Construction of Finite Iteration Runge-Kutta Methods
with a One-Point Spectrum for Solving Stiff Initial Value Problems

Tim Steinhoff
tim.steinhoff@grs.de

Gesellschaft für
Anlagen- und Reaktorsicherheit mbH

2015-06-01
Kolloquium des Instituts für Mathematik
Universität Kassel
PWR – schematics
PWR – example network
Modelling of thermo-hydraulic processes

- based on conservation of mass, energy, momentum for liquid and vapor
- spatial discretisation by some finite volume approach

leading to an Initial Value Problem

\[y' = f(t, y), \quad y(t_0) = y_0 \]

with \(f : \mathbb{R} \times \mathbb{R}^n \supset \Omega \rightarrow \mathbb{R}^n \).

Example ODE:

\[
X_m' = \left[\frac{m_v}{m_l + m_v} \right]'
\]

where

\[m_v = (1 - X_m) \cdot M, \quad m_l = X_m \cdot M \]

\[M = \frac{V_{\text{const}}}{X_m \nu_v + (1 - X_m) \nu_l} \]
Properties and demands
Properties and demands

- discontinuities and dimension changes may arise in f
Properties and demands

- discontinuities and dimension changes may arise in f

- one-step RK-like methods
Properties and demands

- discontinuities and dimension changes may arise in f

- often $f \in C^m(\Omega, \mathbb{R}^n)$
 only for small m

one-step RK-like methods
Properties and demands

- discontinuities and dimension changes may arise in \(f \)

- often \(f \in C^m(\Omega, \mathbb{R}^n) \)
 - only for small \(m \)

- one-step RK-like methods

- actual order \(p = \min(p_{max}, m) \)
Properties and demands

- Discontinuities and dimension changes may arise in f

 Often $f \in C^m(\Omega, \mathbb{R}^n)$ only for small m

 One-step RK-like methods

 Small order methods
Properties and demands

- discontinuities and dimension changes may arise in f
- often $f \in C^m(\Omega, \mathbb{R}^n)$
- only for small m
- one-step RK-like methods
- small order methods
- Initial values and error tolerance often lead to stiff IVPs
Properties and demands

- Discontinuities and dimension changes may arise in f.
- Often $f \in C^m(\Omega, \mathbb{R}^n)$ only for small m.

One-step RK-like methods

Small order methods

Initial values and error tolerance often lead to stiff IVPs

Implicit RK-like methods
Properties and demands

- discontinuities and dimension changes may arise in f

 often $f \in C^m(\Omega, \mathbb{R}^n)$
 only for small m

- one-step RK-like methods

- small order methods

 Initial values and error tolerance often lead to stiff IVPs

- implicit RK-like methods

 the Jacobian $\frac{\partial f}{\partial y}(\cdot, \cdot) =: f^{(1)}(\cdot, \cdot)$
 is considered as the (main) source of stiffness
Properties and demands

- discontinuities and dimension changes may arise in f

- often $f \in C^m(\Omega, \mathbb{R}^n)$
- only for small m

-one-step RK-like methods

- small order methods

- Initial values and error tolerance often lead to stiff IVPs

- implicit RK-like methods

 - the Jacobian $\frac{\partial f}{\partial y}(\cdot, \cdot) =: f^{(1)}(\cdot, \cdot)$
 - is considered as the (main) source of stiffness

- $\exists D \subset \text{spec}(f^{(1)}(\cdot, \cdot))$:
- $D \neq \emptyset \land \Re(\lambda) < 0, \ |\lambda| \gg |\mu| \ \forall \lambda \in D, \ \forall \mu \in \text{spec}(f^{(1)}(\cdot, \cdot)) \setminus D$
Properties and demands

- Discontinuities and dimension changes may arise in f
- Often $f \in C^m(\Omega, \mathbb{R}^n)$ only for small m
- Initial values and error tolerance often lead to stiff IVPs
- The Jacobian $\frac{\partial f}{\partial y} (\cdot, \cdot) =: f^{(1)}(\cdot, \cdot)$ is considered as the (main) source of stiffness
- Rosenbrock/W-methods
Properties and demands

- discontinuities and dimension changes may arise in f
- Jacobian is sparse $n \in [10^3, 10^4]$ usually
- often $f \in C^m(\Omega, \mathbb{R}^n)$ only for small m
- one-step RK-like methods
- small order methods
- Initial values and error tolerance often lead to stiff IVPs
- implicit RK-like methods
- the Jacobian $\frac{\partial f}{\partial y}(\cdot, \cdot) =: f^{(1)}(\cdot, \cdot)$
- is considered as the (main) source of stiffness
- Rosenbrock/W-methods
Jacobian pattern, example
Extrapolation based on linearly implicit Euler

\[y_1 - y_0 = hf(t_1, y_1) \]
(implicit Euler)

make autonomous system (add \(t' = 1 \)), linearize at \((t_0, y_0)\) treating \(t \)-part explicitly

\[(I - hJ)(y_1 - y_0) = hf(t_0, y_0) + h^2 \frac{\partial f_0}{\partial t} \]
(linearly implicit Euler)

\[J \approx \frac{\partial f_0}{\partial y} \]
(in principle arbitrary \(\rightarrow \) W-method)
Extrapolation based on linearly implicit Euler

\[y_1 - y_0 = hf(t_1, y_1) \]

(implicit Euler)

make autonomous system (add \(t' = 1 \)), linearize at \((t_0, y_0)\) treating \(t \)-part explicitly

\[(I - hJ)(y_1 - y_0) = hf(t_0, y_0) + h^2 \frac{\partial f_0}{\partial t} \]

(linearly implicit Euler)

\[J \approx \frac{\partial f_0}{\partial y} \] (in principle arbitrary \(\rightarrow \) W-method)

Extrapolation for \(\{n_j\} = \{1, 2, 3\} \):

\[T_{j,k+1} = T_{j,k} + \frac{T_{j,k} - T_{j-1,k}}{n_j/n_{j-k} - 1} \]

(Neville-Aitken)
Extrapolation based on linearly implicit Euler

\[y_1 - y_0 = hf(t_1, y_1) \]
(implicit Euler)

make autonomous system (add \(t' = 1 \)), linearize at \((t_0, y_0)\) treating \(t \)-part explicitly

\[(I - hJ)(y_1 - y_0) = hf(t_0, y_0) + h^2 \frac{\partial f_0}{\partial t} \]
(linearily implicit Euler)

\[J \approx \frac{\partial f_0}{\partial y} \]
(in principle arbitrary → W-method)

Extrapolation for \(\{n_j\} = \{1, 2, 3\} \):
Stabilities and order reduction

Dahlquist

\[y' = \lambda y, \quad \Re(\lambda) < 0, \quad y(t_0) = y_0 \]

- **solution:** \[y(t_0 + h) = y_0 e^{\lambda h} \]
- **approximation:** \[y_1 = R(z)y_0, \quad z = h\lambda, \quad R(z) \text{ stability function at } z \]}
Stabilities and order reduction

Dahlquist

\[y' = \lambda y, \quad \Re(\lambda) < 0, \quad y(t_0) = y_0 \]

solution: \[y(t_0 + h) = y_0 e^{\lambda h} \]

approximation: \[y_1 = R(z)y_0, \quad z = h\lambda, \quad R(z) \text{ stability function at } z \]

stability region: \[S = \{ z \in \mathbb{C} \mid |R(z)| \leq 1 \} \]

\(A(\alpha) \)-stable: \[S_\alpha = \{ z \in \mathbb{C} \mid \arg(-z) \leq \alpha \} \subset S \]

\(A \)-stable: \[\alpha = 90^\circ \]

\(L \)-stable: \(A \)-stable and \[R(\infty) := \lim_{z \to \infty} R(z) = 0 \]
Stabilities and order reduction

Dahlquist

\[y' = \lambda y, \quad \Re(\lambda) < 0, \quad y(t_0) = y_0 \]

solution:

\[y(t_0 + h) = y_0 e^{\lambda h} \]

approximation:

\[y_1 = R(z) y_0, \quad z = h\lambda, \quad R(z) \text{ stability function at } z \]

stability region:

\[S = \{ z \in \mathbb{C} \mid |R(z)| \leq 1 \} \]

\(A(\alpha)\)-stable:

\[S_\alpha = \{ z \in \mathbb{C} \mid \arg(-z) \leq \alpha \} \subset S \]

\(A\)-stable:

\[\alpha = 90^\circ \]

\(L\)-stable:

\(A\)-stable and \(R(\infty) := \lim_{z \to \infty} R(z) = 0 \)

For \(T_{j,k} \) we have

\[R_{j,k}(\infty) = 0 \]

\[
\begin{array}{ccc}
T_{11} & T_{21} & T_{2,2} \\
T_{31} & T_{3,2} & T_{3,3}
\end{array}
\]

\[
\begin{array}{ccc}
& & \text{90°} \\
& \text{90°} & \text{90°} \\
\text{90°} & \text{90°} & \text{89.85°}
\end{array}
\]
Stabilities and order reduction

Dahlquist

\[y' = \lambda y, \quad \Re(\lambda) < 0, \quad y(t_0) = y_0 \]

solution: \[y(t_0 + h) = y_0 e^{\lambda h} \]

approximation: \[y_1 = R(z)y_0, \quad z = h\lambda, \quad R(z) \text{ stability function at } z \]

