’, ’repair 

= 0’) 

 

 return r_input 

 

 

The following uncertain parameters can be defined using the new SUSA sampling mod-

ule: 

rate_fail_p1_b = _dist.Parameter(’rate_fail_p1_b ’, _dist.Gamma (a=1.5 , 

scale =1./1000.)) 

rate_fail_p2_b = _dist.Parameter(’rate_fail_p2_b ’, _dist.Gamma (a=1.5 , 

scale =1./1000.)) 

rate_fail_p1_s = _dist.Parameter(’rate_fail_p1_s ’, _dist.Gamma (a=2.5 , 

scale =1/1000.)) 

rate_fail_p2_s = _dist.Parameter(’rate_fail_p2_s ’,  _dist.Gamma (a=2.5 , 

scale =1/1000.)) 
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rate_repair_p1 = _dist.Parameter(‘rate_repair_p1 ’, _dist.Gamma (a=1, scale 

=1/20.)) 

rate_repair_p2 = _dist.Parameter(’rate_repair_p2 ’, _dist.Gamma (a=1, scale 

=1/20.)) 

t_repair_p1 = _dist.Parameter(’t_repair_p1 ’, _dist.Uniform (150 , 100) ) 

t_repair_p2 = _dist.Parameter(’t_repair_p2 ’, _dist.Uniform (350 , 100) ) 

t2_repair_p1 = _dist.Parameter(’t2_repair_p1 ’, _dist.Uniform (500 , 200) ) 

t2_repair_p2 = _dist.Parameter(’t2_repair_p2 ’,_dist.Uniform (50 , 150) ) 

p_repair_tr1 = _dist.Parameter(’p_repair_tr1 ’,_dist.Uniform (0.8 ,0.2) ) 

p_repair_tr2 = _dist.Parameter(’p_repair_tr2 ’,_dist.Uniform (0.8 ,0.2) ) 

p_repair_tr3 = _dist.Parameter(’p_repair_tr3 ’,_dist.Uniform (0.6 ,0.4) ) 

p_repair_tr4 = _dist.Parameter(’p_repair_tr4 ’,_dist.Uniform (0.6 ,0.4) ) 

The full power of the SUSA sampling module can be used to sample the requested un-

certain parameters. 

params = [ rate_fail_p1_b, rate_fail_p2_b, rate_fail_p1_s, rate_fail_p2_s, 

rate_repair_p1, rate_repair_p2 , t_repair_p1, t_repair_p2, t2_repair_p1,  

t2_repair_p2, p_repair_tr1,  p_repair_tr2, p_repair_tr3, p_repair_tr4 ] 

 

rng = _rngs.LatinHyperCube ( generator = ’Mersenne_Twister’,  

                             sample_correlation = False,  

                             seed =1337, 

                             median_interval_point_selection = True ) 

med_usa = Medusapy (params , [], rng) 

arr = med_usa.get_sampled (20 , list_of_dicts = True ) 

 

The combination of the objects VarFunction and VariationQueue provided in the SUSA 

Simulation Run module allows to efficiently run the Markov analysis for all sampled pa-

rameter sets and to collect the results: 

# The VarFunction takes as input one input function which takes the de-   # 

fined uncertain parameter as named inputs 

# and a helper function which returns the output of the RAMESU analysis  # 

given the input 

ramesu_func = VarFunction( test_input_system7_uncertain, ramesu_helper ) 

queue = VariationQueue( ramesu_func , 3 ) 

queue.stage(* arr). wait () 

Sample = [ res for res in queue [:].done.value ] 

 

Finally, the influence of the uncertain variables on the probability of failure of system 7 is 

shown in Fig. 2.11. For better visualisation, the sample size of the uncertain variables 

was limited to 20. As already described in Section 2.1.3.7, the failure probability of the 

system is given by the sum of the probabilities of the states 4 = [2, 2, 0] and 5 = [2, 2, 1] 

at the respective calculation times. As a reminder: A system failure is defined by the fact 

that both pumps are in the failed state. State [2, 2, 1] refers to the occurrence of the 

system failure while one of the pumps is under repair. State [2, 2, 0] refers to the failure 

of both pumps without one of the pumps being under repair. The influence of the uncer-
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tainties on the state in which pump 1 is in operation and pump 2 is in failed state is shown 

in Fig. 2.12. By integrating the Markov program into SUSA, the varying results of the 

Markov model can be subjected to an uncertainty and sensitivity analysis as efficiently 

as possible. 

 

Fig. 2.11 Development of the probability of the state in which pump 1 is in operation 

and pump 2 is failed for various epistemic runs 
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Fig. 2.12 Development of the probability of the state in which pump 1 is in operation 

and pump 2 is failed for various epistemic runs 

2.2 Integration of the Functionality of the AURA Program for Estimating 

Distributions for Reliability Parameters 

The quantification of model parameters plays an important role in the application of mod-

els for reliability analyses of technical systems. The model parameters largely consist of 

reliability parameters such as failure rates, repair rates and failure probabilities per de-

mand. 

Data from operating experience is generally used to estimate reliability parameters. As 

this data only has a limited scope, the estimates of reliability parameters are associated 

with more or less large uncertainties. In order to calculate how the uncertainties of the 

reliability parameters affect the results of the underlying model, it is necessary to quantify 

the uncertainties associated with the estimate. The quantification of the uncertainties is 

expressed in the form of a probability distribution. 

With the methods implemented in SUSA, generic or system-specific distributions of the 

following three reliability parameters of components of technical systems can be esti-

mated: 

− failure rates, 
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− probabilities of failure on demand, and 

− repair rates. 

The observations from the installations are given respectively by the number of failures 

in a given observation time, the number of failures for a given number of demands, or 

the number of repairs with the repair time required for the repairs. 

The mathematical methods implemented are essentially based on Bayesian ap-

proaches. The available ‘generic’ observations (observations from other comparable 

plants or information from expert judgement) can be used as prior information (a-priori 

information) and modified accordingly by current observations from the specific plant of 

interest. The user thus has the option of including prior information in the generation of 

the distribution and receives a probability distribution as a result that describes the up-

dated state of knowledge with regard to the parameter of interest. 

The information to be used for the calculation can be either data from a specific plant 

and/or observations from other, but comparable plants or expert judgement. Here, expert 

judgement refers to the knowledge of quantile data of the reliability distribution, where a 

maximum entropy approach is used to combine such prior information. If such expert 

knowledge is not available, Bayesian approaches are used to combine the prior infor-

mation with a specific plant. Depending on the type of prior information, different ap-

proaches are available to arrive at a suitable prior distribution. 

In the case of ‘diffuse’ knowledge, i.e. no available prior information, the non-informative 

prior distribution is used. For the determination of plant-specific distributions with prior 

information, a specific posterior distribution with either a mixed distribution as prior or 

with the superpopulation approach as prior, which corresponds to the posterior distribu-

tion with unconditional generic distribution, can be used. The derivation of the two-stage 

Bayesian approach is explained in /PES 97/, while the derivations of the other ap-

proaches are described in /PES 95/. 

2.2.1 Data and Model Assumptions 

This section describes the data on which the distribution estimates are based and the 

model assumptions for the respective reliability parameters. 
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2.2.1.1 Failure Rates 

For the failure rates, the data consist of 

− the number k of observed failures of a component and 

− the observation time or operational time T of the component. 

Although only one component is referred to in this section, the data can also relate to 

several identical components. The observation or operating times refer to the time unit 

defined by the user, e.g., hours, days, years. The starting point for the derivations is the 

underlying probability model for failure rates per time unit. The probability that k failures 

occur in an observation time of T hours follows a Poisson distribution with the density 

function 

p(𝑘, 𝑇|λ) =
𝑇𝑘

𝑘!
λ𝑘𝑒−λ𝑇 ,  λ > 0  (2.13) 

As shown in equation (2.13), the probabilities depend on the value of the unknown pa-

rameter λ. The parameter λ denotes the failure rate to be estimated for the component 

or system unit of interest. 

2.2.1.2 Failure Probability per Demand 

For failure probabilities per demand, the data consist of 

− the number k of observed failures and 

− the number D of requirements 

of the component or component group. Assuming that the event ‘failure´ occurs with 

identical probability π for each request of a component (Bernoulli test), the probability for 

k failures for a given number of component requests D can be determined from a bino-

mial distribution with the density function 

p(𝑘, 𝐷|π) = (𝐷
𝑘
)π𝑘 ⋅ (1 − π)𝐷−𝑘 ,  0 ≤ π ≤ 1  (2.14) 

The probability depends on the value of the unknown parameter π to be estimated. 

π denotes the probability of failure of the component or system unit of interest per 

demand. 
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2.2.1.3 Repair Rate 

For repair rates, the data consist of 

− the number k of repairs observed and 

− the sum of the repair times 

of the component or component group. 

The underlying probability model assumes that the repair times T are independent and 

identically exponentially distributed. The probability that k repairs are carried out for a 

total repair time of T hours can be calculated using a Poisson distribution: 

𝑝(𝑘, 𝑇|𝜆) =
𝑇𝑘

𝑘!
𝜆𝑘𝑒−𝜆𝑇 ,  𝜆 > 0 (2.15) 

where λ is the repair rate to be estimated. 

2.2.1.4 Application of the Bayesian Method for Estimating Distributions 

The methods used are largely based on the Bayesian method, which is briefly described 

below. 

The aim is to express the level of knowledge of the parameters λ (or π) quantitatively in 

the form of a suitable probability distribution. For this purpose, λ (or π) is considered as 

a random variable. The Bayesian approach provides a method that allows the calculation 

of a corresponding probability distribution by including prior information about a parame-

ter of interest. With regard to the failure rate λ the Bayesian formula can be written as 

𝑝(𝜆|𝑘0, 𝑇0) =
𝑝(𝑘0, 𝑇0|𝜆)⋅𝑝0(𝜆)

∫ 𝑝(𝑘0, 𝑇0|𝜆)
∞

0
⋅𝑝0(𝜆)d𝜆

 (2.16) 

where p0(λ) denotes the prior distribution of λ and expresses the prior information that 

exists about λ before concrete observations from the specific plant are available. 

The distribution density p(λ|𝑘, 𝑇), which reflects the state of knowledge of λ after plant-

specific observations have been included in the calculations, is called posterior density. 

The integral in the denominator of the expression (2.15) extends over the entire range of 
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values of λ and is used for normalisation so that p (λ|𝑘, 𝑇) becomes a distribution density. 

The conditional probability p (λ|𝑘, 𝑇), for the observation (k, T) under the condition that a 

certain value λ of the failure rate is given is referred to as the likelihood of (k, T) for a 

given λ. The likelihood contains the additional information about the uncertain reliability 

parameter λ obtained from the observation. In this respect, it plays a decisive role in 

Bayes’ theorem as it updates the prior state of knowledge. 

The descriptions also apply analogously to repair rates and failure probabilities per re-

quirement. 

The use of the Bayesian approach has various advantages over the frequentist ap-

proach: 

• The result of the Bayesian method is a distribution for the parameter of interest (pos-

terior distribution), which expresses the current level of knowledge or uncertainty 

about the parameter. In contrast, the frequentist estimate provides a confidence in-

terval that contains the ‘true’ value of the parameter with a probability of 90 %, for 

example. 

• Observations from other, comparable plants can be integrated into the process as 

preliminary information in a mathematically consistent manner. In the first step, a 

generic distribution is determined with regard to the data from the preliminary infor-

mation. In the second step, this distribution is integrated into the Bayesian formula 

as a prior distribution and linked to the current data of a specific plant. 

• If no failures have been registered in T hours of observation (so-called 0-error statis-

tics), frequentist estimates will only produce unsatisfactory results. In contrast, 

Bayesian methods can be used to determine mathematically consistent distributions. 

2.2.2 System-specific Distribution Using a Non-informative Prior 

A frequent criticism of the practical applicability of Bayesian methods is associated with 

the selection of the prior distribution. In ‘classical´ statistics, prior information is only ac-

cepted insofar as it is based on frequentist data. In order to prevent the criticism of a lack 

of objectivity, the concept of the non-informative prior distribution offers the possibility of 

− avoiding a subjective assessment of the prior information as far as possible, apart 

from the need to accept the model assumptions and 

− finding an objective prior distribution without frequentist data. 
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The concept of a non-informative prior distribution is based on the idea of choosing the 

prior distribution in such a way that the information content of the posterior distribution is 

determined as far as possible by the likelihood function of the observed current data. The 

derivation of a non-informative prior distribution of a parameter or parameter vector of 

interest is carried out according to the Jeffreys method /JEF 46/. 

2.2.2.1 Failure Rate 

Given the observation (k0, T) of the specific plant, according to the model assumptions 

of Section 4.2.1.1 the distribution of the number of failures k0 in the given observation 

period T follows a Poisson distribution with unknown parameter λ. Furthermore, it is 

assumed that no further information or at best little knowledge about the failure rate 

λ exists so that the non-informative prior distribution for the parameter of the Poisson 

distribution is used. According to the rule of Jeffreys /BOX 11/, the following applies: 

𝑝0(λ) ∝ 𝐽(λ)
0.5,   with J(λ) = E (

∂2 log 𝑝(𝑥|λ)
∂λ2

) (2.17) 

For a Poisson distributed random variable x, this results in 

J(λ) = E (
𝑥

λ2
) (2.18) 

Since the expected value for a Poisson distributed random variable is λ, this results in 

J(λ) =
1

λ
 (2.19) 

For the non-informative prior of the parameter λ of the Poisson distribution, this results 

in 

𝑝0(λ) ∝ λ
−0.5 (2.20) 

Using the Bayesian formula, this leads to 

p(λ|𝑘0, 𝑇0) =

𝑇0
𝑘0

𝑘0!
λ𝑘0𝑒−λ𝑇0λ−0.5

∫
𝑇0
𝑘0

𝑘0!
λ𝑘0𝑒−λ𝑇0

∞
0

λ−0.5𝑑λ

=
𝑇𝑘0+0.5

Γ(𝑘0+0.5)
λ𝑘0−0.5𝑒−λ𝑇0 (2.21) 
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The system-specific posterior distribution of the failure rate with non-informative prior is 

thus a gamma distribution with the parameters k0 + 0.5 and T. 

