Workshop Underground Disposal of Hazardous Waste

Geotechnical barriers - shaft and drift sealings - selected German research projects

Wolfram Kudla
Matthias Gruner
Technical University Bergakademie Freiberg
Outline

1. Targets of shaft sealings
2. Existing shaft sealings for salt mines and gas storages
3. Research projects shaft sealings –
 shaft sealing Salzdetfurth
4. Targets of drift sealings
5. Existing drift sealings for salt mines
6. Research projects drift sealings –
 drift sealing Sondershausen
 drift sealing CARLA Teutschenthal
7. Research topics - Conclusions
1. Targets of shaft sealings

Principle scheme of Shaft Sealing Systems in Rock Salt

Pressure from
• the upper side (mostly fresh water)
• the disposal side (salt water or gas)
• both sides

Ground water
Overburden/cap rock
Salt level
Rock salt
Hazardous waste
Surface
Shaft Landing
Shaft sump
Support column for Shaft Landing
Sealing element II
Sealing element I
Filling column II
Filling column I
Filling column with salt
Water-tight shaft construction
2. Existing shaft sealings for salt mines and gas storages
Shaft Sealing System
Gas Storage
Burggraf - Bernsdorf

Gas pressure: 3.7 MPa
Sealing pressure: 4.2 MPa

Upper Abutment
Combination Seal
Hydraulic Sealing System
Lower Abutment

33 m
7 m
Shaft Sealing System Glückauf II (Safekeeping 1993)

Example of a Shaft Sealing System with upper and lower Sealing Elements against fluid pressure from both sides (6 MPa)
Shaft sealings for nuclear waste repositories
(low and intermediate radioactive waste)

• Shaft Konrad 1 und 2
• Shaft Asse 1 und 2 (not finally decided)
• Repository Morsleben (ERAM), Shafts Martensleben und Marie
3. Research projects shaft sealings – shaft sealing Salzdetfurth
In-Situ-Versuch Schottersäule Schacht Salzdetfurth II

Performer: K+S, DBE, IfG Leipzig
Sealing Drilling Shaft Test - Salzdetfurth

Performer: K+S, TU BAF, DBE, IfG Leipzig
In situ Test Salzdetfurth – Sealing Performance

Infiltration Rate
5.8 \times 10^{-11} \text{ m/s}
4.4 \times 10^{-11} \text{ m/s}
Special Technical Devices for Sealing Performance Tests at Technical University Bergakademie Freiberg

D = 0.8 m L = 2.0 m $p_{\text{max}} = 100$ bar
Systematization of shaft sealing systems

Clay – Bitumen/Asphalt – Sealing with Concrete Abutment

Series Connection Clay (Bentonite) – Bitumen/Asphalt

No contact between Clay (Bentonite) – Bitumen/Asphalt (e.g. WIPP)

Bentonite Sealing Element + Gravel Column (Type Salzdetfurth)

Systems without Concrete abutment
4. Targets of drift sealings
Target: minimal flow through sealing element, contact area and EDZ

- Pressure side
- Sealing element
- Flow through excavation disturbed Zone (EDZ)
- Flow along contact area
- Flow through sealing element
5. Existing drift sealings for salt mines

• Short term sealing element: 1-4 / 10-13
• Long term sealing element: 5-7 / 7-9
• Abutment (4, 10) Brine-Concrete with standard aggregate
• Sealing element (2, 12) with ring-seal (3,11) Bentonite-Blocks FS50 (50 % silica sand)
• Main-Seal with FS50 (7) und FS70 (6, 8) (70 % silica sand)
• Gravel-Sand-Intersection (5, 9)
• (No current fluid pressure load)
6. Research projects –
drift sealing Sondershausen
drift sealing CARLA Teutschenthal
IN SITU DRIFT SEALING EXPERIMENT IN THE SALT MINE SONDERSHAUSEN