Prothero & Robinson

\[y' = \lambda(y - \varphi(t)) + \varphi'(t), \quad \Re(\lambda) < 0, \quad y(t_0) = \varphi(t_0) \]

solution: \[y(t) = \varphi(t) \]
Stabilities and order reduction

Prothero & Robinson Test Equation

$\lambda = -10^6$, T_{22}

$|_{\varphi(t_0 + h_j)} - y_{h_j}|$

$O(h^2)$

$O(h^3)$
Stabilities and order reduction

Prothero & Robinson Test Equation

$\lambda : -10^6, T_{33}$

<table>
<thead>
<tr>
<th>$\varphi(t_0 + h) \text{ vs } y_{ij}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
</tr>
<tr>
<td>10^{-1}</td>
</tr>
<tr>
<td>5.0×10^{-1}</td>
</tr>
</tbody>
</table>

- order reduction: $O(h^3)$
- consistency order: $O(h^4)$
Stabilities and order reduction

Dahlquist

\[y' = \lambda y, \quad \Re(\lambda) < 0, \quad y(t_0) = y_0 \]

solution: \[y(t_0 + h) = y_0 e^{\lambda h} \]

approximation: \[y_1 = R(z)y_0, \quad z = h\lambda, \quad R(z) \text{ stability function at } z \]

Prothero & Robinson

\[y' = \lambda(y - \varphi(t)) + \varphi'(t), \quad \Re(\lambda) < 0, \quad y(t_0) = \varphi(t_0) \]

For \(h \to 0 \) and \(z \to \infty \) we have in \(\mathcal{O}(\cdot) \)-notation

<table>
<thead>
<tr>
<th>(T_{2,2})</th>
<th>(T_{3,3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta_h)</td>
<td>(\varepsilon_n)</td>
</tr>
<tr>
<td>(h^2)</td>
<td>(h^3)</td>
</tr>
<tr>
<td>(h^3)</td>
<td>(h^4)</td>
</tr>
</tbody>
</table>
Stabilities and order reduction

Dahlquist

\[y' = \lambda y, \quad \Re(\lambda) < 0, \quad y(t_0) = y_0 \]

solution: \[y(t_0 + h) = y_0 e^{\lambda h} \]

approximation: \[y_1 = R(z)y_0, \quad z = h\lambda, \quad R(z) \text{ stability function at } z \]

Prothero & Robinson

\[y' = \lambda(y - \varphi(t)) + \varphi'(t), \quad \Re(\lambda) < 0, \quad y(t_0) = \varphi(t_0) \]

For \(h \to 0 \) and \(z \to \infty \) we have in \(O(\cdot) \)-notation

| \(T_{2,2} \) | \(h^2 \) | \(h^3 \) | \(h^2 \) | \(h^2 \) |
| \(T_{3,3} \) | \(h^3 \) | \(h^4 \) | \(h^3 \) | \(h^3 \) |

\[R_{j,k}(\infty) = 0 \]
Stabilities and order reduction

Dahlquist

\[y' = \lambda y, \quad \Re(\lambda) < 0, \quad y(t_0) = y_0 \]

solution: \[y(t_0 + h) = y_0 e^{\lambda h} \]

approximation: \[y_1 = R(z)y_0, \quad z = h\lambda, \quad R(z) \text{ stability function at } z \]

Prothero & Robinson

\[y' = \lambda(y - \varphi(t)) + \varphi'(t), \quad \Re(\lambda) < 0, \quad y(t_0) = \varphi(t_0) \]

For \(h \to 0 \) and \(z \to \infty \) we have in \(\mathcal{O}(\cdot) \)-notation

<table>
<thead>
<tr>
<th></th>
<th>(\delta_h)</th>
<th>expected (\delta_h)</th>
<th>(\varepsilon_n)</th>
<th>expected (\varepsilon_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{2,2})</td>
<td>(h^2)</td>
<td>(h^3)</td>
<td>(h^2)</td>
<td>(h^2)</td>
</tr>
<tr>
<td>(T_{3,3})</td>
<td>(h^3)</td>
<td>(h^4)</td>
<td>(h^3)</td>
<td>(h^3)</td>
</tr>
<tr>
<td>(\text{mod } T_{j,k})</td>
<td>(h^2/z)</td>
<td>(h^{k+1})</td>
<td>(h^2/z)</td>
<td>(h^k)</td>
</tr>
</tbody>
</table>
Stabilities and order reduction

Dahlquist

\[y' = \lambda y, \quad \Re(\lambda) < 0, \quad y(t_0) = y_0 \]

solution: \[y(t_0 + h) = y_0 e^{\lambda h} \]

approximation: \[y_1 = R(z)y_0, \quad z = h\lambda, \quad R(z) \text{ stability function at } z \]

Prothero & Robinson

\[y' = \lambda(y - \varphi(t)) + \varphi'(t), \quad \Re(\lambda) < 0, \quad y(t_0) = \varphi(t_0) \]

For \(h \to 0 \) and \(z \to \infty \) we have in \(O(\cdot) \)-notation

<table>
<thead>
<tr>
<th></th>
<th>(\delta_h)</th>
<th>expected (\delta_h)</th>
<th>(\varepsilon_n)</th>
<th>expected (\varepsilon_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{2,2})</td>
<td>(h^2)</td>
<td>(h^3)</td>
<td>(h^2)</td>
<td>(h^2)</td>
</tr>
<tr>
<td>(T_{3,3})</td>
<td>(h^3)</td>
<td>(h^4)</td>
<td>(h^3)</td>
<td>(h^3)</td>
</tr>
<tr>
<td>mod (T_{j,k})</td>
<td>(h^2/z)</td>
<td>(h^{k+1})</td>
<td>(h^2/z)</td>
<td>(h^k)</td>
</tr>
</tbody>
</table>

\[\text{mod } T_{j,k} : \quad h f(t_i, y_i) + h^2 \frac{\partial f_i}{\partial t} \to h f(t_{i+1}, y_i) \]
Stabilities and order reduction

Dahlquist

\(y' = \lambda y, \quad \Re(\lambda) < 0, \quad y(t_0) = y_0 \)

solution: \(y(t_0 + h) = y_0 e^{\lambda h} \)

approximation: \(y_1 = R(z)y_0, \quad z = h\lambda, \quad R(z) \) stability function at \(z \)

Prothero & Robinson

\(y' = \lambda(y - \varphi(t)) + \varphi'(t), \quad \Re(\lambda) < 0, \quad y(t_0) = \varphi(t_0) \)

For \(h \to 0 \) and \(z \to \infty \) we have in \(\mathcal{O}(\cdot) \)-notation

\(T_{2,2} \)	\(h^2 \)	\(h^3 \)	\(h^2 \)	\(h^2 \)
\(T_{3,3} \)	\(h^3 \)	\(h^4 \)	\(h^3 \)	\(h^3 \)
\(\text{mod } T_{j,k} \)	\(h^2/z \)	\(h^{k+1} \)	\(h^2/z \)	\(h^k \)

\(\text{mod } T_{j,k} : h f(t_i, y_i) + h^2 \frac{\partial f_i}{\partial t} \to h f(t_{i+1}, y_i) \)

modification renders extrapolation \textit{stiffly accurate}
Order reduction – the transport problem

Transport, adaption from [HV03]

\[ut + au_x = 0 \]

for \(0 \leq t, x \leq 1, a > 0 \) and

- initial function: \(u(x, 0) := u_0(x) \) with \(u_0 \in \Pi_p \)
- inflow Dirichlet condition: \(u(0, t) := u_0(-at) \)
Order reduction – the transport problem

Transport, adaption from [HV03]

\[u_t + au_x = 0 \]

for \(0 \leq t, x \leq 1, a > 0 \) and

- initial function: \(u(x, 0) := u_0(x) \) with \(u_0 \in \Pi_p \)
- inflow Dirichlet condition: \(u(0, t) := u_0(-at) \)
- solution: \(u(x, t) = u_0(x - at), \text{ i.e., } u(x_{fix}, t) \in \Pi_p \)
Order reduction – the transport problem

Transport, adaption from [HV03]

\[u_t + au_x = 0 \]

for \(0 \leq t, x \leq 1, \ a > 0\) and

- initial function: \(u(x, 0) := u_0(x)\) with \(u_0 \in \Pi_p\)
- inflow Dirichlet condition: \(u(0, t) := u_0(-at)\)
- solution: \(u(x, t) = u_0(x - at)\), i.e., \([u(x_{fix}, t) \in \Pi_p]\)

Approximation (MOL-ansatz, 1st order upwind, spatial increment \(\delta x\)):

\[w'(t) = Aw(t) + g(t) \]

where

\[A = -\frac{a}{\delta x} \begin{pmatrix} 1 & 1 & & \cdots & 1 \\ -1 & 1 & -1 & \cdots & 1 \\ & \ddots & \ddots & \ddots & \ddots \\ & & \ddots & \ddots & \ddots \\ & & & -1 & 1 \end{pmatrix} \]

and

\[g(t) = \frac{a}{\delta x} \begin{pmatrix} u_0(-at) \\ 0 \\ \vdots \\ 0 \end{pmatrix} \]
Transport – solution

\[a = 2, u_0(x) = x^3 + x^2 + x + 1 \]
Transport – expected behaviour

\[a = 2, \quad u_0(x) = x^3 + x^2 + x + 1, \quad T = 1 \]
Transport – order reduction

\[a = 2, \quad u_0(x) = x^3 + x^2 + x + 1, \quad T = 1 \]
Transport – order reduction

\[a = 2, \quad u_0(x) = x^3 + x^2 + x + 1, \quad T = 1 \]
Transport – order reduction

\[a = 2, \quad u_0(x) = x^2 + x + 1, \quad T = 1 \]
Transport – order reduction

\[a = 2, \ u_0(x) = x^2 + x + 1, \ T = 1 \]
Transport – order reduction

\[a = 2, \ u_0(x) = x + 1, \ T = 1 \]
Transport – order reduction

\[a = 2, \ u_0(x) = x + 1, \ T = 1 \]
Stage order

From the discussion in [HV03] it follows that the *stage order* (in breve StO) rules the error behaviour.
Stage order

From the discussion in [HV03] it follows that the stage order (in breve StO) rules the error behaviour.