2.2.2.2 Failure Probability 

The observations (k0, D0) of the specific plant are given and the modelling assumptions 

of Section 2.2.1.2 apply. Analogous to the treatment of the failure rates, it is assumed 

that no further information or at most little prior knowledge about the failure probability π 

exists, so that the non-informative prior distribution is used for the parameter of the bino-

mial distribution. According to Jeffrey /BOX 11/, the non-informative prior is 

𝑝0(π) ∝ π
−0.5(1 − π)−0.5 (2.22) 

Using Bayes’ theorem, a beta distribution with the parameters k0 + 0.5 and D0 – k0 + 0.5 

is obtained as the system-specific posterior of the probability of failure per demand, with 

non-informative prior of the parameter π of the binomial distribution k, i.e.: 

p(π|𝑘0, 𝐷0) =
Γ(𝐷0)

Γ(𝑘0+0.5)Γ(𝐷0−𝑘0+0.5)
π𝑘0−0.5(1 − π)𝐷0−𝑘0−0.5  (2.23) 

2.2.2.3 Repair Rate 

The number of repair times k0 and the total repair time T0 of the specific system are given 

and the modelling assumptions of Section 2.2.1.3 apply. In analogy to the derivation for 

failure rates, the following is obtained for the repair rate as a non-informative prior of the 

parameter λ of the exponential distribution 

𝑝0(λ) ∝ λ
−1  (2.24) 

Using Bayes’ theorem and the non-informative prior of λ, this results in a gamma distri-

bution with the parameters k0 and T0 as the plant-specific distribution of the repair rate, 

i.e.: 

p(λ|𝑘0, 𝑇0) =
𝑇0
𝑘0

Γ(𝑘0)
λ𝑘0𝑒−λ𝑇0 (2.25) 
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2.2.3 Mixed Distribution Approach 

The mixed distribution approach /FRO 85/ is based on an unconditional (i.e. not subject 

to the condition of certain estimated values) generic distribution, which is estimated by a 

weighted sum of gamma (or beta) distributions determined from the observations of com-

parable plants. It also takes into account the influence of the uncertainties of the individu-

al λ (π) on the estimation of the generic distribution. 

2.2.3.1 Failure Rate 

It is assumed that each individual plant has its own individual failure rate and the number 

of failures in each plant follows a Poisson distribution with the parameter λi (see Section 

2.2.1.1). Furthermore, it is assumed that no further information is available about the 

respective random variables Λi, which would justify the use of an informative prior distri-

bution for Λi. For each individual plant i (i = 1, …, n), the posterior of the respective Λi is 

therefore calculated on the basis of the non-informative prior distribution for Λi, together 

with the observation (ki, Ti), whereby a Γk +0.5,T distribution is obtained. 

Since each of the available observations should receive the same weighting (and there-

fore also the determined Γk +0.5,T distributions), the mixed distribution approach provides 

the arithmetic mean of the n calculated gamma distributions as a generic distribution, 

i.e.:  

p(λ|(𝑘𝑖 , 𝑇𝑖)𝑖 = 1,… , 𝑛) =
1

𝑛
∑ 𝑛

𝑇
𝑖

𝑘𝑖+0.5

Γ(𝑘𝑖+0.5)
λ𝑘𝑖−0.5𝑖=1 𝑒−λ𝑇𝑖 (2.26) 

A λi can be drawn from each of the individual gamma distributions and the empirical 

distribution of these rate values can be formed as an estimate of the conditional generic 

distribution. The mixture of many such empirical distributions (i.e. their arithmetic mean) 

would be the estimate of the (unconditional) generic distribution obtained according to 

the above procedure. 

If the determined mixed distribution is used as the prior distribution for the specific plant 

with k0 failures in the observation period T0, the following plant-specific poster distribution 

density is obtained: 
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n 

p(λ|𝑘0, 𝑇0) =

𝑇0
𝑘0

𝑘0!
λ𝐾0𝑒−λ𝑇0 ⋅

1
𝑛
∑

𝑇𝑖
𝑘𝑖+0.5

Γ(𝑘𝑖 + 0.5)
λ𝑖
𝑘𝑖−0.5𝑒−λ𝑇𝑖𝑛

𝑖=1

∫
𝑇0
𝑘0

𝑘0!
λ𝑘0𝑒−λ𝑇0

∞

0
⋅
1
𝑛
∑

𝑇𝑖
𝑘𝑖+0.5

Γ(𝑘𝑖 + 0.5)
λ𝑘𝑖−0.5𝑒−λ𝑇𝑖d𝑛

𝑖=1 λ

= 

                    
1

𝐴
∑1𝑖 = 1𝑛Γ𝑘0+𝑘𝑖+0.5,𝑇0+𝑇𝑖 (2.27) 

with the weights 

 A = ∑ 𝑖 = 1𝑛𝐴𝑖 = ∑
𝑇𝑖
𝑘𝑖+0.5

Γ(𝑘𝑖+0.5)

Γ(𝑘0+𝑘𝑖+0.5)

(𝑇0+𝑇𝑖)
𝑘0+𝑘𝑖+0.5

𝑛
𝑖=1  (2.28) 

and  

Γ𝑘0+𝑘𝑖+0.5,𝑇0+𝑇𝑖 =
(𝑇0+𝑇𝑖)

𝑘0+𝑘𝑖+0.5

Γ(𝑘0+𝑘𝑖+0.5)
λ𝑘0+𝑘𝑖−0.5𝑒−λ(𝑇0+𝑇𝑖) (2.29) 

The plant-specific distribution with prior information determined by the mixed distribution 

approach is therefore a weighted average of gamma distributions, where the weights are 

given by 
𝐴𝑖

𝐴
. 

2.2.3.2 Failure Probability 

The underlying ideas correspond to those for failure rates, whereby the modelling as-

sumptions of Section 2.2.1.2 apply and the non-informative prior of the parameter π of 

the binomial distribution is used. The following unconditional generic density function for 

Π is obtained analogously to the procedure described above for failure rates: 

p(π|𝑘𝑖 , 𝐷𝑖) =
1

𝑛
∑

Γ(𝐷𝑖+1)

Γ(𝑘𝑖+0.5)Γ(𝐷𝑖−𝑘𝑖+0.5)
π𝑘𝑖−0.5(1 − π)𝐷𝑖−𝑘𝑖−0.5𝑛

𝑖=1  (2.30) 

If this generic density function (it is the arithmetic mean of n beta distribution densities) 

is used as a prior, the following posterior distribution density is obtained with the obser-

vation (k0, T0) from the specific plant: 

p(π|𝑘0, 𝐷0) =
1

𝐴
∑𝐴𝑖𝐵(𝑘0 + 𝑘𝑖 + 0.5, (𝐷0 + 𝐷𝑖 − (𝑘0 + 𝑘𝑖) + 0.5)) (2.31) 
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with 

𝐴𝑖 =
𝐵(𝐷0+𝐷𝑖−(𝑘0+𝑘𝑖)+0.5,𝑘0+𝑘𝑖+0.5)

𝐵(𝐷𝑖−𝑘𝑖+0.5,𝑘𝑖+0.5)
 (2.32) 

The plant-specific distribution with prior information is thus a weighted average of 

beta distributions with the weights 
𝐴𝑖

𝐴
. 

2.2.3.3 Repair Rate 

Analogously to the failure rate but with adjusted non-informative prior distribution, see 

Section 2.2.1.3, the following results for the repair rate 

p(λ|𝑘0, 𝑇0) =
1

𝐴
∑ 𝐴𝑖Γ𝑘0+𝑘𝑖,𝑇0+𝑇𝑖
𝑛
𝑖=1  (2.33) 

with the weights including the specific system data resulting in  

𝐴𝑖 =
𝑇𝑖
𝑘𝑖

Γ(𝑘𝑖)

Γ(𝑘0+𝑘𝑖)

(𝑇0+𝑇𝑖)
𝑘0+𝑘𝑖

 (2.34) 

2.2.4 Superpopulation Approach 

The situation is assumed that observations from various comparable plants are avail- 

able, whereby a certain comparability in the operating and environmental conditions of 

the components in the various plants is given, but an identical underlying distribution of 

the reliability parameters of the components of the various plants cannot be assumed. In 

order to describe reality more appropriately, all components of the component group from 

each of the comparable plants are therefore assigned their common but plant-specific 

underlying distribution of the reliability parameters to be estimated. 

The population of the component groups under consideration from an imaginary multi-

tude of comparable systems, of which the actually existing systems can be understood 

as a random selection, is referred to as a superpopulation. 

The aim is to derive a model that has the ability to utilise the observations from the avail-

able comparable plants in order to obtain an estimate of the unknown distribution of the 

reliability parameters in the superpopulation. The reliability parameter λi (πi) to be esti-

mated, which is common to all components of the component group in plant i, can then, 
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as long as no plant-specific observations are available, be regarded as a realisation of a 

random sample from this distribution of the superpopulation. 

2.2.4.1 Failure Rates 

The probability model on which the observations (ki, Ti) are based is a Poisson distribu-

tion (see Section 2.2.1.1) with fixed but unknown parameters λi. The λi are regarded as 

realisations of a random variable Λ, which follows the distribution in the superpopulation, 

i.e. the failure rate of the component group under consideration in the population of com-

parable plants. 

The distribution model of the superpopulation is assumed to be a gamma distribution 

with the parameters α and β – referred to below as Gamma(α, β) – with the density 

function 

𝑝λ(λ|α, β) =
βα

Γ(α)
λα−1𝑒βλ (2.35) 

A further specification of the assumed gamma distribution cannot be made as no direct 

information is available on the alpha and beta parameters. 

The family of gamma distributions is sufficiently flexible and at the same time the gamma 

distribution is the conjugate distribution to the Poisson distribution of the observations, 

i.e. the Bayesian approach provides a posterior distribution based on a prior gamma 

distribution, which is also of the type of gamma distribution and whose parameters are 

not complicated to determine. 

To estimate the parameters α, β, Bayes’ theorem is used, starting from a non-informative 

prior for α, β. This has the property that the posterior distribution for α, β determined with 

Bayes theorem is essentially characterised by the observations from the n comparable 

plants. The expression 

𝑝0(α, β) ∝ α
−0.5β−1 (2.36) 

is used as the non-informative prior p0(α, β) for the parameters α and β of the gamma 

distribution, as described in /HOR 90/. 



 

55 

Under the assumptions listed above, the realisations λi of the Gamma(α, β) distributed 

random variable Λ, which are considered as a random sample from the sought-after dis-

tribution of the default rates of the superpopulation, have the likelihood function 

L(α, β)|λ1, … , λ𝑛) = ∏
βα

Γ(α)
λ𝑖
α−1𝑛

𝑖=1 𝑒−βλ𝑖 (2.37) 

With the likelihood and the non-informative prior p0(α, β), the two-dimensional density 

function p1 of the gamma distribution parameters α and β can be determined, using 

Bayes’ theorem 

𝑝1(α, β|λ1, … λ𝑛) =
𝐿(α, β|λ1, … , λ𝑛)𝑝0(α,β)

∫ ∫ 𝐿(α, β|λ1, … , λ𝑛)𝑝0(α,β)dαd
∞
0

β
∞
0

 (2.38) 

The denominator of the expression (2.38) serves as the normalisation constant, which is 

henceforth referred to as C, whereby p1 becomes a density. 

Furthermore, the underlying assumption that the failure rate is gamma-distributed over 

the superpopulation with unknown parameters α and β as well as the knowledge of the 

two-dimensional density function of the parameters α and β can be utilised. If the two 

density functions (2.35) and (2.38) are multiplied together and the parameters α and β 

are integrated out, an unconditional distribution p∼ of the failure rate lambda is obtained 

with respect to α and β, which, however, still depends on the selected values λ1, … , λn. 

The unconditional (i.e. not under the condition of a specially selected pair of parameter 

values (α, β)) generic distribution, depending on all λi, therefore has the density function 

𝑝∼(λ|λ1, … , λ𝑛) = ∫ ∫ 𝑝λ(λ|α, β)
∞

0

∞

0

⋅ 𝑝1(α, β|λ1, … , λ𝑛)d𝛼𝛽 

= ∫ ∫
βα

Γ(α)
λα−1𝑒−λβ

∞

0

∞

0
⋅
∏

βα

Γ(α)
λ𝑖
α−1𝑒−βλ𝑖𝑛

𝑖=1 α−0.5β−1

𝐶
dαdβ (2.39) 

Before the last step to generate the unconditional generic distribution of the failure rate 

λ is carried out, the meaning of the equation (2.39) should be discussed for a better 

understanding. 
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It is based on the idea that all theoretically possible values α∗, β∗ with α∗ ∈ (0, ∞), β∗ ∈ 

(0, ∞) are used for the parameters α and β. By combining all possible parameter values, 

all theoretically possible Gamma(α∗, β∗) distributions are taken into account to determine 

the failure rate distribution of interest. 

Each individual gamma distribution is assigned the weight according to the density func-

tion p1 over the parameter pair (α, β). The gamma distributions whose parameter combi-

nations (α, β) have the highest density values in the two-dimensional density function are 

assigned the greatest weight. However, the largest density values in equation (2.38) are 

those parameter combinations (α, β) that receive the largest likelihood given the selected 

λ1, …, λn (maximum likelihood estimates). Since the density distribution over α and β 

depends on the realisations λi, the gamma distributions that best correspond to the se-

lected λi are assigned the most importance. 

The integration carried out in equation (2.39) over all theoretically possible parameter 

values results in a mixture of all conceivable gamma distributions, whereby the mixture 

weight of the individual gamma distributions depends on how well they fit the individual 

realisations λi fit. 

So far, only the sample λ1, …, λn, which are realisations of randomly selected failure 

rates from the distribution of the superpopulation, have been discussed. However, the 

available data are not the randomly selected default rates mentioned so far, but the ob-

servation pairs (k1, T1), …, (kn, Tn) from the various plants. 

According to Section 2.2.1.1, the probability for the occurrence of ki failures in the obser-

vation time Ti in plant i follows a Poisson distribution with the parameter λi. Since it is 

assumed that the observations are independent of each other, the joint density of the 

observations (ki, Ti) is given by 

p(𝑘1|λ1, 𝑇1) ⋅ … ⋅ 𝑝(𝑘𝑛|λ𝑛, 𝑇𝑛) = ∏
(λ𝑖𝑇𝑖)

𝑘𝑖

𝑘𝑖!
𝑒−λ𝑖𝑇𝑖𝑛

𝑖=1  (2.40) 

The density value of a Poisson distribution for observation (ki, Ti) and the parameter 

λi is proportional to the gamma distribution density at λi with the parameters α = ki + 1 

and β = Ti: 
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p(𝑘𝑖|λ𝑖 , 𝑇𝑖) =
(λ𝑖𝑇𝑖)

𝑘𝑖

𝑘𝑖!
𝑒−λ𝑖𝑇𝑖 =

𝑇𝑖
𝑘𝑖

Γ(𝑘𝑖 + 1)
λ𝑖
𝑘𝑖𝑒−λ𝑖𝑇𝑖                                                              

       =
1

𝑇𝑖

𝑇𝑖
𝑘+1

Γ(𝑘𝑖+1)
λ𝑖
𝑘𝑖𝑒−λ𝑖𝑇𝑖  = Gamma(𝑘𝑖 + 1, 𝑇𝑖) =

1

𝑇𝑖
p(λ𝑖|𝑘𝑖 + 1, 𝑇𝑖) (2.41) 

The joint density of the observations in Expression (2.40) can be expressed by equation 

(2.41) as a likelihood function of all λi and can be expressed according to: 

𝐿∼(λ1, … , λ𝑛|(𝑘𝑖 , 𝑇𝑖)𝑖 = 1,… , 𝑛) =                                                                                                    

∏
1

𝑇𝑖
p(λ𝑖|𝑘𝑖 + 1, 𝑇𝑖)

𝑛
𝑖=1 ∝ ∏ 𝐺𝑎𝑚𝑚𝑎(𝑘𝑖 + 1, 𝑇𝑖)

𝑛
𝑖=1  (2.42) 

Using equations (2.39) and (2.42), the following density function is obtained: 

𝑝∗(𝜆|(𝑘𝑖 , 𝑇𝑖)𝑖=1,…,𝑛) =  

∫ .
∞

0
⋯∫ 𝑝∼(𝜆|𝜆1, … , 𝜆𝑛)

∞

0
⋅𝐿∼(𝜆1, … , 𝜆𝑛|(𝑘𝑖 , 𝑇𝑖)𝑖 = 1,… , 𝑛)d𝜆1,…,d𝜆𝑛

∫ ∫ .
∞

0

∞

0
⋯∫ 𝑝∼(𝜆|𝜆1, … , 𝜆𝑛)

∞

0
⋅𝐿∼(𝜆1, … , 𝜆𝑛|(𝑘𝑖 , 𝑇𝑖)𝑖 = 1,… , 𝑛)d𝜆d𝜆1,…,d𝜆𝑛

 (2.43) 

Since a double integral already has to be solved in equation (2.39) and equation (2.43) 

additionally has to be integrated over all λi, an analytical solution of equation (2.43) is out 

of the question. 

