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Zusammenfassung

Das Analysewerkzeug SUSA ist eine etablierte Software zur Unsicherheits- und Sensi-
tivitatsanalyse, mit welcher Ungewissheiten in nuklearen Sicherheitsanalysen im Rah-
men von Best Estimate Plus Uncertainty (BEPU)-Ansatzen mittels Monte-Carlo-Simula-
tionen berilcksichtigt werden koénnen. In SUSA konnen Toleranzintervalle oder
Sensitivitdtsmale der sicherheitsrelevanten Simulationsergebnisse berechnet werden,
indem die unsicheren Eingangsparameter variiert und die entsprechenden Simulationen
eines deterministischen Codes ausgeflihrt werden. Im Rahmen des Forschungs- und
Entwicklungsvorhabens RS1599 wurden weitere Methoden entwickelt und in SUSA im-
plementiert, um einen Schatzer fiir die Wahrscheinlichkeit eines seltenen Ereignisses zu
bestimmen und damit die Analyse zur Quantifizierung des Einflusses von Parametern zu
unterstitzen, die im Parameterraum der Einflussfaktoren in einem sehr geringen Wahr-
scheinlichkeitsbereich geschatzt werden. Hierbei handelt es sich um die Importance Sam-
pling (IS)Methoden.

In SUSA wurden zwei Ansatze implementiert, um eine optimale Importance Sampling-
Dichte zu schatzen: die Approximation einer multivariaten parametrischen Verteilung und
die Kernel-Dichte-Schatzung. Voraussetzung fir beide Methoden ist eine Stichprobe aus
dem (in der Regel wenig wahrscheinlichen) Bereich im Parameterraum der Einflussfak-
toren. Eine solche Stichprobe kann z. B. aus den Ergebnissen eines adaptiven Monte-
Carlo-Simulationsverfahrens gewonnen werden. Ein weiterer Entwicklungsbereich be-
zieht sich auf Methoden fiir Zuverlassigkeitsanalysen. Das von der GRS entwickelte Pro-
gramm RAMESU (Reliability Analysis with Markov Models Extended by an Optionfor Sen-
sitivity and Uncertainty Analysis) wurde in SUSA integriert und Uber den bestehenden

Funktionsumfang zur Zuverlassigkeitsanalyse hinaus umweitere Funktionalitatenerganzt.

Die Modularitatvon SUSAwurde nach der Richtlinie eines mehrschichtigen Ansatzes ver-
bessert, wobei die folgenden Bereiche berucksichtigt wurden: (1) grundlegende Python-
oder FORTRAN-Routinen, (2) Funktionen oder Klassen auf héherer Ebene, die dem Be-
nutzer eine komfortable Schnittstelle bieten, (3) Jupyter Notebooks, die die Implementie-
rung einer ganzen Analysekette zeigen und dem Benutzer die Moglichkeit geben, den
Analysevorgang interaktiv nachzuvollziehen und (4) eine grafische Benutzeroberflache
(GUI), die den Benutzerndie Maglichkeit gibt, die Fahigkeiten von SUSA zu nutzen, ohne

dass diese die Programmiersprache Python beherrschen muss.



Abstract

The SUSA analysis tool is an established software for uncertainty and sensitivity analysis
which can be used to consider uncertainties in nuclear safety analyses in the frame of Best
Estimate Plus Uncertainty (BEPU) approaches using Monte Carlo simulations. Within
SUSA, tolerance intervals or sensitivity measures of the safety relevant simulationresults
can be calculated by varying the uncertain input parameters and running the respective
simulations of a deterministic code. Within the frame of the research and development
project RS1599, further methods have been developed and implemented in SUSA to
determine an estimator for the probability of a rare event and thus to support the analysis
for quantifying the influence of parameters which are estimated in a very low probability
range in the parameter space of the influencing factors. These refer to the Importance

Sampling (IS) methods.

Two approaches have been implemented in SUSA to estimate an optimal importance
sampling density: the approximation of a multivariate parametricdistributionandtheker-
neldensity estimation. The requirement for both methods is a sample from the (usually low
probability) range in the parameter space of the influencing factors. Such a sample can be
obtained, forexample, from the results of an adaptive Monte Carlo simulation procedure.
Another area of development refers to methods for reliability analyses. The RAMESU
program (Reliability Analysis with Markov Models Extended by an Optionfor Sensitivityand
Uncertainty Analysis) developed by GRS has been integrated into SUSA and supple-
mented by further functionalities in addition to the existing range of functions for reliability

analysis.

The modularity of SUSA has been improved according to the guideline of a layered ap-
proach where the following aspects have been considered: (1) basic Python or FORTRAN
routines, (2) higher-level functions or classes which provide a convenient interface to the
user, (3) Jupyter notebooks which show the implementation of a whole analysis chain and
give the userthe ability to interactively understand the analysis procedure, and (4) a graphi-
cal user interface (GUI) which provides the opportunity to the users of employing the
capabilities of SUSA without the need to be proficient in the Python programming lan-

guage.



1 Introduction and Objectives

GRS has been developing and using the analysis tool SUSA (Software for Uncertainty
and Sensitivity Analyses) for over 30 years to quantify the uncertainty associated with a
simulation result and to determine the main causes of this uncertainty. The methods
provided are based on probability calculations, Monte Carlo (MC) simulations and statis-
tical methods. Based on probability distributions for the input parameters of a simulation
program that cannot be clearly defined (uncertain), SUSA can be used to play out pos-
sible value constellations for these parameters and thus start corresponding simulation
runs. The simulation results obtained can then be statistically analysed with regard to
safety significant issues. For example, SUSA can be used to calculate a tolerance inter-
val that covers a high proportion (generally > 95 %) of the possible values of a simulation
result with high statistical certainty (generally > 95 %). SUSA thus provides important

support in proving the acceptance criteria in the context of so-called BEPU analyses.

In addition, the sensitivity analysis methods implemented in SUSA can be used to deter-
mine the (uncertain) input parameters having the most influence on the uncertainty as-
sociated with a simulation result. Due to the implementation of advanced selection pro-
cedures and machine learning methods, SUSA can now also be used to determine the
probability of a critical result (e.g., exceeding numerical safety criteria, failure of safety
systems, core damage, release of radionuclides) and the unfavourable constellations of
input parameters associated with the critical result with a practicable computational ef-
fort. In addition, the limit range between favourable and unfavourable parameter constel-
lations, which is susceptible to cliff-edge effects (see /IAE 16/, p. 37, footnote 20), i.e.
the range in which the system behaviour can change abruptly due to small fluctuations
in the input parameters, can also be determined. The newly implemented methods can
be used, e.g. to determine indicators for the safe operation of nuclear power plants or
other criteria for risk management in accident sequences. SUSA consists of various plat-
form-independent modules (in FORTRAN or Python) that are called by a higher-level
application program for the corresponding calculations. As the application program and
therefore the functionality of SUSA was previously only available on MS Windows-based
operating systems, a Python-based core connection and prototype applications based
on Jupyter notebooks /KLU 16/ were developed for a platform-independent application
of SUSA. This sustainable implementation strategy is ideal for validation tests of existing
as well as newly developed methods and can already be used for the first SUSA appli-

cations.



SUSA is a comprehensive, flexible and user-friendly analysis tool for dealing with uncer-
tainties in the application of computational models. In order to maintain this status, it is
to be continuously developed in line with the current state of knowledge and provide
classic and advanced methods for uncertainty and sensitivity analyses. New methods
are implemented in cases were the available implemented methods cannot be used to
analyse the influence of uncertain input parameters on the simulation result for applica-
tions, either for reasons of practicability or because the corresponding methodological
requirements are not met. New methods are implemented in a platform-independent
manner to allow for a future use on Unix/Linux based computing clusters. SUSA is also
being developed with regard to user-friendly access to the methods provided and the
associated visualisation strategies as well as quality assurance standards in software

development.

The following objectives should be pursued in detail:

1. The available options for reliability analysis should be extended.

The RAMESU program developed by GRS /PES 91/ has been integrated into SUSA
and supplemented by further functionalities in addition to the existing range of func-
tions for reliability analysis. The range of functions in RAMESU is already significantly
more extensive than in freely available programs (e.g. in Python PyDTMC /BEL 20/),
which generally only allow standard modelling such as Markov chains and Markov
processes. In particular, the program offers the modelling of semi-Markov properties,
the consideration of allowable outage times (permissible failure times) of certain com-
ponent states as well as the possibility of limiting the exponential growth of the state

space by means of a so-called bound state.

In addition, methods already developed at GRS for estimating distributions for relia-
bility parameters have been integrated into SUSA. This enables the user to carry out
a reliability analysis with SUSA, taking epistemic uncertainties into account. The
methods for estimating distributions can be used to quantify the uncertainties in the
input data of a probabilistic safety analysis (PSA) in a more transparent and compre-
hensible way. By integrating these methods into the SUSA application environment,
strategies for quantifying distributions for reliability parameters from the operating
experience and expert knowledge are made available to a wider range of users and
made applicable in a user-friendly manner through practical and methodological

documentation.



2. The available methods for advanced Monte Carlo simulation with machine learning

algorithms should be maintained, benchmarked and extended.

In classic MC simulations, parameter constellations are (randomly) selected from a
joint probability distribution and corresponding simulation runs are started. The re-
quired number of parameter constellations depends on the underlying question and
the estimator that is to be calculated to answer the question. For example, to deter-
mine an estimator for the probability of a rare event, such a high number of parameter
constellations must be selected that it is no longer practicable to carry out corre-
sponding simulation runs with a complex simulation code. Compared to classic MC
simulation, advanced MC simulation requires only a relatively small number of pa-

rameter constellations and corresponding simulation runs.

Advanced selection methods are used, which are often combined with machine
learning (ML) methods. Such an advanced selection method is the Importance Sam-
pling (IS) method in which the original joint probability distribution of the parameters
is replaced by a distribution that weights parameter constellations in a certain range
higher and thus makes their selection more probable. The IS method has been im-
plemented in this project. The implementation has been carried out in such a way
that the method can be used both independently and based on the results of an

adaptive MC simulation.

Adaptive MC simulation uses advanced selection procedures in combination with ML
methods. An iterative process is used to control the selection of parameters to a
specific range of the input parameter space, which is characterised, for example, by
the fact that the parameter constellations contained therein result in a critical simula-
tion result. The ML methods are used to determine a simple, fast-running replace-
ment model (metamodel) for the actual simulation code. These metamodels are used
to quickly calculate the results for a large number of selected parameter constella-

tions.

In addition to the methods already implemented, it is planned to integrate further ML
methods for determining metamodels in SUSA. These include the support vector
method and shallow neural networks (NNs). The properties of these methods as well
as their advantages and disadvantages have been documented in order to provide
support in the selection of a suitable metamodelling method for a specific application.
The calculation results from the application of the metamodel are used to evaluate

the associated parameter constellations according to their usefulness (i.e. their pos-



sible affiliation to the parameter range of interest). A scoring function (learning func-
tion) is often used for this purpose. The parameters with the best scores are then
selected as input for the actual simulation runs. The convergence criterion of the
iterative process of an adaptive MC simulation depends on the metamodel used (ML
method).

. The underlying source code of SUSA should be maintained, structured and devel-

oped towards platform independence and maintainability.

The sustainable development of SUSA’s software architecture aims to make the
comprehensive analysis tool available and executable in as many common environ-
ments as possible. In addition, the software is to be made even more modular in
order to allow a simpler, continuous and flexible expansion of the range of methods,
e.g. through the use of scientific Python libraries such as scikit-learn /PED 11/ or
SciPy /VIR 20/. In addition, through targeted API (Application Programming Inter-
face) development and the necessary harmonisation, sufficient compatibility with ex-
ternal developments have been achieved to allow efficient comparative calculations,

data exchange and collaboration between software packages.

Other important goals are universal and easy handling as well as appropriate support
for the user. In the project RS1559, the foundations were laid to ensure flexible and
modern applicability of the functionalities in SUSA, regardless of the platform. The
new developments in this project are built upon this basis in order to meet the afore-

mentioned objectives in compliance with the GRS software guidelines /GRS 20/.

. The feedback of experience resulting from the use of SUSA should be continuously

analysed and implemented accordingly in order to further improve the specific work-

flow and the general quality of SUSA.

. The existing user documentation and method guide should be maintained. In accord-

ance with the GRS specifications for software development /GRS 20/, every SUSA
user is provided with method (or program) and user documentation /KLO 23/ as well
as installation documentation. The method documentation is an updated version of
/KLO 21a/. Method and user documentation are continuously expanded in line with
the newly implemented methods and functionalities. Furthermore, the method docu-
mentation is supplemented by exemplary and documented Jupyter notebooks so that

the user can work through the scope of SUSA’s methods interactively and inde-



pendently, using selected, simple examples. The installation documentation for the
classic SUSA GUI should also be adapted.






2 Reliability Parameters

21 Integration of the Functionality of the Markov Program RAMESU

Within PSA, the reliability of technical systems is determined using fault tree analyses.

These reach the limits of their modelling capabilities, e.g.,

— ifthere are dependencies of the stochastic component behaviour on the state of other

components or on changing environmental conditions (e.g. increasing temperature),

— if the dynamic behaviour of physical variables (e.g., pressure or temperature) is to be

modelled,

— if ‘phased mission’ processes or switching of components take place at specific

times,
— if tolerable downtimes (allowable outage times, AOTSs) exist in the system,

— if repairs are carried out at certain times and the repairs are successful or not with

certain probabilities,

— if maintenance is carried out on components at certain times and the components

are not available during this maintenance, etc.

Using the RAMESU program developed and implemented in SUSA, dynamic processes
of technical systems can be modelled and analysed in the form of Markov and semi-
Markov processes. This allows a more realistic modelling of the dependencies that often
occur in system behaviour. By implementing the Markov program in SUSA, it is possible
to carry out an uncertainty and sensitivity analysis with regard to the reliability (e.g. proba-
bility of failure) of the modelled system in a user-friendly and efficient way. Markov and
semi-Markov processes can be applied in various areas of system modelling and can be
used to calculate the reliability and availability of a system. Influences of common-cause
failures (CCFs) can be included just as easily as the influence of different test, mainte-
nance and repair strategies, dependencies of the system on physical variables (such as
pressure, temperature, etc.) and system states as well as influences of human actions

and time-dependent phenomena.

A particular advantage of the developed program is that semi-Markov properties of a

system can also be modelled that are not defined by exponentially distributed transition



rates, such as system switchovers that are carried out at certain times and with certain
probabilities of success. This alone distinguishes it from many commercial programs for
Markov analysis. Using the semi-Markov properties of the program, it is also possible to
take physical variables (temperature, pressure, flow rate, etc.) into account in discretised
form. This allows dependencies of the failure behaviour of process variables to be mod-

elled and their dynamic behaviour to be analysed.

Section 2.1.1 describes the methodology for calculating the state probabilities. Section
2.1.2 contains a description of the user input. Section 2.1.3 lists various application ex-
amples. For reasons of better comprehensibility, the application examples are kept rela-

tively simple.

211 RAMESU Methodology

The aim of analysing technical systems using Markov processes is to calculate probabili-
ties for the occurrence of system states over time. In many applications, dependencies
occur between the system states of subsequent points in time or subsequent action
steps. In this situation, the temporal dependencies in the behaviour of the system com-
ponents must be taken into account. This cannot be modelled in sufficient detail using
the classic method for determining the reliability of technical systems (e.g. fault tree
analysis) as temporal dependencies can only be taken into account to a very limited and
simplified extent. In order to consider these dependencies over time more precisely,

mathematical methods of stochastic processes, for example, can be used.

2111 Modelling Markov Processes

A stochastic process is defined as a set X;, t € T of random variables, where T describes
a discrete or continuous parameter space, e.g. discrete time steps or a continuous time
interval. The simplest dependency structure between time-dependent random variables
is obtained if the Markov property applies. This states that the future of the process only
depends on the state of the present and not on the states that the system has assumed

in the past. Formally, this can be expressed by equation (2.1):

P(X(tn) =iy | X(tn—l) = in—l'X(tn—z) = lp-2 ---vX(tO) = io) =
P(X(tn) = ian(tn—l) = in—l) (21)

witht, >t,.1>...t;>tpand n=1.



l.e., the probability of the state X{(t,) = i, at the time {, is only dependent on the last
assumed state X(t,.1) = in.1 at the time t,-1 and not on the states assumed at previous

times t,-2, ..., to assumed states in-», ..., io.

In order to model a system using a Markov process, the possible states of the system
must be defined. If the system to be analysed can assume the N different states Z;, ...,
Zn, hen the probability Pj(t) for the system state Z, j= 1, ..., N at any point in time t is
obtained by applying a Markov model.

In addition to the definition of the state space of the system, the calculation of the state
probabilities Pj(t) also requires that:

— the matrix of transition rates R = (r;) from state Z; to state Z; and

— the initial state Zy(t = 0) of the system at the time t =0

must be specified.

The elements r; in the rate matrix R (see equation 2.2) indicate the rate at which the
process transitions from state Z; to state Z;. Since a Markov process is defined by the
fact that a transition from one state Z; to another state Z; only occurs after exponentially
distributed dwell times, each transition rate describes the parameter of an exponential

distribution.

The rate matrix has the form:

- ZIIX:z Tk T,2 N
N
1 - Zk=1,k¢2 ok - 2N (2.2)
N
™1 ™2 ST Zk:l,k¢N Nk

First, the initial state Zo(t = 0) of a system at the time t = 0 and the probability of occur-
rence for the initial state are specified. With the RAMESU program, it is also possible to
specify uncertainties regarding the probability of occurrence. This means that different
values from an epistemic distribution are possible for the probability of occurrence. More

details on the consideration of uncertainties are described in Section 2.1.3.8.



With the definitions of
— the states Z;, ..., Z, of the system to be calculated,
— the matrix of transition rates R = (r;) from state Z; to state Z; and

— the initial state Zy(t = 0) of the system with the associated probability

the state probabilities Pj(t), j= 1, ..., N for any time t can be in principle be solved by

the system of differential equations shown in equation 2.3:

dPy(t)

N
dt —Yk=2T1k 71,2 N Py (1)
dp,(t) N
# = r2.,1 - Zk=1:k¢2 T2k - TZ.,N | P2 :(t) (2.3)
dPn(t) TN TN,2 T Zg=1,k¢N TNk Py (©)

dat

The state space of the model can become very large when modelling systems using
Markov models. In this case, finding a solution using a differential equation system be-
comes very difficult, therefore a different solution method was implemented to determine

the time-dependent state probabilities.

The matrix P of the transition probabilities must first be calculated from the rate matrix.

This can be done using the following calculation:

p=-2=.

+ 1y (2.4)

Tmax

where Iy denotes the unit matrix and rmax is the maximum of the amount of the diagonal

elements -r;; of the rate matrix R. l.e.,

Tmax = maX(ZQ’:z Tk leg=1,k¢2 20 s ey Zlig=1,k¢1v rN,k) (2.5)
In the following, the state probability at a point in time ¢ is briefly denoted as u(t) = P+(t),
..., Pn(f) with T > 0. It is assumed that the state probability at a certain point in time t, <t
has already been calculated, i.e. u(ts) is known.
Equation (2.6) is used to calculate the vector of state probabilities at any time t > t:

u(t) = exp(—(t — tg) * Tingx) - 1(ta) - exp((t —ta) Tmax P) (2.6)

10



where T = (t = tg) * Tiaxs 1(ta) - exp((t — t4) - Timax) Can be represented by the following

Taylor series expansion around the development point t:

u(te) - exp(r - P) = S2op(ty) - = - P! (2.7)
The series in equation 2.7 can be calculated by the following recursion:

v = u(t,) (2.8)

v = % v@D.p. n>0,

The vector of state probabilities u(t) at the time t is calculated from equation 2.9:
u(t) = exp(—(t —tg) * Tinax) - Z?:ov(i) (2.9)

211.2 Modelling Semi-Markov Processes

In addition to calculating the state probabilities of a system using a Markov process, the
RAMESU program is characterised by the fact that certain semi-Markov properties of a
system can also be modelled. Semi-Markov behaviour of a system exists when state
transitions of the system do not occur after exponentially distributed dwell times as with
Markov processes but instead occur at certain given times with the corresponding proba-
bilities. In order to take the semi-Markov behaviour of a system into account, so-called

singular matrices are used.

Let Sy, ..., Sm be the singular matrices that have been generated to describe the semi-
Markov behaviour of the system to be analysed. For each singular matrix S, i =1, ..., m,
times are specified at which S;is applied. A detailed description of how singular matrices

are defined is given in Section 2.1.2.5.

Let Tr =1, ..., t. be the set of times at which the state probabilities are determined via
the rate matrix R or via the matrix P of transition probabilities derived from it. The set of
application times of the singular matrix S;is given by Ts; =14, ..., tin, i = 1, ..., m. In order
to cover all times at which calculations must be performed, the union is formed from

these time sets, i.e.:

11



For each time t € T it is checked whether t € Ts;fori= 1, ..., m. If t € Tg;, the state
transitions that are carried out at the time t with probability p are determined from the

information of the singular matrix S;.

Let u(t) = (qo, ..., qn) be the vector of state probabilities at the time t and let the transition
from state Z; to state Z; with probability p be defined by the singular matrix S;. Then, at
the time t, the probabilities of the states Z; and Z; of the state vector are modified by the

calculation:

qi=qi+qi-p,
qi=qi- (1-p) (2.11)

2113 Modelling Fixed Transitions

In addition to modelling Markov and semi-Markov processes, RAMESU offers the ability
to also include transitions which always happen instantaneously, given a certain condi-

tion.