- main sealing element I
- additional sealing element
- prismatoid-shaped static abutment
- pressure chamber II
- bentonite bricks
- salt bricks
- pressure tubes
- sealing slots
- pour-asphalt
- brine canal
- 13° sealing slots
- pressure chamber I

Dimensions:
- 0.6 m
- 1.25 m
- 3.5 m
- 3.50 m
- 5.0 m
- Ø 3 m
PROPERTIES OF PRODUCED BENTONITE BRICKS
(by Preiss-Daimler Industries GmbH - Feuerfestwerke Wetro)

<table>
<thead>
<tr>
<th>Type</th>
<th>FS50</th>
<th>FS40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bentonite content [%]</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>Hydraulic conductivity (NaCl-brine) [m/s]</td>
<td>2×10^{-11}</td>
<td>10^{-12}</td>
</tr>
<tr>
<td>Swelling Pressure by constant volume (NaCl-brine) [MPa]</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Standard size (250 x 125 x 62.5) mm
In Situ drift sealing experiment GV 1 (from 3) in the salt mine Teutschentahl - CARLA

Volume: 163 m3
365 t MgO-Beton

Monitoring:
- Temperature
- Contact pressure
- Distribution of strain
- Deformation
- Permeability of the system
Test of a new Asphalt Sealing Constructions

Deformation characteristics - rheology

Parameter (mixture dependent):

- Young Modulus: 60 MPa
- Poisson's ratio: 0.498
- Bulk modulus: 5 GPa
- Shear viscosity: $10^{10} - 10^{11}$ Pas

Nonlinear time- and temperature dependent behavior!

Parameter determination on the basis of creep tests

\[\eta_M = 7.61 \times 10^{11} \text{ Pas} \]
\[\eta_K = 9.81 \times 10^{10} \text{ Pas} \]

\[E_M = 2.34 \text{ MPa} \]
\[E_K = 4.86 \text{ MPa} \]

Daten: axialDehnung_E
Modell: Burgers
Gewicht: Keine Gewichtung.
Chi^2/DoF = 1.27E-6
R^2 = 0.99854

P1: 200000 ± 0
P2: 1.3865E12 ± 200632989.89028
P3: 7512429.64637 ± 21291.55892
P4: 4638334.03611 ± 9371.94153
P5: 305444427493.04504 ± 1411649826.95496
Test of a new Asphalt Sealing Constructions

insitu tests in the potash-mine „Teutschenthal“

general assembly of the borehole sealing experiment (Ø30cm)
Current experimental Research - 1

New Evolution of Asphalt Sealing Elements for Shafts and Drifts
- Test of new asphalt compositions
- New emplacement operations

Grouting for EDZ- and Contact-Enhancement
- 2-component-bitumen-grouting
- epoxide resin

Test of Bentonite sealing elements with equipotential segments

Self sealing backfill material
in situ testing SVV-GRS and AISKRISTALL
Moisture measurement in Bentonite sealing elements

Drift sealing system in Carnallitit (Teutschenthal Salt Mine)
 MgO-Concrete-Plugs (mixed in situ and shotcrete)

Long term stability of MgO-concrete

Solution controlled crystallization
 Testing in Teutschenthal-mine (IfAC – TU Bergakademie Freiberg)

Concepts to transcribe the proof of safety from Eurocodes to long term sealing elements
 ÜBERSICHT (DBE)
Conclusions to shaft and drift sealings for hazardous waste repositories:

• Shaft sealings
 – Research concerning shaft sealings far advanced
 – Some detail problems to solve (e.g. EDZ, Hot construction technology Asphalt, etc.)

• Drift sealings
 – Research concerning drift sealings not so far advanced as to shaft sealings
 – Further large scale tests necessary (e.g. injection testing, hot asphalt technology for vertical panels, etc.)

• Main used materials: Bentonite-bricks and Bentonite-mixtures, asphalt, compacted rock salt, concrete with salt aggregates, brine concrete
Thank you for your attention!