An approximate solution of the integration over all λi is available using Monte Carlo sim-

ulation. For this purpose, a sample of size s is drawn from each Gamma(ki +1, Ti) distri-

bution. This provides the sample (λi(1), …, λi(s)) from the density function 

𝑇
𝑖

𝑘𝑖+1

𝑇(𝑘𝑖+1)
𝜆𝑖
𝑘𝑖𝑒−𝜆𝑖𝑇 given by the observation. If the sample values (λi(1), …, λi(s)) are 

inserted into the Expression 𝑝~ in (2.39) for each simulation run j, the result is a 

function of lambda  

𝑔𝑗(𝜆) = 𝑝
∼ (𝜆|𝜆1,(𝑗), … , 𝜆{𝑛,(𝑗))} , with 𝑗 = 1,… , 𝑠 (2.44) 
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With the values determined in equation (2.44), the unconditional generic distribution can 

be approximated by the following expression: 

𝑝 ∗ (𝜆) ∼
1

𝑠
∑ 𝑔𝑗(𝜆)
𝑠
𝑗=1  (2.45) 

To determine the Q % quantile xQ, the equation 

1

𝑠
∑ ∫ 𝑔𝑗(𝜆)d

𝑥𝑄
0

𝜆𝑠
𝑗=1 =

𝑄

100
 (2.46) 

has to be solved with respect to xQ. 

Sample calculations have shown that the double integration to be carried out using the 

parameters α and β can take a relatively long time to calculate. However, the integral 

over β can be solved analytically. 

The formula 

𝑔𝑗(λ) =
1

𝐶
∫ ∫

βα

Γ(α)

∞

0
λα−1𝑒−λβ∏ (

β

Γ(α)
λ𝑖,(𝑗)
α−1𝑒−λ𝑖,(𝑗)β) α−0.5β−1d𝑛

𝑖=1
∞

0
βdα =

1

𝐶
∫ (

1

Γ(α)
)
𝑛+1

(λ ⋅ λ1,(𝑗) ⋅ … ⋅ λ𝑛,(𝑗))
α−1
α−0.5 ∫

β(𝑛+1)α−1

𝑒
(λ+λ1,(𝑗)+⋯+λ𝑛,(𝑗))β

∞

0
d

∞

0
βdα (2.47) 

with 

∫ 𝑥𝑛𝑒
−𝜇𝑥d

∞

0
𝑥 =

Γ(𝑛+1)

𝜇𝑛+1
 (2.48) 

and 

∫
𝛽(𝑛+1)𝛼−1

𝑒
(𝜆+𝜆1,(𝑗)+⋯+𝜆𝑛,(𝑗))𝛽

∞

0
d𝛽 =

Γ((𝑛+1)𝛼)

(𝜆+𝜆1,(𝑗)+⋯+𝜆𝑛,(𝑗))
(𝑛+1)𝛼 (2.49) 

can be transformed into 

𝑔𝑗(𝜆) =
1

𝐶
∫ (

1

Γ(𝜙(𝑥))
)
𝑛+1

(𝜆 ⋅ 𝜆1,(𝑗) ⋅ …⋯𝜆𝑛,(𝑗))
𝜙(𝑥)−1

𝜙(𝑥)−0.5
∞

0
 (2.50) 
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2.2.5 Description of the User Input 

The AURA method has been integrated into SUSA as a module. It provides different 

classes and functions to calculate the desired failure rates/probabilities and repair rates. 

The methods can be integrated into a program as a Python library or used directly in 

SUSA to include the distributions of the reliability parameters. The different reliability 

parameters can be used both via command line interface or scripts and in Jupyter note-

books. With the help of tuples of plant-specific data as well as the inclusion of compara-

ble plant data as preliminary information, these can be applied. 

To determine the distribution of Failure Rate, the class ‘FailureRate‘ can be called. To 

determine the probability of failure per request, the class ‘FailureProbability‘ can be 

called. The class ‘RepairRate‘ can be used to determine the repair rate. 

2.2.5.1 Application of Non-informative Prior Information 

The method non-informative_prior() can be used to determine the failure rate without 

including prior information, i.e. only with system-specific data and with a generic Jeffrey 

Prior as prior. An exemplary call could look like this: 

NFails = 10 

x = 10000 

distribution = FailureRate.noninformative_prior(NFails , x), 

where x can be either the observation time or the number of demands. In contrast, if the 

repair rate should be determined, a call like the following can be used: 

NRepairs = 10 

RepairTime = 10000 

distribution = RepairRate.noninformative_prior( NRepairs , RepairTime ). 

2.2.5.2 Application of Mixed Distribution Approach 

The mixed distribution approach mixes the information provided by the prior and the new 

data to generate the posterior information. The user provides the prior data in the form 

of a two-dimensional array or as list, either with dimension (n,2) or (n,3) where n is the 

number of reference plant data used as prior. Each line contains the information of a 

reference plant structured as tuple/list with information (n_fails, observation_time, weight) 
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or (n_fails, n_demands, weight) or (n_repairs, total_repair_time, weight) if an (n,2) array is 

given, equal weights are assumed. Optionally, data of a specific plant can be provided 

by the user in the form of a tuple of two entries structured as (n_fails, obs_time), where 

n_fails is the number of failures in the observation time and obs_time is the observation 

time. 

As for the non-informative prior approach described above, it is possible to either deter-

mine the failure rate or the repair rate using the corresponding class objects. One exem-

plary call to determine the failure rate given prior information and specific data could look 

like this: 

priorInf = [ [1, 10530] , [0, 9460] , [2, 11300] , [0, 8760] ] 

specData = [0 ,1000] 

distribution = FailureRate.mixed_distribution( priorInf , specData ) 

2.3 Calling FORTRAN-based SUSA Sampling Modules Using a Generic 

Interface 

Four different FORTRAN-based SUSA components currently form the basis for the 

SUSA sampling functionality. MEDUSA is the baseline sampling module in SUSA, it al-

lows sampling values from parameter distributions based on the distributions provided 

and potential dependencies between the parameters. DIVIS /KLO 91/ helps the user to 

determine which distribution function is suitable for his or her needs depending on infor-

mation provided by the user. This information could be given in form of one or more 

quantiles, the median and a factor, or the expected value and the standard deviation. 

Based on this information, several potential distributions are proposed by DIVIS. BetaFit 

provides the user with the means to exchange log-normal distributions in the parameter 

definition with matching beta distributions. Unlike log-normal distribution, a beta distribu-

tion has upper and lower bounds, which is often more suitable to describe the epistemic 

uncertainties modelled with SUSA. 

One of the project goals is to present one Python-based interface to the user but still 

provide compatibility with the original results gained by running the FORTRAN-based 

SUSA codes. In order to achieve this goal, a Python-based interface has to be designed 

which internally calls the different FORTRAN-based SUSA codes MEDUSA (Sampling), 

DIVIS (Distribution Finding) and BetaFit (Fitting Beta Distribution to Log Normal Distribu-

tions). This development is the requisite for the next step, translating the different 
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FORTRAN codes into Python and thus providing code in one programming language 

which significantly improves maintainability. The interface designed in this project will 

then be used run automatized tests comparing the results of the new Python codes to 

those of the FORTRAN-based codes, a necessary step towards providing the desired 

quality assurance of the SUSA results. In order to achieve the Python-FORTRAN inter-

face, SUSA has been extended by several modules: 

1. Modules for defining parameters and their distributions (distributions.py, distribu- 

tion_creator.py). 

2. Modules for defining parameter dependencies (dependencies.py, line-

ar_combinations.py, functional_combination.py). 

3. The Controller (_controller.py), which inherits and extends the FDEControllable mod-

ule of the generic FORTRAN interface FDE (FORTRAN Development Extensions) 

/SCH 24/ for control and data exchange. 

4. The InputWriter (input_writer.py), a module to write the necessary input files for the 

FORTRAN-based SUSA functions. 

5. The InputWriterDivis (input_writer_divis.py), a module specially adapted for the 

DIVIS functionality. 

All three SUSA sampling components, MEDUSA, DIVIS and BetaFit, need as input a 

clear definition of the desired parameter distributions. The new SUSA distributions mod-

ule can be used to create objects for the various potential distribution functions, which 

contain all necessary information to uniquely identify one distribution. Since all distribu-

tion classes inherit from the same base class, they share one common interface. The 

distributions provided are: 

− Normal Distribution, 

− Uniform Distribution, 

− Beta Distribution, 

− Chi2 Distribution, 

− Discrete Distribution, 

− Discrete Uniform Distribution, 

− Exponential Distribution, 
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− Fisher Distribution, 

− Frechet Distribution, 

− Gamma Distribution, 

− Geometric Distribution, 

− Gumbel Distribution, 

− Rayleigh Distribution, 

− Trapez Distribution, 

− Triangular Distribution, 

− Log Normal Distribution, 

− Log Uniform Distribution, 

− Log Triangular Distribution, 

− Negative Binominal Distribution, 

− Polygonal Distribution, 

− Weibull Distribution, 

− Histogram, 

− Log Histogram. 

These distributions are based on the corresponding distributions defined in the sklearn 

Python library. The distribution classes implemented in SUSA extend the functionalities 

of the corresponding sklearn classes in order to suit the needs of the SUSA applications. 

For example, in accordance with the classic SUSA implementation, the possibility to 

truncate the different distributions has been implemented for most distributions. 

In addition to the parameter definitions, which are based on the distribution classes, 

MEDUSA also needs the dependencies between the different parameters as input. In 

order to provide the parameter dependencies in a suitable form, a new dependencies 

module has been implemented in SUSA. In this module, the dependency base class as 

well as specific dependency classes inheriting from this base class are implemented. All 

objects of these classes implement a function called calc_sample, which returns an array 
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of sampled values for which the specific dependency has been taken into account. The 

attributes of this function are just the number of required samples and the random num-

ber generator to be used. All dependencies available in the classic SUSA software have 

also been implemented in the Python-based SUSA version. 

The new SUSA Controller module (controller.py) provides a function medusa_calc which 

encapsulates the FORTRAN-based MEDUSA code. The new SUSA Controller class ex-

tends the FDEControllable class of the generic interface FDE /SCH 24/ for control and 

data exchange. The FDEControllable reads a dynamic linked library (DLL) of the 

FORTRAN program which should be made callable from Python and provides a handle 

to the different functions of this FORTRAN program. In the case of SUSA, this FORTRAN 

program provides functions to access the different SUSA components. The SUSA Con-

troller module extends the FDEControllable functionality by providing additional functions 

which act as convenient wrapper surrounding the FORTRAN-based SUSA functions and 

allow to perform all steps in the workflow of the SUSA components with just one function 

call. These additional functions write the necessary input files for the FORTRAN-based 

SUSA functions, pass these input files as attribute to the functions and use the generated 

output to write the input files for the next steps in the workflow. In order to sample pa-

rameters using the MEDUSA functionality, the user provides a Python random sampler 

and the number of desired samples as input parameter to the controller function me-

dusa_calc; optionally, the user can also provide dependencies between the parameter-

input and output directory , if existent, for the generated files, if the current directory 

should not be used, and the decision on the output files to be generated. The FORTRAN-

based MEDUSA component is called by the Python code and produces as output an 

ASCII-based design file which includes the sampled parameter values. This file is read 

in by the controller and the sampled values are returned to the user as NumPy array. 

In the case of DIVIS, the user provides an object of the class DistributionCreator to the 

Controller function divis_calc. The DistributionCreator prepares the necessary input for 

the DIVIS FORTRAN program based on the user input, this includes transforming the 

provided input parameters into those required by the DIVIS FORTRAN program. The 

InputWriterDivis fills the information provided by the DistributionCreator into a prepared 

DIVIS template. The DistributionCreator in turn reads the information generated by the 

DIVIS FORTRAN program and creates an object of one of the distribution classes listed 

above based on this information. 
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In the case of BetaFit, the SUSA controller module provides a function beta_fit, which 

encapsulates the corresponding FORTRAN. The user passes the original log-normal 

distribution as attribute into this function call, additionally the so-called fit criterion can be 

provided. The fit criterion specifies how the beta function should be fitted to the provided 

log-normal function, either by optimizing the agreement of mean and standard deviation 

of the target and the origin distribution or by choosing the distribution which best fits the 

quantiles of the log-normal distribution, either for two or three quantiles. 
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3 Methods for Advanced Monte Carlo Simulation with 

Machine Learning Algorithms 

The consideration of uncertainties in safety analyses can be achieved within the frame-

work of BEPU approaches using Monte Carlo (MC) simulations. For each simulation run, 

a set of the uncertain input parameters is sampled according to the uncertainty distribu-

tions including their dependencies, which get applied to a deterministic simulation code. 

SUSA is an established software for uncertainty and sensitivity analyses, covering such 

BEPU analyses from parameter sampling to simulation and statistical evaluation, e.g. of 

tolerance intervals. A classic MC sampling approach becomes resource intensive for 

analyses focused on the evaluation of rare events. These events can typically only be 

reached from small regions of the input parameter space. A large number of simulations 

would be required to identify the region of interest in the input parameter space and 

accurately quantify the probability of the rare event. To perform probabilistic evaluations 

of rare scenarios with reasonable computational effort, adaptive sampling techniques 

can be used. Thereby, machine learning algorithms are used to iteratively adapt the 

sampling range of input parameters to those that most effectively increase the robust-

ness and accuracy of the probabilistic evaluation. In the frame of the last SUSA project 

RS1559 /KLO 21a/, two adaptive sampling approaches were implemented in SUSA. One 

approach uses a support vector regression metamodel in the context of a subset simu-

lation and the other approach uses a combination of a genetic adaptive sampling algo-

rithm with an ensemble of classification algorithms. Both algorithms have been com-

pared, discussing the advantages of both algorithms while getting applied to benchmark 

examples as well as to an accident scenario in a nuclear power plant. This benchmarking 

is described in Section 3.1. 