- For the extrapolation scheme the stages are represented by the linearly implicit Euler substeps:

```
stage order
```

```
order: 1 2 3
```
Stage order

From the discussion in [HV03] it follows that the *stage order* (in breve StO) rules the error behaviour.

- For the extrapolation scheme the stages are represented by the linearly implicit Euler substeps:

 $$\rightarrow \text{for any extrapolation degree } k \text{ it holds that } \text{StO} = 1$$
Stage order

From the discussion in [HV03] it follows that the *stage order* (in breve StO) rules the error behaviour.

- For the extrapolation scheme the stages are represented by the linearly implicit Euler substeps:

 \[\text{order: 1, 2, 3} \]

\[\rightarrow \text{for any extrapolation degree } k \text{ it holds that StO = 1} \]

- In general for classical Rosenbrock/W-methods the upper bound depends on the related fully implicit method:

 \(\text{(S)DIRK: StO} = 1, \quad \text{ESDIRK: StO} \leq 2. \)

Thus, in any case StO \(\leq 2. \)
Establishing stage order – Block-Diagonal RK methods

In [BC90] Butcher and Cash consider fully implicit RK methods

\[y_i = y_0 + \sum_{j=1}^{s} a_{ij} k_j \]

where

\[k_i = h^\gamma f(t_0 + c_i h^\gamma, y_0 + \sum_{j=1}^{s} a_{ij} k_j) \]
Establishing stage order – Block-Diagonal RK methods

In [BC90] Butcher and Cash consider fully implicit RK methods

\[y_i = y_0 + \sum_{j=1}^{s} a_{ij} k_j \quad \text{where} \quad k_i = h \gamma f \left(t_0 + c_i h \gamma, y_0 + \sum_{j=1}^{s} a_{ij} k_j \right) \]

with \(h_\gamma := \gamma h, \gamma^{-1} = \max_i c_i = c_s \) and a Butcher tableau of the form

\[
\begin{array}{c|ccc}
 c_1 & a_{11} & \cdots & a_{1p} \\
 \vdots & \vdots & \ddots & \vdots \\
 c_p & a_{p1} & \cdots & a_{pp} \\
 c_{p+1} & a_{p+1,1} & \cdots & a_{p+1,p} & 1 \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 c_s & a_{s1} & \cdots & a_{sp} & \cdots & a_{s,s-1} & 1 \\
 \hline
 a_{s1} & \cdots & a_{sp} & \cdots & a_{s,s-1} & 1 \\
\end{array}
\]
Establishing stage order – Block-Diagonal RK methods

In [BC90] Butcher and Cash consider fully implicit RK methods

\[y_i = y_0 + \sum_{j=1}^{s} a_{ij} k_j \]

where \(k_i = h \gamma f(t_0 + c_i h \gamma, y_0 + \sum_{j=1}^{s} a_{ij} k_j) \)

with \(h \gamma := \gamma h, \gamma^{-1} = \max_i c_i = c_s \) and a Butcher tableau of the form

\[
\begin{array}{cccc}
 c_1 & a_{11} & \cdots & a_{1p} \\
 \vdots & \vdots & \ddots & \vdots \\
 c_p & a_{p1} & \cdots & a_{pp} \\
 c_{p+1} & a_{p+1,1} & \cdots & a_{p+1,p} & 1 \\
 \vdots & \vdots & \ddots & \vdots & \ddots \\
 c_s & a_{s1} & \cdots & a_{sp} & \cdots & a_{s,s-1} & 1 \\
 a_{s1} & \cdots & a_{sp} & \cdots & a_{s,s-1} & 1 \\
\end{array}
\]

StO-condition \(C'(\eta) \): \[
\sum_{j=1}^{s} a_{ij} c_j^{q-1} = \frac{c_i^q}{q}, \quad i = 1, \ldots, s, \quad q = 1, \ldots, \eta
\]
Establishing stage order – Block-Diagonal RK methods

In [BC90] Butcher and Cash consider fully implicit RK methods

\[y_i = y_0 + \sum_{j=1}^{s} a_{ij} k_j \quad \text{where} \quad k_i = h\gamma f(t_0 + c_i h\gamma, y_0 + \sum_{j=1}^{s} a_{ij} k_j) \]

with \(h\gamma := \gamma h, \gamma^{-1} = \max_i c_i = c_s \) and a Butcher tableau of the form

\[
\begin{array}{c|cccc}
\quad & c_1 & \cdots & a_{1p} \\
\hline
\quad & \vdots & \ddots & \vdots \\
\quad & c_p & a_{p1} & \cdots & a_{pp} \\
& c_{p+1} & a_{p+1,1} & \cdots & a_{p+1,p} & 1 \\
\quad & \vdots & \ddots & \vdots & \vdots & \ddots \\
\quad & c_s & a_{s1} & \cdots & a_{sp} & \cdots & a_{s,s-1} & 1 \\
\quad & a_{s1} & \cdots & a_{sp} & \cdots & a_{s,s-1} & 1 & 1 \\
\end{array}
\]

by design

\[R_i(\infty) = 0 \]

\[\delta_{i,h}^{PR} \in O\left(\frac{h^{p+1}}{z}\right) \]

StO-condition \(C(\eta) : \quad \sum_{j=1}^{s} a_{ij} c_j^{q-1} = \frac{c_i^q}{q}, \quad i = 1, \ldots, s, \quad q = 1, \ldots, \eta \)
Achieved order – the fully implicit part

Theorem (Order)

Consider a Block-Diagonal RK method and let $C(\eta)$ hold for $\eta = p$ then

$$y(t_0 + c_i h) - y_i \in O(h^{p+1}) \quad \text{for} \quad i = 1, \ldots, s,$$

which means that the stage values y_i are of order p. If additionally

$$\sum_{j=1}^{s} a_{sj} c_j^p = \frac{c_s^{p+1}}{p + 1}$$

is true then we even have

$$y(t_0 + h) - y_s \in O(h^{p+2}),$$

i. e., y_s is an approximation of order $p + 1$.

Proof.

The above follows directly from Butcher's Theorem [B64] and from $c_s h = h$.

Tim Steinhoff — Construction of Finite Iteration Runge-Kutta Methods
Achieved order – the fully implicit part

Theorem (Order)

Consider a Block-Diagonal RK method and let $C(\eta)$ hold for $\eta = p$ then

$$y(t_0 + c_i h\gamma) - y_i \in O(h^{p+1})$$

for $i = 1, \ldots, s$,

which means that the stage values y_i are of order p. If additionally

$$\sum_{j=1}^{s} a_{sj} c_j^p = \frac{c_s^{p+1}}{p + 1}$$

is true then we even have

$$y(t_0 + h) - y_s \in O(h^{p+2})$$

i. e., y_s is an approximation of order $p + 1$.

Proof.

The above follows directly from Butcher’s Theorem [B64] and from $c_s h\gamma = h$. □
Division of labour

Let

\[Y_h := (y(t_0 + c_1 h \gamma)^T, \ldots, y(t_0 + c_{s-1} h \gamma)^T, y(t_0 + h)^T) \]

\[K := (k_1^T, \ldots, k_s^T) \]

\[A := (a_{ij})_{i,j=1,\ldots,s}, \quad a_i^T := i\text{-th row of } A, \quad e := (1, \ldots, 1) \in \mathbb{R}^s \]
Division of labour

Let

\[Y_h := (y(t_0 + c_1 h \gamma)^T, \ldots, y(t_0 + c_{s-1} h \gamma)^T, y(t_0 + h)^T) \]
\[K := (k_1^T, \ldots, k_s^T) \]
\[A := (a_{ij})_{i,j=1,\ldots,s}, \quad a_i^T := i\text{-th row of } A, \quad e := (1, \ldots, 1) \in \mathbb{R}^s \]

By means of the Order Theorem it holds that \((i = 1, \ldots, s):\)

\[y(t_0 + c_i h \gamma) - y_i \in O(h^{p+1}) \]
\[y(t_0 + h) - y_s \in O(h^{p+2}) \]

(covered by Butcher’s work)
Division of labour

Let

\[Y_h := (y(t_0 + c_1 h \gamma)^T, \ldots, y(t_0 + c_{s-1} h \gamma)^T, y(t_0 + h)^T) \]
\[K := (k_1^T, \ldots, k_s^T) \]
\[A := (a_{ij})_{i,j=1,\ldots,s}, \quad a_i^T := i\text{-th row of } A, \quad e := (1, \ldots, 1) \in \mathbb{R}^s \]

By means of the Order Theorem it holds that \((i = 1, \ldots, s)\):

\[y(t_0 + c_i h \gamma) - y_i \in O(h^{p+1}) \]
\[y(t_0 + h) - y_s \in O(h^{p+2}) \]

\[\iff \]

\[(Y_h - e \otimes y_0)^{(q)}|_{h=0} - (A \otimes I)K^{(q)}|_{h=0} = 0, \quad q = 0, \ldots, p \]
\[(y(t_0 + h) - y_0)^{(p+1)}|_{h=0} - (a_s^T \otimes I)K^{(p+1)}|_{h=0} = 0 \]
Division of labour, ct. – basic approximation idea