2.1.2 RAMESU User Input

In the input data set for the reliability analysis of a technical system, the system to be
analysed and the system behaviour must be specified by the user. Currently, the input
has to be provided in the form of a Python script, in future this will be simplified to improve
usability also non-coding users. SUSA includes tests for its different components, also
for RAMESU calculations. These tests provide good starting points for writing new
RAMESU input.

The input is created by calling the input constructor System for constructing a full system

description:

The following objects are then registered step by step in the input by passing the input

object as an attribute to their constructors:

¢ Input of the system components and states that the respective components can as-

sume (Section 2.1.2.1).

12



e Input of the initial state (Section 2.1.2.2).

¢ Input of the times at which the state probabilities of the system are calculated (Sec-
tion 2.1.2.3).

¢ Input of the transitions of states with associated transition rates (Markov), taking de-

pendencies into account. (Section 2.1.2.4).

e Specification of the semi-Markov behaviour of the system to be analysed. The tran-
sitions of the semi-Markov behaviour are recorded in certain singular matrices S;, i =
1, ..., m (Section 2.1.2.5).

¢ Specification of the fixed transitions, which happen whenever a certain condition is

fulfilled with the probability 7 and instantaneously (Section 2.1.2.6).

21.21 Component Definition

Each component can be added to the system by calling the system function:

add_component (name, states=(), description=""),

where nameis the name of the component and states should be a tuple (set in curved
brackets) listing the different potential states of the component. The description is op-

tional; here, a short description of the component can be included as a string.

A potential input line for a pump component with two states (on and failed) could look
like this:

2.1.2.2 Definition of the Initial State

The initial state should be defined by calling the system function:

where name should be the name attached to the initial state, states should be a tuple
specifying the state of each component and prob should be the probability of the initial

state. The j" element of the vector [is, iz, ..., ink] indicates the state of the j" component

13



(=1, ..., nk). The given state of each component should be included in the possible

states for this component as specified in the component definition.

Example: A system consists of two components K7 and K2. Both components should be
intact at the beginning with probability 1, whereby an intact state is defined by the co-

dimension 0. The input for the initial state is then:

The probability of the initial state is not necessarily 1.0. Probability values < 1 can also
be entered for the initial state. In this case, the existence of the initial state is regarded

as aleatory.

21.2.3 Definition of Calculation Times

The calculation times should be defined by calling the following system function:

where calculation_times can be a list of time points at which the state probability should

be determined:

where start time, end_time and time_step can be float or integer numbers and the pro-
vided time points will range from start time to end_time - time_step with intervals of size
time_step. Several comma-separated time ranges can also be provided as calcula-

tion_times.

21.2.4 Definition of Markov Transitions

Markov transitions can be specified by calling the system function MarkovTransition:



and providing the following attributes:

e The conditions under which a Markov transition should be considered are to be de-
fined as value comparison in a Python expression. This could for example be the
following string "pump_1 == 1", which compares the value of the component with the
name "pump_1" to 1. Different value comparisons can be combined, for example by

using the logical “and or”-operators.

¢ The transitions which should be performed are to be entered as Python statement,
initialising an existing component to another state. An example would be " pump_1 =

2" in which the component with the name "pump_1" is set to the state 2.

¢ The rate should be provided in a Python-readable number format.

The following example

describes the Markov transition which can only take place if pump_1 is in state 1. In this

case, there will be a transition of pump_1 to the state 2 at a rate of 1.0 E-03.

21.2.5 Semi-Markov Transitions

Semi-Markov transitions can be specified by calling the following system function:

Semi-MarkovTransition:

add semi markov(conditions, transitions, probability, transition times ),

and providing the following attributes:

¢ Conditions and transitions can be provided as described above for Markov transi-

tions.
e The transition probability should be provided in a Python-readable number format.

e The times at which a semi-Markov transition should be regarded. As in Section
2.1.2.3, the times can either be given in a Python list format or as the range between

a start time and an end time.
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2.1.2.6 Definition of Fixed Transitions

Fixed transitions can be specified by calling the following system function:

add fixed ( conditions , transitions ),

and providing the conditions and transition attributes as specified above in Section
2.1.24.

21.2.7 Running RAMESU

The following example shows how RAMESU can be applied and the vector of state

probabilities for all calculation times printed:

ramesu = RAMESU( input )

‘ ramesu.print system states() ‘

‘ ramesu.print state prob()

the input has to be defined following the instructions in Section 2.1.2. A list of TimeState
objects (objects which have time and state as attributes) can be accessed using the

p_resultattribute:

For each TimeState, object time and state can be accessed as attributes.

21.2.8 Including Uncertainties

To study the effect of uncertain input parameters, these input parameters need to be
defined in the input definition as variables. For example, if the probability of a semi-Mar-
kov transition should be defined as uncertain, the probability needs to be set as parame-

ter:

\ "switch = 1",
\ probablity

|
prob sm 1 ,

calc times sm _markov_ times ).

In the example above, the probability is defined as variable prob sm_1. The new SUSA

sampling module described in Section 2.3 can be used to sample the uncertain input
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parameter. The sampled input parameter can in turn be employed to generate a set of
RAMESU inputs that serve to generate RAMESU outputs.

213 RAMESU Examples

Within PSA, the reliability of technical systems is determined using fault tree analyses.

These analyses reach the limits of their modelling capabilities, e.g.,

— ifthere are dependencies of the stochastic component behaviour on the state of other

components or on changing environmental conditions (e.g. increasing temperature),

— if the dynamic behaviour of physical variables (e.g., pressure or temperature) is to be

modelled,

— if ‘phased mission’ processes or switching of components take place at specific

times,
— if tolerable downtimes (AOTSs) exist in the system,

— if repairs are carried out at certain times and the repairs are successful or not with

certain probabilities,

— if maintenance is carried out on components at certain times and the components

are not available during this maintenance activities, etc.

The RAMESU program developed and implemented in SUSA allows dynamic processes
of technical systems to be modelled and analysed by means of Markov and semi-Markov
processes. This allows a more realistic modelling of the dependencies that often occur
in system behaviour. By implementing the Markov program in SUSA, it is possible to
carry out an uncertainty and sensitivity analysis with regard to the reliability (e.g. proba-

bility of failure) of the modelled system in a user-friendly and efficient manner.

Markov and semi-Markov processes can be applied in various areas of system modelling
and can be used to calculate the reliability and availability of a system. Influences of
CCFs can be included just as easily as the influence of different test, maintenance and
repair strategies, dependencies of the system on physical variables (such as pressure,
temperature, etc.) and system states as well as influences of human actions and time-

dependent phenomena.
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21.31 System 1: Two Redundant Components

System 1 consists of two redundant pumps that operate in ‘hot redundancy’ and have a
failure rate of 0.001 each. The feed-in system is considered to be failed if both pumps
have failed. Initially, both pumps are fully functional. The calculation times are calculated
from 0 to 1000 h operational time in time steps of 50 h. The input file associated with this

description is shown below:

r input.add component (‘pump 1 ", (0, 1) , "0 - ok 1 -failed ')
r input.add component (‘pump 2 ', (0, 1) , "0 - ok 1 -failed ')

r input.add markov (‘pump 1 == 0’, ‘pump 1 = 1’, 1l.e -3)
r input.add markov (‘pump 2 == 0’, ’‘pump 2 = 1’, l.e -3)

return r input

As the matrix operations in this program are carried out using sparse matrices, the re-
duction of matrix elements achieved by the sparse matrix method used here is specified

as information:

— Number of elements in the original transition matrix: 16;

— Number of elements in the sparse matrix: 8;

— Sparse matrix reduction: 50 %.

As the number of system states for this small system is very small, system 1 is suitable

for describing the output in more detail. The system states can be explicitly listed in the

output, using the following command:
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Number of System States = 4

Nbr State of Components
0 [0 0]

1 [0 1]

2 [1 0]

3 [1 1]

The output of the system states of the generated state space is used to check whether
the system states generated from the user input are correct. If system states occur that
should not occur or expected system states were not created, the user input may need

to be modified.

The system state number 0 is defined by the vector [0, 0]. The first element of the vector
describes the state of the first component (i.e. pump 1) and the second element de-
scribes the state of the second component (i.e. pump 2). The system state [0, 0] thus
expresses that both components are in the state 0 and are both in operation according
to the definition in the input. In system state 1, component 1 is in operation (state 0),

while component 2 has failed (state 1). This situation is expressed by the vector [0, 1].

In system state 2, component 1 has failed (state 1) and component 2 is in operation
(state 0). In system state 3, both components have failed, which is expressed by the

vector [1, 1].

As the number of states of system 1 is very small, the probabilities of all states can be

output using the following command:

Time dependent Probabilities of System
[0 0] [0 1] [1 0] [1 1]
time
0 1.000000 0.000000 0.000000 0.000000
1 0.998002 0.000998 0.000998 0.000000
2 0.996008 0.001993 0.001993 0.000002
3 0.994018 0.002985 0.002985 0.000006
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4 0.992032 0.003974 0.003974 0.000012

996 .136422 .232803 .396582

0 0.232803 O 0
997 0.136150 0.232707 0.232707 0.397047
998 0.135878 0.232610 0.232610 0.397513
999 0.135606 0.232513 0.232513 0.397978
1000 0.135335 0.232416 0.232416 0.398443

[1001 rows x 4 columns ]

For larger systems where the state space (i.e. the number of system states) is very large,
such a list would be too confusing. In this case, the user can specify which of the system
states are to be printed. As a rule, these will be the critical system states, e.g. states in
which the system has failed. Information about a special state can be gathered by calling
the function get sys _state_info and passing a list of interesting system states as input. An
example is given in the following line of code which prints the time dependent information
about a system in which pump 1 is failed, and pump 2 is working. Since only one state

is gathered, no summation of state probabilities is required:

After 1000 h of operation, the system is in state [0, 0] with a probability of 0.1353, in state
[0, 1] and in state [1, 0] with a probability of 0.2325 each and in state [1, 1] with a proba-
bility of 0.3995 that both components are failed.

If only one component (pump 1) was operated, the failure probability of the component
after 1000 h of operation would be 0.632 = 1 — exp(—0.001 - 1000). Redundancy with
two components therefore reduces the probability of failure of the system after 1000 h of

operation by approx. 37 %.

21.3.2 System 2: Four Redundant Components

System 2 is used to analyse the effects of extending the two times redundant system 1
to a four times redundant system by adding two additional pumps. Pumps 3 and 4 have
the same failure rates as pumps 1 and 2. The following changes must be made to the

input data set for system 2 compared to system 1:

# ________________________________________________

# COMPONENT - SECTION

# ________________________________________________

r input.add component (‘pump 1 ’, (0, 1) , "0 - ok 1 -failed ')
r input.add component (‘pump 2 ', (0, 1) , "0 - ok 1 -failed ')
r input.add component (‘pump 3 ', (0, 1) , "0 - ok 1 -failed ')
r input.add component (‘pump 4 ', (0, 1) , "0 - ok 1 -failed ')



.add markov
.add_markov
.add markov

"pump 1 ==0
"pump 2 ==0
"pump 3 ==0

[ N S Y
® O O O

.add markov (’'pump 4 ==0

return r input

In a Markov analysis, the time-dependent probabilities are calculated for each state that
the system can assume. This also determines, for example, the probabilities that only
one, two or three components of system 2 have failed. The probability that in system 2
after 1.000 h operational time all four components have failed at the time t = 1000 h (state
no. 15) is 0.159. Compared to system 1, this means a reduction in the system failure
probability of approx. 60 %. Compared to a feed-in with only one pump, system 2 with
four redundant pumps achieves an increase in system reliability of approx. 75 % after

1000 h of operation.

In a Markov analysis, the time-dependent probabilities are calculated for each state that
the system can assume. The probability that all four components have failed at the time
t=1000 h is 0.159 (cf. Fig. 2.1). Compared to system 1, which features two redundant
pumps, a reduction in system failure probability of approx. 60 % can be observed. Com-
pared to a feed-in with only one pump, system 2 with four redundant pumps achieves an
increase in system reliability of approx. 75 % after 1000 h of operation. The final proba-
bility that exactly three components have failed is p = 0.3712, as visible in Fig. 2.2. The
final probability that exactly two components have failed in system 2 after 1000 h of op-
eration is p= 0.324. The final probability that exactly one component is failed is
p = 0.1259.
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21.3.3 System 3: Common Failures

For the for redundant pumps of system 2, only the failure rates for independent pump

failures have been considered so far. In system 3, the CCF rates of a 204, 304 and 404

failure are also considered. A korfailure means that k of r redundant components fail
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simultaneously or within a short time interval due to a joint CCF phenomenon that affects

all components equally. The following rates are assumed:
AZO‘I- =4, O . 10_4, /1304_ = 10 . 10_4, 1404_ = 25 . 10_5 (212)

If a ko4 failure occurs k = 2, 3, 4, k components fail simultaneously due to the underlying
CCF phenomenon. Which components these are is normally random. For simplicity, it is
however assumed for the model that pump 1 to pump k are affected by the kor CCF
(German: GVA for gemeinsam verursachter Ausfall). In other words, in the event of a
204 CCF, it is assumed that the pumps 1 and 2 are affected by the CCF and have failed.

The input file for system 3 is shown in the code section below:

def test input system3 ():

r input = RAMESUInput ()

r input.add component
r input.add component

("pump_1 7,
( (
r input.add component ('pump 3 ', (
( (
(

1) , "0 - ok 1 -failed ')
1) , '0 - ok 1 -failed ')
1) , "0 - ok 1 -failed ')
r input.add component ('pump 4 ', 1) , "0 - ok 1 -failed ')
r input.add component (’‘gva ',
states =(0 , 1, 2, 3) ,

description =0 no GVA 1-2 v4 2-3 v4 3-4 v4 GVA

# _______________________________________________

# Initial State section

# _______________________________________________

r input.set initial ((O , O, O, 0, 0) , 1.0)

# _____________________________________________________

# Calculation Times t

# _____________________________________________________

r input.add calc times ( range (0, 1050 , 50))

# ______________________________________________________

# TRANSITION SECTION

# ______________________________________________________

# No GVA --> pumps fail independently

r input.add markov (‘pump 1 == 0 and gva == 0’, ‘pump 1 = 1’, 1.e -3)
r input.add markov('pump 2 == 0 and gva == 0', 'pump 2 = 1', l.e -3)
r input.add markov (‘pump 3 == 0 and gva == 0’, ‘pump 3 = 1’, 1l.e -3)
r input.add markov('pump 4 == 0 and gva == 0’, 'pump 4 = 1', l.e -3)
# with a rate of 4.E -4 a 2v4 GVA happens

r input.add markov(’‘gva == 0’, ‘gva = 1’, 4.E -4)

# with a rate of 1.E -4 a 3v4 GVA happens

r input.add markov(’‘gva == 0’, ‘gva = 2’, 1.E -4)

# with a rate of 2.5E -5 a 4v4 GVA happens

r input.add markov(’‘gva == 0’, ‘gva = 3’, 2.5E -5)

# if 2v4 GVA happens , pump3 and 4 can fail independently with a rate
1.E -3

r input.add markov (‘gva == 1 and pump 3 == 0’, 'pump 3 = 1’, 1.E -3)
r input.add markov (‘gva == 1 and pump 4 == 0’, 'pump 4 = 1’, 1.E -3)
# if a 2v4 GVA happens pump 1 and 2 will fail too

r input.add fixed (‘gva == 1’, 'pump 1 = 1; pump 2 = 1')

# if a 3v4 GVA happens pump 1, 2 and 3 will fail too

r input.add fixed (‘gva == 2’, 'pump 1 = 1; pump 2 = 1; pump 3 = 1')
# if a 4v4 GVA happens pump 1, 2, 3 and 4 will fail too

r input.add fixed ('gva == 3/,
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State 15 = , 0] - no GVA , 4 pumps fail independently
1] - 2v4 - GVA ; 2 pumps also fail independently ‘

2] - 3v4 GVA and 1 pump also fails independently
3] - 4v4 -GVA , i.e. all 4 pumps fail due to GVA ‘

Fig. 2.3 shows the time development of the different state probabilities and the sum over
these individual probabilities. The sum corresponds to the probability that all four pumps

are failed.
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Fig. 2.3 State probabilities for RAMESU system 3 (CCF) as a function of time

The figure becomes more informative if the normalized state probability is shown as in
Fig. 2.4. Whereas the relative probability of a complete 404 CCF decreases with time,
the relative probabilities of a 204 CCF and a completely independent failure of all four

pumps increase, the higher rates of independent pump failure start to dominate.
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Fig. 2.4 Normalised state probabilities for RAMESU system 3 (CCF) as a function of

time

2134 System 4: Dependency of the Failure Behaviour on the System Status

System 4 is based on system 3. The difference is that the following dependencies exist
in the failure behaviour in system 4: If a 204 CCF occurs and the pumps 1 and 2 fail the
two remaining pumps 3 and 4 must ensure the required feed-in capacity and are used
correspondingly more. The failure rate of the pumps 3 and 4 therefore increases from

1 E-03 to 2 E-03 compared to system 3.

If a 304 CCF occurs the failure rate of the remaining pump 4 increases from 1 E-03 to

5 E-03 compared to system 3.

def test input systemé4 ():

r input = RAMESUInput ()

# ________________________________________________
# COMPONENT - SECTION
# ________________________________________________
r input.add component ('pump 1 ’, (0, 1) , "0 - ok 1 -failed ')
r input.add component ('pump 2 ', (0, 1) , "0 - ok 1 -failed ')
r input.add component ('pump 3 ', (0, 1) , ‘0 - ok 1 -failed ")
r input.add component ('pump 4 ', (0, 1) , ‘0 - ok 1 -failed ')
r input.add component(’gva ', (0, 1, 2, 3) ,
"0 no GVA 1-2 v4 2-3 v4 3-4 v4 GVA ')

# _______________________________________________

# Initial State section

# _______________________________________________



# _______________________________________________

# Calculation Times t

# _______________________________________________

r input.add calc times( range (0, 1050 , 50))

# ______________________________________________

# TRANSITION SECTION

# _______________________________________________

# no GVA --> pumps fail independently

r input.add markov(’ (pump 1 , gva) == (0, 0)’, 'pump 1 = 1", l.e -3)
r input.add markov ('’ (pump 2 , gva) == (0, 0)’, 'pump 2 = 1’, l.e -3)
r input.add markov ('’ (pump 3 , gva) == (0, 0)’, 'pump 3 = 1", l.e -3)
r input.add markov ('’ (pump 4 , gva) == (0, 0)’, 'pump 4 = 1’, l.e -3)
# with a rate of 4.E -4 a 2v4 GVA happens

r input.add markov (‘gva == 0', 'gva = 1’, 4.E -4)

# with a rate of 1.E -4 a 3v4 GVA happens

r input.add markov ('gva == 0', 'gva = 2’, 1.E -4)

# with a rate of 2.5E -5 a 4v4 GVA happens

r input.add markov ('gva == 0', 'gva = 3’, 2.5E -5)

# if 2v4 GVA happens , pump3 and 4 can fail independently

# with an increases rate 2.E -3

r input.add markov (‘gva == 1 and pump 3 == 0’, 'pump 3 = 1’, 2.E -3)
r input.add markov (‘gva == 1 and pump 4 == 0’, 'pump 4 = 1’, 2.E -3)

# 1if a 2v4 GVA happens pump 1 and 2 will fail too

r input.add fixed (’'gva == 1’, ‘pump 1 = pump 2 =1 ')
# 1f a 3v4 GVA happens pump 1, 2 and 3 will fail too
r input.add fixed (’gva == 2’, ‘'pump 1 = pump 2 = pump 3 =1 ')

# after a 3v4 GVA the failure rate of the remaining pump increases to
5.E -3
r input.add markov (‘gva == 2 and pump 4 == 0’, 'pump 4 = 1’, 5.E -3)

# 1if a 4v4 GVA happens pump 1, 2, 3 and 4 will fail too
r input.add fixed ('gva == 3’,
"pump_ 1 =1; pump 2 = pump 3 = pump_ 4 =1")

return r input

The generated space of system states corresponds to that of system 3. Fig. 2.5 shows
the effects of increasing the independent failure rates when a CCF occurs on the proba-

bility of system failure.
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Fig. 2.5 System failure rate of system 3 in comparison to that of system 4

Due to the assumed increases in the failure rates still in operation when a CCF occurs,
the failure probability of system 4 increases by approx. 30 % from 0.287 to 0.375 com-

pared to system 3 after 1000 h of operation.

21.3.5 System 5: Cold Redundancy of Two Redundant Components

System 5 consists of two redundant components that are in operation at the same time
(‘hot redundancy’). System 5 differs from system 1 in that the two redundant components
operate in ‘cold redundancy’. This means that pump 1 runs first while pump 2 is in ‘stand-
by’ idle mode. As soon as pump 1 fails, the system automatically switches over to
pump 2, which then resumes operation. In this case, it is assumed that the switchover to
pump 2 is successful with a probability of 95 % and fails with a probability of 5 %. If the
switchover is not successful, pump 2 is not activated and is therefore not available for
further operation. The failure of pump 2 can therefore be caused by the following two
situations: (i) switchover to pump 2 works and pump 2 fails in the operational state at a
rate of 1 E-03, and (ii) switchover to pump 2 does not work, and thus pump 2 is not

available for further operation.