In addition, two other methods have been implemented to get the necessary metamodel 

to be provided to the subset simulation. First, a support vector classification approach, 

which can be used if the target is not defined in a continuous parameter space but rather 

as a discrete variable, for example in order to answer the question if there is an entry of 

cooling liquid in the sump or not. The second method for generating metamodels which 

has been added to SUSA are flat neural networks. Both approaches have been imple-

mented and tested. The implementation and test of both approaches is described in Sec-

tion 3.2 

In addition to these new methods for generating metamodels, methods have been im-

plemented in SUSA to explain and use the results generated, using machine learning 
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approaches. One is the usage of Shapley values in order to better understand the results 

of a SUSA analysis and to identify the most important influencing factors. The implemen-

tation and application of Shapley values is described in Section 3.3. 

Section 3.4 finally details how the results of the implemented adaptive sampling methods 

can be used to derive a kernel density estimation for a later importance sampling appli-

cation. In this way, the derived knowledge can be used in later applications to optimize 

the sampling efficiency in the critical parameter space. 

3.1 Benchmarking of the Developed Iterative Methods for an Adaptive 

Monte Carlo Simulation 

Adaptive sampling algorithms have been developed to reduce the number of samples 

required for analyses of rare events by iteratively adapting the sample range to the analy-

sis objectives. Given a dataset of sampled input parameter sets, e.g., from a classic MC 

sample, with the corresponding results of their simulation runs, the idea of adaptive sam-

pling methods is to iteratively train and refine a metamodel, e.g., a machine learning 

algorithm, to predict the simulation outcomes of interest until a precise computation of 

the desired analysis target (e.g. probability of the rare event) is achieved. At each itera-

tion, the metamodel is refined by identifying regions of the input parameter space that 

are either most promising to lead to the rare event of interest or that have the greatest 

predictive uncertainties. Simulation runs are performed using the most promising 

parameter sets from the identified regions, expanding the training data set for the meta-

models. With this approach, the metamodels are trained with a minimal number of sim-

ulation runs while providing accurate estimates of the analysis targets. To identify 

promising candidate parameter samples, there is a trade-off between exploring the un-

known parameter space and tending to predict results near the desired region of interest 

(rare event). In both cases, a metric or distance measure must be defined in the multidi-

mensional parameter space- or metamodel-related predictions to sort the candidates and 

evaluate how promising they are. Since the desired region of interest may also depend 

on multiple simulation outcome variables, this approach is also applicable to identify pos-

sible input parameter sets that lead to a combined rare event. 

For simplicity, the desired region of interest in the benchmark application depends on 

only a single simulation outcome variable. This also simplifies the metamodels, which 

only need to predict the final state of a single simulation variable. However, in general, 



 

67 

metamodels can also be trained to predict multiple parameters of the simulation outcome 

for more complex applications. Choosing how to build the metamodel and identifying the 

most promising parameter samples are the key challenges of adaptive sampling ap-

proaches and the main differences. The following subsections describe the different ap-

proaches implemented in SUSA that solve these challenges, including the adjustable 

termination criteria of the algorithms. The two algorithms that were compared in the 

benchmark are Subset Simulation with Support Vector Regression (SuSSVR) and the 

Genetic Adaptive Sampling Algorithm combined with the Probability Estimation using an 

Ensemble of Classification Algorithms (GASA-PRECLAS). Both are described in detail 

in /KLO 21a/. 

3.1.1 General Idea of the Adaptive Sampling Approach 

The general idea of the iterative approach of adaptive sampling can be described in the 

following steps: 

1. The initial step is to create a training dataset by randomly sampling the uncertain 

input parameters according to their probability distributions and to run the simula-

tions with these samples. Due to the long duration of the simulation runs, only a small 

set of samples, e.g. 20 to 50, should be created for efficiency reasons. Since this 

initial step is not an integral part of an adaptive sampling algorithm, the initial training 

dataset can alternatively be taken from a previous uncertainty analysis if the uncer-

tain parameters are the same. 

2. The training dataset created is used to train a single or multiple metamodels, i.e. 

machine learning algorithms, to predict the simulation result for the considered output 

quantity. 

3. A large set of input parameter values is randomly sampled according to the probabil-

ity distributions, e.g. 104 to 105 samples, depending on the applied adaptive sampling 

algorithm, but instead of running the simulations, the trained metamodel(s) are ap-

plied to this sample to predict the simulation results. 

4. The predictions of the metamodel(s) are used to identify candidates of parameter 

combinations that are best suited to be added to the training dataset to improve the 

predictions of the metamodel(s), especially in the vicinity of the targeted parameter 

region. For these candidates, the results are calculated by the actual simulation code; 

therefore, only a few samples should be selected, e.g. 5 to 8 candidates. 
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5. Depending on predefined termination criteria, the algorithm either terminates and 

provides the estimated probability of the targeted region, i.e. probability of the unde-

sired scenario, or the algorithm is repeated and returns to step 2, now with the en-

hanced training dataset. 

3.1.2 Subset Simulation with Support Vector Regression 

Subset Simulation (SuS) is a combined sampling and simulation approach for small fail-

ure probabilities described as the product of much larger conditional probabilities of in-

tervening events approaching the actual failure event, while the conditional samples for 

each intervening event are sampled using Markov Chain Monte Carlo simulation /AU 01/, 

/PAP 15/. In the adaptive sampling algorithm implemented in SUSA, Support Vector Re-

gression (SVR) is used as a metamodel within the Subset Simulation to predict the sim-

ulation outcome, as described in /KLO 20/. This SuSSVR algorithm consists of three 

iteration cycles.  

In a first cycle, the algorithm is repeated until at least a certain percentage of the training 

dataset, e.g. 10 %, is in the desired region of interest. In a second cycle, the goal of the 

algorithm is to converge to a robust metamodel, i.e., a robust prediction of the SVR. 

Adjustable threshold parameters are given for the so-called switching rate, i.e., the mean 

fraction of parameter sets in the last subset sample that were classified differently in the 

last – say 5 – iterations and the mean rate of change of the rare event probabilities cal-

culated in the last iterations. In both cycles, the new parameter candidates for runs with 

the actual simulation code and, thus, for the training dataset are selected from the last 

subset sample obtained in an iteration step (random or cluster-based selection). The last 

cycle is iterated using a larger subset sample size to obtain a robust rare event probability 

estimate. The number of iterations in the last cycle is ten or more to get information on 

the variation of the probability estimate due to the random sampling. Since no refinement 

of the metamodel is performed and thus no further simulation run with the actual simula-

tion code is required, this cycle is comparatively fast. 

3.1.3 GASA-PRECLAS Algorithm 

The GASA-PRECLAS algorithm presented in /SOE 22/ consists of two iteration cycles 

and divides the sampling problem into two parts, each of which is solved using an opti-

mized algorithm. First, the GASA algorithm is used to effectively explore the parameter 

space to obtain a training dataset with a certain number of samples in the region of in-
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terest, e.g., n = 5 samples. The GASA algorithm provides the training data so that the 

classifiers in the second cycle can distinguish between interesting and uninteresting 

events. Its aim is comparable to the first cycle of the SuSSVR algorithm. If there are 

multiple regions of interest that are separated from each other, this should also be taken 

into account when choosing the termination criterion of the GASA algorithm, i.e., the 

number of samples in the desired region of interest should be increased. 

The second cycle uses a combination of classification algorithms as a metamodel to 

predict whether a parameter sample leads to a rare event. A Bayesian approach is used 

to calculate the probability distribution for the likelihood of the rare event based on a large 

parameter sample generated at each iteration and the corresponding predictions of the 

fitted classification metamodels. The adjustable termination criteria refer to the variation 

of the calculated probability distribution of the rare event over the last – say 5 – iterations. 

The use of an ensemble of classification algorithms reduces the impact of the uncertain-

ties of a single classification algorithm and the impact of an incorrect prediction. Com-

bined with the Bayesian calculation of the probability distribution, an additional refine-

ment loop for the probability estimate and its uncertainty – as in the SuSSVR algorithm 

– is not necessary. At each iteration step, the new parameter candidates for the actual 

simulation runs are selected from the large parameter sample which is also the basis for 

the estimation of the rare event probability. The selection of the candidates is based on 

criteria associated with the fitted metamodels and calculated for each element of the 

parameter sample. 

3.1.4 Comparison of Application Examples 

Two benchmark functions are used to analyse the implemented adaptive sampling meth-

ods. Both consist of a simple function that can be quickly evaluated. The first example 

with a biological dose model tests how a very small probability, e.g. about 1 E-06, can 

be estimated in a six-dimensional parameter space. The second example with the Ishi-

gami function tests how to identify four separate regions in a strongly non-linear function. 

Although this is only a three-dimensional problem with a probability of about 1 E-03, find-

ing all four maxima of this function is a difficult task that requires advanced sampling 

algorithms for proper likelihood estimation. Finally, a thermal-hydraulic code simulating 

a LOCA scenario in a nuclear power plant is used as a more realistic and complex ap-

plication example where a single simulation run requires several hours. This example 

considers a high-dimensional parameter space (35 uncertain parameters) and demon-
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strates the need for an adaptive sampling algorithm, as a classic MC sampling would 

require at least 1 E +04 or more simulation runs, which is not feasible. 

3.1.4.1 Benchmark Example: Biological Dose Model 

In this example, it is assumed that during the normal operation of a nuclear power plant, 

small concentrations of radionuclides are released and enter the food chain of a popula-

tion group. To calculate the maximum annual dose-equivalent of an individual of the 

population group, the following simple deterministic model is applied: 

𝑦 = 𝑐 ⋅ (𝑥𝑟𝑎𝑡𝑒1 ⋅ 𝑥𝑐𝑜𝑛𝑐1 + 𝑥𝑟𝑎𝑡𝑒2 ⋅ 𝑥𝑐𝑜𝑛𝑐2) ⋅ exp(−0.2 ⋅ 𝑑𝑡) (3.1) 

The description of the parameters and their distributions is listed in Tab. 3.1. 

Tab. 3.1 Uncertain parameters and their distributions for the biological dose model 

Name Symbol Distribution Distribution Parameter 

Dose conversion parameter C Normal 

Mean = 3.29 E-08 

Std = 1.11 E-08 

Min =1 .00 E-08, Max = 5.00 E-08 

Consumption rate of meal 1 xrate1 Log-Uniform Min =1 0, Max =  

Radio conc. in meal 1 xconc1 Uniform Min = 10, Ma x= 35 

Consumption rate of meal 2 xrate2 Log-Normal 
Mean = 4.7552, std = 0.1993 

Min = 0.5, Max = 400 

Radio conc. in meal 2 xrate2 Uniform Min = 10, Max = 30 

Delay time Dt Triangular 
Mode = 0.8, Min = 0.5 

Max = 20 

The region of interest is defined by the maximum annual dose equivalent exceeding 0.25 

mSv, which means that in equation 3.1 the result y exceeds 2.5 E-04. A simple MC sam-

ple of the formula with 1.0 E-08 samples identified 386 samples above the threshold. 

The resulting 95 % confidence interval using Clopper and Pearson /CLO 34/ is [3.48 E-

06, 4.26 E-06]. Both algorithms start with an initial training pool of 50 samples using 

simple MC sampling. In addition, both algorithms use a maximum variation of probability 

calculation over the last four iterations of 0.1 for the second learning cycle, defining the 

robustness of the metamodel. The additional threshold for the switching rate of the 
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SuSSVR algorithm was set to 2.5 %. In order to accumulate enough rare events of inter-

est in the training sample in the first learning cycle, a termination criterion of at least 10 % 

was used for the SuSSVR approach, while an absolute value of at least five rare events 

was set for the GASA-PRECLAS algorithm. The SuSSVR algorithm terminated after 165 

additional calculations of the simulation function and estimated a probability for the re-

gion of interest within the interval [3.16 E-06, 4.19 E-06]. The GASA-PRECLAS algorithm 

terminated after 180 additional simulation runs, estimating a probability inside the interval 

[3.52 E-06, 7.05 E-06]. Both algorithms require almost the same number of additional cal-

culations and estimate compatible intervals for the probability, which could mean that 

both algorithms pass this benchmark test without problems or further adjustments. How-

ever, the low probability of about 1.0 E-06 reveals limitations of the PRECLAS algorithm. 

Since this algorithm actually estimates the probability based on a simple random sample 

of parameter values and corresponding predictions of the metamodels, 1.0 E+08 sample 

elements are required for a robust probability estimate. Furthermore, to select new pa-

rameter candidates, all 1.0 E+08 parameter sample elements must be graded according 

to specific selection criteria. While this amount of data can still be processed with high 

computing power, applications with even smaller probabilities, thus producing larger 

amounts of data, introduces runtime and memory problems. In future developments, an 

advanced sampling method, such as importance sampling, should be introduced to solve 

this problem. These problems do not arise with the SuSSVR approach because the Sub-

set Simulation does not need a large sample to predict a low probability. 

3.1.4.2 Benchmark Example: Ishigami 

The Ishigami function is often used for benchmarking advanced sampling methods and 

sensitivity indices. It is defined by the following formula: 

𝑦 = sin(𝑥1) + 𝑐1 ⋅ sin
2(𝑥2) + 𝑐2 ⋅ 𝑥3

4 ⋅ sin(𝑥1) (3.2) 

In this benchmark example, the GASA algorithm performs slightly better in exploring the 

uncertain parameter space than the first cycle of the SuSSVR algorithm. How the GASA 

algorithm targets the region of interest while exploring the rest of the parameter space is 

shown in Fig. 3.1, which illustrates the evolution of the training data set for the GASA-

PRECLAS algorithm. 
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After the initial 50 samples using classic MC sampling (shown in blue in Fig. 3.1), the 

GASA algorithm (orange) required 240 additional function evaluations, and the 

PRECLAS algorithm (green) required 72 ones. 

 

Fig. 3.1 Development of the Ishigami function evaluations during the adaptive sam-

pling of the GASA-PRECLAS algorithm 

However, the necessary adjustments in the SuSSVR and in the GASA algorithm show 

the limitations of both exploration algorithms. Without the increased number of training 

data in the desired region of interest, the GASA algorithm or the first cycle of the SuSSVR 

algorithm would not have found all four separated regions and would have underesti-

mated the rare event probability. This can be explained by the fact that neither approach 

is designed to find multiple separated regions of interest. Only the higher statistics and 

thus higher probability of finding all maxima prevented an underestimation of the proba-

bility. This can be improved, e.g. by introducing prior knowledge about the four separate 

maxima or by adding an optional parameter that controls whether the new samples 

should be more biased towards one (already found) region of interest or towards the 

exploration of the unknown parameter space. 