Find cheaply computable $\tilde{K} : \mathbb{R} \supset D_h \to \mathbb{R}^{s \cdot n}$ with

$$(A \otimes I)\tilde{K}^{(q)}|_{h=0} = (A \otimes I)K^{(q)}|_{h=0}$$

A nonsingular \iff

$\tilde{K}^{(q)}|_{h=0} = K^{(q)}|_{h=0}$

for $q = 0, \ldots, p$ and

$$(a^T_s \otimes I)\tilde{K}^{(p+1)}|_{h=0} = (a^T_s \otimes I)K^{(p+1)}|_{h=0}.$$
Division of labour, ct. – basic approximation idea

Find cheaply computable \(\tilde{K} : \mathbb{R} \supset D_h \rightarrow \mathbb{R}^{s \cdot n} \) with

\[
(\mathcal{A} \otimes I) \tilde{K}^{(q)}_{|h=0} = (\mathcal{A} \otimes I) K^{(q)}_{|h=0}
\]

\(\mathcal{A} \) nonsingular \(\iff \)

\[
\tilde{K}^{(q)}_{|h=0} = K^{(q)}_{|h=0}
\]

for \(q = 0, \ldots, p \) and

\[
(a_s^T \otimes I) \tilde{K}^{(p+1)}_{|h=0} = (a_s^T \otimes I) K^{(p+1)}_{|h=0}.
\]

Change to autonomous system for the upcoming analysis:

\[
y \rightarrow \begin{pmatrix} t \\ y \end{pmatrix}, \quad f \rightarrow \begin{pmatrix} 1 \\ f \end{pmatrix}, \quad k_i \rightarrow \begin{pmatrix} 1 \\ k_i \end{pmatrix}
\]

For the sake of simplicity stay with the notation \(y, f, k_i, K, n \) and work with \(h \), i. e.,

\[
\text{coeff} \cdot h \gamma = (\text{coeff} \cdot \gamma) \cdot h.
\]
The block stages

Let $K_b := (k_1^T, \ldots, k_p^T)$ and

$$F(\kappa) = (F_i(\kappa))_{i=1,\ldots,p}, \quad F_i(\kappa) := f(y_0 + (a_{i,1:p}^T \otimes I)\kappa).$$

Consider one step of a Newton-like iteration for the block:

$$K_b^{l+1} = hF(K_b^l) + h(I \otimes J)(A_b \otimes I)(K_b^{l+1} - K_b^l). \tag{1}$$
The block stages

Let $K_b := (k_1^T, \ldots, k_p^T)$ and

$$F(\kappa) = (F_i(\kappa))_{i=1,\ldots,p}, \quad F_i(\kappa) := f(y_0 + (a_{i,1:p}^T \otimes I)\kappa).$$

Consider one step of a Newton-like iteration for the block:

$$K_b^{l+1} = hF(K_b^l) + h(I \otimes J)(A_b \otimes I)(K_b^{l+1} - K_b^l).$$

(1)

Theorem (Block)

Assume that for the initial guess $K_b^0 : \mathbb{R} \ni D_h \rightarrow \mathbb{R}^{p \cdot n}$ it holds that

$$K_b^0(r)|_{h=0} = K_b^{(r)}|_{h=0}, \quad r = 0, \ldots, \varrho$$

and define K_b^l for $l \geq 1$ by (1). Then

$$K_b^l(q)|_{h=0} = K_b^{(q)}|_{h=0}, \quad q = 0, \ldots, \varrho + l.$$
The block stages

Let \(K_b := (k_1^T, \ldots, k_p^T) \) and

\[
F(\kappa) = (F_i(\kappa))_{i=1,\ldots,p}, \quad F_i(\kappa) := f(y_0 + (a_{i,1:p}^T \otimes I)\kappa).
\]

Consider one step of a Newton-like iteration for the block:

\[
K_b^{l+1} = hF(K_b^l) + h(I \otimes J)(A_b \otimes I)(K_b^{l+1} - K_b^l). \tag{1}
\]

Theorem (Block)

Assume that for the initial guess \(K_b^0 : \mathbb{R} \supset D_h \rightarrow \mathbb{R}^{p \cdot n} \) it holds that

\[
K_b^0(r)|_{h=0} = K_b(r)|_{h=0}, \quad r = 0, \ldots, \varrho
\]

and define \(K_b^l \) for \(l \geq 1 \) by (1). Then

\[
K_b^l(q)|_{h=0} = K_b(q)|_{h=0}, \quad q = 0, \ldots, \varrho + l.
\]

Proof by nested induction applying Leibniz’ formula: \((h\psi)^{(q)}|_{h=0} = q \cdot (\psi(h))^{(q-1)}|_{h=0} \).
The diagonal stages

Consider one step of a Newton-like iteration for diagonal stage i, $i \in \{p+1, \ldots, s\}$:

\[
k_i^{l+1} = h f \left(y_0 + \sum_{j=1}^{i-1} a_{ij} k_j^l + a_{ii} k_i^l \right) + h a_{ii} J (k_i^{l+1} - k_i^l)
\]

where the k_j^l's are the final approximations from the prior stages.
The diagonal stages

Consider one step of a Newton-like iteration for diagonal stage \(i, i \in \{ p+1, \ldots, s \} \):

\[
k_i^{l+1} = h f \left(y_0 + \sum_{j=1}^{i-1} a_{ij} k_j^l + a_{ii} k_i^l \right) + h a_{ii} J (k_i^{l+1} - k_i^l)
\]

where the \(k_j^l \)'s are the final approximations from the prior stages. Exploit these for the initial guess \(k_i^0 \):

\[
k_i^0 := -\gamma^{-1}_{ii} \sum_{j=1}^{i-1} \gamma_{ij} k_j^l \quad \text{where} \quad \gamma_{ii} := a_{ii},
\]

i. e. (with \(\alpha_{ij} + \gamma_{ij} = a_{ij} \)):

\[
k_i^1 = h f \left(y_0 + \sum_{j=1}^{i-1} \alpha_{ij} k_j^l \right) + h J \left(\sum_{j=1}^{i-1} \gamma_{ij} k_j^l + \gamma_{ii} k_i^1 \right).
\]
The diagonal stages, ct.

Newton-like iteration for diagonal stage i:

$$k_i^{l+1} = hf(y_0 + \sum_{j=1}^{i-1} a_{ij} k_j^l + a_{ii} k_i^l) + h a_{ii} J(k_i^{l+1} - k_i^l)$$ \hspace{1cm} (2a)

$$l = 0: \quad k_i^1 = hf(y_0 + \sum_{j=1}^{i-1} \alpha_{ij} k_j^l) + h J(\sum_{j=1}^{i-1} \gamma_{ij} k_j^l + \gamma_{ii} k_i^1)$$ \hspace{1cm} (2b)
The diagonal stages, ct.

Newton-like iteration for diagonal stage i:

\begin{align}
 k_{i}^{l+1} &= hf(y_0 + \sum_{j=1}^{i-1} a_{ij} k_{j}^{l} + a_{ii} k_{i}^{l}) + h a_{ii} J(k_{i}^{l+1} - k_{i}^{l}) \\
 l &= 0: \quad k_{i}^{1} = hf(y_0 + \sum_{j=1}^{i-1} \alpha_{ij} k_{j}^{l}) + h J(\sum_{j=1}^{i-1} \gamma_{ij} k_{j}^{l} + \gamma_{ii} k_{i}^{1})
\end{align}

(2a) (2b)

Theorem (Diagonal stages)

Assume that

\[k_{j}^{l}(m)_{|h=0} = k_{j}^{(m)}_{|h=0}, \quad m = 0, \ldots, \mu, \quad j = 1, \ldots, i - 1 \]

\[\sum_{j=1}^{i-1} \gamma_{ij} k_{j}^{l}(v)_{|h=0} + \gamma_{ii} k_{i}^{l}(v)_{|h=0} = 0, \quad v = 0, \ldots, \varphi, \]

holds and define k_{i}^{l} for $l \geq 1$ by (2). Then

\[k_{i}^{l}(q)_{|h=0} = k_{i}^{(q)}_{|h=0}, \quad q = 0, \ldots, \min(\mu + 1, \varphi + l). \]
The diagonal stages, ct.