The system is considered to be failed if pump 1 and pump 2 are failed or are unavailable.
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In this system modelling, the semi-Markov property is used the first time. The switchover
to pump 2 does not take place via an exponentially distributed random time, but at the
point in time at which pump 1 fails. The semi-Markov properties of a system are defined
via singular matrices that are applied at specific points in time. As pump 1 can fail at any
time in this example, a small value (here 1 h) is selected for the period of the application
times of the singular matrix in order to achieve the best possible approximation to the
continuous failure time of pump 1. An even smaller value could have been used for the

period, but this would have no relevant influence on the results.

For system 5, three components were defined, two pumps and a switch (Swtch) for the
changeover. For pump 1, two states are defined: 1 —running and 2 — failed. For pump 2,
four states are defined: 0 — stand-by, 1 — running, 2 — failed and 3 — not available, as the
switchover has not taken place. The switch has three states: 0 — inactive, 1 — switchover
successful and 2 — switchover not successful. The initial state is [1, 0, 0], i.e. pump 1 is
running, pump 2 is in stand-by mode, and the switch is inactive. When pump 1 is running,

it can fail with a rate of 1 E-03 per hour. As long as pump 1 is running, pump 2 is in stand-

by mode.
def test input system5 ( prob sm 1 = 0.95 , prob sm 2 = 0.05)
r input = RAMESUInput ()
# ________________________________________________
# COMPONENT - SECTION
# ________________________________________________
r input.add component (‘pump 1 ', (1, 2) , ’"l-on 2- failed ')
r input.add component ('pump 2 ', (0, 1, 2, 3),
"l-on 2-failed 3-failure due to switch-over’)
r input.add component (’switch ', (0, 1, 2),
"0- idle 1-ok 2-failed ')
# _______________________________________________
# Initial State section
# _______________________________________________
r input.set initial((1 , 0, 0) , 1.0)
# _____________________________________________________
# Calculation Times t
# _____________________________________________________
r input.add calc times( range (0, 1050 , 50))
# ______________________________________________________
# TRANSITION SECTION
# ______________________________________________________
r input.add semi markov ('pump 1 == pump 2 == switch == 0’,
"switch = 1’, prob sm 1 ,
calc _times = range (0, 1001 , 1))
r input.add semi markov(’pump 1 == 2 and pump 2 == switch == 0',
"switch = 2', prob sm 2,
calc times = range (0, 1001 , 1))
r input.add markov(‘pump 1 == 1’, ‘pump 1 = 2', 1l.e -3)
r input.add markov ('pump 2 == switch == 1’, ’'pump 2 = 2’, 1l.e-3)
r input.add fixed('pump 2 == 0 and switch == 1’, ‘pump 2 = 17)
r input.add fixed(’pump 2 == 0 and switch == 2’, ‘pump 2 = 3’)
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\ r input.add fixed('pump 1 == 1’, 'pump 2 = switch = 07) \
‘ return r input ‘

The condition for the switchover is defined by the first singular matrix. The switch is in
the inactive state O until pump 1 fails. As soon as pump 1 fails, the switch is activated
and successfully switches to pump 2 with a probability of 0.95. If the switchover is suc-
cessful, the switch assumes state 1. With a probability of 0.05 the switchover is not suc-
cessful. In this case, the switch is set to state 2. This is defined by the conditions of the
second singular matrices. If the switchover is successful and the switch is in state 1,
pump 2 is set from stand-by to operational state (i.e. from state 0 to state 1), this is de-
fined in the first fixed transition. If pump 2 is in the stand-by state and the switchover is
not successful after pump 1 fails, the switch is set to state 2 (see second added semi-
Markov transition). If the switch is in state 2, pump 2 is set to state 3, which describes
the unavailability of pump 2 due to the faulty switchover (see second fixed transition). If
pump 2 has been successfully switched over to pump 1 after pump 2 has failed, pump 2
can fail randomly during its operational state with a failure rate of 1 E-03 (see second

Markov transition).

System 5 is considered to have failed if pump has failed, and pump 2 is in state 2 or
state 3. Pump 2 is in state 3 if it is not possible to switch to pump 2 due to the defective
switch. The failure probabilities of system 1 (hot redundancy) and system 5 (cold redun-

dancy) are shown graphically in Fig. 2.6 below.
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Fig. 2.6 Comparison of the system state probability, for a hot redundancy system

(blue) and for a cold redundancy system (red)

Due to the cold redundancy, the failure probability of system 5 can be reduced by 30 %
from approx. 0.4 (system 1) to 0.28 (system 5) after 1000 h of operation compared to
system 1. This improvement in reliability was achieved even though a failure probability

of 0.05 was assumed for the switchover to pump 2.

2.1.3.6 System 6: Cyclic Switching of the Pumps at Specific Times

Unlike in system 5, the switchover does not only take place when pump 1 fails, but at
certain points in time when the system switches between pumps 1 and 2 cyclically. At
the beginning, pump 1 is in operation, while pump 2 is in stand-by mode. After 250 h of
operation, pump 1 switches over to pump 2 if pump 1 has not failed in the meantime. If
the switchover is successful (p = 0.95) pump 2 is activated, and pump 1 is set to stand-
by. Pump 2 also remains in operation for 250 h. Pump 1 is then switched back to pump 2,
provided pump 2 has not failed in the meantime, and pump 2 is set to the stand-by state.
It is assumed that the individual switchovers are each 95 % successful and that there is
a 5 % probability of failure. If the switchover is unsuccessful, the pump in operation at
that time will continue to operate up to the end as the switch for the switchover is as-

sumed to have failed.
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The pumps are not maintained during the stand-by phases. However, it is assumed that
the failure rates of the pumps are reduced in their stand-by phases. It is assumed that
the failure rate of the stand-by phase is only 1/5 of the failure rate of the operational
phase, i.e. Astanapy = 0.2 - Apperation- IN Other words, the failure rate in the operational
phase is 1 E-03, the failure rate in the stand-by phase is 2 E-04. If the switchover to pump
2 (or pump 1) is not successful, pump 2 (or pump 1) is considered unavailable for further
operation. The system is considered to be failed if both pumps fail or are unavailable
during their respective operating phases. Due to the more complex behaviour of sys-
tem 6, the modelling of the singular matrices and the transition section are explained in
detail.

The switchovers take place with a period of 250 h until the end of the calculation time.
The switch can fail with a probability of 0.05 for each changeover in which the switch
becomes active. This is modelled in the first two singular matrices. As it is assumed that
the switch can only fail at the changeover times, the application times of these matrices
start at 7 start = 250 h and have a period of 250 h until the end of the time. The second
semi-Markov transition is only used when pump 1 is in operation, pump 2 is in stand-by
and the switch is intact, i.e. the system state [1, 0, 1] is present. This state can be present
at the times t = 250 h and t = 750 h. The third semi-Markov transition is used when the
system state [0, 1, 1] is present, i.e. pump 1 is in stand-by, pump 2 is in operation and
the switch is intact. This state can be present at the times t = 500 h and t = 1000 h due
to the cyclical switchovers. It should be noted that the same values for 7 start T_end and
Period have been set in these semi-Markov transitions. This means that the correspond-

ing changeovers are carried out at exactly these points in time.

If the switch has failed and it is therefore not possible to switch over to the pump that is
in stand-by, this pump is considered unavailable in the further course and is set from
state 0 to state 3. In this case, the running pump remains in operation. This situation is

modelled by two fixed transitions.

r input.add component (‘pump 1 ', (0, 1, 2, 3) , ’'0- stand by l-on 2-
failed 3-not available’)

r input.add component (‘pump 2 ', (0, 1, 2, 3) ,’0- stand by l-on 2-
failed 3-not available’)

r input.add component (’switch ', (1, 2) ,’1l-ok 2- failed ')




# Initial State section

# The switch can fail with a probability of 0.05 for each
# changeover in which the switch becomes active
r input.add semi markov(’ (pump 1, pump 2, switch) == (1 ,0 ,1) or '/
"(pump_1 , pump 2 , switch) == (0 ,1 ,1)’,
"switch = 27,
prob =0.05 ,
calc _times = range (250 , 1250 , 250))
# The second semi - markov transition is only used when pump 1 is in
# operation , pump 2 is in standby and the switch is intact

r input.add semi markov (' (pump 1 , pump 2 , switch) == (1 ,0 ,1)’,
"pump 1 = 0; pump 2 = 1',
prob =1. ,

calc times =[250 , 750] ,)
# The third semi - markov transition is only used pump 1 is in standby

# pump 2 is in operation and the switch is intact

r input.add semi markov (' (pump 1 , pump 2 , switch) == (0 ,1 ,1) 7/,
"pump 1 = 1; pump 2 = 0',
prob =1. ,

calc times =[500 , 1000])
# The failure rate in the operating phase is 1.E -3

r input.add markov (' (pump 1 , pump 2 , switch ) == (1 ,0 ,1) or '/
"(pump_1 , pump 2 , switch ) == (1 ,3 ,2) ',
"pump 1 = 2', rate =l.e -3)
r input.add markov ('’ (pump 1 , pump 2 , switch ) == (0 ,1 ,1) or '
"(pump 1 , pump 2 , switch ) == (3 ,1 ,2) or '
"(pump_1 , pump 2 , switch ) == (2 ,1 ,1) or '/
"(pump 1 , pump 2 , switch ) == (1 ,2 ,1) ',
"pump 2 = 2', rate =l.e -3)
# The failure rate in the standby phase is 4.E -4
r input.add markov (’ (pump 1 , pump 2 , switch ) == (0 ,1 ,1) ',
"pump 1 = 2', rate =2.e -4)
r input.add markov (’ (pump 1 , pump 2 , switch ) == (1 ,0 ,1) ',

"pump 2 = 2', rate =2.e -4)

# If the switch has failed or one pump is in standby and one failed

# and it is therefore not possible to switch , the standby - pump is
considered

# unavailable in the further course, is set from state 0 to state 3

r input.add fixed (' (pump_1 , pump 2 , switch) == (1 ,0 ,2) or '
"(pump 1 , pump 2 , switch) == (2 ,0 ,1) 7',
"pump 2 = 37)

r input.add fixed (' (pump 1 , pump 2 , switch ) == (0 ,1 ,2) or '/
"( pump 1 , pump 2 , switch ) == (0 ,2 ,1) 7,

"pump 1 = 37)

return r input
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Eleven different system states can be reached:

1.

2.

10.

11.

[1, 0, 1] pump 1 is running, pump 2 is in stand-by, and the switch is intact.

[2, 3, 1] pump 1 fails before the time of switchover. Although the switch is intact,
pump 2 cannot be activated and is set to not available (= 3). This state is considered

a system failure.

[0, 1, 1] pump 1 is on stand-by while pump 2 is running. The switch is in a functional

state.

[3, 2, 1] pump 2 fails before the switchover time. Since the switchover time is not
reached due to the premature failure of pump 2, pump 1 cannot be activated and is

set to not available (= 3). This state is regarded as a system failure.

[2, 1, 2] pump 1 fails in the stand-by phase while pump 2 is in operation. The switch
is in ok state. When the system reaches the switchover time, pump 2 continues to

run.

[1, 2, 1] pump 2 fails in the stand-by phase while pump 1 is in operation. The switch

is intact. When the system reaches the switchover point, pump 1 continues to run.

[1, 3, 2] switchover to pump 2 does not work because the switch is defective. pump 1

therefore continues running.

[2, 3, 2] switchover to pump 2 does not work because the switch is defective. While

pump 1 continues to operate, pump 1 fails. This state is considered a system failure.

[3, 1, 2] switchover to pump 1 does not work because the switch is defective. Pump 2

therefore continues running.

[3, 2, 2] switchover to pump 1 does not work because the switch is defective. While

pump 2 continues to operate, pump 2 fails. This state is considered a system failure.

[2, 2, 1] one of the two pumps fails in the stand-by phase (see state 4 or 5), the other

pump fails while it is in operation.

Another way of verifying the model is to check the plausibility of the state probabilities.

For example, the system state [3, 2, 1] has the probability 0 up to the first switchover

time t = 250 h, as pump 2 is not in operation during this time period and therefore cannot

fail during operation. For the same reason, the state [3, 2, 2] also has a probability of 0.

The progression of the state probabilities over time is shown in Fig. 2.7.
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Fig. 2.7 Development of the state probability for state [3, 2, 1] (pump 2 fails before
switchover time) and state [3, 2, 2] (switchover to pump 1 does not work be-

cause the switch fails)

The development over time of the probabilities of ‘state [2 3 1] and ‘state [3 2 1] (Fig.
2.7) also indicates the correctness of the model. For example, the influence of the switch-
overs on the probability curve can be recognised in these two states. In the time ranges
in which the probabilities of ‘state [2 3 1] increase because pump 1 is in operation and
can fail, the probabilities of ‘state [3 2 1] remain constant because pump 2 is in stand-
by. The reverse is also true. In the time ranges in which the probabilities of ‘state [3 2 1]
increase, the probabilities of ‘state [2 3 1] remain constant, as pump 1 is in stand-by
during these time ranges. This figure clearly shows that the failures that occur in the
operational state of the pumps provide the largest contribution to the system failure. This
can be explained by the fact that the failure of one pump in the operational state results
in the simultaneous unavailability of the other pump, as the switchover no longer occurs
due to the failure. This is also associated with a system failure. The failures that occur
during the stand-by phase of the pumps or due to a faulty changeover, on the other hand,

provide a relatively small contribution to the system failure.
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21.3.7 System 7: Influence of Repair

System 7 consists of two pumps with ‘hot redundancy’, i.e. both pumps run simultane-
ously. If both pumps run together, the failure rate is 0.001. If one of the two pumps fails,

the failure rate of the other pump still running increases by 50 % to 0.0015.

The pumps are tested sequentially with a period of 200 h. In other words, pump 1 is
tested at the time t = 200h, pump 2 after t =400 h, pump 1 after t = 600 h and pump 2
after t = 800 h. If the tested pump is in a failed state, it is repaired at a repair rate of 0.05,
i.e. the average repair time is 20 h. As soon as the repair of the failed pump has been
completed, it is switched on again and is assumed to be ‘as good as new’. When both

pumps are running together again, the failure rate of both pumps is again 0.001.

It is assumed that at the later test times t = 600 h and t = 800 h the failure of the tested
pump is recognised with a reduced probability of 90 %. This means that with a probability
of 10 %, the failure remains undetected, and no repair takes place. System 7 is failed if
both pumps are in a failed state. The variable ‘Repair’ was defined to indicate when the
respective pumps are in the repair state. This variable indicates whether a failure has
been detected, and a repair is required (1 — repair demanded) or not (0 — no repair). The

‘Repair’ variable therefore serves as an indicator variable here.

The initial state [1, 1, 0], which has a probability of 1, indicates that both pumps are in
operation at the same time. In the singular matrices SM 1 — SM 4, the system checks at
certain points in time whether the component being checked at that time is in a failed
state. If so, the variable ‘Repair’ is set to state 1. For example, SM 1 is to be interpreted
as follows: If pump 1 is in a failed state at the time t = 200 h and pump 2 is still in opera-
tion, the variable ‘Repair’ is set to the value 1 with probability 1. This means that the
failure and the need for repair is recognised with certainty at this point in time. The situ-
ation is slightly different at the time t = 600 h, when the failure of pump 1 is only recog-
nised with a probability of 90 %. The variable ‘Repair is used in the TRANSITION-

SECTION to indicate that the corresponding component needs to be repaired.

# ________________________________________________

# COMPONENT - SECTION

# ________________________________________________

r input.add component (‘pump 1 ', (1, 2) "l-on 2- failed ')

~ 0~

r input.add component (‘pump 2 ', (1, 2) 'l-on 2- failed ")
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r input.add component (’repair ', (0, 1) , ’"l-no repair, 2- repair
demanded ')

# _______________________________________________

# Initial State section

# _______________________________________________

r input.set initial((l1 , 1, 0) , 1.0)

B

# Calculation Times t

B

r input.add calc times( range (0, 1050 , 50))

B

# TRANSITION SECTION

B

r input.add semi markov (' (pump 1 , pump 2 , repair ) = (2 ,1 ,0)’,
"repair = 1', 1., calc _times =[200 , 600])

r input.add semi markov (' (pump 1 , pump 2 , repair ) = (1 ,2 ,0) 7',
"repair = 1', 1., calc _times =[400 , 800])

# _____________________________________________________

# Specification of Markov Transitions

# _____________________________________________________

# Failure rate if both pumps run at the same time

r input.add markov (‘pump 1 == pump 2 == 1’,’pump 1 = 2’, l.e -3)

r input.add markov (‘pump 1 == pump 2 == 1’,’pump 2 = 2', l.e -3)

# Failure rate if one pump is failed

r input.add markov (' (pump 1 , pump 2 ) == (1 ,2) ',’pump 1 = 2’, 1.5e -

3)
r input.add markov (' (pump 1 , pump 2 ) == (2 ,1) ',’pump 2 = 2’, 1.5e -
3)

# Repair of pumpl happens with rate 0.05 if pumpl found failed at
testing time

r input.add markov (' (pump 1 , pump 2 , repair ) = (2 ,1 ,1) ’, 'pump 1
=1, 0.05)

# Repair of pump2 happens with rate 0.05 if pump2 found failed at
testing time

r input.add markov (' (pump 1 , pump 2 , repair ) = (1 ,2 ,1) ', 'pump 2
=1, 0.05)

# _______________________________________________________

# Specification of Fixed Transitions

# _______________________________________________________

# If one pump has been repaired and other pump is not yet failed set
repair to 0
r input.add fixed (‘pump 1 == pump 2 == repair == 1’, ’'repair = 0')

return r input

Fig. 2.8 shows the course of the probabilities for those states that lead to system failure.
These are the states [2, 2, 0] (state 4) and [2, 2, 1] (state 5). The probability of failure of
the system is given by the sum of the probabilities of states 4 and 5 at the respective
calculation times. The influence of repairs is not clearly visible in this figure, as only failed

states are shown.
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Fig. 2.8 Development of the state probabilities for system 7 for states in which the

system is already failed

The influence of the repairs can be recognised more clearly for those states in which the
system has not yet failed, for the states [1, 1, 0] (state 0), [2, 1, 0] (state 1) and [1, 2, 0]
(state 2), as shown in Fig. 2.9.
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Fig. 2.9 Development of the state probabilities for system 7 for states in which the

system has not yet failed

For all three states, for which probability curves are provided, the influence of the repairs
at the respective maintenance times is clearly recognisable. For state 0, in which both
pumps are intact, the probability increases slightly immediately after the maintenance
times. This slight increase in probability can be explained by the repair of the failed pump.
With regard to states 1 and 2, the staggered repair of the pumps at the respective mainte-
nance times can be clearly recognised. Up to the first maintenance at the time t = 200 h,
condition 1 and condition 2 have the same probability curve, as the same failure rates
were assumed for both pumps. Up to this point in time, the probabilities of states 1 and
2 increase to 0.14. After 200 h, maintenance is carried out on pump 1, the failure of which
is recognised and subsequently repaired with an exponentially distributed repair time of
20 h. At this point, the probability of state 1 decreases from 0.14 to 0, while the probability
of state 2 continues to rise to 0.215 up to the maintenance time t = 400 h. The same

applies to state 2 at the maintenance time t = 400 h.

For the maintenance times t = 600 h and t = 800 h, it can be seen that the probabilities

of states 1 and 2 are slightly higher than 0 after the repairs. This is due to the fact that at
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these times the failure of the respective component is not recognised with a 10 % proba-

bility and in this case no repair takes place.

The following description refers to the representation of the probability curve shown be-
low. During the maintenance of pump 2 at the time t = 400 h, the failure of this pump is
recognised and changes to the repair state, which is defined by the system state [1, 2, 1]
(state 3). At this time, state [1, 2, 0] (state 2) has a probability of 0 and state [1, 2, 1] a
probability of 0.215. Due to the exponentially distributed repair time with a rate of 0.05,
the probability of state [1, 2, 1] decreases to 0 until the next maintenance of pump 2 at
the time t = 800 h, while the probability of state [1, 2, 0] rises to approx. 0.169 by this
time. As the failure is recognised with a probability of 0.9 during the second maintenance
of pump 2, the probability of the repair state [1, 2, 1] of pump 2 at the time t = 800 h is
approx. 0.152, while the probability of the state [1, 2, 0] at this point in time does not

decrease to 0 but to a value of approx. 0.017.

To determine the probability of pump 2 being in the failed state while pump 1 is still in
operation, the probabilities of states 2 and 3 must be added up. The sum of the proba-
bilities of these two states is also shown in Fig. 2.10. The probability behaviour for the
failure of pump 1 can be explained in the same way as the probability behaviour for the
failure of pump 2. The corresponding maintenance times for pump 1 are t = 200 h and
t =600 h.
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Fig. 210 Development of the state probabilities for system 7 for state 2 and state 3
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2.1.3.8 Consideration of Uncertainties

In this section, uncertainties relating to system 7 are to be taken into account. The table
below lists the distributions that are assumed for the uncertainties of system 7. There is

no uncertainty with regard to the probability of the initial state.