3.1.4.3 Application to a LOCA Scenario 

In this example, the objective is to estimate the probability that the peak cladding tem-

perature (PCT) exceeds 1200 ◦C in a LOCA scenario inside a nuclear power plant. A 

conservative reference model of a pressurized water reactor with four cooling circuits 
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and an electrical power of 1425 MW is used, in which a double-ended guillotine rupture 

is initiated in the cold section of the main coolant line. The simulation model using 

ATHLET /WIE 19/ was developed based on previous analyses /KLO 16/, /POI 18/. 35 

uncertain input parameters are considered in this work. Both algorithms start with an 

initial training data set of 50 samples and with the same termination criteria as the bio-

logical dose model. The SuSSVR approach terminated after 364 additional simulation 

runs and estimated a probability between [8.16 E-03, 9.36 E-03]. The GASA-PRECLAS 

approach terminated after 103 additional simulation runs with an estimated probability 

between [1.06 E+02, 2.07 E-02]. The GASA-PRECLAS algorithm converges earlier. Alt-

hough the estimated probability intervals of the SuSSVR and GASA-PRECLAS algorithms 

do not overlap, the intervals are close, and their results are consistent. This shows that 

both algorithms work well also for high-dimensional parameter spaces with 35 dimen-

sions. However, such high-dimensional parameter spaces make the sampling algorithms 

less and less efficient. Analogous to the biological dose model results, where an iterative 

refinement of the parameter space was suggested, an intermediate algorithm during the 

iteration of the adaptive sampling could reduce the dimensionality by analysing the influ-

ence of the uncertain parameters on the simulation results of interest and remove those 

that have low influence. 

3.1.4.4 Conclusion 

In this work, two adaptive sampling algorithms implemented in SUSA, the SuSSVR and 

GASA-PRECLAS algorithms, were compared to two benchmark applications and a 

LOCA scenario. In general, both approaches require the same order of magnitude of 

simulation runs to train a robust metamodel and compute a robust prediction for the rare 

scenario of interest. However, for runtime intensive calculations, already 100 additional 

simulation runs are expensive. But even when using the same algorithm but with a dif-

ferent seed, larger differences, e.g. of 100 additional simulation runs, can occur. 

The probability intervals provided by the two approaches slightly differ. This can be ex-

plained by the fact that the parameters defining the termination criteria are not completely 

identical for the two algorithms. While the threshold for the variation of the probability is 

set to the same value, the switching rate is defined only in the SuSSVR algorithm. There 

is no such equivalent termination criterion in the PRECLAS algorithm, since this algo-

rithm includes several classification algorithms that compensate for the uncertainty or 

switching points of the predictions of a single metamodel. However, it has been shown 

that the switching point is the most important parameter that determines the number of 
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learning cycles required in the SuSSVR algorithm. For testing purposes, a switch point 

parameter was also implemented in the PRECLAS algorithm, but this did not lead to a 

subsequent termination of the iteration cycle. As for the first cycle in exploring the pa-

rameter space, both algorithms performed well when there is only a single contiguous 

target region. In such applications, an advanced parameter space exploration method is 

not required. However, if there are multiple target regions that are not connected to each 

other, the GASA algorithm performs slightly better and can play its advantage of effec-

tively exploiting the parameter space over the first iteration cycle of the SuSSVR algo-

rithm. As for the second cycle in building a robust metamodel for prediction, both algo-

rithms perform well when the probability is not too small. However, for probabilities below 

1 E-06, the simple MC sampling in the PRECLAS algorithm requires too many parameter 

samples and leads to runtime and memory problems. The Subset Simulation, which is 

used in the SuSSVR algorithm, already prevents such behaviour. 

In summary, both implemented adaptive sampling algorithms are promising approaches 

for estimating the probability of a rare scenario. However, there is also room for improve-

ments regarding the modularity of the algorithm. For some applications it might be useful 

combine the GASA algorithm with the second cycle of the SuSSVR algorithm. Further-

more, the sampling for the pool of parameter samples can be decoupled from the meta-

model and decision process. In addition, an analysis of the relevant parameter space in 

terms of truncating an uncertain parameter distribution (importance sampling) or identi-

fying irrelevant parameters would be beneficial to simplify the problem iteratively. 

3.2 Subset Sampling with Flat Neural Networks 

The SUSA adaptive learning suite has been extended so that it is now possible run the 

subset sampling algorithm and to use flat neural networks for metamodel generation. 

The neural network implementation in SUSA is based on the Pytorch library /PAZ 19/ for 

generating neural networks in Python. 

In order to run the subset sampling algorithm with neural networks as metamodel genera-

tors, the layout of the neuronal network needs to be defined first. This can be done fol-

lowing the Pytorch API. One example is given in the code below for a network with six 

input nodes, two hidden layers, one output and a configurable number of nodes in the 

second hidden layer. 
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# pytorch includes 

import torch .nn. functional as F 

import torch .nn as nn 

 

class PyTorchNN (nn. Module ): 

   def __init__ (self , num_units = None ): 

       super (). __init__ () 

       n_input = 3 

       num_units = num_units or 13 

       self.hid1 = nn.Linear( n_input, num_units ) 

       self.hid2 = nn.Linear( num_units, num_units ) 

       self.oupt = nn.Linear( num_units, 1) 

       # initialize weights 

       nn.init.xavier_uniform_( self.hid1.weight ) 

       nn.init.zeros_( self.hid1.bias ) 

       nn.init.xavier_uniform_( self.hid2.weight ) 

       nn.init.zeros_( self.hid2.bias ) 

       nn.init.xavier_uniform_( self.oupt.weight ) 

       nn.init.zeros_( self.oupt.bias ) 

 

   def forward (self , x): 

       x = F.relu( self . hid1 (x)) 

       x = F.relu( self . hid2 (x)) 

       x = self.oupt (x) 

       return x 

The class PyTorchNN inherits from nn.Module, which is a base class for all neural network 

modules in PyTorch. 

The following attributes of PyTorchNN are defined in the constructor: 

• Parameters: The constructor takes an optional parameter num_units, which speci-

fies the number of hidden units in the hidden layers. If not provided, it defaults to 13. 

• Input Size: The network is designed to take an input of size 3, representing the three 

input parameter of the Ishigami function. 

• Layers: 

− hid1: A linear transformation from six inputs to num_units hidden units. 

− hid2: Another linear transformation from num_units to num_units. 

− oupt: A linear transformation from num_units to a single output. 

The weights of each layer are initialized using the Xavier uniform distribution, which is a 

common technique to help with convergence during training. The biases for each layer 
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are initialized to zero. The method forward(self, x) defines how data flows through the 

network: 

• Input x is passed through the first hidden layer, followed by a ReLU activation function 

(which introduces non-linearity). 

• The output of the first layer passes the second hidden layer, again followed by a 

ReLU activation. 

• Finally, the output from the second hidden layer goes to the output layer, which pro-

duces the final output. 

Once the network layout has been defined, the neural network-based subset-sampling 

method can be called in the following way: 

from python.AdaptMCS import WorkFlow, Transformer, Pool 

from python.Simulation import Simulator 

import torch as T 

 

#%% Working directory 

output_dir = ’C:\\Desktop\\test_Ishigami’ 

 

#%% Simulator 

sim = Simulator.Ishigami() 

 

 

#%% Initial producer of input sample 

initProd = Pool.SimpleRandomSampler( distribution = sim._specific ) 

#%% Workflow 

NN_broker = WorkFlow.SuSNNR( model = PyTorchNN (10),  

                             optimizer = T.optim .Adam,  

                             learning_rate = 0.0001,  

                             loss = nn.MSELoss(), 

                             epochs = 500, 

                             max_learn_cycles = 100, 

                             initproducer = initProd, 

                             simulator = sim) 

 

NN_broker.setFeatures( sim. _specific . keys ()) 

 

NN_broker.setScaler( input = Transformer.DistributionTransformer(  

                                        distribution = sim. _specific )) 

NN_broker.setTarget( dict(_y = [15 , ’upper ’]) ) 

NN_broker.setBreakCriteria( nModels = 4,  

                            switchFraction = 0.05,  

                            ProbRate = 0.1 ) 

itr = iter ( NN_broker.learnCycle( nCandidate = 5,  

                                   nPool = 10000,  

                                   nInit = 50)) 

for c in itr: 

   c.reportProgress( verbose = True ) 

This call to the subset sampling method makes use of the modules implemented and 

adapted in the research and development project RS1559: WorkFlow, Transformer, Pool 



 

77 

and Simulator. In the WorkFlow module, the classes performing the different adaptive 

learning procedures are implemented. For performing the subset-sampling method with 

neural networks as metamodel generators, a new class has been added to the WorkFlow 

module, the SuSNNR class. The SuSNNR workflow class calls internally the NNRMetaMod-

elPyTorch class which implements the neuronal network learning cycle. When training a 

neuronal network, each training step consists of one forward pass of the given parameter 

input through the neuronal net, a comparison with the expected output and, depending 

on the difference between the expected and realized output (the loss), the weights and 

biases of the network, defined above, are optimized in a so-called backward propagation 

pass. 

The user can set several attributes of the SuSNNR WorkFlow object and the underlying 

NNRMetaModelPyTorch object. In the example above, the WorkFlow object is initialized 

using the following attributes: 

• model: The neuronal network model to be used in the fitting process. In this example, 

this is the PyTorchNN model defined above with eight nodes in the second hidden 

layer. 

• optimizer: A neuronal net optimizer is used to adapt the weights inside a neuronal 

net based on the provided training data in order to minimize the losses. The chosen 

Adam (adaptive momentum estimation) optimizer is one of the most popular gradient 

descent optimization algorithms. It is a method that computes adaptive learning rates 

for each parameter. It stores both the decaying average of the past gradients, similar 

to momentum, and also the decaying average of the past squared gradients. 

• learning_rate: The learning rate controls how quickly the model is adapted to the 

problem. Smaller learning rates require more training epochs, given the smaller 

changes made to the weights each update, whereas larger learning rates result in 

more rapid changed and require fewer training epochs. A learning rate that is too 

large can cause the model to converge too quickly to a suboptimal solution, whereas 

a learning rate that is too small can cause the process to get stuck. In combination 

with the Adam optimizer, the passed-in learning rate is the initial learning rate which 

gets adapted based on the decaying average of the past gradients and squared gra-

dients. 

• loss: The loss function is used to compare the predicted results obtained by one pass 

of input parameters through the neuronal network with those provided in the training 
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data. The larger the loss, the larger the needed correction to the network weights and 

biases. In the example above the mean squared error (MSE) is used as loss function. 

• epochs: How often a neuronal net should be trained on the training data. It is possible 

to specify the so-called batch size (batch_size). In this case the neuronal network is 

trained in each epoch by iterating through separate parts of the training data set. The 

batch_size defines the size of the batches into which the training data is separated. 

• max_learn_cycles: The maximum number of subset-sampling learning cycles to be 

performed. 

• initproducer: The random sampler to be used. The random sampler is responsible 

for sampling the uncertain input parameters. 

• simulator: The simulator generates target values from passed-in parameter values. 

In the example, the distributions of all feature values are specified in ’sim._specific’ and 

passed to the SimpleRandomSampler. An object of the SimpleRandomSampler class is 

used to produce the initial feature values using a simple MC sampling. In the example, 

an object of the BiometricDose class is used as Simulator, meaning that the produced 

samples will follow the biometric dose distribution. Additionally, the user can set various 

attributes of the workflow, such as 

• the names of the regarded uncertain input parameter (the features); 

• the scaling method to be used: In the example, an object of the DistributionTrans-

former class of the Transformer module is used as the provided input data is gener-

ated following the biometric dose distribution. Objects of the DistributionTransformer 

class are responsible for scaling and re-scaling the provided data according to the 

underlying distribution. Scaling is necessary as a lot of metamodel generators such 

as SVM depend on scaled input data. 

• The target region: In the example above, the targets are result values larger than 15. 

• The termination criteria for the subset sampling method: Two criteria define whether 

the iteration should be stopped. The first break criterion checks for each iteration step 

for a certain number of previously fitted metamodels nModels if the predicted number 

of events in the target region by those metamodels differs from the currently predicted 

number. The fraction of models for which such a discrepancy is found is compared 

to the value switchFraction defined in the break criteria. In addition, it is checked if 
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the rate in which the probability of events being in the target region changes from 

iteration to iteration is below the value of ProbRate defined in the break criteria. If the 

actual switching fraction is lower or equal to the switchFraction value in the break 

criteria and the change in the probability rate is lower or equal than ProbRate, the 

iteration process is terminated. 

Finally, in the code above, an iterator for the learning cycle is generated, as described in 

Section 3.1.1 ’nInit’ defines how many sets of feature values (uncertain input parame-

ters) are generated for the initial training step. The value of nPool determines how many 

input parameter values are randomly sampled and then predicted using the trained meta-

model(s) (step 3 as described in Section 3.1.1). The value nCandidate defines how many 

best suited (according to the metamodel prediction) parameter value sets should be 

added to the training dataset of the metamodels (step 4 as described in Section 3.1.1). 

In order to understand how the prediction accuracy of the neuronal network changes 

over multiple cycles, both the training and test losses as well as the training and test 

accuracy are stored. 

The new algorithm has been successfully applied to the Ishigami distribution. Fig. 3.2 

shows the learning progress of the neuronal network over the learning cycles, the mean 

squared error decreases over the first 150 cycles and then remains almost constant.  

 

Fig. 3.2 Development of the model accuracy over the subset sampling cycles 
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Fig. 3.3 shows the parameter points sampled in the final subset sampling cycle. It is 

visible that in each minimum of the Ishigami Function, the density of sampled points is 

increased, as should be the case. The difference between predicted and observed output 

values is in some cases as large as 15, which is the limit value used for defining the 

target region. 