Newton-like iteration for diagonal stage i:

\[
k_{i}^{l+1} = hf(y_0 + \sum_{j=1}^{i-1} a_{ij} k_{j}^{l_j} + a_{ii} k_{i}^{l_i}) + ha_{ii} J(k_{i}^{l+1} - k_{i}^{l}) \tag{2a}
\]

\[
l = 0: \quad k_{i}^{1} = hf(y_0 + \sum_{j=1}^{i-1} \alpha_{ij} k_{j}^{l_j}) + hJ(\sum_{j=1}^{i-1} \gamma_{ij} k_{j}^{l_j} + \gamma_{ii} k_{i}^{1}) \tag{2b}
\]

Theorem (Diagonal stages)

Assume that

\[
k_{j}^{l_j(m)} \big|_{h=0} = k_{j}^{(m)} \big|_{h=0}, \quad m = 0, \ldots, \mu, \quad j = 1, \ldots, i - 1
\]

\[
\sum_{j=1}^{i-1} \gamma_{ij} k_{j}^{l_j(v)} \big|_{h=0} + \gamma_{ii} k_{i}^{(v)} \big|_{h=0} = 0, \quad v = 0, \ldots, \varphi,
\]

holds and define k_{i}^{l} for $l \geq 1$ by (2). Then

\[
k_{i}^{l(q)} \big|_{h=0} = k_{i}^{(q)} \big|_{h=0}, \quad q = 0, \ldots, \min(\mu + 1, \varphi + l).
\]

Again, proof by nested induction applying Leibniz' formula: \((h\psi)^{(q)} \big|_{h=0} = q \cdot (\psi(h))^{(q-1)} \big|_{h=0}\)
Algebraic conditions on α_{ij} and γ_{ij}
Theorem (Condensation)

Let $q \geq 1$ and assume that $C(\eta)$ holds for $\eta \geq q - 1$ then there exists

$$\phi_q = \phi_q \left(f^{(0)}(y_0), \ldots, f^{(q-1)}(y_0) \right) \in \mathbb{R}^n$$

such that

$$k_i^{(q)} \bigg|_{h=0} = \phi_q \left(f^{(0)}(y_0), \ldots, f^{(q-1)}(y_0) \right) \cdot c_i^{q-1}, \quad i = 1, \ldots, s,$$

and ϕ_q is independent of i.
Algebraic conditions on α_{ij} and γ_{ij}

Theorem (Condensation)

Let $q \geq 1$ and assume that $C(\eta)$ holds for $\eta \geq q - 1$ then there exists $\phi_q = \phi_q\left(f^{(0)}(y_0), \ldots, f^{(q-1)}(y_0)\right) \in \mathbb{R}^n$ such that

$$k_i^{(q)}|_{h=0} = \phi_q\left(f^{(0)}(y_0), \ldots, f^{(q-1)}(y_0)\right) \cdot c_i^{q-1}, \quad i = 1, \ldots, s,$$

and ϕ_q is independent of i.

The proof is by induction, technical and makes use of Faà di Bruno’s formula.
Algebraic conditions on α_{ij} and γ_{ij}

Theorem (Condensation)

Let $q \geq 1$ and assume that $C(\eta)$ holds for $\eta \geq q - 1$ then there exists

$$
\phi_q = \phi_q(f^{(0)}(y_0), \ldots, f^{(q-1)}(y_0)) \in \mathbb{R}^n
$$

such that

$$
\left. k_i^{(q)} \right|_{h=0} = \phi_q(f^{(0)}(y_0), \ldots, f^{(q-1)}(y_0)) \cdot c_i^{q-1}, \quad i = 1, \ldots, s,
$$

and ϕ_q is independent of i.

The proof is by induction, technical and makes use of Faà di Bruno’s formula.

Faà di Bruno’s formula – generalizing the chain rule to higher derivatives

$$
(f \circ g)^{(n)} = \sum_{(m_1, \ldots, m_n) \in T_n} \frac{n!}{m_1! \cdots m_n!} (f \circ g)^{(m_1+\cdots+m_n)} \prod_{j=1}^{n} \left(\frac{g^{(j)}}{j!} \right)^{m_j}
$$

where

$$
T_n := \left\{ (m_1, \ldots, m_n) \in \mathbb{N} \cup \{0\} \mid \sum_{i=1}^{n} i \cdot m_i = n \right\}
$$
Algebraic conditions on α_{ij} and γ_{ij}

Theorem (Condensation)

Let $q \geq 1$ and assume that $C(\eta)$ holds for $\eta \geq q - 1$ then there exists

$$\phi_q = \phi_q(f^{0}(y_0), \ldots, f^{(q-1)}(y_0)) \in \mathbb{R}^n$$

such that

$$k^{(q)}_i |_{h=0} = \phi_q(f^{0}(y_0), \ldots, f^{(q-1)}(y_0)) \cdot c^{q-1}, \quad i = 1, \ldots, s,$$

and ϕ_q is independent of i.

Assume that $C(\eta)$ with $\eta = p$ holds and that we have by the Block Theorem

$$K^{(q)}_b |_{h=0} = K^{(q)}_b |_{h=0}, \quad q = 0, \ldots, p.$$
Algebraic conditions on α_{ij} and γ_{ij}

Theorem (Condensation)

Let $q \geq 1$ and assume that $C(\eta)$ holds for $\eta \geq q - 1$ then there exists $\phi_q = \phi_q(f^{(0)}(y_0), \ldots, f^{(q-1)}(y_0)) \in \mathbb{R}^n$ such that

$$k_{i\mid h=0}^{(q)} = \phi_q(f^{(0)}(y_0), \ldots, f^{(q-1)}(y_0)) \cdot c_i^{q-1}, \quad i = 1, \ldots, s,$$

and ϕ_q is independent of i.

Assume that $C(\eta)$ with $\eta = p$ holds and that we have by the Block Theorem

$$K_b^{(q)}_{\mid h=0} = K_b^{(q)}_{\mid h=0}, \quad q = 0, \ldots, p.$$

Then for $i = p + 1$ (first D-stage), $q \in \{0, \ldots, p\}$, and assuming $\phi_q \neq 0$ we have

$$\sum_{j=1}^{i-1} \gamma_{ij} k_{j\mid h=0}^{(q)} + \gamma_{ii} k_{i\mid h=0}^{(q)} \overset{!}{=} 0 \quad \text{CT} \quad \sum_{j=1}^{i} \gamma_{ij} c_j^{q-1} \overset{!}{=} 0$$

$$C(p), a = \alpha + \gamma \quad \sum_{j=1}^{i-1} \alpha_{ij} c_j^{q-1} \overset{!}{=} c_i^q / q.$$
Algebraic conditions on α_{ij} and γ_{ij}, ct.

Theorem (α-Order)

Assume that $C(\eta)$ with $\eta = p$ holds and that

$$K_b^{l_b(q)}|_{h=0} = K_b^{(q)}|_{h=0}, \quad q = 0, \ldots, p,$$

is true. Define α_{ij} and γ_{ij} by the (affine) linear conditions

$$\alpha\text{-StO } C_\alpha(p) : \quad \sum_{j=1}^{i-1} \alpha_{ij} c_j^{q-1} = \frac{c_i^q}{q} \quad \text{and} \quad \gamma_{ij} = a_{ij} - \alpha_{ij} \quad (\alpha_{ii} := 0)$$

for $q = 1, \ldots, p$. Then,

$$k_i^{(q)}|_{h=0} = k_i^{(q)}|_{h=0}, \quad i = p + 1, \ldots, s,$$

$$q = 0, \ldots, p + 1,$$

and (3) and (4) imply that all stages of the related FlterRK method are of order p.
Algebraic conditions on α_{ij} and γ_{ij}, ct.

Theorem (α-Order)

Assume that $C(\eta)$ with $\eta = p$ holds and that

$$K_b^{(q)}|_{h=0} = K_{b|_{h=0}}, \quad q = 0, \ldots, p,$$

is true. Define α_{ij} and γ_{ij} by the (affine) linear conditions

$$\alpha - \text{StO} \quad C_{\alpha}(p) : \quad \sum_{j=1}^{i-1} \alpha_{ij} c_j^{q-1} = \frac{c_i^q}{q} \quad \text{and} \quad \gamma_{ij} = a_{ij} - \alpha_{ij} \quad (\alpha_{ii} := 0)$$

for $q = 1, \ldots, p$. Then,

$$k_i^{1(q)}|_{h=0} = k_i^{(q)}|_{h=0}, \quad i = p + 1, \ldots, s, \quad q = 0, \ldots, p + 1,$$

and (3) and (4) imply that all stages of the related FlterRK method are of order p.

What about order $p + 1$ for the last stage?
The T2-update

- use non-autonomous notation and exact t-information, i.e., $f(t_0 + c_i h, \cdot)$
- Set $K_b^0 = 0$ and change the variables $Z_b := (A_b \otimes I)K_b \ (\approx Y_b - e_b \otimes y_0)$
The T2-update

- use non-autonomous notation and exact t-information, i.e., $f(t_0 + c_i h, \cdot)$
- Set $K^0_b = 0$ and change the variables $Z_b := (A_b \otimes I)K_b \ (\approx Y_b - e_b \otimes y_0)$

Consider the first step of a modified Newton-like iteration for the block ($Z^0_b = 0$):

$$[I - hA_b \otimes (J + uv^T)] Z^1_b = h(A_b \otimes I) \begin{pmatrix} f(t_0 + c_1 h, y_0) \\ \vdots \\ f(t_0 + c_p h, y_0) \end{pmatrix}, \quad u, v \in \mathbb{R}^n$$
The T2-update

- use non-autonomous notation and exact t-information, i.e., $f(t_0 + c_i h, \cdot)$
- Set $K^0_b = 0$ and change the variables $Z_b := (A_b \otimes I)K_b \approx (Y - e_b \otimes y_0)$

Consider the first step of a modified Newton-like iteration for the block ($Z^0_b = 0$):

$$[I - hA_b \otimes (J + uv^T)] Z^1_b = h(A_b \otimes I) \begin{pmatrix} f(t_0 + c_1 h, y_0) \\ \vdots \\ f(t_0 + c_p h, y_0) \end{pmatrix}, \quad u, v \in \mathbb{R}^n$$

Define $f_0 := f(t_0, y_0)$, $f_0^{(1)} := f^{(1)}(t_0, y_0)$ and let $C_b := \text{diag}(c_1, \ldots, c_p)$.