Tab. 2.1 Probability distributions for the uncertainties of system 7

No. Parameter Distribution
1 Failure rate pump 1 if both pumps are working Gamma(1.5; 1000)
2 Failure rate pump 2 if both pumps are working Gamma(1.5; 1000)
3 Failure rate pump 1 if pump 2 is failed Gamma(2.5; 1000)
4 Failure rate pump 2 if pump 1 is failed Gamma(2.5; 1000)
5 Repair time pump 1 tW1 ~ U(150; 250)
6 Repair time pump 2 tW2 ~ U(350; 450)
7 Time second repair pump 1 tw3 ~ U(500; 700)
8 Time second repair pump 2 tW3 + tW4 ~ U(50; 200)
9 Probability for passing to repair state tW1 U(0.8; 1.0)
10 Probability for passing to repair state tW2 U(0.8; 1.0)
11 Probability for passing to repair state tW3 U(0.6; 1.0)
12 Probability for passing to repair state tW4 U(0.6; 1.0)
13 Repair rate pump 1 Gamma(1.0; 20)
14 Repair rate pump 2 Gamma(1.0; 20)

def test input system7 uncertain ( rate fail pl b =l.e -3,
rate fail p2 b =l.e -3,
rate fail pl s =1.5e -3,
rate fail p2 s =1.5e -3,
t repair pl =200,
t repair p2 =400,
t2 repair pl =600,
t2 repair p2=800,
p_repair trl =1.,
p_repair tr2 =1.,
p_repair tr3 =0.9,
p_repair tr4=0.9,
rate repair pl =0.05,
rate repair p2 =0.05)

r input = RAMESUInput ()

r input.add component (‘pump 1 ', (1, 2) , ’l-on 2- failed ')

r input.add component (‘pump 2 ', (1, 2) , ’'l-on 2- failed ')

r input.add component (’repair ', (0, 1) , ’'l1-no repair 2- repair
demanded ')
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# _______________________________________________

r input.set initial ((1 , 1, 0) , 1.0)

# _____________________________________________________

# Calculation Times t

B

r input.add calc times ( range (0, 1050 , 50))

B

# TRANSITION SECTION

B

r input.add semi markov ('pump 1 == 2 and pump 2 == 1 and repair== or,
"repair = 1', p repair trl , calc times =[ t repair pl ])

r input.add semi markov ('pump 1 == 1 and pump 2 == 2 and repair== 0’,
"repair = 1', p repair tr2 , calc times =[ t repair p2 ])

r input.add semi markov ('pump 1 == 2 and pump 2 == 1 and repair== 0’,
"repair = 1', p repair tr3 , calc times =[ t2 repair pl 1])

r input.add semi markov ('pump 1 == 1 and pump 2 == 2 and repair== 0’,
"repair = 1', p repair tr4 , calc times =[ t2 repair p2 ])

# Failure rate if both pumps run at the same time

r input.add markov('pump 1 == 1 and pump 2 == 1’,’pump 1 = 2',
rate fail pl b )
r input.add markov('pump 1 == 1 and pump 2 == 1’,’pump 2 = 2',

rate fail p2 b )
# Failure rate if one pump is failed

r input.add markov('pump 1 == 1 and pump 2 == 2’ ,’pump 1 = 2',
rate fail pl s )
r input.add markov('pump 1 == 2 and pump 2 == 1’,’pump 2 = 2',

rate fail p2 s )

# Repair of pumpl happens with rate 0.05 if pumpl found failed at
testing time

r input.add markov ('pump 1 == 2 and pump 2 == 1 and repair == 1’,
"pump 1 = 1', rate repair pl )

# Repair of pump2 happens with rate 0.05 if pump2 found failed at
testing time

r input.add markov ('pump 1 == 1 and pump 2 == 2 and repair == 1’,
'pump 1 = 1', rate repair p2 )

# If one pump has been repaired and other pump is not yet failed set
# repair to O

r input.add fixed(’pump 1 == 1 and pump 2 == 1 and repair == 1’, ’'repair
=0")

return r input

ule:

rate fail pl b
scale =1./1000.
rate fail p2 b
scale =1./1000.

dist.Parameter('rate fail pl b ’, dist.Gamma (a=1.5 ,

_dist.Parameter('rate fail p2 b ’, dist.Gamma (a=1.5 ,

rate fail pl s .Parameter (' rate fail pl s ', dist.Gamma (a=2.5 ,
scale =1/1000.)
rate fail p2 s dist.Parameter ('rate fail p2 s ’, dist.Gamma (a=2.5 ,

~ I~ ~=1—"1
|
o))
o
0]
prt

scale =1/1000.)
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rate repair pl = dist.Parameter(‘rate repair pl ’, dist.Gamma (a=1, scale
=1/20.))

rate repair p2 = dist.Parameter(’'rate repair p2 ’, dist.Gamma (a=1, scale
=1/20.))

t repair pl = dist.Parameter(’'t repair pl ', dist.Uniform (150 , 100) )

t repair p2 = dist.Parameter ('t repair p2 ', dist.Uniform (350 , 100) )
t2 repair pl = dist.Parameter(’t2 repair pl ', dist.Uniform (500 , 200) )
t2 repair p2 = dist.Parameter(’'t2 repair p2 ', dist.Uniform (50 , 150) )
p_repair trl = dist.Parameter('p repair trl ’, dist.Uniform (0.8 ,0.2) )
p_repair tr2 = dist.Parameter('p repair tr2 ’, dist.Uniform (0.8 ,0.2) )

p _repair tr3 = dist.Parameter('p repair tr3 ’, dist.Uniform (0.6 ,0.4) )
p_repair tr4 = dist.Parameter ('p repair tr4 ', dist.Uniform (0.6 ,0.4) )

The full power of the SUSA sampling module can be used to sample the requested un-

certain parameters.

params = [ rate fail pl b, rate fail p2 b, rate fail pl s, rate fail p2 s,
rate repair pl, rate repair p2 , t repair pl, t repair p2, t2 repair pl,
t2 repair p2, p repair trl, p repair tr2, p repair tr3, p repair tr4 ]

rng = _rngs.LatinHyperCube ( generator = ’'Mersenne Twister’,

sample correlation = False,

seed =1337,

median interval point selection = True )
med usa = Medusapy (params , [], rng)
arr = med usa.get sampled (20 , list of dicts = True )

The combination of the objects VarFunction and VariationQueue provided in the SUSA
Simulation Run module allows to efficiently run the Markov analysis for all sampled pa-

rameter sets and to collect the results:

# The VarFunction takes as input one input function which takes the de- #
fined uncertain parameter as named inputs

# and a helper function which returns the output of the RAMESU analysis #
given the input

ramesu_func = VarFunction( test input system7 uncertain, ramesu helper )
queue = VariationQueue ( ramesu func , 3 )

queue.stage (* arr). wait ()

Sample = [ res for res in queue [:].done.value ]

Finally, the influence of the uncertain variables on the probability of failure of system 7 is
shown in Fig. 2.11. For better visualisation, the sample size of the uncertain variables
was limited to 20. As already described in Section 2.1.3.7, the failure probability of the
system is given by the sum of the probabilities of the states 4 = [2, 2, 0] and 5 =[2, 2, 1]
at the respective calculation times. As a reminder: A system failure is defined by the fact
that both pumps are in the failed state. State [2, 2, 1] refers to the occurrence of the
system failure while one of the pumps is under repair. State [2, 2, 0] refers to the failure

of both pumps without one of the pumps being under repair. The influence of the uncer-
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tainties on the state in which pump 1 is in operation and pump 2 is in failed state is shown
in Fig. 2.12. By integrating the Markov program into SUSA, the varying results of the
Markov model can be subjected to an uncertainty and sensitivity analysis as efficiently

as possible.
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Fig. 211 Development of the probability of the state in which pump 1 is in operation

and pump 2 is failed for various epistemic runs
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2.2 Integration of the Functionality of the AURA Program for Estimating
Distributions for Reliability Parameters

The quantification of model parameters plays an important role in the application of mod-
els for reliability analyses of technical systems. The model parameters largely consist of
reliability parameters such as failure rates, repair rates and failure probabilities per de-

mand.

Data from operating experience is generally used to estimate reliability parameters. As
this data only has a limited scope, the estimates of reliability parameters are associated
with more or less large uncertainties. In order to calculate how the uncertainties of the
reliability parameters affect the results of the underlying model, it is necessary to quantify
the uncertainties associated with the estimate. The quantification of the uncertainties is

expressed in the form of a probability distribution.

With the methods implemented in SUSA, generic or system-specific distributions of the
following three reliability parameters of components of technical systems can be esti-

mated:

— failure rates,
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— probabilities of failure on demand, and

— repair rates.

The observations from the installations are given respectively by the number of failures
in a given observation time, the number of failures for a given number of demands, or

the number of repairs with the repair time required for the repairs.

The mathematical methods implemented are essentially based on Bayesian ap-
proaches. The available ‘generic’ observations (observations from other comparable
plants or information from expert judgement) can be used as prior information (a-priori
information) and modified accordingly by current observations from the specific plant of
interest. The user thus has the option of including prior information in the generation of
the distribution and receives a probability distribution as a result that describes the up-

dated state of knowledge with regard to the parameter of interest.

The information to be used for the calculation can be either data from a specific plant
and/or observations from other, but comparable plants or expert judgement. Here, expert
judgement refers to the knowledge of quantile data of the reliability distribution, where a
maximum entropy approach is used to combine such prior information. If such expert
knowledge is not available, Bayesian approaches are used to combine the prior infor-
mation with a specific plant. Depending on the type of prior information, different ap-

proaches are available to arrive at a suitable prior distribution.

In the case of ‘diffuse’ knowledge, i.e. no available prior information, the non-informative
prior distribution is used. For the determination of plant-specific distributions with prior
information, a specific posterior distribution with either a mixed distribution as prior or
with the superpopulation approach as prior, which corresponds to the posterior distribu-
tion with unconditional generic distribution, can be used. The derivation of the two-stage
Bayesian approach is explained in /PES 97/, while the derivations of the other ap-

proaches are described in /PES 95/.

221 Data and Model Assumptions

This section describes the data on which the distribution estimates are based and the

model assumptions for the respective reliability parameters.
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2211 Failure Rates

For the failure rates, the data consist of
— the number k of observed failures of a component and

— the observation time or operational time T of the component.

Although only one component is referred to in this section, the data can also relate to
several identical components. The observation or operating times refer to the time unit
defined by the user, e.g., hours, days, years. The starting point for the derivations is the
underlying probability model for failure rates per time unit. The probability that k failures
occur in an observation time of T hours follows a Poisson distribution with the density

function
k
p(k, TIN) = =Afe™, 1> 0 (2.13)

As shown in equation (2.13), the probabilities depend on the value of the unknown pa-
rameter A. The parameter A denotes the failure rate to be estimated for the component

or system unit of interest.

221.2 Failure Probability per Demand

For failure probabilities per demand, the data consist of
— the number k of observed failures and

— the number D of requirements

of the component or component group. Assuming that the event ‘failure” occurs with
identical probability 7 for each request of a component (Bernoulli test), the probability for
k failures for a given number of component requests D can be determined from a bino-

mial distribution with the density function
p(k,D|m) = (2)7{" (1-mPk o0<n<1 (2.14)

The probability depends on the value of the unknown parameter 1 to be estimated.
m denotes the probability of failure of the component or system unit of interest per

demand.
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2213 Repair Rate

For repair rates, the data consist of
— the number k of repairs observed and

— the sum of the repair times
of the component or component group.

The underlying probability model assumes that the repair times T are independent and
identically exponentially distributed. The probability that k repairs are carried out for a

total repair time of T hours can be calculated using a Poisson distribution:
k
p(e,TIA) = AFe™, 1> 0 (2.15)
where A is the repair rate to be estimated.

2214 Application of the Bayesian Method for Estimating Distributions

The methods used are largely based on the Bayesian method, which is briefly described

below.

The aim is to express the level of knowledge of the parameters A (or 1) quantitatively in
the form of a suitable probability distribution. For this purpose, A (or ) is considered as
arandom variable. The Bayesian approach provides a method that allows the calculation
of a corresponding probability distribution by including prior information about a parame-

ter of interest. With regard to the failure rate A the Bayesian formula can be written as

p(ko, To|A)-po)
I3 p(ko, TolA)po(2)da

p(Alko, To) = (2.16)

where po(A) denotes the prior distribution of A and expresses the prior information that

exists about 1 before concrete observations from the specific plant are available.

The distribution density p(A|k, T), which reflects the state of knowledge of A after plant-
specific observations have been included in the calculations, is called posterior density.

The integral in the denominator of the expression (2.15) extends over the entire range of
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values of A and is used for normalisation so that p (A|k, T) becomes a distribution density.
The conditional probability p (A|k, T), for the observation (k, T) under the condition that a
certain value A of the failure rate is given is referred to as the likelihood of (k, T) for a
given A. The likelihood contains the additional information about the uncertain reliability
parameter A obtained from the observation. In this respect, it plays a decisive role in

Bayes’ theorem as it updates the prior state of knowledge.

The descriptions also apply analogously to repair rates and failure probabilities per re-

quirement.

The use of the Bayesian approach has various advantages over the frequentist ap-

proach:

e The result of the Bayesian method is a distribution for the parameter of interest (pos-
terior distribution), which expresses the current level of knowledge or uncertainty
about the parameter. In contrast, the frequentist estimate provides a confidence in-
terval that contains the ‘true’ value of the parameter with a probability of 90 %, for

example.

¢ Observations from other, comparable plants can be integrated into the process as
preliminary information in a mathematically consistent manner. In the first step, a
generic distribution is determined with regard to the data from the preliminary infor-
mation. In the second step, this distribution is integrated into the Bayesian formula

as a prior distribution and linked to the current data of a specific plant.

e If no failures have been registered in T hours of observation (so-called 0-error statis-
tics), frequentist estimates will only produce unsatisfactory results. In contrast,

Bayesian methods can be used to determine mathematically consistent distributions.

222 System-specific Distribution Using a Non-informative Prior

A frequent criticism of the practical applicability of Bayesian methods is associated with
the selection of the prior distribution. In ‘classical” statistics, prior information is only ac-
cepted insofar as it is based on frequentist data. In order to prevent the criticism of a lack

of objectivity, the concept of the non-informative prior distribution offers the possibility of

— avoiding a subjective assessment of the prior information as far as possible, apart

from the need to accept the model assumptions and

— finding an objective prior distribution without frequentist data.
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The concept of a non-informative prior distribution is based on the idea of choosing the
prior distribution in such a way that the information content of the posterior distribution is
determined as far as possible by the likelihood function of the observed current data. The
derivation of a non-informative prior distribution of a parameter or parameter vector of

interest is carried out according to the Jeffreys method /JEF 46/.

2.2.21 Failure Rate

Given the observation (ko, T) of the specific plant, according to the model assumptions
of Section 4.2.1.1 the distribution of the number of failures ko in the given observation
period T follows a Poisson distribution with unknown parameter A. Furthermore, it is
assumed that no further information or at best little knowledge about the failure rate
A exists so that the non-informative prior distribution for the parameter of the Poisson

distribution is used. According to the rule of Jeffreys /BOX 11/, the following applies:

P & JOO5,  with J1) = (- E2) @17)
For a Poisson distributed random variable x, this results in
M =E(3) (2.18)

Since the expected value for a Poisson distributed random variable is 4, this results in

I =5 (2.19)

For the non-informative prior of the parameter A of the Poisson distribution, this results

in
po(A) o A705 (2.20)

Using the Bayesian formula, this leads to

ko
k(:)! )\ko e—)xTo}\—O.S
pAlko, Tp) = ko

T
f(;”L;\ko e—ATopA—0.54)\
ko!

Tko +0.5

_ ko—0.5 ,—AT,
- r(k0+o.5)}‘ ¢ Te e (2.21)
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The system-specific posterior distribution of the failure rate with non-informative prior is

thus a gamma distribution with the parameters ko + 0.5 and T.

2222 Failure Probability

The observations (ko, Do) of the specific plant are given and the modelling assumptions
of Section 2.2.1.2 apply. Analogous to the treatment of the failure rates, it is assumed
that no further information or at most little prior knowledge about the failure probability
exists, so that the non-informative prior distribution is used for the parameter of the bino-

mial distribution. According to Jeffrey /BOX 11/, the non-informative prior is

Po(m) x T 05(1 — m)~0> (2.22)

Using Bayes’ theorem, a beta distribution with the parameters ko + 0.5 and Dy — ko + 0.5
is obtained as the system-specific posterior of the probability of failure per demand, with

non-informative prior of the parameter 1 of the binomial distribution k, i.e.:

_ I'(Do) ko—0.5(1 _ —\Do—ko—0.5
p(mlko, Do) = r(ko+o.5)r(D0—kD+o.5)1T (L =TT (2.23)

2223 Repair Rate

The number of repair times ko and the total repair time Ty of the specific system are given
and the modelling assumptions of Section 2.2.1.3 apply. In analogy to the derivation for
failure rates, the following is obtained for the repair rate as a non-informative prior of the

parameter A of the exponential distribution
po(A) o 71 (2.24)

Using Bayes’ theorem and the non-informative prior of A, this results in a gamma distri-
bution with the parameters ko and Ty as the plant-specific distribution of the repair rate,
ie.:

Tk

0
F((;(O)}\koe—mo (2.25)

p(Alky, Ty) =
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223 Mixed Distribution Approach

The mixed distribution approach /FRO 85/ is based on an unconditional (i.e. not subject
to the condition of certain estimated values) generic distribution, which is estimated by a
weighted sum of gamma (or beta) distributions determined from the observations of com-
parable plants. It also takes into account the influence of the uncertainties of the individu-

al A (1) on the estimation of the generic distribution.

2.2.3.1 Failure Rate

It is assumed that each individual plant has its own individual failure rate and the number
of failures in each plant follows a Poisson distribution with the parameter A; (see Section
2.2.1.1). Furthermore, it is assumed that no further information is available about the
respective random variables A;, which would justify the use of an informative prior distri-
bution for Ai. For each individual plantj (i = 1, ..., n), the posterior of the respective A, is
therefore calculated on the basis of the non-informative prior distribution for A;, together

with the observation (k;, Ti), whereby a Ik +o.5 1 distribution is obtained.

Since each of the available observations should receive the same weighting (and there-
fore also the determined [, +o.5,7 distributions), the mixed distribution approach provides
the arithmetic mean of the n calculated gamma distributions as a generic distribution,

i.e.:

k;+0.5
1 T,

-y. i ki—0.5 ,—AT;
nZ‘=1nr(ki+0.5))‘ e (2.26)

pAlk;, T)i=1,...,n) =

A A; can be drawn from each of the individual gamma distributions and the empirical
distribution of these rate values can be formed as an estimate of the conditional generic
distribution. The mixture of many such empirical distributions (i.e. their arithmetic mean)
would be the estimate of the (unconditional) generic distribution obtained according to

the above procedure.

If the determined mixed distribution is used as the prior distribution for the specific plant
with ko failures in the observation period Ty, the following plant-specific poster distribution

density is obtained:
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ko ki+0.5

T, ar 1 T; ki—0.5 AT
kO_O!AKoe ATO.E ?=1m}\i e AT;
p(Alko, To) = Ko ) K03 =
P 0 _Akop—ATo .=yn L __3k;—0.5,-AT;
Jo TP YEE v grapry iy EAC Y
1 .
S 210 = 17T hieir0.5,1)+T; (2.27)
with the weights
TS kg +k+0.5)
—Vi—1ng4. =1 i otki+0.
A=Xi=1% 1=1 1 (k;+0.5) (To+T;)ko+ki+05 (2.28)
and
(T +Ti)k0+ki+0'5 ‘_ _ )
Dko+k;+0.5,T0+T; :m Ko+ki=0.55=MTo+Ti) (2.29)

The plant-specific distribution with prior information determined by the mixed distribution

approach is therefore a weighted average of gamma distributions, where the weights are

given by %.

2.23.2 Failure Probability

The underlying ideas correspond to those for failure rates, whereby the modelling as-
sumptions of Section 2.2.1.2 apply and the non-informative prior of the parameter 1 of
the binomial distribution is used. The following unconditional generic density function for
I1is obtained analogously to the procedure described above for failure rates:

1on r(D;+1)

Pk, D) = 3 Xl rosyrorros T (L TP (2.30)

If this generic density function (it is the arithmetic mean of n beta distribution densities)
is used as a prior, the following posterior distribution density is obtained with the obser-

vation (ko, To) from the specific plant:

p(rlko, Do) = 7% AiB (ko + k; + 0.5,(Dg + D; — (ko + k) + 0.5)) (2.31)
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with

__ B(Dg+D;—(ko+k;)+0.5,kg+k;+0.5) (2 32)

A;
B(D;—k;+0.5,k;+0.5)

The plant-specific distribution with prior information is thus a weighted average of

beta distributions with the weights %.

2.23.3 Repair Rate

Analogously to the failure rate but with adjusted non-informative prior distribution, see

Section 2.2.1.3, the following results for the repair rate
1
pP(Alko, Tp) = n =1 Ailkg iy, To+T; (2.33)

with the weights including the specific system data resulting in

k;
4. = Ji _Tlkotk
LTk (To+Tyorki

(2.34)

224 Superpopulation Approach

The situation is assumed that observations from various comparable plants are avail-
able, whereby a certain comparability in the operating and environmental conditions of
the components in the various plants is given, but an identical underlying distribution of
the reliability parameters of the components of the various plants cannot be assumed. In
order to describe reality more appropriately, all components of the component group from
each of the comparable plants are therefore assigned their common but plant-specific

underlying distribution of the reliability parameters to be estimated.