 

Fig. 3.3 Sampled parameter points in the final subset sampling cycle; the colour 

scale indicates the difference between predicted and observed output val-

ues 

Fig. 3.4 shows how the observed result values of the Ishigami function develop as a 

function of the subset sampling cycles. In the presented example, 400 cycles are neces-

sary for reaching the termination criteria defined above. This figure can be compared to 

Fig. 3.5, which shows the same plot created by using support vector regression for cre-

ating metamodels, with the following support vector regression specific parameter (ker-

nel =’ rbf’, C = 100, epsilon = 0.1, gamma = ’scale’). It is clearly visible that for the exam-

ples given above, the usage of SVR instead of a flat neuronal network leads to a faster 

convergence towards the desired region. In the future, it could be studied in which cir-

cumstances (e.g., type of problem, hyperparameter optimization) a neuronal network as 

metamodel generator would bring advantages compared to the simpler SVR algorithm. 
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Fig. 3.4 Development of the observed values of the Ishigami function as a function 

of the simulation run (subset sampling cycle) 

 

Fig. 3.5 Development of the observed values of the Ishigami function as a function 

of the simulation run (subset sampling cycle plus support vector regression) 

3.3 Interpretability and Transparency of Machine Learning Algorithms 

Shapley values are a concept from game theory that is used to determine the contribution 

of individual players to the total profit in a co-operative game. The Shapley value of a 

player i is calculated as the weighted average of the marginal contributions across all 

possible coalitions (subsets) of players. If N denotes the set of all players, then the mar-

ginal contribution of a player i ∈ N to a given coalition S ⊆ N is given by v (S ∪ {i}) – v(S), 

where v denotes the win function for a coalition. The empty coalition assigns v the value 
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0. The formula for calculating the Shapley value Shi for a player i ∈ N is given in equation 

3.3. Here, n denotes the number of all players in the set N and ∥S∥ the number of players 

in the coalition S. The formula is based on the assumption that the players can enter the 

game in any conceivable order 

𝑆ℎ𝑖 = ∑ (
(𝑛−1−|𝑆|)!|𝑆|!

𝑛!
(𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆)))𝑆⊆𝑁∖{𝑖}  (3.3) 

The application of Shapley values to machine learning models has recently gained in 

importance as they offer a theoretically sound approach to interpreting model results. In 

addition, Shapley values can quantify the contribution of individual variables (input pa-

rameters, features) to the model result. Bias and undesirable influences of individual 

variables can be identified and addressed. The interpretability of machine learning mod-

els is of central importance, especially in applications where trust and explainability are 

crucial. Shapley values offer a solution by providing a clear and consistent framework for 

explaining model results. They can help to overcome the ‘black box’ nature of complex 

models. The interpretability analysis of a machine learning model is performed for a given 

combination of values x′ = (x′1, …, x′n) of the model variables, where x′1, …, x′n are con-

sidered as players that jointly contribute to the model outcome (profit). The expected 

marginal contribution of a subset S ⊆ N = x′1, …, x′n, e.g. S = x′1, x′2, is defined by the 

function vx′(S) in the following equation 3.4: 

       𝑣𝑥′(𝑆) = 𝑣𝑥′({𝑥1
′ , 𝑥2

′ }) = 

       ∫ 𝑔(𝑥1
′ , 𝑥2

′ , 𝑋3, … , 𝑋𝑛)𝑓! (𝑥1
′ , 𝑥2

′ , 𝑋3, … , 𝑋𝑛)  𝑑X3…𝑑X𝑛 − 𝐸(𝑔(𝑋))  (3.4) 

In equation 3.4, g denotes the function of the machine learning model, X = (X1 …, Xn) 

the variable vector of the learning model g, f the multivariate density of X, and E(g(X)) 

the expected value of the model result g(X). 

The exact calculation of the Shapley values for a large number n of variables can be very 

computationally intensive because the marginal contribution v (S ∪ {xi}) – v(S) of x′i, I = 

1, …, n, must be calculated for all possible subsets S ⊆ N {x′i} (equation (2). For this 

reason, an approximation using Monte Carlo simulation was proposed in /STR 14/. The 

Shapley value for a given variable value x′i is estimated using the formula in equation 

3.5: 

𝑆ℎ𝑖 =
1

𝑀
∑ (𝑔(𝑥+𝑖

𝑚) − 𝑔(𝑥−𝑖
𝑚))𝑀

𝑚=1   (3.5) 
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In equation 3.4, M is the number of iterations for estimating Shi of the Shapley value 

(e.g. M = 1000) and g is the function of the machine learning model. 𝑥−𝑖
𝑚  is a randomly se-

lected vector in which some of the variable values are replaced. Exactly which variable 

values are replaced by which values is specified by a randomly selected vector in which 

some of the variable values are replaced. Exactly which variable values are replaced by 

which values is specified by a randomly selected subset S ⊆ N {x′i}. The vector 𝑥+𝑖
𝑚  is 

almost identical to 𝑥−𝑖
𝑚 . Only the value of the ith variable of 𝑥−𝑖

𝑚  is different and identical to 

the variable value x′i. The Monte Carlo simulation for approximating the Shapley value 

for the variable value x′i is outlined below: 

Given are a vector x′ = (x′1, …, x′n) and a data matrix X, with which the machine learning 

model g was trained. The following steps are carried out for each iteration run m = 1, …, 

M : 

1. Random selection of a vector z from the data matrix X. 

2. Random selection of a subset S from the set N x′i. 

3. Construction of two new vectors: 

− 𝑥−𝑖
𝑚 : Set 𝑥−𝑖

𝑚 = z and then replace the values of the corresponding variables 

with the values in S. 

− 𝑥+𝑖
𝑚 : Set 𝑥+𝑖

𝑚 = 𝑥−𝑖
𝑚 , and then replace the value of the ith variable with the value 

x′i. 

4. Calculate the marginal contribution: g(𝑥+𝑖
𝑚) − g(𝑥−𝑖

𝑚). 

When all iteration steps have been carried out, the Shapley value Shi is calculated ac-

cording to equation 3.5. To obtain the Shapley values for all variable values of the given 

vector x′ = (x′1, …, x′n), the procedure must be repeated the corresponding number of 

times. 

The algorithm described above was implemented in SUSA. In addition, SUSA offers the 

option of using the freely available Python library shap, which specialises in Shapley val-

ues. The functions provided by shap can be applied to various types of models, including 

neuronal networks, decision trees, and regression models. 
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Fig. 3.6 shows the Shapley values for the different input values of the biometric dose 

function (equation 3.1). The larger the absolute Shapley value, the larger the contribu-

tion. The sign of the Shapley value is negative if an increase in this value decreases the 

outcome and positive if it increases the outcome. In the shown example, the largest in-

fluence factor is clearly ’dt’ which is negatively correlated to the result value. 

 

Fig. 3.6 Shapley values for the input parameters of the biometric dose function 

(equation 3.1) 

One of the fundamental properties of Shapley values is that they always sum up to the 

difference between the game outcome when all players are present and the game out-

come when no players are present. For machine learning models, this means that shap 

values of all the input features will always sum up to the difference between baseline 

(expected) model output and the current model output for the prediction being explained. 

3.4 Importance Sampling 

3.4.1 Introduction to Importance Sampling 

Monte Carlo simulations are often carried out to estimate the expected value E(y) of 

a variable y, where y is the result of a calculation model f with the influencing factors 

x = (x1 … , xd), i.e. y = f(x). The expected value E(y) is defined as follows: 

𝐸(𝑦) = 𝐸(𝑓(𝑥)) = ∫𝑓(𝑥)𝑝(𝑥)𝑑𝑥 (3.6) 
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where p is the multivariate density function of the influencing factors x. If y is an indicator 

variable for the occurrence of a certain event E (e.g. event = system failure), i.e. y = 1 if 

E occurs and y=0 otherwise, then the expected value E (y) is identical to the probability 

Prob(E) for the event E (e.g. probability of a system failure). If y only differs significantly 

from zero in a very low probability range in the parameter space of x (or is equal to 1 as 

an indicator variable), then the estimation of the expected value E (y) or the probability 

Prob(E) using simple MC simulation is very inefficient. In addition, simple MC simulation 

is no longer practicable if complex calculation models are used because too many cal-

culation runs have to be carried out. 

To increase the efficiency (variance reduction) of a MC simulation and for more practi-

cability when using complex calculation models, the method of Importance Sampling is 

suitable. The sample elements of x are not selected from the actual distribution p(x) but 

from the distribution q(x), which concentrates on the low-probability range of interest in 

the parameter space. The distribution q(x) denotes the Importance Sampling density. 

The following applies: 𝑞(𝑥) > 0 if 𝑓(𝑥)𝑝(𝑥) ≠ 0. If the Importance Sampling method is 

carried out with the Importance Sampling density q(x), then the expected value E (y) is 

determined as follows:  

𝐸(𝑦) = 𝐸(𝑓(𝑥)) = ∫
𝑓(𝑥)⋅𝑝(𝑥)

𝑞(𝑥)
𝑞(𝑥)𝑑𝑥 = 𝐸𝑞 (

𝑓(𝑥)⋅𝑝(𝑥)

𝑞(𝑥)
) (3.7) 

Eq stands for the expected value under the condition that x is distributed according to 

q(x). This results in the following estimator for the expected value: 

𝐸̂(𝑦) = 𝐸̂𝑞 (
𝑓(𝑥)⋅𝑝(𝑥)

𝑞(𝑥)
) =

1

𝑛
∑

𝑓(𝑥𝑖)⋅𝑝(𝑥𝑖)

𝑞(𝑥𝑖)
𝑛
𝑖=1  (3.8) 

where 𝑥𝑖𝑖=1
𝑛  is a sample of the size n from the distribution q(x). The following applies to 

the variance of the estimator: 

𝑉𝑎𝑟 (𝐸̂(𝑦)) =
1

𝑛
𝑉𝑎𝑟𝑞 (

𝑓(𝑥)⋅𝑝(𝑥)

𝑞(𝑥)
) (3.9) 

𝑽𝒂𝒓 (𝑬̂(𝒚)) = 𝑽𝒂𝒓 (𝑬̂(𝒚)) = 𝟎, if  𝒒(𝒙) = 𝒒𝒐𝒑𝒕(𝒙) =
𝒇(𝒙)⋅𝒑(𝒙)

𝑬(𝒚)
 (3.10) 

where is the optimal Importance Sampling density. However, its calculation is not prac-

tically feasible because it requires knowledge of E(y). In order to estimate qopt(x). the 
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approximation of a multivariate parametric distribution and kernel density estimation can 

be used. Both methods are described in the next section. 

3.4.2 Approximation of an Importance Sampling Density 

The approximation of a multivariate parametric distribution or kernel density estimation 

can be used to estimate an optimal Importance Sampling density. The prerequisite for 

both methods is a sample from the (usually low probability) range in the parameter space 

of x, for which y = f(x) is clearly different from zero (or equal to 1 if y is an indicator 

variable), and for which y = f(x) is otherwise almost zero (or equal to zero). This means 

that a sample from the unknown Importance Sampling distribution must be available. 

Such a sample can be obtained, for example, from the results of an adaptive MC simu-

lation method developed at GRS /KLO 21a/. 

The quality of the approximated multivariate distribution or the kernel density as an esti-

mator for the optimal Importance Sampling density depends in particular on the proba-

bilistic properties of the sample elements. Ideally, these should be distributed inde-

pendently and identically to the Importance Sampling density. If the available sample 

elements were obtained by using the subset sampling method, such as in the adaptive 

MC simulation method SuSSVR (combination of subset sampling and support vector 

regression, /KLO 21a/ developed by GRS, the sample elements are not independent due 

to the use of Markov chains. This leads to a slowdown in the convergence of the estima-

tors compared to the ideal case with independent sample elements. However, the use 

of the sample elements from the subset sampling is justified because the estimators 

converge as the sample size increases. 

3.4.2.1 Approximation of a Multivariate Parametric Distribution 

If x = (x1, …, xd) is a random vector with an unknown distribution and 𝑥𝑖𝑖=1
𝑛  is a sample 

from this distribution, i.e. the x1, …, xn are independent and identical to x distributed 

random vectors, then for each variable xj of the vector x their mean E(xj) and variance 

Var(xj) can first be estimated from the sample 

𝐸̂(𝑥𝑗) =
1

𝑛
∑ 𝑥𝑖𝑗
𝑛
𝑖=1 Var̂ (𝑥𝑗) =

1

𝑛−1
∑ (𝑥𝑖𝑗 − 𝐸̂(𝑥𝑗))

2
𝑛
𝑖=1  (3.11) 
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Instead of mean 𝐸(𝑥𝑗)and variance Var(xj) quantiles can also be estimated. The following 

applies to the estimator of the p-quantile (e.g. p = 0.05) of the variable xj: 

𝑞̂𝑝𝑗 = 𝑥[𝑛 ⋅ 𝑝]𝑗 (3.12) 

where 𝑞̂𝑝𝑗 is the ⌈𝑛 ⋅ 𝑝]-th value of the ordered sample 𝑥[1]𝑗 ≤ 𝑥[2]𝑗 ≤ ⋯ ≤ 𝑥[𝑛]. The dis-

tribution parameters of the selected univariate and continuous distribution types can be 

determined using SUSA /KLO 21/ on the basis of 𝐸̂(𝑥)𝑗 and 𝑉𝑎𝑟̂(𝑥𝑗) or a selection of 

(e.g. three) quantile estimators (e.g. for p = 0.05, 0.50 and 0.95). In the next step, a 

Kolmogorov-Smirnov or Lillifors (assuming a normal, lognormal or exponential distribu-

tion) adjustment test /KLO 21/ is carried out for each completely defined distribution. Both 

tests are non-parametric and compare the empirical distribution function from an existing 

sample with a selected continuous distribution. Based on the test results for the present 

sample 𝑥𝑖𝑗𝑖=1
𝑛 , a suitable univariate distribution can be selected for the variable xj. Finally, 

the correlation coefficients between the variables x1, …, xd must be estimated from the 

available sample. The normal Pearson correlation coefficient between the variables xj 

and xk is estimated as follows: 

𝜌̂(𝑥𝑗 , 𝑥𝑘) =
∑ (𝑥𝑖𝑗−𝐸̂(𝑥𝑗))!(𝑥𝑖𝑘−𝐸̂(𝑥𝑘))
𝑛
𝑖=1

√∑ (𝑥𝑖𝑗−𝐸̂(𝑥𝑗))
2

𝑛
𝑖=1 ⋅∑ (𝑥𝑖𝑘−𝐸̂(𝑥𝑘))

2𝑛
𝑖=1

 (3.13) 

If the continuous univariate distributions for the variables x1, …, xd and the correlation 

coefficients between these variables are determined on the basis of a sample from the 

unknown Importance Sampling distribution, a multivariate distribution density can ulti-

mately be defined as an approximation to the Importance Sampling density. In SUSA, a 

multivariate distribution is defined by entering the respective univariate distributions of 

the uncertain parameters (variables) and the correlation coefficients between the 

parameters. If several correlation coefficients are strongly positive or negative, then 

some eigenvalues of the correlation matrix can be zero or almost zero. This can lead to 

eigenvalues less than or equal to zero as part of the sampling procedure in SUSA due 

to numerical errors. As a result, the Cholesky decomposition of the estimated correlation 

matrix would not be possible and sampling from the multivariate distribution would not 

be feasible within SUSA. One solution would be to decompose the correlation matrix and 

replace the non-positive eigenvalues with a small positive epsilon. 
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3.4.2.2 Kernel Density Estimation to Derive an Importance Sampling Density 

Kernel density estimation (KDE) is a non-parametric statistical method for estimating the 

density of an unknown probability distribution on the basis of a sample. Unlike a histo-

gram, a kernel density estimator is a continuous estimator of density. If 𝑥𝑖𝑖=1
𝑛  is a sample 

from an unknown univariate distribution – i.e. the x1, …, xn are independent and identi-

cally distributed random variables with an unknown distribution – and K is a kernel, the 

kernel density estimator with bandwidth h > 0 is defined as 

𝑓ℎ(𝑥) =
1

𝑛
∑ 𝐾ℎ(𝑥 − 𝑥𝑖) =

1

𝑛
∑

1

ℎ
𝐾 (

𝑥−𝑥𝑖

ℎ
)𝑛

𝑖=1
𝑛
𝑖=1  (3.14) 

The kernel density estimator is therefore the weighted sum of correspondingly scaled 

kernels, which are positioned depending on the sample realisation. The choice of band-

width h is decisive for the quality of the kernel density estimator. With a bandwidth chosen 

as a function of the sample size, the sequence of kernel density estimators almost cer-

tainly converges uniformly towards the unknown probability density as the sample size 

increases. Intuitively, one would like to choose h as small as possible. However, a bal-

ance must always be struck between the bias of the estimator and its variance. 