Recall that $C(\eta)$ with $\eta = p$ holds and let $p \geq 2$. Then,

$$Z^{(q)}_b |_{h=0} = Z^{(q)}_b |_{h=0}, \quad q = 0, 1,$$

(by the Block Theorem)

$$Z^{(2)}_b |_{h=0} = C^2_b e_b \otimes \left(\frac{\partial f}{\partial t} (t_0, y_0) J + uv^T \right) \begin{pmatrix} 1 \\ f_0 \end{pmatrix},$$

$$Z^{(2)}_b |_{h=0} = C^2_b e_b \otimes \left(\frac{\partial f}{\partial t} (t_0, y_0) f_0^{(1)} \right) \begin{pmatrix} 1 \\ f_0 \end{pmatrix}.$$
The T2-update

- use non-autonomous notation and exact t-information, i.e., $f(t_0 + c_i h, \cdot)$
- Set $K^0_b = 0$ and change the variables $Z_b := (A_b \otimes I)K_b \approx Y_b - e_b \otimes y_0$

Consider the first step of a modified Newton-like iteration for the block ($Z^0_b = 0$):

$$[I - hA_b \otimes (J + uv^T)] Z^1_b = h(A_b \otimes I) \begin{pmatrix} f(t_0 + c_1 h, y_0) \\ \vdots \\ f(t_0 + c_p h, y_0) \end{pmatrix}, \quad u, v \in \mathbb{R}^n$$

Define $f_0 := f(t_0, y_0)$, $f^{(1)}_0 := f^{(1)}(t_0, y_0)$ and let $C_b := \text{diag}(c_1, \ldots, c_p)$.

Recall that $C(\eta)$ with $\eta = p$ holds and let $p \geq 2$. Then,

$$Z^1_b(q) \mid_{h=0} = Z_b(q) \mid_{h=0}, \quad q = 0, 1, \quad \text{(by the Block Theorem)}$$

$$Z^1_b(2) \mid_{h=0} = C^2_b e_b \otimes \left(\frac{\partial f}{\partial t}(t_0, y_0) J + uv^T \right) \begin{pmatrix} 1 \\ f_0 \end{pmatrix},$$

$$Z_b(2) \mid_{h=0} = C^2_b e_b \otimes \left(\frac{\partial f}{\partial t}(t_0, y_0) f^{(1)}_0 \right) \begin{pmatrix} 1 \\ f_0 \end{pmatrix}.$$

If $J = f^{(1)}_0$ or $f_0 = 0$ set $u = v = 0$: 2nd order information for free!
The T2-update & handling of the block

If \(J \neq f_{0}^{(1)} \) and \(f_{0} \neq 0 \) define \(f_{0}^{n} := f_{0}/\|f_{0}\|_{2} \) and set

\[
 u = (f_{0}^{(1)} - J)f_{0}^{n}, \quad v = f_{0}^{n}.
\]

(T2-update)

Then,

\[
 Z_{b}^{1(q)}|_{h=0} = Z_{b}^{(q)}|_{h=0}, \quad q = 0, 1, 2.
\]
The T2-update & handling of the block

If \(J \neq f_0^{(1)} \) and \(f_0 \neq 0 \) define \(f_0^n := f_0 / \| f_0 \|_2 \) and set

\[
 u = (f_0^{(1)} - J) f_0^n, \quad v = f_0^n. \tag{T2-update}
\]

Then,

\[
 Z_1^b(q) \big|_{h=0} = Z_b^{(q)}(q), \quad q = 0, 1, 2.
\]

The T2-update has a least-change property

\[
 \arg\min_{B \in \Theta} \| B \|_2 = uv^T
\]

where

\[
 \Theta := \{ B \in \mathbb{R}^{n \times n} \mid (J + B) f_0 = f_0^{(1)} f_0 \}.
\]
The T2-update & handling of the block

If \(J \neq f_0^{(1)} \) and \(f_0 \neq 0 \) define \(f_0^n := f_0 / \| f_0 \|_2 \) and set

\[
\begin{align*}
 u &= (f_0^{(1)} - J) f_0^n, \\
v &= f_0^n.
\end{align*}
\]

(T2-update)

Then,

\[
Z_b^{(q)} \big|_{h=0} = Z_b^{(q)} , \quad q = 0, 1, 2.
\]

Note that,

\[
\begin{align*}
 Z_1^{(3)} \big|_{h=0} &= A_b C_b^2 e_b \otimes \left((J + uu^T)^2 f_0 + \partial^2 f_0 / \partial t^2 \right) \cdot 3 \\
 Z_{(3)} \big|_{h=0} &= A_b C_b^2 e_b \otimes \phi_3 \left(\partial^{(1,2)} f_0 / \partial t^{(1,2)} , f_0^{(0,1,2)} \right).
\end{align*}
\]
The T2-update & handling of the block

If $J \neq f_0^{(1)}$ and $f_0 \neq 0$ define $f_0^n := f_0/\|f_0\|_2$ and set

$$u = (f_0^{(1)} - J)f_0^n, \quad v = f_0^n.$$ \hfill (T2-update)

Then,

$$Z_{b|h=0}^{1(q)} = Z_{b|h=0}^{(q)}, \quad q = 0, 1, 2.$$

Note that,

$$Z_{|h=0}^{1(3)} = A_b C_b^2 e_b \otimes ((J + uv^T)^2 f_0 + \partial^2 f_0/\partial t^2) \cdot 3$$

$$Z_{|h=0}^{(3)} = A_b C_b^2 e_b \otimes \phi_3(\partial^{(1,2)} f_0/\partial t^{(1,2)}, f_0^{(0,1,2)}).$$

Let $a_{s,1:p} := (a_{s1}, \ldots, a_{sp})$:

$$p = 2 : (a_{s,1:p}^T \otimes I) K_{b|h=0}^{1(3)} = a_{s,1:p}^T C_b^2 e_b \otimes (\cdots) \text{ has impact} \rightarrow a_{s,1:p}^T C_b^2 e_b \equiv 0$$

$$p = 3 : (a_{s,1:p}^T \otimes I) Z_{|h=0}^{1(3)} = a_{s,1:p}^T C_b^3 e_b \otimes (\cdots) \text{ has impact} \rightarrow a_{s,1:p}^T C_b^3 e_b \equiv 0$$
Handling of the block, ct.

For the general case we obtain

Theorem (T2 & Cancellation)

If \(f_0 \neq 0 \) choose \(u, v \) according to the T2-update, otherwise let \(u = v = 0 \). Set \(K_0^b = 0 \) and perform \(p - 1 \) modified Newton-like iteration steps. Assume that the cancellation condition

\[
a_{s,1:p}^T C_b^p e_b = 0
\]

holds. Then,

\[
K_b^{p-1(q)} |_{h=0} = K_b^{(q)} |_{h=0}, \quad q = 0, \ldots, p,
\]

and

\[
(a_{s,1:p}^T \otimes I) K_b^{p-1(p+1)} |_{h=0} = (a_{s,1:p}^T \otimes I) K_b^{(p+1)} |_{h=0}.
\]
Handling of the block, ct.

For the general case we obtain

Theorem (T2 & Cancellation)

If $f_0 \neq 0$ choose u, v according to the T2-update, otherwise let $u = v = 0$. Set $K^0_b = 0$ and perform $p - 1$ modified Newton-like iteration steps. Assume that the cancellation condition

$$a^{T}_{s,1:p} C^p_b e_b = 0$$

holds. Then,

$$K^{p-1(q)}_b |_{h=0} = K^{(q)}_b |_{h=0}, \quad q = 0, \ldots, p,$$

and

$$(a^{T}_{s,1:p} \otimes I) K^{p-1(p+1)}_b |_{h=0} = (a^{T}_{s,1:p} \otimes I) K^{(p+1)}_b |_{h=0}.$$

The T2-update saves one block-Newton-like step.
Handling of the block, ct.

For the general case we obtain

Theorem (T2 & Cancellation)

If $f_0 \neq 0$ choose u, v according to the T2-update, otherwise let $u = v = 0$. Set $K^0_b = 0$ and perform $p - 1$ modified Newton-like iteration steps. Assume that the cancellation condition

$$a^{T}_{s,1:p} C^{p}_b e_b = 0$$

holds. Then,

$$K^{p-1(q)}_b|_{h=0} = K^{(q)}_b|_{h=0}, \quad q = 0, \ldots, p,$$

and

$$(a^{T}_{s,1:p} \otimes I) K^{p-1(p+1)}_b|_{h=0} = (a^{T}_{s,1:p} \otimes I) K^{(p+1)}_b|_{h=0}.$$

The T2-update saves one block-Newton-like step. However, an additional single Newton-like step will be introduced.
Making a block viable, basic idea cited in [HW10]

Consider step \(l\) of the modified Newton-like iteration for the block

\[
[I - hA_b \otimes (J + uv^T)] \Delta Z^l_b = -Z^l_b + h(A_b \otimes I) \bar{F}(Z^l_b)
\]

where \(\bar{F}(Z) = (\bar{F}_i(Z_i))_{i=1,...,p}, \bar{F}_i(Z_i) := f(t_0 + c_i h, y_0 + Z_i), Z = (Z^T_1, \ldots, Z^T_p)\).
Making a block viable, basic idea cited in [HW10]

Consider step l of the modified Newton-like iteration for the block

$$[I - h A_b \otimes (J + uv^T)] \Delta Z^l_b = -Z^l_b + h(A_b \otimes I)\bar{F}(Z^l_b)$$ \hspace{1cm} (5)

where $\bar{F}(Z) = (\bar{F}_i(Z_i))_{i=1,...,p}$, $\bar{F}_i(Z_i) := f(t_0 + c_i h, y_0 + Z_i)$, $Z = (Z_T^1, \ldots, Z_T^p)$.