The population of the component groups under consideration from an imaginary multi-
tude of comparable systems, of which the actually existing systems can be understood

as a random selection, is referred to as a superpopulation.

The aim is to derive a model that has the ability to utilise the observations from the avail-
able comparable plants in order to obtain an estimate of the unknown distribution of the
reliability parameters in the superpopulation. The reliability parameter A; (1) to be esti-

mated, which is common to all components of the component group in plant i, can then,
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as long as no plant-specific observations are available, be regarded as a realisation of a

random sample from this distribution of the superpopulation.

2241 Failure Rates

The probability model on which the observations (k;, T;) are based is a Poisson distribu-
tion (see Section 2.2.1.1) with fixed but unknown parameters A. The A; are regarded as
realisations of a random variable A, which follows the distribution in the superpopulation,
i.e. the failure rate of the component group under consideration in the population of com-

parable plants.

The distribution model of the superpopulation is assumed to be a gamma distribution
with the parameters a and B — referred to below as Gamma(a, B) — with the density

function

_ B qa-1,p1
P, B) =A% e (2.35)
A further specification of the assumed gamma distribution cannot be made as no direct

information is available on the alpha and beta parameters.

The family of gamma distributions is sufficiently flexible and at the same time the gamma
distribution is the conjugate distribution to the Poisson distribution of the observations,
i.e. the Bayesian approach provides a posterior distribution based on a prior gamma
distribution, which is also of the type of gamma distribution and whose parameters are

not complicated to determine.

To estimate the parameters a, 8, Bayes’ theorem is used, starting from a non-informative
prior for a, 8. This has the property that the posterior distribution for a, 8 determined with
Bayes theorem is essentially characterised by the observations from the n comparable

plants. The expression
Po(a, B) o a”3p~1 (2.36)

is used as the non-informative prior py(a, ) for the parameters a and 8 of the gamma
distribution, as described in /HOR 90/.
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Under the assumptions listed above, the realisations A; of the Gamma(a, ) distributed
random variable A, which are considered as a random sample from the sought-after dis-

tribution of the default rates of the superpopulation, have the likelihood function

B qa-1,-BA;
L(a, BIAy, s A) = Tl g p g A Le=BN (2.37)
With the likelihood and the non-informative prior po(a, B), the two-dimensional density
function ps of the gamma distribution parameters a and 8 can be determined, using

Bayes’ theorem

L(al B|A1, ey )\n)po(%ﬁ)
BIA, A = 2.38
P1(% BlAs, - An) Jo Iy L(a, BIAg, <oy Ay )po(auB)dacd ( )

The denominator of the expression (2.38) serves as the normalisation constant, which is

henceforth referred to as C, whereby p1 becomes a density.

Furthermore, the underlying assumption that the failure rate is gamma-distributed over
the superpopulation with unknown parameters a and 8 as well as the knowledge of the
two-dimensional density function of the parameters a and B can be utilised. If the two
density functions (2.35) and (2.38) are multiplied together and the parameters a and 8
are integrated out, an unconditional distribution p~ of the failure rate lambda is obtained

with respect to a and B8, which, however, still depends on the selected values A, ..., An.

The unconditional (i.e. not under the condition of a specially selected pair of parameter

values (a, B)) generic distribution, depending on all A, therefore has the density function

P~ (A, o ) = f j A (M, B) - Py (@ BlAy, .. Ay)dap
0 0

n B% a-1_-BA;,—053-1
= foo foo Ba— }\a—le_)\B . Hl:lr(a)}\l € a B
0 70 r'(a c

dadp (2.39)

Before the last step to generate the unconditional generic distribution of the failure rate
A is carried out, the meaning of the equation (2.39) should be discussed for a better

understanding.
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It is based on the idea that all theoretically possible values a=*, S+ with a* € (0, »), B+ €
(0, ») are used for the parameters a and 8. By combining all possible parameter values,
all theoretically possible Gamma(a+, £>) distributions are taken into account to determine

the failure rate distribution of interest.

Each individual gamma distribution is assigned the weight according to the density func-
tion p1 over the parameter pair (a, 8). The gamma distributions whose parameter combi-
nations (a, B) have the highest density values in the two-dimensional density function are
assigned the greatest weight. However, the largest density values in equation (2.38) are
those parameter combinations (a, 8) that receive the largest likelihood given the selected
A1, ..., An (maximum likelihood estimates). Since the density distribution over a and 3
depends on the realisations A;, the gamma distributions that best correspond to the se-

lected A; are assigned the most importance.

The integration carried out in equation (2.39) over all theoretically possible parameter
values results in a mixture of all conceivable gamma distributions, whereby the mixture
weight of the individual gamma distributions depends on how well they fit the individual

realisations A; fit.

So far, only the sample A4, ..., As, which are realisations of randomly selected failure
rates from the distribution of the superpopulation, have been discussed. However, the
available data are not the randomly selected default rates mentioned so far, but the ob-

servation pairs (k1, T4), ..., (kn, Tn) from the various plants.

According to Section 2.2.1.1, the probability for the occurrence of k; failures in the obser-
vation time T; in plant j follows a Poisson distribution with the parameter A;. Since it is
assumed that the observations are independent of each other, the joint density of the

observations (k;, T)) is given by

NTOKE g
Pk AT - o DR A, Ty) = [Ty = AT (2.40)

The density value of a Poisson distribution for observation (k;, T;) and the parameter
Aiis proportional to the gamma distribution density at A; with the parameters a = k; + 1
and 8=T;:
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Tk T,
kil T) = Y o=ATi — L pFip=NAT;
pkilA T) = = -—e Mk, + 1) ¢
1 Tik+1 Ki —\iT: 1
= T—lm}\l e UL = Gamma(kl- + 1'Ti) = T—lp(}\llkl + l,Ti) (241)

The joint density of the observations in Expression (2.40) can be expressed by equation

(2.41) as a likelihood function of all A; and can be expressed according to:

LN(}\I, ...,}\nl(ki, Tl)l = 1, ...,Tl) =
n o ZpWlk +1,T) o« [Th, Gamma(k; + 1,T;) (2.42)

i=1 Ti

Using equations (2.39) and (2.42), the following density function is obtained:

p*(A| ki, Tiz1,m) =
[ 522~ Ay oy AL (Agy ey A (e, TG = 1, e, )l 8
f;ofow.---fowp~(/1|ﬂ.1, ...,ﬂ.n)~L~(/11, ...,/1n|(ki, Tl)l = 1, ...,n)dldlp---'dln

(2.43)

Since a double integral already has to be solved in equation (2.39) and equation (2.43)
additionally has to be integrated over all A; an analytical solution of equation (2.43) is out

of the question.

An approximate solution of the integration over all A; is available using Monte Carlo sim-
ulation. For this purpose, a sample of size s is drawn from each Gamma(k; +1, T;) distri-

bution. This provides the sample (A(1), ..., Ai(s)) from the density function
ki+1

%Af"e‘“ given by the observation. If the sample values (A(71), ..., A(s)) are

inserted into the Expression p~ in (2.39) for each simulation run j, the result is a

function of lambda

9 =p~ (A23,y, s A} with j =1, (2.44)
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With the values determined in equation (2.44), the unconditional generic distribution can

be approximated by the following expression:
1
p* ) ~<Xi=19;(D (2.45)
To determine the Q % quantile xq, the equation
Iys_ [eg.(Ddi=-L (2.46)
j=1lo " Yj 100 .

has to be solved with respect to xe.

Sample calculations have shown that the double integration to be carried out using the
parameters a and 8 can take a relatively long time to calculate. However, the integral

over 3 can be solved analytically.

The formula

g,-O\) Z%f foo B* o1 —ABH ( B 7\0((])8_}”"(7)8) (X_O'SB_ldBdO(=

I'(a) I'(a)
n+1 oa—1 —05 (n+1)a—1
- (F(a)) (A Ay - o Aapy) e T 5 dBda (2.47)
with
Jy xne ™ dx = T2 (2.48)
and
o pnta-1 r((n+1)a)
dg = 2.49
Jo oAy Gyt ()8 (A2, (- An i) HE (2.49)
can be transformed into
1 0 T d(0)-1 _
9=zl (r(¢(x))) (A Aagy - oo ngy) ™ P TOP (2.50)
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225 Description of the User Input

The AURA method has been integrated into SUSA as a module. It provides different

classes and functions to calculate the desired failure rates/probabilities and repair rates.

The methods can be integrated into a program as a Python library or used directly in
SUSA to include the distributions of the reliability parameters. The different reliability
parameters can be used both via command line interface or scripts and in Jupyter note-
books. With the help of tuples of plant-specific data as well as the inclusion of compara-

ble plant data as preliminary information, these can be applied.

To determine the distribution of Failure Rate, the class ‘FailureRate' can be called. To
determine the probability of failure per request, the class ‘FailureProbability’ can be

called. The class ‘RepairRate' can be used to determine the repair rate.

2.2.51 Application of Non-informative Prior Information

The method non-informative_prior() can be used to determine the failure rate without
including prior information, i.e. only with system-specific data and with a generic Jeffrey

Prior as prior. An exemplary call could look like this:

‘NFails = 10
| x = 10000 \
‘ distribution = FailureRate.noninformative prior (NFails , x),

where x can be either the observation time or the number of demands. In contrast, if the

repair rate should be determined, a call like the following can be used:

NRepairs = 10
‘ RepairTime = 10000
distribution = RepairRate.noninformative prior( NRepairs , RepairTime ). ‘

2252 Application of Mixed Distribution Approach

The mixed distribution approach mixes the information provided by the prior and the new
data to generate the posterior information. The user provides the prior data in the form
of a two-dimensional array or as list, either with dimension (n,2) or (n,3) where n is the
number of reference plant data used as prior. Each line contains the information of a

reference plant structured as tuple/list with information (n_fails, observation_time, weight)
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or (n_fails, n_demands, weight) or (n_repairs, total repair_time, weight) if an (n,2) array is
given, equal weights are assumed. Optionally, data of a specific plant can be provided
by the user in the form of a tuple of two entries structured as (n_fails, obs_time), where
n_fails is the number of failures in the observation time and obs_time is the observation

time.

As for the non-informative prior approach described above, it is possible to either deter-
mine the failure rate or the repair rate using the corresponding class objects. One exem-
plary call to determine the failure rate given prior information and specific data could look
like this:

priorInf [ [1, 10530] , [0, 9460] , [2, 11300] , [0, 8760] ] ‘
| specbData = [0 ,1000] \
distribution = FailureRate.mixed distribution( priorInf , specData ) ‘

2.3 Calling FORTRAN-based SUSA Sampling Modules Using a Generic
Interface

Four different FORTRAN-based SUSA components currently form the basis for the
SUSA sampling functionality. MEDUSA is the baseline sampling module in SUSA, it al-
lows sampling values from parameter distributions based on the distributions provided
and potential dependencies between the parameters. DIVIS /KLO 91/ helps the user to
determine which distribution function is suitable for his or her needs depending on infor-
mation provided by the user. This information could be given in form of one or more
quantiles, the median and a factor, or the expected value and the standard deviation.
Based on this information, several potential distributions are proposed by DIVIS. BetaFit
provides the user with the means to exchange log-normal distributions in the parameter
definition with matching beta distributions. Unlike log-normal distribution, a beta distribu-
tion has upper and lower bounds, which is often more suitable to describe the epistemic

uncertainties modelled with SUSA.

One of the project goals is to present one Python-based interface to the user but still
provide compatibility with the original results gained by running the FORTRAN-based
SUSA codes. In order to achieve this goal, a Python-based interface has to be designed
which internally calls the different FORTRAN-based SUSA codes MEDUSA (Sampling),
DIVIS (Distribution Finding) and BetaFit (Fitting Beta Distribution to Log Normal Distribu-

tions). This development is the requisite for the next step, translating the different
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FORTRAN codes into Python and thus providing code in one programming language
which significantly improves maintainability. The interface designed in this project will
then be used run automatized tests comparing the results of the new Python codes to
those of the FORTRAN-based codes, a necessary step towards providing the desired
quality assurance of the SUSA results. In order to achieve the Python-FORTRAN inter-

face, SUSA has been extended by several modules:

1. Modules for defining parameters and their distributions (distributions.py, distribu-

tion_creator.py).

2. Modules for defining parameter dependencies (dependencies.py, line-

ar_combinations.py, functional_combination.py).

3. The Controller (_controller.py), which inherits and extends the FDEControllable mod-
ule of the generic FORTRAN interface FDE (FORTRAN Development Extensions)
/SCH 24/ for control and data exchange.

4. The InputWriter (input writer.py), a module to write the necessary input files for the
FORTRAN-based SUSA functions.

5. The InputWriterDivis (input writer divis.py), a module specially adapted for the
DIVIS functionality.

All three SUSA sampling components, MEDUSA, DIVIS and BetaFit, need as input a
clear definition of the desired parameter distributions. The new SUSA distributions mod-
ule can be used to create objects for the various potential distribution functions, which
contain all necessary information to uniquely identify one distribution. Since all distribu-
tion classes inherit from the same base class, they share one common interface. The

distributions provided are:

— Normal Distribution,

— Uniform Distribution,

— Beta Distribution,

— Chi2 Distribution,

— Discrete Distribution,

— Discrete Uniform Distribution,

— Exponential Distribution,
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— Fisher Distribution,

— Frechet Distribution,

— Gamma Distribution,

— Geometric Distribution,

— Gumbel Distribution,

— Rayleigh Distribution,

— Trapez Distribution,

— Triangular Distribution,

— Log Normal Distribution,

— Log Uniform Distribution,

— Log Triangular Distribution,

— Negative Binominal Distribution,

— Polygonal Distribution,

— Weibull Distribution,

— Histogram,

— Log Histogram.

These distributions are based on the corresponding distributions defined in the skiearn
Python library. The distribution classes implemented in SUSA extend the functionalities
of the corresponding sk/earn classes in order to suit the needs of the SUSA applications.

For example, in accordance with the classic SUSA implementation, the possibility to

truncate the different distributions has been implemented for most distributions.

In addition to the parameter definitions, which are based on the distribution classes,
MEDUSA also needs the dependencies between the different parameters as input. In
order to provide the parameter dependencies in a suitable form, a new dependencies
module has been implemented in SUSA. In this module, the dependency base class as
well as specific dependency classes inheriting from this base class are implemented. All

objects of these classes implement a function called calc_sample, which returns an array
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of sampled values for which the specific dependency has been taken into account. The
attributes of this function are just the number of required samples and the random num-
ber generator to be used. All dependencies available in the classic SUSA software have

also been implemented in the Python-based SUSA version.

The new SUSA Controller module (controller.py) provides a function medusa_calc which
encapsulates the FORTRAN-based MEDUSA code. The new SUSA Controller class ex-
tends the FDEControllable class of the generic interface FDE /SCH 24/ for control and
data exchange. The FDEControllable reads a dynamic linked library (DLL) of the
FORTRAN program which should be made callable from Python and provides a handle
to the different functions of this FORTRAN program. In the case of SUSA, this FORTRAN
program provides functions to access the different SUSA components. The SUSA Con-
troller module extends the FDEControliable functionality by providing additional functions
which act as convenient wrapper surrounding the FORTRAN-based SUSA functions and
allow to perform all steps in the workflow of the SUSA components with just one function
call. These additional functions write the necessary input files for the FORTRAN-based
SUSA functions, pass these input files as attribute to the functions and use the generated
output to write the input files for the next steps in the workflow. In order to sample pa-
rameters using the MEDUSA functionality, the user provides a Python random sampler
and the number of desired samples as input parameter to the controller function me-
dusa_calc, optionally, the user can also provide dependencies between the parameter-
input and output directory , if existent, for the generated files, if the current directory
should not be used, and the decision on the output files to be generated. The FORTRAN-
based MEDUSA component is called by the Python code and produces as output an
ASClII-based design file which includes the sampled parameter values. This file is read

in by the controller and the sampled values are returned to the user as NumPy array.

In the case of DIVIS, the user provides an object of the class DistributionCreator to the
Controller function divis_calc. The DistributionCreator prepares the necessary input for
the DIVIS FORTRAN program based on the user input, this includes transforming the
provided input parameters into those required by the DIVIS FORTRAN program. The
InputWriterDivis fills the information provided by the DistributionCreatorinto a prepared
DIVIS template. The DistributionCreator in turn reads the information generated by the
DIVIS FORTRAN program and creates an object of one of the distribution classes listed

above based on this information.
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In the case of BetaFit, the SUSA controller module provides a function beta_fit, which
encapsulates the corresponding FORTRAN. The user passes the original log-normal
distribution as attribute into this function call, additionally the so-called fit criterion can be
provided. The fit criterion specifies how the beta function should be fitted to the provided
log-normal function, either by optimizing the agreement of mean and standard deviation
of the target and the origin distribution or by choosing the distribution which best fits the

quantiles of the log-normal distribution, either for two or three quantiles.
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3 Methods for Advanced Monte Carlo Simulation with
Machine Learning Algorithms

The consideration of uncertainties in safety analyses can be achieved within the frame-
work of BEPU approaches using Monte Carlo (MC) simulations. For each simulation run,
a set of the uncertain input parameters is sampled according to the uncertainty distribu-
tions including their dependencies, which get applied to a deterministic simulation code.
SUSA is an established software for uncertainty and sensitivity analyses, covering such
BEPU analyses from parameter sampling to simulation and statistical evaluation, e.g. of
tolerance intervals. A classic MC sampling approach becomes resource intensive for
analyses focused on the evaluation of rare events. These events can typically only be
reached from small regions of the input parameter space. A large number of simulations
would be required to identify the region of interest in the input parameter space and
accurately quantify the probability of the rare event. To perform probabilistic evaluations
of rare scenarios with reasonable computational effort, adaptive sampling techniques
can be used. Thereby, machine learning algorithms are used to iteratively adapt the
sampling range of input parameters to those that most effectively increase the robust-
ness and accuracy of the probabilistic evaluation. In the frame of the last SUSA project
RS1559 /KLO 21a/, two adaptive sampling approaches were implemented in SUSA. One
approach uses a support vector regression metamodel in the context of a subset simu-
lation and the other approach uses a combination of a genetic adaptive sampling algo-
rithm with an ensemble of classification algorithms. Both algorithms have been com-
pared, discussing the advantages of both algorithms while getting applied to benchmark
examples as well as to an accident scenario in a nuclear power plant. This benchmarking

is described in Section 3.1.

In addition, two other methods have been implemented to get the necessary metamodel
to be provided to the subset simulation. First, a support vector classification approach,
which can be used if the target is not defined in a continuous parameter space but rather
as a discrete variable, for example in order to answer the question if there is an entry of
cooling liquid in the sump or not. The second method for generating metamodels which
has been added to SUSA are flat neural networks. Both approaches have been imple-
mented and tested. The implementation and test of both approaches is described in Sec-
tion 3.2

In addition to these new methods for generating metamodels, methods have been im-

plemented in SUSA to explain and use the results generated, using machine learning
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approaches. One is the usage of Shapley values in order to better understand the results
of a SUSA analysis and to identify the most important influencing factors. The implemen-

tation and application of Shapley values is described in Section 3.3.

Section 3.4 finally details how the results of the implemented adaptive sampling methods
can be used to derive a kernel density estimation for a later importance sampling appli-
cation. In this way, the derived knowledge can be used in later applications to optimize

the sampling efficiency in the critical parameter space.

31 Benchmarking of the Developed Iterative Methods for an Adaptive
Monte Carlo Simulation

Adaptive sampling algorithms have been developed to reduce the number of samples
required for analyses of rare events by iteratively adapting the sample range to the analy-
sis objectives. Given a dataset of sampled input parameter sets, e.g., from a classic MC
sample, with the corresponding results of their simulation runs, the idea of adaptive sam-
pling methods is to iteratively train and refine a metamodel, e.g., a machine learning
algorithm, to predict the simulation outcomes of interest until a precise computation of
the desired analysis target (e.g. probability of the rare event) is achieved. At each itera-
tion, the metamodel is refined by identifying regions of the input parameter space that
are either most promising to lead to the rare event of interest or that have the greatest
predictive uncertainties. Simulation runs are performed using the most promising
parameter sets from the identified regions, expanding the training data set for the meta-
models. With this approach, the metamodels are trained with a minimal number of sim-
ulation runs while providing accurate estimates of the analysis targets. To identify
promising candidate parameter samples, there is a trade-off between exploring the un-
known parameter space and tending to predict results near the desired region of interest
(rare event). In both cases, a metric or distance measure must be defined in the multidi-
mensional parameter space- or metamodel-related predictions to sort the candidates and
evaluate how promising they are. Since the desired region of interest may also depend
on multiple simulation outcome variables, this approach is also applicable to identify pos-

sible input parameter sets that lead to a combined rare event.

For simplicity, the desired region of interest in the benchmark application depends on
only a single simulation outcome variable. This also simplifies the metamodels, which

only need to predict the final state of a single simulation variable. However, in general,
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metamodels can also be trained to predict multiple parameters of the simulation outcome
for more complex applications. Choosing how to build the metamodel and identifying the
most promising parameter samples are the key challenges of adaptive sampling ap-
proaches and the main differences. The following subsections describe the different ap-
proaches implemented in SUSA that solve these challenges, including the adjustable
termination criteria of the algorithms. The two algorithms that were compared in the
benchmark are Subset Simulation with Support Vector Regression (SuSSVR) and the
Genetic Adaptive Sampling Algorithm combined with the Probability Estimation using an
Ensemble of Classification Algorithms (GASA-PRECLAS). Both are described in detail
in /KLO 21al/.

3.11 General Idea of the Adaptive Sampling Approach

The general idea of the iterative approach of adaptive sampling can be described in the

following steps:

1. The initial step is to create a training dataset by randomly sampling the uncertain
input parameters according to their probability distributions and to run the simula-
tions with these samples. Due to the long duration of the simulation runs, only a small
set of samples, e.g. 20 to 50, should be created for efficiency reasons. Since this
initial step is not an integral part of an adaptive sampling algorithm, the initial training
dataset can alternatively be taken from a previous uncertainty analysis if the uncer-

tain parameters are the same.

2. The training dataset created is used to train a single or multiple metamodels, i.e.
machine learning algorithms, to predict the simulation result for the considered output

quantity.

3. Alarge set of input parameter values is randomly sampled according to the probabil-
ity distributions, e.g. 10* to 10° samples, depending on the applied adaptive sampling
algorithm, but instead of running the simulations, the trained metamodel(s) are ap-

plied to this sample to predict the simulation results.

4. The predictions of the metamodel(s) are used to identify candidates of parameter
combinations that are best suited to be added to the training dataset to improve the
predictions of the metamodel(s), especially in the vicinity of the targeted parameter
region. For these candidates, the results are calculated by the actual simulation code;

therefore, only a few samples should be selected, e.g. 5 to 8 candidates.
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5. Depending on predefined termination criteria, the algorithm either terminates and
provides the estimated probability of the targeted region, i.e. probability of the unde-
sired scenario, or the algorithm is repeated and returns to step 2, now with the en-

hanced training dataset.

3.1.2 Subset Simulation with Support Vector Regression

Subset Simulation (SuS) is a combined sampling and simulation approach for small fail-
ure probabilities described as the product of much larger conditional probabilities of in-
tervening events approaching the actual failure event, while the conditional samples for
each intervening event are sampled using Markov Chain Monte Carlo simulation /AU 01/,
/PAP 15/. In the adaptive sampling algorithm implemented in SUSA, Support Vector Re-
gression (SVR) is used as a metamodel within the Subset Simulation to predict the sim-
ulation outcome, as described in /KLO 20/. This SuSSVR algorithm consists of three

iteration cycles.

In a first cycle, the algorithm is repeated until at least a certain percentage of the training
dataset, e.g. 10 %, is in the desired region of interest. In a second cycle, the goal of the
algorithm is to converge to a robust metamodel, i.e., a robust prediction of the SVR.
Adjustable threshold parameters are given for the so-called switching rate, i.e., the mean
fraction of parameter sets in the last subset sample that were classified differently in the
last — say 5 — iterations and the mean rate of change of the rare event probabilities cal-
culated in the last iterations. In both cycles, the new parameter candidates for runs with
the actual simulation code and, thus, for the training dataset are selected from the last
subset sample obtained in an iteration step (random or cluster-based selection). The last
cycle is iterated using a larger subset sample size to obtain a robust rare event probability
estimate. The number of iterations in the last cycle is ten or more to get information on
the variation of the probability estimate due to the random sampling. Since no refinement
of the metamodel is performed and thus no further simulation run with the actual simula-

tion code is required, this cycle is comparatively fast.

313 GASA-PRECLAS Algorithm

The GASA-PRECLAS algorithm presented in /SOE 22/ consists of two iteration cycles
and divides the sampling problem into two parts, each of which is solved using an opti-
mized algorithm. First, the GASA algorithm is used to effectively explore the parameter

space to obtain a training dataset with a certain number of samples in the region of in-
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terest, e.g., n =5 samples. The GASA algorithm provides the training data so that the
classifiers in the second cycle can distinguish between interesting and uninteresting
events. Its aim is comparable to the first cycle of the SuSSVR algorithm. If there are
multiple regions of interest that are separated from each other, this should also be taken
into account when choosing the termination criterion of the GASA algorithm, i.e., the

number of samples in the desired region of interest should be increased.

The second cycle uses a combination of classification algorithms as a metamodel to
predict whether a parameter sample leads to a rare event. A Bayesian approach is used
to calculate the probability distribution for the likelihood of the rare event based on a large
parameter sample generated at each iteration and the corresponding predictions of the
fitted classification metamodels. The adjustable termination criteria refer to the variation

of the calculated probability distribution of the rare event over the last — say 5 — iterations.

The use of an ensemble of classification algorithms reduces the impact of the uncertain-
ties of a single classification algorithm and the impact of an incorrect prediction. Com-
bined with the Bayesian calculation of the probability distribution, an additional refine-
ment loop for the probability estimate and its uncertainty — as in the SuSSVR algorithm
— is not necessary. At each iteration step, the new parameter candidates for the actual
simulation runs are selected from the large parameter sample which is also the basis for
the estimation of the rare event probability. The selection of the candidates is based on
criteria associated with the fitted metamodels and calculated for each element of the

parameter sample.

314 Comparison of Application Examples

Two benchmark functions are used to analyse the implemented adaptive sampling meth-
ods. Both consist of a simple function that can be quickly evaluated. The first example
with a biological dose model tests how a very small probability, e.g. about 1 E-06, can
be estimated in a six-dimensional parameter space. The second example with the Ishi-
gami function tests how to identify four separate regions in a strongly non-linear function.
Although this is only a three-dimensional problem with a probability of about 1 E-03, find-
ing all four maxima of this function is a difficult task that requires advanced sampling
algorithms for proper likelihood estimation. Finally, a thermal-hydraulic code simulating
a LOCA scenario in a nuclear power plant is used as a more realistic and complex ap-
plication example where a single simulation run requires several hours. This example

considers a high-dimensional parameter space (35 uncertain parameters) and demon-
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strates the need for an adaptive sampling algorithm, as a classic MC sampling would

require at least 1 E +04 or more simulation runs, which is not feasible.

3.1.41 Benchmark Example: Biological Dose Model

In this example, it is assumed that during the normal operation of a nuclear power plant,
small concentrations of radionuclides are released and enter the food chain of a popula-
tion group. To calculate the maximum annual dose-equivalent of an individual of the

population group, the following simple deterministic model is applied:

y = ¢ (Xrate1 * Xconc1 T Xratez * Xconcz) * €Xp(—0.2 - dt) (3.1)

The description of the parameters and their distributions is listed in Tab. 3.1.

Tab. 3.1 Uncertain parameters and their distributions for the biological dose model

Name Symbol | Distribution Distribution Parameter

Mean = 3.29 E-08
Dose conversion parameter | C Normal Std = 1.11 E-08

Min =1 .00 E-08, Max = 5.00 E-08

Consumption rate of meal 1 | Xratet Log-Uniform | Min =10, Max =

Radio conc. in meal 1 Xconc1 Uniform Min = 10, Ma x= 35

Mean = 4.7552, std = 0.1993

Consumption rate of meal 2 | Xrate2 Log-Normal
Min = 0.5, Max = 400
Radio conc. in meal 2 Xrate2 Uniform Min =10, Max = 30
Mode = 0.8, Min = 0.5
Delay time Dt Triangular

Max = 20

The region of interest is defined by the maximum annual dose equivalent exceeding 0.25
mSv, which means that in equation 3.1 the result y exceeds 2.5 E-04. A simple MC sam-
ple of the formula with 1.0 E-08 samples identified 386 samples above the threshold.
The resulting 95 % confidence interval using Clopper and Pearson /CLO 34/ is [3.48 E-
06, 4.26 E-06]. Both algorithms start with an initial training pool of 50 samples using
simple MC sampling. In addition, both algorithms use a maximum variation of probability
calculation over the last four iterations of 0.1 for the second learning cycle, defining the

robustness of the metamodel. The additional threshold for the switching rate of the
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SuSSVR algorithm was set to 2.5 %. In order to accumulate enough rare events of inter-
est in the training sample in the first learning cycle, a termination criterion of at least 10 %
was used for the SUSSVR approach, while an absolute value of at least five rare events
was set for the GASA-PRECLAS algorithm. The SuSSVR algorithm terminated after 165
additional calculations of the simulation function and estimated a probability for the re-
gion of interest within the interval [3.16 E-06, 4.19 E-06]. The GASA-PRECLAS algorithm
terminated after 180 additional simulation runs, estimating a probability inside the interval
[3.52 E-06, 7.05 E-06]. Both algorithms require almost the same number of additional cal-
culations and estimate compatible intervals for the probability, which could mean that
both algorithms pass this benchmark test without problems or further adjustments. How-
ever, the low probability of about 1.0 E-06 reveals limitations of the PRECLAS algorithm.
Since this algorithm actually estimates the probability based on a simple random sample
of parameter values and corresponding predictions of the metamodels, 1.0 E+08 sample
elements are required for a robust probability estimate. Furthermore, to select new pa-
rameter candidates, all 1.0 E+08 parameter sample elements must be graded according
to specific selection criteria. While this amount of data can still be processed with high
computing power, applications with even smaller probabilities, thus producing larger
amounts of data, introduces runtime and memory problems. In future developments, an
advanced sampling method, such as importance sampling, should be introduced to solve
this problem. These problems do not arise with the SUSSVR approach because the Sub-

set Simulation does not need a large sample to predict a low probability.

3.1.4.2 Benchmark Example: Ishigami

The Ishigami function is often used for benchmarking advanced sampling methods and

sensitivity indices. It is defined by the following formula:

y = sin(x;) + ¢; - sin?(x,) + ¢, - x5 - sin(x;) (3.2)

In this benchmark example, the GASA algorithm performs slightly better in exploring the
uncertain parameter space than the first cycle of the SUSSVR algorithm. How the GASA
algorithm targets the region of interest while exploring the rest of the parameter space is
shown in Fig. 3.1, which illustrates the evolution of the training data set for the GASA-
PRECLAS algorithm.
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After the initial 50 samples using classic MC sampling (shown in blue in Fig. 3.1), the
GASA algorithm (orange) required 240 additional function evaluations, and the

PRECLAS algorithm (green) required 72 ones.
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Fig. 3.1 Development of the Ishigami function evaluations during the adaptive sam-
pling of the GASA-PRECLAS algorithm

However, the necessary adjustments in the SuSSVR and in the GASA algorithm show
the limitations of both exploration algorithms. Without the increased number of training
data in the desired region of interest, the GASA algorithm or the first cycle of the SuUSSVR
algorithm would not have found all four separated regions and would have underesti-
mated the rare event probability. This can be explained by the fact that neither approach
is designed to find multiple separated regions of interest. Only the higher statistics and
thus higher probability of finding all maxima prevented an underestimation of the proba-
bility. This can be improved, e.g. by introducing prior knowledge about the four separate
maxima or by adding an optional parameter that controls whether the new samples
should be more biased towards one (already found) region of interest or towards the

exploration of the unknown parameter space.

3.1.4.3 Application to a LOCA Scenario

In this example, the objective is to estimate the probability that the peak cladding tem-

perature (PCT) exceeds 1200 ‘C in a LOCA scenario inside a nuclear power plant. A

conservative reference model of a pressurized water reactor with four cooling circuits
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and an electrical power of 1425 MW is used, in which a double-ended guillotine rupture
is initiated in the cold section of the main coolant line. The simulation model using
ATHLET /WIE 19/ was developed based on previous analyses /KLO 16/, /POI 18/. 35
uncertain input parameters are considered in this work. Both algorithms start with an
initial training data set of 50 samples and with the same termination criteria as the bio-
logical dose model. The SuSSVR approach terminated after 364 additional simulation
runs and estimated a probability between [8.16 E-03, 9.36 E-03]. The GASA-PRECLAS
approach terminated after 103 additional simulation runs with an estimated probability
between [1.06 E+02, 2.07 E-02]. The GASA-PRECLAS algorithm converges earlier. Alt-
hough the estimated probability intervals of the SUSSVR and GASA-PRECLAS algorithms
do not overlap, the intervals are close, and their results are consistent. This shows that
both algorithms work well also for high-dimensional parameter spaces with 35 dimen-
sions. However, such high-dimensional parameter spaces make the sampling algorithms
less and less efficient. Analogous to the biological dose model results, where an iterative
refinement of the parameter space was suggested, an intermediate algorithm during the
iteration of the adaptive sampling could reduce the dimensionality by analysing the influ-
ence of the uncertain parameters on the simulation results of interest and remove those

that have low influence.

3.144 Conclusion

In this work, two adaptive sampling algorithms implemented in SUSA, the SuSSVR and
GASA-PRECLAS algorithms, were compared to two benchmark applications and a
LOCA scenario. In general, both approaches require the same order of magnitude of
simulation runs to train a robust metamodel and compute a robust prediction for the rare
scenario of interest. However, for runtime intensive calculations, already 100 additional
simulation runs are expensive. But even when using the same algorithm but with a dif-

ferent seed, larger differences, e.g. of 100 additional simulation runs, can occur.

The probability intervals provided by the two approaches slightly differ. This can be ex-
plained by the fact that the parameters defining the termination criteria are not completely
identical for the two algorithms. While the threshold for the variation of the probability is
set to the same value, the switching rate is defined only in the SuUSSVR algorithm. There
is no such equivalent termination criterion in the PRECLAS algorithm, since this algo-
rithm includes several classification algorithms that compensate for the uncertainty or
switching points of the predictions of a single metamodel. However, it has been shown

that the switching point is the most important parameter that determines the number of
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learning cycles required in the SUSSVR algorithm. For testing purposes, a switch point
parameter was also implemented in the PRECLAS algorithm, but this did not lead to a
subsequent termination of the iteration cycle. As for the first cycle in exploring the pa-
rameter space, both algorithms performed well when there is only a single contiguous
target region. In such applications, an advanced parameter space exploration method is
not required. However, if there are multiple target regions that are not connected to each
other, the GASA algorithm performs slightly better and can play its advantage of effec-
tively exploiting the parameter space over the first iteration cycle of the SuSSVR algo-
rithm. As for the second cycle in building a robust metamodel for prediction, both algo-
rithms perform well when the probability is not too small. However, for probabilities below
1 E-06, the simple MC sampling in the PRECLAS algorithm requires too many parameter
samples and leads to runtime and memory problems. The Subset Simulation, which is

used in the SuUSSVR algorithm, already prevents such behaviour.

In summary, both implemented adaptive sampling algorithms are promising approaches
for estimating the probability of a rare scenario. However, there is also room for improve-
ments regarding the modularity of the algorithm. For some applications it might be useful
combine the GASA algorithm with the second cycle of the SuSSVR algorithm. Further-
more, the sampling for the pool of parameter samples can be decoupled from the meta-
model and decision process. In addition, an analysis of the relevant parameter space in
terms of truncating an uncertain parameter distribution (importance sampling) or identi-

fying irrelevant parameters would be beneficial to simplify the problem iteratively.

3.2 Subset Sampling with Flat Neural Networks

The SUSA adaptive learning suite has been extended so that it is now possible run the
subset sampling algorithm and to use flat neural networks for metamodel generation.
The neural network implementation in SUSA is based on the Pytorch library /PAZ 19/ for

generating neural networks in Python.

In order to run the subset sampling algorithm with neural networks as metamodel genera-
tors, the layout of the neuronal network needs to be defined first. This can be done fol-
lowing the Pytorch API. One example is given in the code below for a network with six
input nodes, two hidden layers, one output and a configurable number of nodes in the

second hidden layer.
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# pytorch includes
import torch .nn. functional as F
import torch .nn as nn

class PyTorchNN (nn. Module ):

def init  (self , num units = None ):
super (). _ init ()
n _input = 3
num units = num units or 13
self.hidl nn.Linear( n_input, num units )
self.hid2 nn.Linear ( num units, num units )
self.oupt = nn.Linear( num units, 1)
# initialize weights
nn.init.xavier uniform ( self.hidl.weight )
nn.init.zeros ( self.hidl.bias )
nn.init.xavier uniform ( self.hid2.weight )
nn.init.zeros ( self.hid2.bias )
nn.init.xavier uniform ( self.oupt.weight )
nn.init.zeros ( self.oupt.bias )

def forward (self , x):
X = F.relu( self . hidl (x))
x = F.relu( self . hid2 (x))
x = self.oupt (x)
return x

The class PyTorchNNinherits from nn.Module, which is a base class for all neural network

modules in PyTorch.

The following attributes of PyTorchNN are defined in the constructor:

o Parameters: The constructor takes an optional parameter num_units, which speci-

fies the number of hidden units in the hidden layers. If not provided, it defaults to 13.

¢ Input Size: The network is designed to take an input of size 3, representing the three

input parameter of the Ishigami function.

e Layers:
— hid1: A linear transformation from six inputs to num_units hidden units.
— hid2: Another linear transformation from num_units to num_units.

— oupt: A linear transformation from num_units to a single output.

The weights of each layer are initialized using the Xavier uniform distribution, which is a

common technique to help with convergence during training. The biases for each layer
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are initialized to zero. The method forward(self, x) defines how data flows through the

network:

¢ Input xis passed through the first hidden layer, followed by a ReLU activation function

(which introduces non-linearity).

e The output of the first layer passes the second hidden layer, again followed by a

RelLU activation.

e Finally, the output from the second hidden layer goes to the output layer, which pro-

duces the final output.

Once the network layout has been defined, the neural network-based subset-sampling

method can be called in the following way:

from python.AdaptMCS import WorkFlow, Transformer, Pool
from python.Simulation import Simulator
import torch as T

#%% Working directory
output dir = ’C:\\Desktop\\test Ishigami’

#%% Simulator
sim = Simulator.Ishigami ()

#%% Initial producer of input sample

initProd = Pool.SimpleRandomSampler ( distribution = sim. specific )

#%% Workflow

NN_broker = WorkFlow.SuSNNR( model = PyTorchNN (10),
optimizer = T.optim .Adam,
learning rate = 0.0001,
loss = nn.MSELoss (),
epochs = 500,
max learn cycles = 100,
initproducer = initProd,
simulator = sim)

NN broker.setFeatures( sim. specific . keys ())

NN broker.setScaler( input = Transformer.DistributionTransformer (

distribution = sim. specific ))
NN broker.setTarget ( dict( y = [15 , 'upper ']) )
NN broker.setBreakCriteria( nModels = 4,
switchFraction = 0.05,
ProbRate = 0.1 )
itr = iter ( NN _broker.learnCycle( nCandidate = 5,
nPool = 10000,
nInit = 50))

for ¢ in itr:
c.reportProgress ( verbose = True )

This call to the subset sampling method makes use of the modules implemented and

adapted in the research and development project RS1559: WorkFlow, Transformer, Pool
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and Simulator. In the WorkFlow module, the classes performing the different adaptive
learning procedures are implemented. For performing the subset-sampling method with
neural networks as metamodel generators, a new class has been added to the WorkFlow
module, the SuSNNR class. The SuSNNR workflow class calls internally the NNRMetaMod-
elPyTorch class which implements the neuronal network learning cycle. When training a
neuronal network, each training step consists of one forward pass of the given parameter
input through the neuronal net, a comparison with the expected output and, depending
on the difference between the expected and realized output (the loss), the weights and
biases of the network, defined above, are optimized in a so-called backward propagation

pass.

The user can set several attributes of the SuSNNR WorkFlow object and the underlying
NNRMetaModelPyTorch object. In the example above, the WorkFlow object is initialized

using the following attributes:

e model The neuronal network model to be used in the fitting process. In this example,
this is the PyTorchNN model defined above with eight nodes in the second hidden

layer.

o optimizer. A neuronal net optimizer is used to adapt the weights inside a neuronal
net based on the provided training data in order to minimize the losses. The chosen
Adam (adaptive momentum estimation) optimizer is one of the most popular gradient
descent optimization algorithms. It is a method that computes adaptive learning rates
for each parameter. It stores both the decaying average of the past gradients, similar

to momentum, and also the decaying average of the past squared gradients.

e Jearning rate. The learning rate controls how quickly the model is adapted to the
problem. Smaller learning rates require more training epochs, given the smaller
changes made to the weights each update, whereas larger learning rates result in
more rapid changed and require fewer training epochs. A learning rate that is too
large can cause the model to converge too quickly to a suboptimal solution, whereas
a learning rate that is too small can cause the process to get stuck. In combination
with the Adam optimizer, the passed-in learning rate is the initial learning rate which
gets adapted based on the decaying average of the past gradients and squared gra-

dients.

e Joss:. The loss function is used to compare the predicted results obtained by one pass

of input parameters through the neuronal network with those provided in the training
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data. The larger the loss, the larger the needed correction to the network weights and

biases. In the example above the mean squared error (MSE) is used as loss function.

epochs. How often a neuronal net should be trained on the training data. It is possible
to specify the so-called batch size (batch_size). In this case the neuronal network is
trained in each epoch by iterating through separate parts of the training data set. The

batch_size defines the size of the batches into which the training data is separated.

max_learn_cycles: The maximum number of subset-sampling learning cycles to be

performed.

initproducer: The random sampler to be used. The random sampler is responsible

for sampling the uncertain input parameters.

simulator. The simulator generates target values from passed-in parameter values.

In the example, the distributions of all feature values are specified in ‘sim._specific and

passed to the SimpleRandomSampler. An object of the SimpleRandomSampler class is

used to produce the initial feature values using a simple MC sampling. In the example,

an object of the BiometricDose class is used as Simulator, meaning that the produced

samples will follow the biometric dose distribution. Additionally, the user can set various

attributes of the workflow, such as

the names of the regarded uncertain input parameter (the features);

the scaling method to be used: In the example, an object of the DistributionTrans-
formerclass of the Transformer module is used as the provided input data is gener-
ated following the biometric dose distribution. Objects of the DistributionTransformer
class are responsible for scaling and re-scaling the provided data according to the
underlying distribution. Scaling is necessary as a lot of metamodel generators such

as SVM depend on scaled input data.
The target region: In the example above, the targets are result values larger than 15.

The termination criteria for the subset sampling method: Two criteria define whether
the iteration should be stopped. The first break criterion checks for each iteration step
for a certain number of previously fitted metamodels nModels if the predicted number
of events in the target region by those metamodels differs from the currently predicted
number. The fraction of models for which such a discrepancy is found is compared

to the value switchFraction defined in the break criteria. In addition, it is checked if
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the rate in which the probability of events being in the target region changes from
iteration to iteration is below the value of ProbRate defined in the break criteria. If the
actual switching fraction is lower or equal to the switchFraction value in the break
criteria and the change in the probability rate is lower or equal than ProbRate, the

iteration process is terminated.

Finally, in the code above, an iterator for the learning cycle is generated, as described in
Section 3.1.1 'ninit defines how many sets of feature values (uncertain input parame-
ters) are generated for the initial training step. The value of nPool determines how many
input parameter values are randomly sampled and then predicted using the trained meta-
model(s) (step 3 as described in Section 3.1.1). The value nCandidate defines how many
best suited (according to the metamodel prediction) parameter value sets should be
added to the training dataset of the metamodels (step 4 as described in Section 3.1.1).
In order to understand how the prediction accuracy of the neuronal network changes
over multiple cycles, both the training and test losses as well as the training and test

accuracy are stored.

The new algorithm has been successfully applied to the Ishigami distribution. Fig. 3.2
shows the learning progress of the neuronal network over the learning cycles, the mean

squared error decreases over the first 150 cycles and then remains almost constant.

Learning Progress
NNRMetaModelPyTorch trained on standardized data

0.8

0.6 1

train_loss

o
-

progress of metamodel training

0.2 1

0.0 1

50 100 150 200 250 300 350 400 450

Fig. 3.2 Development of the model accuracy over the subset sampling cycles
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Fig. 3.3 shows the parameter points sampled in the final subset sampling cycle. It is
visible that in each minimum of the Ishigami Function, the density of sampled points is
increased, as should be the case. The difference between predicted and observed output

values is in some cases as large as 15, which is the limit value used for defining the

target region.
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Fig. 3.3 Sampled parameter points in the final subset sampling cycle; the colour
scale indicates the difference between predicted and observed output val-

ues

Fig. 3.4 shows how the observed result values of the Ishigami function develop as a
function of the subset sampling cycles. In the presented example, 400 cycles are neces-
sary for reaching the termination criteria defined above. This figure can be compared to
Fig. 3.5, which shows the same plot created by using support vector regression for cre-
ating metamodels, with the following support vector regression specific parameter (ker-
nel =" rbf’, C = 100, epsilon = 0.1, gamma = 'scale’). It is clearly visible that for the exam-
ples given above, the usage of SVR instead of a flat neuronal network leads to a faster
convergence towards the desired region. In the future, it could be studied in which cir-
cumstances (e.g., type of problem, hyperparameter optimization) a neuronal network as

metamodel generator would bring advantages compared to the simpler SVR algorithm.
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Fig. 3.4 Development of the observed values of the Ishigami function as a function

of the simulation run (subset sampling cycle)
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Fig. 3.5 Development of the observed values of the Ishigami function as a function

of the simulation run (subset sampling cycle plus support vector regression)

3.3 Interpretability and Transparency of Machine Learning Algorithms

Shapley values are a concept from game theory that is used to determine the contribution
of individual players to the total profit in a co-operative game. The Shapley value of a
player i is calculated as the weighted average of the marginal contributions across all
possible coalitions (subsets) of players. If N denotes the set of all players, then the mar-
ginal contribution of a player i € N to a given coalition S € N is given by v (S U {i}) — v(S),

where v denotes the win function for a coalition. The empty coalition assigns v the value
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0. The formula for calculating the Shapley value Shi for a player i € N is given in equation
3.3. Here, n denotes the number of all players in the set N and || S|l the number of players
in the coalition S. The formula is based on the assumption that the players can enter the

game in any conceivable order

She = Zsemn (22 (v(s U (@) - v()) (3.3)

The application of Shapley values to machine learning models has recently gained in
importance as they offer a theoretically sound approach to interpreting model results. In
addition, Shapley values can quantify the contribution of individual variables (input pa-
rameters, features) to the model result. Bias and undesirable influences of individual
variables can be identified and addressed. The interpretability of machine learning mod-
els is of central importance, especially in applications where trust and explainability are
crucial. Shapley values offer a solution by providing a clear and consistent framework for
explaining model results. They can help to overcome the ‘black box’ nature of complex
models. The interpretability analysis of a machine learning model is performed for a given
combination of values x' = (x4, ..., x's) of the model variables, where x'1, ..., x'; are con-
sidered as players that jointly contribute to the model outcome (profit). The expected
marginal contribution of a subset S € N = x4, ..., X', €.g. S = X1, X2, is defined by the

function vx(S) in the following equation 3.4:

v, (8) = v ({x1, x3}) =
S gCet, x5, X3, oo, X)) F1 (4, %5, X3, o0, Xp) dX3 ..dXy — E(g (X)) (3.4)

In equation 3.4, g denotes the function of the machine learning model, X = (Xj ..., X»)
the variable vector of the learning model g, f the multivariate density of X, and E(g(X))

the expected value of the model result g(X).

The exact calculation of the Shapley values for a large number n of variables can be very
computationally intensive because the marginal contribution v (S U {x}) — v(S) of x';, I =
1, ..., n, must be calculated for all possible subsets S € N {x'} (equation (2). For this
reason, an approximation using Monte Carlo simulation was proposed in /STR 14/. The
Shapley value for a given variable value x'; is estimated using the formula in equation

3.5;
Shy==3M_ (g(xI) — g(x™)) (3.5)

M
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In equation 3.4, M is the number of iterations for estimating S of the Shapley value
(e.g.- M =1000) and g is the function of the machine learning model. x™; is a randomly se-
lected vector in which some of the variable values are replaced. Exactly which variable
values are replaced by which values is specified by a randomly selected vector in which
some of the variable values are replaced. Exactly which variable values are replaced by
which values is specified by a randomly selected subset S € N{x'}. The vector x7; is
almost identical to x™;. Only the value of the ith variable of x™; is different and identical to
the variable value x'i. The Monte Carlo simulation for approximating the Shapley value

for the variable value x'; is outlined below:

Given are a vector x' = (x'y, ..., X'n) and a data matrix X, with which the machine learning
model g was trained. The following steps are carried out for each iterationrun m=1, ...,
M:

1. Random selection of a vector z from the data matrix X.
2. Random selection of a subset S from the set N x'i.
3. Construction of two new vectors:

- x™: Set x™, = z and then replace the values of the corresponding variables

with the values in S.

- xT4: Set &7, = x™, and then replace the value of the i" variable with the value

X','.

4. Calculate the marginal contribution: g(x1%) — g(x™).

When all iteration steps have been carried out, the Shapley value Shiis calculated ac-
cording to equation 3.5. To obtain the Shapley values for all variable values of the given
vector x' = (x4, ..., X'n), the procedure must be repeated the corresponding number of

times.

The algorithm described above was implemented in SUSA. In addition, SUSA offers the
option of using the freely available Python library shap, which specialises in Shapley val-
ues. The functions provided by shap can be applied to various types of models, including

neuronal networks, decision trees, and regression models.
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Fig. 3.6 shows the Shapley values for the different input values of the biometric dose
function (equation 3.1). The larger the absolute Shapley value, the larger the contribu-
tion. The sign of the Shapley value is negative if an increase in this value decreases the
outcome and positive if it increases the outcome. In the shown example, the largest in-

fluence factor is clearly 'dt’ which is negatively correlated to the result value.
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Fig. 3.6 Shapley values for the input parameters of the biometric dose function

(equation 3.1)

One of the fundamental properties of Shapley values is that they always sum up to the
difference between the game outcome when all players are present and the game out-
come when no players are present. For machine learning models, this means that shap
values of all the input features will always sum up to the difference between baseline

(expected) model output and the current model output for the prediction being explained.

3.4 Importance Sampling

3.41 Introduction to Importance Sampling

Monte Carlo simulations are often carried out to estimate the expected value E(y) of
a variable y, where y is the result of a calculation model f with the influencing factors

X = (X1 ..., Xq), i.e. y = f(x). The expected value E(y) is defined as follows:

EW) =E(f(x) = [ fC)p(x)dx (3.6)
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where p is the multivariate density function of the influencing factors x. If y is an indicator
variable for the occurrence of a certain event E (e.g. event = system failure), i.e. y = 1 if
E occurs and y=0 otherwise, then the expected value E (y) is identical to the probability
Prob(E) for the event E (e.g. probability of a system failure). If y only differs significantly
from zero in a very low probability range in the parameter space of x (or is equal to 1 as
an indicator variable), then the estimation of the expected value E (y) or the probability
Prob(E) using simple MC simulation is very inefficient. In addition, simple MC simulation
is no longer practicable if complex calculation models are used because too many cal-

culation runs have to be carried out.

To increase the efficiency (variance reduction) of a MC simulation and for more practi-
cability when using complex calculation models, the method of Importance Sampling is
suitable. The sample elements of x are not selected from the actual distribution p(x) but
from the distribution q(x), which concentrates on the low-probability range of interest in
the parameter space. The distribution g(x) denotes the Importance Sampling density.
The following applies: q(x) > 0 if f(x)p(x) # 0. If the Importance Sampling method is
carried out with the Importance Sampling density q(x), then the expected value E (y) is

determined as follows:

f)px) f)px)
EQ) = E(f(@) = [F552 q@dx = E, (F557) (3.7)

E, stands for the expected value under the condition that x is distributed according to

g(x). This results in the following estimator for the expected value:

~ _a (fX)plx) n f(xl) p(xy)
E(y) = Eq ( q(x) ) Z q(x;) (3.8)

where x;}", is a sample of the size n from the distribution g(x). The following applies to

the variance of the estimator:

Var (E (y)) = %Varq (f (J;)('::)(x)) (3.9)
Var (E‘(y)) = Var (E‘(y)) =0,if q(x) = qope(x) = % (3.10)

where is the optimal Importance Sampling density. However, its calculation is not prac-

tically feasible because it requires knowledge of E(y). In order to estimate gopi(X). the
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approximation of a multivariate parametric distribution and kernel density estimation can

be used. Both methods are described in the next section.

3.4.2 Approximation of an Importance Sampling Density

The approximation of a multivariate parametric distribution or kernel density estimation
can be used to estimate an optimal Importance Sampling density. The prerequisite for
both methods is a sample from the (usually low probability) range in the parameter space
of x, for which y = f(x) is clearly different from zero (or equal to 1 if y is an indicator
variable), and for which y = f(x) is otherwise almost zero (or equal to zero). This means
that a sample from the unknown Importance Sampling distribution must be available.
Such a sample can be obtained, for example, from the results of an adaptive MC simu-
lation method developed at GRS /KLO 21a/.

The quality of the approximated multivariate distribution or the kernel density as an esti-
mator for the optimal Importance Sampling density depends in particular on the proba-
bilistic properties of the sample elements. Ideally, these should be distributed inde-
pendently and identically to the Importance Sampling density. If the available sample
elements were obtained by using the subset sampling method, such as in the adaptive
MC simulation method SuSSVR (combination of subset sampling and support vector
regression, /KLO 21a/ developed by GRS, the sample elements are not independent due
to the use of Markov chains. This leads to a slowdown in the convergence of the estima-
tors compared to the ideal case with independent sample elements. However, the use
of the sample elements from the subset sampling is justified because the estimators

converge as the sample size increases.

3.4.21 Approximation of a Multivariate Parametric Distribution

If x =(x1, ..., Xq) is @ random vector with an unknown distribution and x;?* , is a sample

from this distribution, i.e. the x4, ..., x, are independent and identical to x distributed
random vectors, then for each variable x; of the vector x their mean E(x;) and variance

Var(x;) can first be estimated from the sample

~ — ~ 2
E(x) = %Z?ﬂ xi; Var(x;) = ﬁ i=1 (xij - E(xj)) (3.11)
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Instead of mean E(xj)and variance Var(x;) quantiles can also be estimated. The following

applies to the estimator of the p-quantile (e.g. p = 0.05) of the variable x;:
Gpj = x[n-plj (3.12)

where g, ;is the [n - p]-"" value of the ordered sample x[1]j < x[2]j < --- < x[n]. The dis-
tribution parameters of the selected univariate and continuous distribution types can be
determined using SUSA /KLO 21/ on the basis of E(x); and Var(x;) or a selection of
(e.g. three) quantile estimators (e.g. for p = 0.05, 0.50 and 0.95). In the next step, a
Kolmogorov-Smirnov or Lillifors (assuming a normal, lognormal or exponential distribu-
tion) adjustment test /KLO 21/ is carried out for each completely defined distribution. Both
tests are non-parametric and compare the empirical distribution function from an existing
sample with a selected continuous distribution. Based on the test results for the present

sample x;;"_, a suitable univariate distribution can be selected for the variable x;. Finally,

the correlation coefficients between the variables x;, ..., x¢ must be estimated from the
available sample. The normal Pearson correlation coefficient between the variables xj

and xx is estimated as follows:

TP (0= B (x)) ) (i —E Cxr))
\/Z?q(xij-ﬁ(xj))z I, (B ()

ﬁ(xj,xk) = (3.13)

If the continuous univariate distributions for the variables xi, ..., x4 and the correlation
coefficients between these variables are determined on the basis of a sample from the
unknown Importance Sampling distribution, a multivariate distribution density can ulti-
mately be defined as an approximation to the Importance Sampling density. In SUSA, a
multivariate distribution is defined by entering the respective univariate distributions of
the uncertain parameters (variables) and the correlation coefficients between the
parameters. If several correlation coefficients are strongly positive or negative, then
some eigenvalues of the correlation matrix can be zero or almost zero. This can lead to
eigenvalues less than or equal to zero as part of the sampling procedure in SUSA due
to numerical errors. As a result, the Cholesky decomposition of the estimated correlation
matrix would not be possible and sampling from the multivariate distribution would not
be feasible within SUSA. One solution would be to decompose the correlation matrix and

replace the non-positive eigenvalues with a small positive epsilon.
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3422 Kernel Density Estimation to Derive an Importance Sampling Density

Kernel density estimation (KDE) is a non-parametric statistical method for estimating the
density of an unknown probability distribution on the basis of a sample. Unlike a histo-
gram, a kernel density estimator is a continuous estimator of density. If x;1*_, is a sample
from an unknown univariate distribution —i.e. the x4, ..., x, are independent and identi-
cally distributed random variables with an unknown distribution — and K is a kernel, the

kernel density estimator with bandwidth h > 0 is defined as

fal) = 280 Ky — ) = 230, 2k (22) (3.14)
The kernel density estimator is therefore the weighted sum of correspondingly scaled
kernels, which are positioned depending on the sample realisation. The choice of band-
width h is decisive for the quality of the kernel density estimator. With a bandwidth chosen
as a function of the sample size, the sequence of kernel density estimators almost cer-
tainly converges uniformly towards the unknown probability density as the sample size
increases. Intuitively, one would like to choose h as small as possible. However, a bal-

ance must always be struck between the bias of the estimator and its variance.

A number of distribution densities are available as (univariate) kernels K, such as the
densities of the uniform distribution, triangular distribution, standard Cauchy distribution,
or standard normal distribution (Gaussian distribution). Due to its mathematical proper-
ties, the density of the standard normal distribution is often used, i.e.:

1
—=tz?

K(Z) = —e2 (3.15)

1
V2w
In the multivariate case, where there is a sample of n independent and identically
distributed random vector (x;, ..., x;4)7=,, d > 1, a multivariate kernel must be used for
kernel density estimation. If the variables of the vector x = (x4, ..., x;) are independent,

the multivariate kernel can be represented as a product of univariate kernels K:

00 = LB T K (ﬂ) (3.16)

h;
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The kernel density estimator for the multivariate case with correlated variables (x4, ...,

Xq) can be formulated as follows:

fa) = =By g K(HT (= %) (3.17)

where K is the multivariate kernel and H is the matrix of bandwidths. The multivariate

normal distribution with covariance matrix H is often used as the multivariate kernel.

3.4.23 Implementation of kernel density estimation

In Python, there are several options for kernel density estimation in the multivariate case.

The three best-known freely available options are:
e SciPy: gaussian_kde,
e Statsmodels: KDEMultivariate,

e Scikit-learn: KernelDensity.

In a comparison, KDEMultivariate from Statsmodels and KernelDensityfrom Scikit- learn
proved to be the most suitable. The kernel density estimation with gaussian_kde from
SciPy is based on the covariance matrix, which was estimated from the underlying sam-
ple. A Cholesky decomposition is performed for this covariance matrix, but this often
does not work because the matrix is not positive definite. Therefore, the error ‘singular
matrix’ is often obtained. Kernel density estimation with KDEMultivariate or KernelDensity
is based on the equation (*), i.e. it assumes uncorrelated variables. As the equation
shows, this kernel density estimation depends significantly on the selection of the band-
width. KernelDensity from Scikit-learn uses only a single value for the bandwidth for all
variables involved. This is fine if the individual variables are not very heterogeneous.
However, if the variables differ by orders of magnitude, then KernelDensityis not suitable
for kernel density estimation. In comparison, KDEMultivariate from Statsmodels uses a
separate bandwidth for each variable and is therefore well suited for heterogeneous var-
iables. A major disadvantage is that it does not take correlations between the variables

into account.
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3424 Sample from a Kernel Density

The option to sample from a kernel density has been implemented in SUSA. In order to
draw a sample from the kernel density, it is not necessary to estimate a kernel density.
The only information needed for the sampling procedure is the sample values for the
kernel density estimation and the bandwidth values. The sampling procedure can be

outlined as follows:

e Draw a vector (x4, ..., x4) from the sample (x;, ..., x;4)7=,, d 211 on which the kernel

density estimation is based.

e For each value xj, j = 1. ..., d, of the drawn vector, draw a value from the univariate
kernel that relates to x; l.e. if the kernel is a standard normal distribution, then draw
a value from the normal distribution with the mean x; and the standard deviation h;
(bandwidth).

e Go back to step 1.

A new vector is sampled each time the procedure is run. The number of passes deter-

mines the size of the sample from the kernel density.
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Enhancement of Platform Independency and Expansion of
the Range of Applications

The modularity of SUSA has been improved following the guideline of a layered ap-

proach. The following layers have been identified:

1.

41

41

Basic Python or FORTRAN routines which could also be called in a command line

interface.

Higher-level functions or classes which provide a convenient interface to the user.
An example of this is the provision of a generic interface for calling FORTRAN-based
functions, as described in Section 4.3. For most of these higher-level functions, ex-

ample scripts have been made available.

Jupyter notebooks which show the implementation of a whole analysis chain and
give the user the ability to interactively understand the analysis procedure. These
notebooks have been provided for the RAMESU examples presented in Section
4.1.3, but also for the neural-network-based application of the subset sampling algo-
rithm for the Ishigami function discussed in Section 5.2 as well as for the sensitivity

and tolerance limit methods available in SUSA.

A GUI which gives the user the opportunity of employing the capabilities of SUSA
without the need to be proficient in the Python program- ming language. The first
development steps as well as the planned future layout of this GUI are described in

the following sections.

Developments Towards a SUSA GUI

A Basic Concept

The following requirements for the future SUSA GUI have been identified:

The new SUSA GUI should be platform independent.
It should be easy to couple it to the new Python SUSA.

The classic SUSA GUI user should be able to receive a similar level of support if this

is required.
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¢ On the other hand, the advanced user should have the option to quickly enter the
envisaged distributions and parameters without having to pass through the same
steps of guidance as a user needing support and have a similar or wider range of

capabilities.

The open-source library Dash Open-Source has been chosen as basis to develop the
new SUSA GUI in a web-based dashboard style. Dash Open-Source is distributed under
the permissive open-source MIT (Massachusetts Institute of Technology) licence. Cur-
rently, the SUSA GUI can be used by running the underlying dash app on localhost; this
way, it can only be accessed from the machine which started the app. In addition, meth-

ods exist to turn the resulting Dash app into a standalone desktop application.

Similar to the classic SUSA, it is planned to structure the new SUSA GUI into four main
parts:

1. Definition of the input uncertainties;

2. Sampling of the modelled uncertain parameters;

3. Generation of the input files for different simulation software and potentially start of

simulations;

4. Provision of data analysis capabilities.

4.1.2 Distribution Input Example

A first working example for parts of the distribution input section is shown in Fig. 4.1. The
central part of the distribution input section is a table collecting all passed-in information.

The table is editable and the lines (called rows on the dashboard) are selectable.
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Fig. 4.1 First working draft of the new SUSA GUI dashboard showing the tab for en-

tering parameter distributions

The main columns of the tables are:

Parameter ID: ID of the parameter. The ID needs to contain, in accordance with the
requirements on a valid Python identifier, only alphanumeric letters (a-z) and (0-9),
or underscores (_). A valid identifier cannot start with a number or contain any
spaces. In addition, each ID needs to be unique. If these requirements are not met,
an adequate error message will be presented to the user. The parameter ID can be
accompanied by a more descriptive parameter name in the column "Descriptive Pa-

rameter Name".

Distribution: A dropdown menu providing the user with the names of available dis-

tribution types.

SUSA parameter: Here, the experienced user can provide the expected parameters,
as detailed for the corresponding SUSA parameters in the updated SUSA User
Guide. Lines for which parameter ID, distribution and SUSA parameter are provided

will be marked as complete, as no further input is required.

Help: In case the user is not sure about the parameter format and values needed,
the Help field in the corresponding line can be clicked, and a pop-up will appear,
guiding the user through the available options. The kind of pop-up depends on the
selected distribution. Once all information is entered into the input helper and the
helper is closed, the SUSA parameter column is updated with the appropriate infor-
mation. In this way, the user can easily copy, paste and adapt for further similar un-

certain parameter distributions.
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The following columns can be made visible with use of the Toggle columns button on the

upper left of the dashboard:

¢ Descriptive parameter name: As mentioned before, this column allows the user to
provide a more descriptive parameter name, which can be stored and used for docu-

mentation purposes.

o Reference value: This is the value that will be used if no distribution is provided.
Lines for which a parameter ID and a best estimate or reference value are given will

be marked as complete, since in this case no distribution should be added.

o Best estimate value: This is an alternative value that can be used if no distribution
is provided. Lines for which a parameter ID and a best estimate or a reference value

are given will be marked as complete, as in this case no distribution should be added.

e Unit: This column allows the user to store the unit of the parameter for docu-

mentation purposes in the table.

e Notes: This column allows the user to add all kinds of additional notes for

documentation purposes.

The button Add Row below the table on the left-hand side of the dashboard allows to add
additional lines and therefore also additional uncertain parameter to the table. In this
way, the table extends as needed by the user. The Export button above the table down-
loads the contents of the DataTable as .csv file. Currently, the Exportbutton automatically
downloads the table to the "Download' directory. In the future, an input field will be pro-
vided so that the user can set the output directory. The Update Histogram button allows

the visualization of the selected distributions detailed in the table.

When clicking on one of the cells in the rightmost column of the table, a popup window
appears in which the user can enter information about the desired distribution. Two types
of these input helper windows can be distinguished, an input helper for parametric distri-
butions and an input helper for non-parametric distributions, which encompasses dis-
crete distributions, polygonal distributions, and histograms. Fig. 4.2 shows the input

helper for a normal distribution and Fig. 4.3 that of a discrete distribution.
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Fig. 4.2 First working draft of the new SUSA GUI dashboard showing the tab for en-

tering normal distributions
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Fig. 4.3 First working draft of the new SUSA GUI dashboard showing the tab for en-

tering normal distributions

The input helper for parametric distributions provides input fields for the minimum and
maximum truncation values, for the parameters needed by the distribution, for location
(LOC) and scale parameters which allow to modify the distribution, and formulas both for
the distribution and for the way LOC and scale modify the distribution.

The input helper for non-parametric distributions provides a table for point/probability in
case of discrete distributions, for lower bin limit/height in case of histograms, and x-co-

ordinate/y-coordinate in case of polygonal functions.

95



41.3 Planned Extensions

Fig. 4.4 provides an outlook on how the final SUSA dashboard is envisioned. The envi-
sioned dashboard is divided into four tabs, with each tab belonging to one important part
of the SUSA software package. The tabs ‘Input Uncertainties', ‘Sample Generation’ and
‘Computer Code Preparation’ correspond to dropdown selections ‘/nput Uncertainties,
‘Sample Generation and ‘Computer Code Runs' in the classic SUSA GUI. The name ‘Com-
puter Code Runs will be changed to ‘Computer Code Preparation’, as it is more descriptive
with respect to the nature of the provided services. The classic SUSA dropdown selec-
tions ‘Uncertainty Analysis, ‘Sensitivity Analysis, ‘Scatter Plot and ‘Cobweb will be
grouped into one dashboard tab ‘Data Analysis. Back and forth tabs in the lower part will

guide the user through the dashboard.

[ Project SUSA BLUE
Input Uncertainties Sample Generation Computer Code Preparation Post-Processing
Define Distributions W
Parameter ID RePerence Value Disteibustion Distribution Pacameter
-
port et

(- E==]

Define Deperdencies

Deperdency Paramet Deperdert Par Free Par
L ] e N (el i)
single corr. , J Am—oﬂﬁlleﬁ‘ )
e & —

Fig. 4.4 Visualization of the concept for the new SUSA dashboard GUI

One important part of the input uncertainty handling still missing from the first implemen-
tation of the input tab are dependencies between uncertain parameters. In the new SUSA
GUI, uncertainties will be collected in the same dashboard tab as the input parameter
distributions, enabling the user to see the full modelled input in one page as shown in
Fig. 4.4. The tab will be divided into two parts, one part for the distribution input and one
part for the dependency input.
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Like the distribution input, the dependency input will be in table format. The first column
of the table will contain all available dependencies. The second column corresponds to
the SUSA parameter column of the distribution table; here the expert user can enter the
required distribution parameter in form of a Python dictionary. Like for the distribution
input, a help button should be available for non-expert users to guide them through the

process of defining the desired dependencies.

The classic SUSA GUI distinguishes between population- and sample-related depend-
encies. The following dependencies are provided in both cases:

e Full dependency;

¢ Conditional distribution;

e Function of parameters;

e Inequality.

In addition, the classic SUSA allows specifying association measure correlation depend-
encies, such as Pearson correlation, Blomqvist medial correlation, Kendall rank correla-
tion and Spearman rank correlation. Only the Spearman rank correlation is available for

sample-related dependencies. A detailed description of the two types of dependencies
can be found in the SUSA method guide.

Since the distinction between population- and sample-related dependencies does only
affect correlation dependencies directly, the user should only be asked to make a deci-
sion between sample- and population-related dependencies if he/she is interested in cor-

relation dependencies.

The following dependencies will be available in the new SUSA:
e Single correlation;

e Matrix correlation;

e Inequality;

¢ Conditional distribution;

¢ Function of parameters;

e Functional combinations.
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The classic SUSA single correlation will be complemented by a matrix correlation. Matrix
correlation is very useful if the correlation dependency can be described by a large linear
equation system. In this way, a single matrix can be used to describe the correlation
between a multitude of parameters. A further addition to the provided dependencies will
be the functional combinations. The principal idea behind functional combination is that
the user can select a functional dependency between the dependent parameters and
several free parameters. Functional combinations encompasses three special cases:
first, linear combinations which are linear combinations of several 'free’ parameters de-
fining the dependent parameter; second, functional combinations which are all non-linear
combinations of several 'free’ parameters defining the dependent parameter; and third,
proportions. Proportions are the association of multiple uncertain parameters which rep-
resent the proportions (percentages) of a whole and, therefore, must sum up to 1.0
(100 %). For each of these three cases, a popup window will be provided, guiding the

user through the process of defining the dependency.

In the following, the help for the inexperienced user will be described for each depend-

ency.

4131 Concept of the Dependency Input for the New SUSA GUI

Fig. 4.5 shows the popup mask which will appear if the user selects Single Correlation in
the table shown in Fig. 4.4 and presses the Help button. The user will get dropdown

selections for

— population or sample related,
— free parameter 1,

— free parameter 2,

— correlation type, and

— correlation value.
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Fig. 4.5 Sketch of the potential popup input helper for correlation dependencies

Fig. 4.6 shows the popup mask which will appear if the user selects Matrix Correlation in
the table visible in Fig. 4.4 and presses the Help button. In this case, the user will be able
to upload two files, one file containing the correlation parameter and one file containing
the correlation. Once both files have been uploaded, two tables will be populated and
presented in the popup, one table containing the parameter names and another table

containing the correlation values.

f&:ile PafamSJ [ File Corr. J \
Y 1
v 1

\_ J

Fig. 4.6 Sketch of the potential popup input helper for matrix dependencies

The distribution table will only show parameters for which no distribution has been en-
tered as potential dependent parameters; Parameters for which a distribution is entered
in the distribution table will be shown as potential free parameters. In addition, an input
section for numbers will be provided in which the user can enter the correlation value.
This input section will only allow numbers between 0 and 1 to be entered. In case a

sample-related correlation is chosen, only Spearman rank is available as correlation

type.

Fig. 4.7 shows the pop-up helper to be provided for inequality dependencies. The user

will get dropdown selections for:
— value modification or resampling,

— dependent parameter,
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— free parameter, and

— the inequality factor.

The available inequality factors are ">", "<”, "2" and "<" as stated before. In addition, a

two-dimensional graph will be shown illustrating the selected parameter area.
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Fig. 4.7 Sketch of the potential popup input helper for inequality dependencies

The option /nequality should be selected if the relationship between two parameters X
and Yis given by the inequality equation Y = inequality factor a * X, where the factor 'a’

is a real number and the inequality factor is one of the four logic comparisons ">", "<",

ll>=ll and ll<=|l.

There are two alternatives to implement the inequality:
1. ‘Independent repeated sampling until a sample is obtained that satisfies the inequali-
ty;

2. the modification of the values sampled for Y.

Both alternatives may affect the marginal distribution specified for parameter Y. ‘Inde-
pendent repeated sampling’ may require long computing time. The modification of Y (2"

alternative) is performed according to the following formula:

Y =a X+ —29% (y _ miny) 4.1)

maxY—-minY

where X and Y are the parameters before the modification, and Y is the modification

of Y.
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In case of a conditional dependency, the distribution of a parameter (considered as the
dependent parameter) is a conditional distribution dependent on another parameter (free
parameter). The conditional distribution of the dependent parameter has to be specified
for each sub-interval of an exhaustive set of mutually exclusive intervals over the range

of the free parameter.

The intended layout of the conditional dependency popup is presented in Fig. 4.8. This
popup provides two dropdown selections, for the dependent and the free parameter, an
input table, which should be used to define the mutually exclusive intervals, two buttons
Add Row and Help, and a graph showing the distribution of the free parameter and the
provided intervals. The table will be editable, except for the Minimum Limit column, lines
will be deletable and a single line can be selected. The Add Row button allows the
addition of lines (new intervals) to the table, either at the end of the table or, if one line is
selected, below the selected row. The Help button allows opening a distribution helper
popup to define the distribution in a selected line, similar to the Help button in the

distribution table.

[ dependent parameler] [ free parameter ]

e ™

l Dist_| Dist Parameter | Min Limit Maxumiﬁ"

Add Row ]

~— S a_min lirmit_1 limit_2 a_max
N J

Fig. 4.8 Sketch of the potential popup input helper for conditional dependencies

The table consists of four columns:

e adistribution ID column similar to the distribution ID column in the distribution table.

This column contains a dropdown selection of all available distributions,

o the distribution parameter column, in which the advanced user can enter the neces-

sary distribution parameter in form of a Python dictionary,

e the minimum limit column, in which the user can enter the lower limit of the distribu-
tion. This value is predefined for each line and cannot be set by the user. When the

popup is opened, the Minimum Limitcolumn in the first line shows the minimum value
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of the free parameter. Once a line is added using the Add Row button, the new line
Minimum Limit column contains the Maximum Limit value of the line before and so

on. If aline is deleted, the Minimum Limit column of the following line will be updated.

e the Maximum Limit column, which should be set to the maximum value of the free
parameter in the intended interval. The predefined value of this column is the maxi-

mum value of the free parameter.

In this case, the dependent parameter Y is associated with other free parameters by an
explicit functional relationship. The new SUSA dashboard will offer the option to formu-
late such a relationship as a Python formula, as shown in an exemplary manner in equa-
tion (4.2):

a-Xi+b-Xj

Y =
VX))

(4.2)

where Y is the parameter name of the dependent parameter and X, X; and Xi are
the parameter names of the free parameters. The values of uncertain parameter Y are
derived from the explicit functional dependency on the parameters Xj, X, ..., X». They
are affected by the a priori specified marginal distributions Fx;, Fx;. The corresponding
pop-up input helper will offer two input fields, one drop-down selection field containing
all parameters for which no distribution has been specified and one string input field
to enter the Python expression. The new SUSA dashboard will accept all valid Python
expressions as formula. The layout of the corresponding popup will contain one
dropdown selection for the dependent parameter and an input area in which the for-
mula for the functional dependency can be entered. An automatic check will be per-
formed if the parsed formula is legit. In case this check fails, a warning will be given

to the user.

Linear combinations are special cases of functional combinations and Proportions spe-
cial cases of linear combinations as described above. Due to this relation, only one popup
is created for the three cases. The planned popup design is shown in Fig. 4.9. Once the
popup has been opened, only the uppermost dropdown selection can be modified by the
user, everything else is locked. In this selection, users can decide if they are specially
interested in proportions, more general in linear combinations or most generic in func-
tional combinations. Depending on the decision, the elements below the dropdown se-

lection are unlocked and modified.
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Fig. 4.9 Sketch of the potential popup input helper for conditional dependencies

In case ‘Proportions is selected, the field in which different parameters can be selected
is unlocked, method, RHS (right-hand side of the equation) and resulting expression re-
main locked. The number 1 is entered into the field ‘RHS'. The field resulting expression’

is automatically completed with the corresponding expression

Yipar; =1 (4.3)

In addition, an entry field for ‘number of samples appears in the section ‘Additional input
fields’.

In case linear combinations is chosen, the fields methodand RHS get unlocked addition-
ally. Different linear combination methods should be selectable, e.g. the classic SUSA
method, which leads to a modification of the different distributions, or a brute-force re-
jection sampling method which rejects all samples not adhering to the required combi-
nation. Depending on the chosen linear combination method, additional input fields could

appear in the section Additional input fields, such as number of samples.

In case the most generic option Functional Combination is selected, the input fields

Method and Parameter are supposed to be locked, the input field Expression and RHS
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will be unlocked. Potential additional input fields in the Additional input fields section
could be again the number of samples or maybe the maximum number of iterations,

depending on the implementation of the functional combination procedure.
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5 Summary and Outlook

For the continuous development of the software analysis tool SUSA, work has been car-

ried out in the research and development project RS1599:

to extend and enhance the available methods for reliability analysis,

to extend, harmonize and benchmark the SUSA adaptive sampling methods,

to improve the platform independency and expand the range of applications, and

to maintain and adapt the SUSA Users and Methods Guide.

Three reliability software codes have been integrated into SUSA to extend the SUSA

capabilities towards reliability analysis.

1. RAMESU: A program to model and analyse dynamic processes of technical systems

in the form of Markov and semi-Markov processes and associated uncertainties.

2. AURA: A program to generate generic or system-specific distributions of failure rates
or probabilities of failure on demand or repair rates based on the observed number
of failures in a given observation time, the number of failures for a given number of

demands, or the number of repairs with the repair time required for the repairs.

3. BetaFit: A program which fits a beta distribution to a log-normal distribution.

The implementation of RAMESU in SUSA allows combining the advantage of Markov
models, namely gaining a more realistic modelling of system dependencies, with the
sampling and analysis functions implemented in SUSA. In this way, the time-dependent
development of system failure probabilities can be modelled and analysed for various
scenarios, e.g. CCFs or failure behaviours which depend on the system status. RAMESU
example Jupyter notebooks have been included in SUSA, showing the application of the

new SUSA RAMESU module for seven different example scenarios.

The AURA program, now included in SUSA, is essentially based on Bayesian ap-
proaches. The derivation of the two-stage Bayesian approach is explained in /PES 97/,
while the derivations of the other approaches are described in /PES 95/. The available
‘generic’ observations (observations from other comparable plants or information from
expert judgement) can be used as prior information (a-priori information) and modified

accordingly by current observations from the specific plant of interest. The user thus has
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the option of including prior information in the generation of the distribution and receives
a probability distribution as a result that describes the updated state of knowledge with
regard to the parameter of interest. The information to be used for the calculation can be
either data from a specific plant and/or observations from other but comparable plants or
expert judgement. Hereby, expert judgement refers to the knowledge of quantile data of
the reliability distribution, where a maximum entropy approach is used to combine this
prior information. If such expert knowledge is not available, Bayesian approaches are
used to combine the prior information with a specific plant. Depending on the type of prior
information, different approaches are available to arrive at a suitable prior distribution. In
the case of 'diffuse’ knowledge, i.e. no available prior information, the non-informative
prior distribution is used. For the determination of plant-specific distributions with prior
information, a specific posterior distribution with either a mixed distribution as prior or
with the superpopulation approach as prior, which corresponds to the posterior distribu-

tion with unconditional generic distribution, can be used.

The BetaFit program has been included completely in the range of SUSA sampling ca-
pabilities. It is now an additional option for the user to obtain a sensible modelling of the
regarded input uncertainties. It allows replacing a log-normal distribution with potential
unphysical values larger than 1 with a beta distribution which is bounded between 0
and 1.

The advanced MC simulation methods available in SUSA have been harmonized and
extended. Compared to classic MC simulation, advanced MC simulation requires only a
relatively small number of parameter constellations and corresponding simulation runs.
Advanced selection methods are used which are often combined with ML methods. In
this project, two of the available advanced MC simulation methods have been bench-
marked, once using a biological dose function to generate the target values, once using

the Ishigami function, and once using a thermal hydraulic simulator for a LOCA.

The biological dose function tests how a very small probability (1 E-06) can be estimated
in a six-dimensional parameter space. The second example with the Ishigami function
tests how to identify four separate regions in a strongly non-linear function. Although this
is only a three-dimensional problem with a probability of about 1 E-03, finding all four
maxima of this function is a difficult task that requires advanced sampling algorithms for
proper likelihood estimation. The thermal hydraulic simulator provides a more realistic
and complex application example, considering a high-dimensional parameter space (35

uncertain parameters).
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The GASA-PRECLAS algorithm has been compared to the SuSSVR for each of these
cases. These benchmark tests have also been used to test the power of hyperparameter
optimization for each algorithm. In each case, the best convergence criteria were used
for the two tested algorithms. Both algorithms function in two cycles, a first cycle in which
the parameter space is explored and a second one for providing a good estimation of the
probability of the failure region. As for the first cycle in exploring the parameter space,
both algorithms performed well when there is only a single contiguous target region. In
such applications, an advanced parameter space exploration method is not required.
However, if there are multiple target regions that are not connected to each other, the
GASA algorithm performs slightly better and can play its advantage of effectively exploit-

ing the parameter space over the first iteration cycle of the SUSSVR algorithm.

As for the second cycle in building a robust metamodel for prediction, both algorithms
perform well if the probability is not too small. However, for probabilities below 1 E-06,
the simple MC sampling in the PRECLAS algorithm requires too many parameter sam-
ples and leads to runtime and memory problems. The Subset Simulation, which is used
in the SUSSVR algorithm, already prevents such behaviour. These benchmark tests also
provided new ideas for improving the SUSA adaptive sampling capabilities, e.g. by com-
bining the algorithms with an importance ranking of the uncertain parameters, thus re-

ducing the time spent on optimizing parameters of minimal importance.

In addition to this benchmark test, the SUSA advanced MC simulation methods have
also been extended by a combination of the subset sampling algorithm with flat neural
networks. A Jupyter notebook has been developed to show the application of this new
adaptive sampling method using the Ishigami function to provide the target values. The
user is enabled to set up a neural network, which can be defined using the Pytorch li-
brary, best suited to the given scenario. Further research is needed to understand which

kind of neural networks are suited best for different needs.

The application of advanced sampling algorithms, based on machine learning algo-
rithms, often lead to the question which parameters drive the resulting metamodels. In
order to increase the interpretability and transparency of the resulting models, methods
for calculating Shapley value have been added to the SUSA framework. Shapley values
are a concept from game theory that is used to determine the contribution of individual
players to the total profit in a co-operative game. Shapley values offer a theoretical ap-

proach to interpreting model results. In addition, Shapley values can quantify the contri-
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bution of individual variables (input parameters, features) to the model result. Bias and

undesirable influences of individual variables can be identified and addressed.

In addition to the adaptive sampling algorithms described above, more traditional meth-
ods such as Importance Sampling can also be used to increase the efficiency of MC
sampling, even for low-probability target regions. If Importance Sampling is used, sample
elements of x are not selected from the actual distribution p(x) but from the distribution
q(x), which concentrates on the low-probability range of interest in the parameter space.
In the course of the research project RS1599, methods have been developed to extract
an Importance Sampling kernel from the results of an adaptive sampling method. In this
way, the results of an adaptive sampling run can be reused for further exploration of the

target region.

In addition to the method developments described above, the SUSA source code has
also been maintained and its modularity improved. In the course of the implementation
of the various reliability methods described above, the guideline of a layered setup of the
SUSA source code has been followed to provide a consistent interface between under-
lying FORTRAN applications, such as BetaFit and the SUSA distribution finder, and a
Python frontend. This Python frontend can be called either from a command line interface
or by running a Python script or a Jupyter notebook. In order to provide the new SUSA
capabilities also to users who are not proficient in Python or for a simple and convenient
way to use the available method, work on a new graphical user interface has started. A
concept for this user interface has been derived and a first prototype implemented. This
prototype already provides basic capabilities for modelling the desired input parameter

distributions.

A released SUSA package will be accompanied by a Models and Methods Handbook,
based on /KLO 21/, and a User Guide /KLO 23/ for the classic SUSA GUI. The Methods
Handbook has been updated with regard to the new developments considering the ad-
vanced sampling algorithms and the new reliability methods. It is planned to distribute a

new SUSA release.
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