A number of distribution densities are available as (univariate) kernels K, such as the 

densities of the uniform distribution, triangular distribution, standard Cauchy distribution, 

or standard normal distribution (Gaussian distribution). Due to its mathematical proper-

ties, the density of the standard normal distribution is often used, i.e.: 

𝐾(𝑧) =
𝟏

√𝟐𝝅
𝒆−

𝟏

𝟐
𝒕𝒛𝟐

 (3.15) 

In the multivariate case, where there is a sample of n independent and identically 

distributed random vector (𝑥𝑖 , … , 𝑥𝑖𝑑)𝑖=1
𝑛 ,  d > 1, a multivariate kernel must be used for 

kernel density estimation. If the variables of the vector 𝑥 = (𝑥1, … , 𝑥𝑑) are independent, 

the multivariate kernel can be represented as a product of univariate kernels K: 

𝑓ℎ(𝑥) =
1

𝑛
∑ ∏

1

ℎ𝑗
𝐾 (

𝑥𝑗−𝑥𝑖𝑗

ℎ𝑗
)𝑑

𝑗=1
𝑛
𝑖=1  (3.16) 
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The kernel density estimator for the multivariate case with correlated variables (x1, …, 

xd) can be formulated as follows: 

𝑓ℎ(𝑥) =
1

𝑛
∑

1

det(𝐻)
𝐾(𝐻−1(𝑥 − 𝑥𝑖))

𝑛
𝑖=1  (3.17) 

where K is the multivariate kernel and H is the matrix of bandwidths. The multivariate 

normal distribution with covariance matrix H is often used as the multivariate kernel. 

3.4.2.3 Implementation of kernel density estimation 

In Python, there are several options for kernel density estimation in the multivariate case. 

The three best-known freely available options are: 

• SciPy: gaussian_kde, 

• Statsmodels: KDEMultivariate, 

• Scikit-learn: KernelDensity. 

In a comparison, KDEMultivariate from Statsmodels and KernelDensity from Scikit- learn 

proved to be the most suitable. The kernel density estimation with gaussian_kde from 

SciPy is based on the covariance matrix, which was estimated from the underlying sam-

ple. A Cholesky decomposition is performed for this covariance matrix, but this often 

does not work because the matrix is not positive definite. Therefore, the error ‘singular 

matrix’ is often obtained. Kernel density estimation with KDEMultivariate or KernelDensity 

is based on the equation (*), i.e. it assumes uncorrelated variables. As the equation 

shows, this kernel density estimation depends significantly on the selection of the band-

width. KernelDensity from Scikit-learn uses only a single value for the bandwidth for all 

variables involved. This is fine if the individual variables are not very heterogeneous. 

However, if the variables differ by orders of magnitude, then KernelDensity is not suitable 

for kernel density estimation. In comparison, KDEMultivariate from Statsmodels uses a 

separate bandwidth for each variable and is therefore well suited for heterogeneous var-

iables. A major disadvantage is that it does not take correlations between the variables 

into account. 
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i=1 

3.4.2.4 Sample from a Kernel Density 

The option to sample from a kernel density has been implemented in SUSA. In order to 

draw a sample from the kernel density, it is not necessary to estimate a kernel density. 

The only information needed for the sampling procedure is the sample values for the 

kernel density estimation and the bandwidth values. The sampling procedure can be 

outlined as follows: 

• Draw a vector (𝑥1, … , 𝑥𝑑) from the sample (𝑥𝑖 , … , 𝑥𝑖𝑑)𝑖=1
𝑛 ,  d > 1 on which the kernel 

density estimation is based. 

• For each value xij, j = 1. …, d, of the drawn vector, draw a value from the univariate 

kernel that relates to xij I.e. if the kernel is a standard normal distribution, then draw 

a value from the normal distribution with the mean xij and the standard deviation hj 

(bandwidth). 

• Go back to step 1. 

A new vector is sampled each time the procedure is run. The number of passes deter-

mines the size of the sample from the kernel density. 
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4 Enhancement of Platform Independency and Expansion of 

the Range of Applications 

The modularity of SUSA has been improved following the guideline of a layered ap-

proach. The following layers have been identified: 

1. Basic Python or FORTRAN routines which could also be called in a command line 

interface. 

2. Higher-level functions or classes which provide a convenient interface to the user. 

An example of this is the provision of a generic interface for calling FORTRAN-based 

functions, as described in Section 4.3. For most of these higher-level functions, ex-

ample scripts have been made available. 

3. Jupyter notebooks which show the implementation of a whole analysis chain and 

give the user the ability to interactively understand the analysis procedure. These 

notebooks have been provided for the RAMESU examples presented in Section 

4.1.3, but also for the neural-network-based application of the subset sampling algo-

rithm for the Ishigami function discussed in Section 5.2 as well as for the sensitivity 

and tolerance limit methods available in SUSA. 

4. A GUI which gives the user the opportunity of employing the capabilities of SUSA 

without the need to be proficient in the Python program- ming language. The first 

development steps as well as the planned future layout of this GUI are described in 

the following sections. 

4.1 Developments Towards a SUSA GUI 

4.1.1 Basic Concept 

The following requirements for the future SUSA GUI have been identified: 

• The new SUSA GUI should be platform independent. 

• It should be easy to couple it to the new Python SUSA. 

• The classic SUSA GUI user should be able to receive a similar level of support if this 

is required. 
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• On the other hand, the advanced user should have the option to quickly enter the 

envisaged distributions and parameters without having to pass through the same 

steps of guidance as a user needing support and have a similar or wider range of 

capabilities. 

The open-source library Dash Open-Source has been chosen as basis to develop the 

new SUSA GUI in a web-based dashboard style. Dash Open-Source is distributed under 

the permissive open-source MIT (Massachusetts Institute of Technology) licence. Cur-

rently, the SUSA GUI can be used by running the underlying dash app on localhost; this 

way, it can only be accessed from the machine which started the app. In addition, meth-

ods exist to turn the resulting Dash app into a standalone desktop application. 

Similar to the classic SUSA, it is planned to structure the new SUSA GUI into four main 

parts: 

1. Definition of the input uncertainties; 

2. Sampling of the modelled uncertain parameters; 

3. Generation of the input files for different simulation software and potentially start of 

simulations; 

4. Provision of data analysis capabilities. 

4.1.2 Distribution Input Example 

A first working example for parts of the distribution input section is shown in Fig. 4.1. The 

central part of the distribution input section is a table collecting all passed-in information. 

The table is editable and the lines (called rows on the dashboard) are selectable. 
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Fig. 4.1 First working draft of the new SUSA GUI dashboard showing the tab for en-

tering parameter distributions 

The main columns of the tables are: 

• Parameter ID: ID of the parameter. The ID needs to contain, in accordance with the 

requirements on a valid Python identifier, only alphanumeric letters (a-z) and (0-9), 

or underscores (_). A valid identifier cannot start with a number or contain any 

spaces. In addition, each ID needs to be unique. If these requirements are not met, 

an adequate error message will be presented to the user. The parameter ID can be 

accompanied by a more descriptive parameter name in the column "Descriptive Pa-

rameter Name". 

• Distribution: A dropdown menu providing the user with the names of available dis-

tribution types. 

• SUSA parameter: Here, the experienced user can provide the expected parameters, 

as detailed for the corresponding SUSA parameters in the updated SUSA User 

Guide. Lines for which parameter ID, distribution and SUSA parameter are provided 

will be marked as complete, as no further input is required. 

• Help: In case the user is not sure about the parameter format and values needed, 

the Help field in the corresponding line can be clicked, and a pop-up will appear, 

guiding the user through the available options. The kind of pop-up depends on the 

selected distribution. Once all information is entered into the input helper and the 

helper is closed, the SUSA parameter column is updated with the appropriate infor-

mation. In this way, the user can easily copy, paste and adapt for further similar un-

certain parameter distributions. 
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The following columns can be made visible with use of the Toggle columns button on the 

upper left of the dashboard: 

• Descriptive parameter name: As mentioned before, this column allows the user to 

provide a more descriptive parameter name, which can be stored and used for docu-

mentation purposes. 

• Reference value: This is the value that will be used if no distribution is provided. 

Lines for which a parameter ID and a best estimate or reference value are given will 

be marked as complete, since in this case no distribution should be added. 

• Best estimate value: This is an alternative value that can be used if no distribution 

is provided. Lines for which a parameter ID and a best estimate or a reference value 

are given will be marked as complete, as in this case no distribution should be added. 

• Unit: This column allows the user to store the unit of the parameter for docu-

mentation purposes in the table. 

• Notes: This column allows the user to add all kinds of additional notes for 

documentation purposes. 

The button Add Row below the table on the left-hand side of the dashboard allows to add 

additional lines and therefore also additional uncertain parameter to the table. In this 

way, the table extends as needed by the user. The Export button above the table down-

loads the contents of the DataTable as .csv file. Currently, the Export button automatically 

downloads the table to the "Download" directory. In the future, an input field will be pro-

vided so that the user can set the output directory. The Update Histogram button allows 

the visualization of the selected distributions detailed in the table. 

When clicking on one of the cells in the rightmost column of the table, a popup window 

appears in which the user can enter information about the desired distribution. Two types 

of these input helper windows can be distinguished, an input helper for parametric distri-

butions and an input helper for non-parametric distributions, which encompasses dis-

crete distributions, polygonal distributions, and histograms. Fig. 4.2 shows the input 

helper for a normal distribution and Fig. 4.3 that of a discrete distribution. 
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Fig. 4.2 First working draft of the new SUSA GUI dashboard showing the tab for en-

tering normal distributions 

 
 

Fig. 4.3 First working draft of the new SUSA GUI dashboard showing the tab for en-

tering normal distributions 

The input helper for parametric distributions provides input fields for the minimum and 

maximum truncation values, for the parameters needed by the distribution, for location 

(LOC) and scale parameters which allow to modify the distribution, and formulas both for 

the distribution and for the way LOC and scale modify the distribution. 

The input helper for non-parametric distributions provides a table for point/probability in 

case of discrete distributions, for lower bin limit/height in case of histograms, and x-co-

ordinate/y-coordinate in case of polygonal functions. 
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4.1.3 Planned Extensions 

Fig. 4.4 provides an outlook on how the final SUSA dashboard is envisioned. The envi-

sioned dashboard is divided into four tabs, with each tab belonging to one important part 

of the SUSA software package. The tabs ‘Input Uncertainties’, ‘Sample Generation’ and 

‘Computer Code Preparation’ correspond to dropdown selections ‘Input Uncertainties’, 

‘Sample Generation’ and ‘Computer Code Runs’ in the classic SUSA GUI. The name ‘Com-

puter Code Runs’ will be changed to ‘Computer Code Preparation’, as it is more descriptive 

with respect to the nature of the provided services. The classic SUSA dropdown selec-

tions ‘Uncertainty Analysis’, ‘Sensitivity Analysis’, ‘Scatter Plot’ and ‘Cobweb’ will be 

grouped into one dashboard tab ‘Data Analysis’. Back and forth tabs in the lower part will 

guide the user through the dashboard. 

 

Fig. 4.4 Visualization of the concept for the new SUSA dashboard GUI 

One important part of the input uncertainty handling still missing from the first implemen-

tation of the input tab are dependencies between uncertain parameters. In the new SUSA 

GUI, uncertainties will be collected in the same dashboard tab as the input parameter 

distributions, enabling the user to see the full modelled input in one page as shown in 

Fig. 4.4. The tab will be divided into two parts, one part for the distribution input and one 

part for the dependency input. 
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Like the distribution input, the dependency input will be in table format. The first column 

of the table will contain all available dependencies. The second column corresponds to 

the SUSA parameter column of the distribution table; here the expert user can enter the 

required distribution parameter in form of a Python dictionary. Like for the distribution 

input, a help button should be available for non-expert users to guide them through the 

process of defining the desired dependencies. 

The classic SUSA GUI distinguishes between population- and sample-related depend-

encies. The following dependencies are provided in both cases: 

• Full dependency; 

• Conditional distribution; 

• Function of parameters; 

• Inequality. 

In addition, the classic SUSA allows specifying association measure correlation depend-

encies, such as Pearson correlation, Blomqvist medial correlation, Kendall rank correla-

tion and Spearman rank correlation. Only the Spearman rank correlation is available for 

sample-related dependencies. A detailed description of the two types of dependencies 

can be found in the SUSA method guide. 

Since the distinction between population- and sample-related dependencies does only 

affect correlation dependencies directly, the user should only be asked to make a deci-

sion between sample- and population-related dependencies if he/she is interested in cor-

relation dependencies. 

The following dependencies will be available in the new SUSA: 

• Single correlation; 

• Matrix correlation; 

• Inequality; 

• Conditional distribution; 

• Function of parameters; 

• Functional combinations. 
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The classic SUSA single correlation will be complemented by a matrix correlation. Matrix 

correlation is very useful if the correlation dependency can be described by a large linear 

equation system. In this way, a single matrix can be used to describe the correlation 

between a multitude of parameters. A further addition to the provided dependencies will 

be the functional combinations. The principal idea behind functional combination is that 

the user can select a functional dependency between the dependent parameters and 

several free parameters. Functional combinations encompasses three special cases: 

first, linear combinations which are linear combinations of several ’free’ parameters de-

fining the dependent parameter; second, functional combinations which are all non-linear 

combinations of several ’free’ parameters defining the dependent parameter; and third, 

proportions. Proportions are the association of multiple uncertain parameters which rep-

resent the proportions (percentages) of a whole and, therefore, must sum up to 1.0 

(100 %). For each of these three cases, a popup window will be provided, guiding the 

user through the process of defining the dependency. 

In the following, the help for the inexperienced user will be described for each depend-

ency. 

4.1.3.1 Concept of the Dependency Input for the New SUSA GUI 

Fig. 4.5 shows the popup mask which will appear if the user selects Single Correlation in 

the table shown in Fig. 4.4 and presses the Help button. The user will get dropdown 

selections for 

− population or sample related, 

− free parameter 1, 

− free parameter 2, 

− correlation type, and 

− correlation value. 
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Fig. 4.5 Sketch of the potential popup input helper for correlation dependencies 

Fig. 4.6 shows the popup mask which will appear if the user selects Matrix Correlation in 

the table visible in Fig. 4.4 and presses the Help button. In this case, the user will be able 

to upload two files, one file containing the correlation parameter and one file containing 

the correlation. Once both files have been uploaded, two tables will be populated and 

presented in the popup, one table containing the parameter names and another table 

containing the correlation values. 

 

Fig. 4.6 Sketch of the potential popup input helper for matrix dependencies 

The distribution table will only show parameters for which no distribution has been en-

tered as potential dependent parameters; Parameters for which a distribution is entered 

in the distribution table will be shown as potential free parameters. In addition, an input 

section for numbers will be provided in which the user can enter the correlation value. 

This input section will only allow numbers between 0 and 1 to be entered. In case a 

sample-related correlation is chosen, only Spearman rank is available as correlation 

type. 

Fig. 4.7 shows the pop-up helper to be provided for inequality dependencies. The user 

will get dropdown selections for: 

− value modification or resampling, 

− dependent parameter, 
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− free parameter, and 

− the inequality factor. 

The available inequality factors are ">", "<", "≥" and "≤" as stated before. In addition, a 

two-dimensional graph will be shown illustrating the selected parameter area. 

 

Fig. 4.7 Sketch of the potential popup input helper for inequality dependencies 

The option Inequality should be selected if the relationship between two parameters X 

and Y is given by the inequality equation Y = inequality_factor a * X, where the factor ’a’ 

is a real number and the inequality factor is one of the four logic comparisons ">", "<", 

">=" and "<=". 

There are two alternatives to implement the inequality: 

1. ‘Independent repeated sampling’ until a sample is obtained that satisfies the inequali-

ty; 

2. the modification of the values sampled for Y. 

Both alternatives may affect the marginal distribution specified for parameter Y. ‘Inde- 

pendent repeated sampling’ may require long computing time. The modification of Y (2nd 

alternative) is performed according to the following formula: 

𝑌′ = 𝑎 ⋅ 𝑋 +
max𝑌−𝑎⋅𝑋

max𝑌−min𝑌
(𝑌 − min 𝑌) (4.1) 

where X and Y are the parameters before the modification, and Y ′ is the modification 

of Y. 
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In case of a conditional dependency, the distribution of a parameter (considered as the 

dependent parameter) is a conditional distribution dependent on another parameter (free 

parameter). The conditional distribution of the dependent parameter has to be specified 

for each sub-interval of an exhaustive set of mutually exclusive intervals over the range 

of the free parameter. 

The intended layout of the conditional dependency popup is presented in Fig. 4.8. This 

popup provides two dropdown selections, for the dependent and the free parameter, an 

input table, which should be used to define the mutually exclusive intervals, two buttons 

Add Row and Help, and a graph showing the distribution of the free parameter and the 

provided intervals. The table will be editable, except for the Minimum Limit column, lines 

will be deletable and a single line can be selected. The Add Row button allows the 

addition of lines (new intervals) to the table, either at the end of the table or, if one line is 

selected, below the selected row. The Help button allows opening a distribution helper 

popup to define the distribution in a selected line, similar to the Help button in the 

distribution table. 

 

Fig. 4.8 Sketch of the potential popup input helper for conditional dependencies 

The table consists of four columns: 

• a distribution ID column similar to the distribution ID column in the distribution table. 

This column contains a dropdown selection of all available distributions, 

• the distribution parameter column, in which the advanced user can enter the neces-

sary distribution parameter in form of a Python dictionary, 

• the minimum limit column, in which the user can enter the lower limit of the distribu-

tion. This value is predefined for each line and cannot be set by the user. When the 

popup is opened, the Minimum Limit column in the first line shows the minimum value 
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of the free parameter. Once a line is added using the Add Row button, the new line 

Minimum Limit column contains the Maximum Limit value of the line before and so 

on. If a line is deleted, the Minimum Limit column of the following line will be updated. 

• the Maximum Limit column, which should be set to the maximum value of the free 

parameter in the intended interval. The predefined value of this column is the maxi-

mum value of the free parameter. 

In this case, the dependent parameter Y is associated with other free parameters by an 

explicit functional relationship. The new SUSA dashboard will offer the option to formu-

late such a relationship as a Python formula, as shown in an exemplary manner in equa-

tion (4.2): 

𝑌 =
𝑎⋅𝑋𝑖+𝑏⋅𝑋𝑗

√(𝑋𝑘)
 (4.2) 

where Y is the parameter name of the dependent parameter and Xi, Xj and Xk are 

the parameter names of the free parameters. The values of uncertain parameter Y are 

derived from the explicit functional dependency on the parameters Xi, Xj, …, Xn. They 

are affected by the a priori specified marginal distributions FXi , FXj . The corresponding 

pop-up input helper will offer two input fields, one drop-down selection field containing 

all parameters for which no distribution has been specified and one string input field 

to enter the Python expression. The new SUSA dashboard will accept all valid Python 

expressions as formula. The layout of the corresponding popup will contain one 

dropdown selection for the dependent parameter and an input area in which the for-

mula for the functional dependency can be entered. An automatic check will be per-

formed if the parsed formula is legit. In case this check fails, a warning will be given 

to the user. 

Linear combinations are special cases of functional combinations and Proportions spe-

cial cases of linear combinations as described above. Due to this relation, only one popup 

is created for the three cases. The planned popup design is shown in Fig. 4.9. Once the 

popup has been opened, only the uppermost dropdown selection can be modified by the 

user, everything else is locked. In this selection, users can decide if they are specially 

interested in proportions, more general in linear combinations or most generic in func-

tional combinations. Depending on the decision, the elements below the dropdown se-

lection are unlocked and modified. 
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Fig. 4.9 Sketch of the potential popup input helper for conditional dependencies 

In case ‘Proportions’ is selected, the field in which different parameters can be selected 

is unlocked, method, RHS (right-hand side of the equation) and resulting expression re-

main locked. The number 1 is entered into the field ‘RHS’. The field ’resulting expression’ 

is automatically completed with the corresponding expression 

∑ 𝑝𝑎𝑟𝑖𝑖 = 1 (4.3) 

In addition, an entry field for ‘number of samples’ appears in the section ‘Additional input 

fields’. 

In case linear combinations is chosen, the fields method and RHS get unlocked addition-

ally. Different linear combination methods should be selectable, e.g. the classic SUSA 

method, which leads to a modification of the different distributions, or a brute-force re-

jection sampling method which rejects all samples not adhering to the required combi-

nation. Depending on the chosen linear combination method, additional input fields could 

appear in the section Additional input fields, such as number of samples. 

In case the most generic option Functional Combination is selected, the input fields 

Method and Parameter are supposed to be locked, the input field Expression and RHS 
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will be unlocked. Potential additional input fields in the Additional input fields section 

could be again the number of samples or maybe the maximum number of iterations, 

depending on the implementation of the functional combination procedure. 
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5 Summary and Outlook 

For the continuous development of the software analysis tool SUSA, work has been car-

ried out in the research and development project RS1599: 

• to extend and enhance the available methods for reliability analysis, 

• to extend, harmonize and benchmark the SUSA adaptive sampling methods, 

• to improve the platform independency and expand the range of applications, and 

• to maintain and adapt the SUSA Users and Methods Guide. 

Three reliability software codes have been integrated into SUSA to extend the SUSA 

capabilities towards reliability analysis. 

1. RAMESU: A program to model and analyse dynamic processes of technical systems 

in the form of Markov and semi-Markov processes and associated uncertainties. 

2. AURA: A program to generate generic or system-specific distributions of failure rates 

or probabilities of failure on demand or repair rates based on the observed number 

of failures in a given observation time, the number of failures for a given number of 

demands, or the number of repairs with the repair time required for the repairs. 

3. BetaFit: A program which fits a beta distribution to a log-normal distribution. 

The implementation of RAMESU in SUSA allows combining the advantage of Markov 

models, namely gaining a more realistic modelling of system dependencies, with the 

sampling and analysis functions implemented in SUSA. In this way, the time-dependent 

development of system failure probabilities can be modelled and analysed for various 

scenarios, e.g. CCFs or failure behaviours which depend on the system status. RAMESU 

example Jupyter notebooks have been included in SUSA, showing the application of the 

new SUSA RAMESU module for seven different example scenarios. 

The AURA program, now included in SUSA, is essentially based on Bayesian ap-

proaches. The derivation of the two-stage Bayesian approach is explained in /PES 97/, 

while the derivations of the other approaches are described in /PES 95/. The available 

’generic’ observations (observations from other comparable plants or information from 

expert judgement) can be used as prior information (a-priori information) and modified 

accordingly by current observations from the specific plant of interest. The user thus has 



 

106 

the option of including prior information in the generation of the distribution and receives 

a probability distribution as a result that describes the updated state of knowledge with 

regard to the parameter of interest. The information to be used for the calculation can be 

either data from a specific plant and/or observations from other but comparable plants or 

expert judgement. Hereby, expert judgement refers to the knowledge of quantile data of 

the reliability distribution, where a maximum entropy approach is used to combine this 

prior information. If such expert knowledge is not available, Bayesian approaches are 

used to combine the prior information with a specific plant. Depending on the type of prior 

information, different approaches are available to arrive at a suitable prior distribution. In 

the case of ’diffuse’ knowledge, i.e. no available prior information, the non-informative 

prior distribution is used. For the determination of plant-specific distributions with prior 

information, a specific posterior distribution with either a mixed distribution as prior or 

with the superpopulation approach as prior, which corresponds to the posterior distribu-

tion with unconditional generic distribution, can be used. 

The BetaFit program has been included completely in the range of SUSA sampling ca-

pabilities. It is now an additional option for the user to obtain a sensible modelling of the 

regarded input uncertainties. It allows replacing a log-normal distribution with potential 

unphysical values larger than 1 with a beta distribution which is bounded between 0 

and 1. 

The advanced MC simulation methods available in SUSA have been harmonized and 

extended. Compared to classic MC simulation, advanced MC simulation requires only a 

relatively small number of parameter constellations and corresponding simulation runs. 

Advanced selection methods are used which are often combined with ML methods. In 

this project, two of the available advanced MC simulation methods have been bench-

marked, once using a biological dose function to generate the target values, once using 

the Ishigami function, and once using a thermal hydraulic simulator for a LOCA.  

The biological dose function tests how a very small probability (1 E-06) can be estimated 

in a six-dimensional parameter space. The second example with the Ishigami function 

tests how to identify four separate regions in a strongly non-linear function. Although this 

is only a three-dimensional problem with a probability of about 1 E-03, finding all four 

maxima of this function is a difficult task that requires advanced sampling algorithms for 

proper likelihood estimation. The thermal hydraulic simulator provides a more realistic 

and complex application example, considering a high-dimensional parameter space (35 

uncertain parameters). 
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The GASA-PRECLAS algorithm has been compared to the SuSSVR for each of these 

cases. These benchmark tests have also been used to test the power of hyperparameter 

optimization for each algorithm. In each case, the best convergence criteria were used 

for the two tested algorithms. Both algorithms function in two cycles, a first cycle in which 

the parameter space is explored and a second one for providing a good estimation of the 

probability of the failure region. As for the first cycle in exploring the parameter space, 

both algorithms performed well when there is only a single contiguous target region. In 

such applications, an advanced parameter space exploration method is not required. 

However, if there are multiple target regions that are not connected to each other, the 

GASA algorithm performs slightly better and can play its advantage of effectively exploit-

ing the parameter space over the first iteration cycle of the SuSSVR algorithm. 

As for the second cycle in building a robust metamodel for prediction, both algorithms 

perform well if the probability is not too small. However, for probabilities below 1 E-06, 

the simple MC sampling in the PRECLAS algorithm requires too many parameter sam-

ples and leads to runtime and memory problems. The Subset Simulation, which is used 

in the SuSSVR algorithm, already prevents such behaviour. These benchmark tests also 

provided new ideas for improving the SUSA adaptive sampling capabilities, e.g. by com-

bining the algorithms with an importance ranking of the uncertain parameters, thus re-

ducing the time spent on optimizing parameters of minimal importance. 

In addition to this benchmark test, the SUSA advanced MC simulation methods have 

also been extended by a combination of the subset sampling algorithm with flat neural 

networks. A Jupyter notebook has been developed to show the application of this new 

adaptive sampling method using the Ishigami function to provide the target values. The 

user is enabled to set up a neural network, which can be defined using the Pytorch li-

brary, best suited to the given scenario. Further research is needed to understand which 

kind of neural networks are suited best for different needs. 

The application of advanced sampling algorithms, based on machine learning algo-

rithms, often lead to the question which parameters drive the resulting metamodels. In 

order to increase the interpretability and transparency of the resulting models, methods 

for calculating Shapley value have been added to the SUSA framework. Shapley values 

are a concept from game theory that is used to determine the contribution of individual 

players to the total profit in a co-operative game. Shapley values offer a theoretical ap-

proach to interpreting model results. In addition, Shapley values can quantify the contri-
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bution of individual variables (input parameters, features) to the model result. Bias and 

undesirable influences of individual variables can be identified and addressed. 

In addition to the adaptive sampling algorithms described above, more traditional meth-

ods such as Importance Sampling can also be used to increase the efficiency of MC 

sampling, even for low-probability target regions. If Importance Sampling is used, sample 

elements of x are not selected from the actual distribution p(x) but from the distribution 

q(x), which concentrates on the low-probability range of interest in the parameter space. 

In the course of the research project RS1599, methods have been developed to extract 

an Importance Sampling kernel from the results of an adaptive sampling method. In this 

way, the results of an adaptive sampling run can be reused for further exploration of the 

target region. 

In addition to the method developments described above, the SUSA source code has 

also been maintained and its modularity improved. In the course of the implementation 

of the various reliability methods described above, the guideline of a layered setup of the 

SUSA source code has been followed to provide a consistent interface between under-

lying FORTRAN applications, such as BetaFit and the SUSA distribution finder, and a 

Python frontend. This Python frontend can be called either from a command line interface 

or by running a Python script or a Jupyter notebook. In order to provide the new SUSA 

capabilities also to users who are not proficient in Python or for a simple and convenient 

way to use the available method, work on a new graphical user interface has started. A 

concept for this user interface has been derived and a first prototype implemented. This 

prototype already provides basic capabilities for modelling the desired input parameter 

distributions. 

A released SUSA package will be accompanied by a Models and Methods Handbook, 

based on /KLO 21/, and a User Guide /KLO 23/ for the classic SUSA GUI. The Methods 

Handbook has been updated with regard to the new developments considering the ad-

vanced sampling algorithms and the new reliability methods. It is planned to distribute a 

new SUSA release. 
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