$$\text{spec}(A_b) = \{\gamma > 0\} \implies A_b^{-1} = T \Lambda T^{-1} \quad \Lambda \text{ lower left triangular and } (\Lambda)_{ii} = \gamma^{-1}$$

T nonsingular

\[\lambda\]
Making a block viable, basic idea cited in [HW10]

Consider step l of the modified Newton-like iteration for the block

$$ [I - hA_b \otimes (J + uv^T)] \Delta Z_b^l = -Z_b^l + h(A_b \otimes I)\bar{F}(Z_b^l) $$ \hspace{1cm} (5)

where $\bar{F}(Z) = (\bar{F}_i(Z_i))_{i=1,\ldots,p}$, $\bar{F}_i(Z_i) := f(t_0+c_ih, y_0+Z_i)$, $Z = (Z_1^T, \ldots, Z_p^T)$.

\[\text{spec}(A_b) = \{ \gamma > 0 \} \implies A_b^{-1} = T\Lambda T^{-1} \quad \Lambda \text{ lower left triangular and } (\Lambda)_{ii} = \gamma^{-1} \]

Left-multiply (5) by $(hA_b)^{-1} \otimes I$ and use $W_b^l := (T^{-1} \otimes I)Z_b^l$:

$$ [h^{-1}\Lambda \otimes I - I \otimes (J + uv^T)] \Delta W^l = G(W^l, \bar{F}) $$

where $G(W^l, \bar{F}) := -h^{-1}(\Lambda \otimes I)W^l + (T^{-1} \otimes I)\bar{F}((T \otimes I)W^l)$.

Left-multiply (5) by $(hA_b)^{-1} \otimes I$ and use $W_b^l := (T^{-1} \otimes I)Z_b^l$:

$$ [h^{-1}\Lambda \otimes I - I \otimes (J + uv^T)] \Delta W^l = G(W^l, \bar{F}) $$

where $G(W^l, \bar{F}) := -h^{-1}(\Lambda \otimes I)W^l + (T^{-1} \otimes I)\bar{F}((T \otimes I)W^l)$.
Making a block viable, basic idea cited in [HW10]

Consider step l of the modified Newton-like iteration for the block

$$
[I - hA_b \otimes (J + uv^T)] \Delta Z^l_b = -Z^l_b + h(A_b \otimes I)\bar{F}(Z^l_b)
$$

(5)

where $\bar{F}(Z) = (\bar{F}_i(Z_i))_{i=1,...,p}$, $\bar{F}_i(Z_i) := f(t_0+c_ih, y_0+Z_i)$, $Z = (Z^T_1, \ldots, Z^T_p)$.

$$\text{spec}(A_b) = \{\gamma > 0\} \implies A_b^{-1} = T\Lambda T^{-1} \quad \Lambda \text{ lower left triangular and } (\Lambda)_{ii} = \gamma^{-1}
$$

T nonsingular

Left-multiply (5) by $(hA_b)^{-1} \otimes I$ and use $W^l_b := (T^{-1} \otimes I)Z^l_b$:

$$
\left[h^{-1}\Lambda \otimes I - I \otimes (J + uv^T)\right] \Delta W^l = G(W^l, \bar{F})
$$

where $G(W^l, \bar{F}) := -h^{-1}(\Lambda \otimes I)W^l + (T^{-1} \otimes I)\bar{F}((T \otimes I)W^l)$.

p small systems to be solved with

$$
h^{-1}\lambda I - J - uv^T = \begin{cases} h^{-1}\lambda I - J \end{cases} \begin{cases} I - M^{-1}uv^T \end{cases} =: \tilde{M} \quad \text{same as in D-stages}
$$
Making a block viable, basic idea cited in [HW10]

Consider step l of the modified Newton-like iteration for the block

$$
[I - h A_b \otimes (J + uv^T)] \Delta Z^l_b = -Z^l_b + h (A_b \otimes I) \bar{F}(Z^l_b)
$$

(5)

where $\bar{F}(Z) = (\bar{F}_i(Z_i))_{i=1,...,p}$, $\bar{F}_i(Z_i) := f(t_0+c_i h, y_0+Z_i) \quad Z = (Z^T_1, \ldots, Z^T_p)$.

$\text{spec}(A_b) = \{\gamma > 0\} \implies A_b^{-1} = T \Lambda T^{-1} \quad \Lambda$ lower left triangular and $(\Lambda)_{ii} = \gamma^{-1}$

T nonsingular

Left-multiply (5) by $(h A_b)^{-1} \otimes I$ and use $W^l_b := (T^{-1} \otimes I)Z^l_b$:

$$
[h^{-1} \Lambda \otimes I - I \otimes (J + uv^T)] \Delta W^l = G(W^l, \bar{F})
$$

where $G(W^l, \bar{F}) := -h^{-1}(\Lambda \otimes I)W^l + (T^{-1} \otimes I)\bar{F}((T \otimes I)W^l)$.

p small systems to be solved with $h^{-1} \lambda I - J - uv^T = \begin{cases} h^{-1} \lambda I - J \\ (I - M^{-1} u v^T) \end{cases}$

same as in D-stages

Note, [D04]: $\kappa_2(\tilde{I}) \leq \frac{1 + \theta}{1 - \theta}$, $\theta := \|\tilde{u}\|_2 < 1$ assumed
Making a block viable, basic idea cited in [HW10]

Consider step l of the modified Newton-like iteration for the block

$$\left[I - hA_b \otimes (J + uv^T) \right] \Delta Z_b^l = -Z_b^l + h(A_b \otimes I)\bar{F}(Z_b^l)$$

(5)

where $\bar{F}(Z) = (\bar{F}_i(Z_i))_{i=1,...,p}$, $\bar{F}_i(Z_i) := f(t_0+c_i h, y_0+Z_i)$, $Z = (Z_1^T, \ldots, Z_p^T)$.

$\text{spec}(A_b) = \{ \gamma > 0 \} \implies A_b^{-1} = T \Lambda T^{-1}$, Λ lower left triangular and $(\Lambda)_{ii} = \gamma^{-1}

=: \lambda$

Left-multiply (5) by $(hA_b)^{-1} \otimes I$ and use $W_b^l := (T^{-1} \otimes I)Z_b^l$:

$$\left[h^{-1} \Lambda \otimes I - I \otimes (J + uv^T) \right] \Delta W^l = G(W^l, \bar{F})$$

where $G(W^l, \bar{F}) := -h^{-1}(\Lambda \otimes I)W^l + (T^{-1} \otimes I)\bar{F}((T \otimes I)W^l)$.

p small systems to be solved with $h^{-1}\lambda I - J - uv^T = \begin{cases} h^{-1}\lambda I - J \\ I - M^{-1}uv^T \end{cases}$ same as in D-stages

$=:M$

$=:\tilde{I}$

Note, [D04]: $\kappa_2(\tilde{I}) \leq \frac{1 + \theta}{1 - \theta}, \quad \theta := \|\tilde{u}\|_2 < 1$ assumed \implies quality monitor for J
Making a block viable, basic idea cited in [HW10]

Consider step l of the modified Newton-like iteration for the block

$$
\left[I - hA_b \otimes (J + uv^T) \right] \Delta Z^l_b = -Z^l_b + h(A_b \otimes I)\bar{F}(Z^l_b)
$$

(5)

where $\bar{F}(Z) = (\bar{F}_i(Z_i))_{i=1,\ldots,p}$, $\bar{F}_i(Z_i) := f(t_0 + c_i h, y_0 + Z_i)$, $Z = (Z^T_1, \ldots, Z^T_p)$.

$$
\text{spec}(A_b) = \{ \gamma > 0 \} \implies A_b^{-1} = T\Lambda T^{-1} \quad \Lambda \text{ lower left triangular and } (\Lambda)_{ii} = \gamma^{-1}
$$

Left-multiply (5) by $(hA_b)^{-1} \otimes I$ and use $W^l_b := (T^{-1} \otimes I)Z^l_b$:

$$
\left[h^{-1}\Lambda \otimes I - I \otimes (J + uv^T) \right] \Delta W^l = G(W^l, \bar{F})
$$

where $G(W^l, \bar{F}) := -h^{-1}(\Lambda \otimes I)W^l + (T^{-1} \otimes I)\bar{F}((T \otimes I)W^l)$.

p small systems to be solved with

$$
\begin{aligned}
\begin{cases}
 h^{-1}\lambda I - J - uv^T = M & \text{same as in D-stages} \\
 u = (f_0^{(1)} - J)f_n & =: \tilde{u}
\end{cases}
\end{aligned}
$$

Note, [D04]: $\kappa_2(\tilde{I}) \leq \frac{1 + \theta}{1 - \theta}$, $\theta := \|\tilde{u}\|_2 < 1$ assumed \rightarrow quality monitor for J
Constructed FIterRK methods

\(p = 2: \) FIterRK3/2

\[
\begin{align*}
\text{O2} & & 0 & & \gamma \\
\text{O2} & & \gamma & & \gamma \\
\text{O2} & & \gamma & & \gamma \\
\text{O3} & & \gamma & & \gamma
\end{align*}
\]

\(\text{contraction check} \)

\(\alpha \)-Input

\[\Delta y^1_s = \delta_h^{est} \]

\(C(\eta), \ C_\alpha(\eta) \) for \(\eta = p \)

\(T \) from \(A_b^{-1} = T A T^{-1} \) via Schur: \(T^{-1} = T^T \) (note that \(\gamma(\lambda) = 1 \))

\(p = 3: \) FIterRK4/3

\[
\begin{align*}
\text{O3} & & \gamma & & \gamma \\
\text{O3} & & \gamma & & \gamma \\
\text{O3} & & \gamma & & \gamma \\
\text{O4} & & \gamma & & \gamma
\end{align*}
\]

\(\text{contraction check (2xBN)} \)

\(\alpha \)-Input

\[\Delta y^1_s = \delta_h^{est} \]

\(\gamma(\lambda) = 1 \)
Constructed FilterRK methods

\(p = 2 : \text{FilterRK3}/2 \)

\[
\begin{array}{c|ccc}
O2 & \bullet & \bullet & \bullet \\
O2 & \bullet & \bullet & \gamma \\
O2 & 1 & 0 & \gamma \\
O3 & 1 & & \\
\end{array}
\]

\(\alpha \text{-Input} \rightarrow \Delta y^1_s = \delta_h^{est} \)

\(\text{contraction check} \)

\(C(\eta), \ C_\alpha(\eta) \) for \(\eta = p \)

\(T \) from \(A_b^{-1} = T \Lambda T^{-1} \) via Schur: \(T^{-1} = T^T \) (note that \(\gamma(\lambda) = 1 \))

\# linear systems of equations:

FilterRK3/2:

\[
1 \cdot 2 + 1 + 3 \cdot 1 = 6
\]

1xBN T2 3xD

FilterRK4/3:

\[
2 \cdot 3 + 1 + 4 \cdot 1 = 11
\]

2xBN T2 4xD
Design philosophy

Let \(p (=\text{StO}) \) be given:

- \(C'(\eta), C_\alpha(\eta) \) for \(\eta = p \)
- \(C_{\text{err}}^{[s]} < C_{\text{err}}^{[s-1]} \)
- Cancellation condition
- \(R(\infty) = 0 \)
- \(0 < R(\infty) < 1 \)
- Mandatory
- \(R(x) > 0, x \in \mathbb{R}_- \) for stage \(s \)
Design philosophy

Let \(p (=\text{StO}) \) be given:

\[
C'(\eta), \ C_{\alpha}(\eta) \quad \text{for} \quad \eta = p
\]

\[
C_{\text{err}}^{[s]} < C_{\text{err}}^{[s-1]}
\]

Cancellation condition

\[
R(\infty) = 0
\]

\[
0 < R(\infty) < 1
\]

Mandatory

\[
R(x) > 0, \ x \in \mathbb{R}_-
\]

Stage \(s \)

- **\(A \)-stability**
 - **\(A(\alpha) \)-stability**
 - \(\alpha \) close to \(90^\circ \)
 - \(R(x) > 0, \ x \in \mathbb{R}_- \)

- **\(A \)-stability**
 - \(\alpha_{ij}, \ \alpha_{ij} \)
 - Of moderate size
FilterRK3/2

<table>
<thead>
<tr>
<th>i</th>
<th>$c_i \approx$</th>
<th>Stage</th>
<th>$A(\alpha)$</th>
<th>$R(\infty)$</th>
<th>StA</th>
<th>$R(x) > 0$, $x \in \mathbb{R}_-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.154</td>
<td>B1</td>
<td>90°</td>
<td>0_+</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2</td>
<td>0.896</td>
<td>$B2</td>
<td>D1\alpha$</td>
<td>90°</td>
<td>0_-</td>
<td>✓</td>
</tr>
<tr>
<td>3</td>
<td>0.896</td>
<td>D1</td>
<td>90°</td>
<td>0_-</td>
<td>✓</td>
<td>–</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>$D2\alpha$</td>
<td>90°</td>
<td>$\approx \frac{16}{25}$</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$D2</td>
<td>D3\alpha$</td>
<td>90°</td>
<td>0_-</td>
<td>✓</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>D3</td>
<td>90°</td>
<td>0_+</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

\[
\frac{C_{err}^{D3}}{C_{err}^{D2}} \approx 0.15
\]
FilterRK4/3

<table>
<thead>
<tr>
<th>i</th>
<th>$c_i \approx$</th>
<th>Stage</th>
<th>$A(\alpha)$</th>
<th>$R(\infty)$</th>
<th>StA</th>
<th>$R(x) > 0, x \in \mathbb{R}_-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.066</td>
<td>B1</td>
<td>$\approx 89.41^\circ$</td>
<td>0$_+$</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2</td>
<td>0.365</td>
<td>B2</td>
<td>90°</td>
<td>0$_-$</td>
<td>✓</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>B3</td>
<td>$\approx 75.6^\circ$</td>
<td>0$_+$</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4</td>
<td>0.45</td>
<td>D1$_\alpha$</td>
<td>90°</td>
<td>$\approx \frac{3}{4}$</td>
<td>–</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D1</td>
<td>90°</td>
<td>0$_-$</td>
<td>✓</td>
<td>–</td>
</tr>
<tr>
<td>5</td>
<td>0.711</td>
<td>D2$_\alpha$</td>
<td>90°</td>
<td>0$_+$</td>
<td>–</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D2</td>
<td>90°</td>
<td>0$_+$</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>D3$_\alpha$</td>
<td>$\approx 86.6^\circ$</td>
<td>0$_+$</td>
<td>–</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D3\mid D4$_\alpha$</td>
<td>90°</td>
<td>0$_+$</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>D4</td>
<td>90°</td>
<td>0$_+$</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

\[
\frac{C'_{D4 \text{ err}}} {C'_{D3 \text{ err}}} \approx 0.295, \quad \frac{C'_{D3 \alpha \text{ err}}} {C'_{B3 \text{ err}}} \approx 0.365, \quad \frac{C'_{D3 \text{ err}}} {C'_{B3 \text{ err}}} \approx 0.365
\]
Transport – FIterRKmethods

\[a = 2, \quad u_0(x) = x^3 + x^2 + x + 1, \quad T = 1 \]
Transport – FilterRKmethods

\[a = 2, \ u_0(x) = x^4 + x^3 + x^2 + x + 1, \ T = 1 \]
Transport – FilterRKmethods

\[a = 2, \quad u_0(x) = x^2 + x + 1, \quad T = 1 \]
Transport – FIterRKmethods

\[a = 2, \ u_0(x) = x^3 + x^2 + x + 1, \ T = 1 \]
Transport – FIterRKmethods

\[a = 2, \quad u_0(x) = x^3 + x^2 + x + 1, \quad T = 1 \]
Transport – FilterRK methods

\[a = 2, \ u_0(x) = x^3 + x^2 + x + 1, \ T = 1, \ \frac{|(f_0^1)_{ij} - J_{ij}|}{|(f_0^1)_{ij}|} \leq (10 \cdot \sqrt{n})^{-1}, \ T2 \]
Transport – FlIterRK methods

\[a = 2, \quad u_0(x) = x^3 + x^2 + x + 1, \quad T = 1, \quad \frac{|(f_0^1)_{ij} - J_{ij}|}{|(f_0^1)_{ij}|} \leq (10 \cdot \sqrt{n})^{-1}, \ 1xBN \]
Transport – FIterRKmethods

\[a = 2, \quad u_0(x) = x^3 + x^2 + x + 1, \quad T = 1, \quad \frac{|(f_0^1)_{ij} - J_{ij}|}{|(f_0^1)_{ij}|} \leq (10 \cdot \sqrt{n})^{-1}, \quad 2xBN \]
tl;dl

- We introduced the concept of Finite Iteration RK methods (FIterRK) as an extension to W-methods.

- We derived easy-to-handle order conditions for a FIterRK version of block-diagonal RK methods based on $C(\eta)$.

- Constructed FIterRK methods are highly stable: high stage order, L-stability, stiffly accurate.

- For D-stages even the α-input is of order $p = \text{StO}$ and well up to highly stable.

- T2-update saves one block-Newton iteration and provides quality monitor for Jacobian approximations.
We introduced the concept of Finite Iteration RK methods (FIterRK) as an extension to W-methods.

We derived easy-to-handle order conditions for a FIterRK version of block-diagonal RK methods based on $C(\eta)$.

Constructed FIterRK methods are highly stable: high stage order, L-stability, stiffly accurate.

For D-stages even the α-input is of order $p = \text{StO}$ and well up to highly stable.

T2-update saves one block-Newton iteration and provides quality monitor for Jacobian approximations.

to do

- Endue the FIterRK methods with an adaptive step size control.
- Make the T2 update compatible with iterative linear equations solvers.
- Exploit the approximation monitor.
- Testing, testing, testing.
tl;dr

- We introduced the concept of Finite Iteration RK methods (FIterRK) as an extension to W-methods.
- We derived easy-to-handle order conditions for a FIterRK version of block-diagonal RK methods based on $C(\eta)$.
- Constructed FIterRK methods are highly stable: high stage order, L-stability, stiffly accurate.
- For D-stages even the α-input is of order $p = \text{StO}$ and well up to highly stable.
- T2-update saves one block-Newton iteration and provides quality monitor for Jacobian approximations.

to do

- Endue the FIterRK methods with an adaptive step size control.
- Make the T2 update compatible with iterative linear equations solvers.
- Exploit the approximation monitor.
- Testing, testing, testing.

Thank You for Your Attention!
J.C. Butcher
Implicit Runge-Kutta Processes.
Math. Comput., Vol.18, p.50-64, 1964

J.C. Butcher and J.R. Cash

P. Deuflhard
Newton Methods for Nonlinear Problems.

E. Hairer and G. Wanner
Solving Ordinary Differential Equations II.

W. Hundsdorfer and J.G. Verwer
Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations.