Untersuchung von ATWS-Fällen für Siedewasserreaktoren

3609R01340

Abschlussbericht

K. Velkov, K. D. Schmidt, Y. Perin

AG-Nr. 3009 Auftragsnummer 820610 Datum: September 2011

PL: Dr. K. Velkov PC: J. Rose



### Inhaltsverzeichnis

| 1   | Einleitung1                                                                                                                                              |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2   | Anpassung eines Eingabedatensatzes für das gekoppelte<br>Rechenprogramm ATHLET-QUABOX/CUBBOX                                                             |
| 2.1 | Übernahme und Aktualisierung bestehender QUABOX/CUBBOX<br>Datensätze                                                                                     |
| 2.2 | Erweiterung der thermohydraulischen Modellierung des Kernes                                                                                              |
| 2.3 | Übernahme und Aktualisierung bestehender SWR Punktkinetik<br>ATHLET Datensätze                                                                           |
| 3   | Untersuchung von ATWS-Ereignissen unter verschiedenen                                                                                                    |
|     | Anfangs- und Randbedingungen 9                                                                                                                           |
| 3.1 | Identifikation des führenden ATWS-Ereignisses                                                                                                            |
| 3.2 | Durchführung von thermohydraulischen Sensitivitätsstudien als<br>Entscheidungshilfen12                                                                   |
| 3.3 | Ergebnisse für Punktkinetik mit 100 % Reaktorleistung, TUSA mit<br>ausgefallener Eigenbedarfsversorgung, unterschiedliche<br>Kühlmitteldichterückwirkung |
| 3.4 | Ergebnisse für Punktkinetik mit 100 % Reaktorleistung, TUSA mit<br>ausgefallener Eigenbedarfsversorgung, unterschiedliche<br>Dopplerrückwirkung          |
| 4   | Zusammenfassung22                                                                                                                                        |
| 5   | Literatur23                                                                                                                                              |
| 6   | Verteiler24                                                                                                                                              |

\_\_\_\_

# Abbildungsverzeichnis

| bbildung 2-1 Geometrie und thermohydraulische Nodalisierung des neuen                                 | Abbildung 2-1        |
|-------------------------------------------------------------------------------------------------------|----------------------|
| Reaktorkernmodells                                                                                    | Re                   |
| Abbildung 2-2 Axiale Nodalisierung der Brennelemente                                                  | Abbildung 2-2        |
| Abbildung 2-3 TH Kernkanäle                                                                           | Abbildung 2-3        |
| Abbildung 2-4 Relative radiale Leistungsverteilung im Kern                                            | Abbildung 2-4        |
| Abbildung 2-5 Relative axiale Leistungsverteilung in den Kernkanälen                                  | Abbildung 2-5        |
| Abbildung 2-6 Relative axiale Leistungsverteilung im heißen Brennelement (maximale radiale Leistung)6 | Abbildung 2-6<br>(ma |
| Abbildung 2-7 Mittlere axiale Abbrandverteilung in den Kernkanäle                                     | Abbildung 2-7        |
| Abbildung 2-8 Axiale Abbrandverteilung im heißen Brennelement                                         | Abbildung 2-8        |
| Abbildung 3-1 Reaktivität in Abhängigkeit von der Kühlmitteldichte                                    | Abbildung 3-1        |
| Abbildung 3-2 Reaktivität in Abhängigkeit von der Brennstabtemperatur                                 | Abbildung 3-2        |
| Abbildung 3-3 Vergleich des Reaktordruckes (Ausschnitt aus Bild 3-4) 16                               | Abbildung 3-3        |
| Abbildung 3-4 Vergleich des Reaktordruckes 16                                                         | Abbildung 3-4        |
| Abbildung 3-5 Vergleich des Massenstromes am Kerneintritt 17                                          | Abbildung 3-5        |
| Abbildung 3-6 Vergleich der mittleren Kühlmitteldichte 17                                             | Abbildung 3-6        |
| Abbildung 3-7 Vergleich der mittleren Brennstabtemperatur                                             | Abbildung 3-7        |
| Abbildung 3-8 Vergleich der mittleren Kühlmitteltemperatur                                            | Abbildung 3-8        |
| Abbildung 3-9 Vergleich der DNBR im Heißkanal im 5. Node                                              | Abbildung 3-9        |

| Abbildung 3-10 | Vergleich der Dichterückwirkung                         | 19 |
|----------------|---------------------------------------------------------|----|
| Abbildung 3-11 | Vergleich des Reaktordruckes (Ausschnitt aus Bild 3-12) | 20 |
| Abbildung 3-12 | Vergleich des Reaktordruckes                            | 20 |
| Abbildung 3-13 | Vergleich der DNBR im Heißkanal im 5. Node              | 21 |
| Abbildung 3-14 | Vergleich der Dichterückwirkung                         | 21 |

# Tabellenverzeichnis

| Tabelle 2-1 | Mit QUABOX/CUBBOX berechnete Reaktivitätskoeffizienten 2                |
|-------------|-------------------------------------------------------------------------|
| Tabelle 3-1 | TUSA ohne Eigenversorgung 10                                            |
| Tabelle 3-2 | Maximaler Anstieg des Speisewasserdurchsatzes 11                        |
| Tabelle 3-3 | Kühlmitteldichterückwirkung in Abhängigkeit von der Kühlmitteldichte 13 |
| Tabelle 3-4 | Dopplerrückwirkung In Abhängigkeit von der Brennstabtemperatur 14       |

#### 1 Einleitung

Das Ziel des Vorhabens ist die Bereitstellung einer validierten Rechenmethodik auf der Grundlage des gekoppelten Rechenprogramms ATHLET-QUABOX/CUBBOX zur Berechnung der ATWS-Ereignisse für Siedewasserreaktoren einschließlich der Nachweisführung für die Kühlbarkeit des Reaktorkerns. Die Anwendbarkeit des Voidreaktivitätskurven-Konzepts, das sich in ATWS-Berechnungen für DWR bewährt hat, soll für SWR überprüft werden. Detaillierte Modelle zur Beschreibung des Siedeübergangs ("Dryout" in SWR) sollen in die Rechenmethodik implementiert werden, um den Zeitpunkt des Siedeübergangs und die resultierenden maximalen Hüllrohrtemperaturen genau vorhersagen zu können. Die Analysen werden für die relevanten Anlagentransienten im Rahmen eines geeigneten generischen SWR-Anlagensimulators durchgeführt und die Auswirkungen auf die Anlage gemäß den Nachweisforderungen analysiert.

In den vergangenen Jahren sind ATWS-Ereignisse mit dem Rechenprogramm ATHLET /ATH 06b/ durchgeführt worden. Für diese Arbeiten sind die dazugehörigen Datensätze entwickelt worden. Dabei wurde die Neutronenkinetik mit der Punktkinetk beschrieben. Diese Punktkinetikergebnisse werden später mit den gekoppelten ATHLET-QUABOX/CUBBOX 3D-Kinetikrechnungen verglichen.

Ergebnisse von ATWS-Ereignissen beim Siedewasserreaktor sind in /DRÄ 08/ zusammengestellt worden. ATWS (Anticipated Transients without Scram) sind Betriebstransienten mit unterstelltem Ausfall des Schnellabschaltsystems. Dabei wird beim Siedewasserreaktor das Versagen des hydraulischen Einfahrens der Steuerstäbe unterstellt. Die Steuerstäbe werden jedoch in 120 s über den Mutternachlauf eingefahren. Der in /DRÄ 08/ verwendete Datensatz ist der Ausgangspunkt für diese Arbeit. 2 Anpassung eines Eingabedatensatzes für das gekoppelte Rechenprogramm ATHLET-QUABOX/CUBBOX

# 2.1 Übernahme und Aktualisierung bestehender QUABOX/CUBBOX Datensätze

Ausgangspunkt der Arbeiten war der bestehende QUABOX/CUBBOX Datensatz eines prototypischen Siedewasserreaktors, dessen Kernbeladung sich aus den verschiedenen Brennelement-Typen" zusammensetzt. Darauf aufbauend wurde das Modell einer generischen Anlage mit einer veränderten, erweiterten Kerngeometrie entwickelt, die sich an modernen Entwürfen von entsprechenden Kraftwerken orientiert (Abb. 2-1). Der neue Datensatz ist zurzeit in dem Sinne unvollständig, als dass die Spezifikationen der vorgesehenen, neuen Brennelement-Typen noch nicht verfügbar sind. Um trotzdem zumindest qualitative Aussagen über das Verhalten des Systems treffen zu können, wurde zunächst ein artifizielles Kernbeladungsschema bestehend aus einer annähernden Schachbrettanordnung von SWR-typischen Brennelementen verwendet.

| Mod                         | eratordichte       | Brenns          | Brennstofftemperatur |  |  |
|-----------------------------|--------------------|-----------------|----------------------|--|--|
| Dichte [kg/m <sup>3</sup> ] | R <sub>ρ</sub> [-] | Temperatur [°C] | R <sub>T</sub> [-]   |  |  |
| 0.100                       | -0.02333           | 500             | 0.0237807            |  |  |
| 0.200                       | -0.00588           | 600             | 0.02150727           |  |  |
| 0.300                       | 0.00596            | 700             | 0.01941557           |  |  |
| 0.400                       | 0.01388            | 800             | 0.01746939           |  |  |
| 0.477                       | 0.01856            | 900             | 0.01563177           |  |  |
| 0.500                       | 0.02022            | 1000            | 0.01389423           |  |  |
| 0.600                       | 0.02588            | 1100            | 0.01222861           |  |  |
| 0.700                       | 0.02744            | 1200            | 0.01064545           |  |  |
|                             |                    | 1400            | 0.00765101           |  |  |
|                             |                    | 1600            | 0.0048464            |  |  |
|                             |                    | 1800            | 0.00221508           |  |  |
|                             |                    | 2000            | -0.00028008          |  |  |

#### Tabelle 2-1 Mit QUABOX/CUBBOX berechnete Reaktivitätskoeffizienten

#### 2.2 Erweiterung der thermohydraulischen Modellierung des Kernes

Während die in Abb. 2-2. dargestellte longitudinale Nodalisierung der Brennelemente gegenüber dem alten Datensatz unverändert blieb, wurde bei der erforderlichen Anpassung der transversalen thermohydraulischen Nodalisierung des Gesamtkerns eine Unterteilung in 9 Superkanäle gewählt, die jeweils einer Zwangsumwälzpumpe bzw. dem Zentralkanal zugeordnet und in Abb. 2-1 und Abb. 2-3 durch schwarze Umrisse voneinander abgegrenzt sind. Jeder Superkanal unterteilt sich wiederum in 21 durchnummerierte Unterkanäle, wobei ein Unterkanal mehrere Brennelemente zusammenfasst.



### Abbildung 2-1 Geometrie und thermohydraulische Nodalisierung des neuen Reaktorkernmodells

Die eingekreisten Zahlen am Rand entsprechen den Indizes der Zwangsumwälzpumpen, die den schwarz umrandeten Superkanälen zugeordnet sind (8 + 1 Zentralkanal). Die Beschriftung der Brennelemente entspricht der Abbildung der thermohydraulischen Unterkanäle.



Abbildung 2-2 Axiale Nodalisierung der Brennelemente

Um die axiale und radiale Leistungsverteilung zu bestimmen, wurden stationäre Rechnungen mit QUABOX/CUBBOX durchgeführt. In Abb. 2-3 ist die Position des heißen Brennelements (hot channel) durch ein rotes Kästchen gekennzeichnet. Die axialen Leistungsverteilungen in allen 9 thermohydraulischen Zonen sind in Abb. 2-5 dargestellt. Die Kanäle 1, 3, 5 und 7 haben die gleiche Leistungsverteilung. Die Kanäle 2, 4, 6 und 8 haben ebenfalls die gleiche Leistungsverteilung. Die axiale Leistungsverteilung im heißen Brennelement ist in Abb. 2-6 dargestellt. Die mittlere axiale Abbrandverteilung für alle Kanäle ist in Abb. 2-7 und für das heiße Brennelement in Abb. 2-8 dargestellt.











Abbildung 2-5 Relative axiale Leistungsverteilung in den Kernkanälen



Abbildung 2-6 Relative axiale Leistungsverteilung im heißen Brennelement (maximale radiale Leistung)



Abbildung 2-7 Mittlere axiale Abbrandverteilung in den Kernkanäle



Abbildung 2-8 Axiale Abbrandverteilung im heißen Brennelement

Eine entsprechend konfigurierte, stationäre 3D-Rechnung mit QUABOX/CUBBOX lieferte die Reaktivitätskoeffizienten von Moderatordichte und Brennstofftemperatur für die Punktkinetik. (siehe Tabelle 2-1)

# 2.3 Übernahme und Aktualisierung bestehender SWR Punktkinetik ATHLET Datensätze

Es wird ein generischer Punktkinetik-ATHLET-Datensatz mit neu bestimmten Koeffizienten zur Beschreibung der Doppler- und Voidreaktivität eingesetzt. Dabei wird der Kernbereich durch drei parallele Kühlkanäle dargestellt:

- ein Kanal mit mittlerem Brennelement,
- ein Kanal mit einem heißen Brennelement sowie
- ein Kanal mit acht heißen Brennstäben und einem Heißstab.

Die ATWS–Störfälle werden mit dem Störfall-Simulator für eine typische Siedewasseranlage simuliert /POI 99a, POI 99b, POI 99c, JAK 98, JAK 99/.

Bei der sicherheitstechnischen Bewertung von ATWS-Fällen ist die inhärente Reaktivitätsrückwirkung für den Ablauf der Transiente maßgebend. Bei den Untersuchungen von ATWS-Fällen für Druckwasserreaktoren wird eine Grenzkurve für die Moderatordichte-Reaktivitätrückwirkung, die sogenannte Void-Kurve, abgeleitet. Dabei gilt, dass bei einem steilen Verlauf der Voidkurve die Leistungsabnahme infolge der Voidrückwirkung, verursacht durch die Verringerung der Moderatordichte, größer ist als bei einem flachen Verlauf der Grenzkurve. Für die Beurteilung bei Druckwasserreaktoren ist eine Grenzkurve zu ermitteln, die bei allen ATWS-Störfällen eine ausreichende Leistungsabnahme sicherstellt.

Zur Beurteilung von Siedewassertransienten soll möglicherweise auch so eine Grenzkurve eingeführt werden. In einem ersten Schritt ist die Transiente mit unterschiedlichen Koeffizienten zur Beschreibung der Dichterückwirkung in Abhängigkeit von der Kühlmitteldichte für verschiedene Anfangs- und Randbedingungen mit ATHLET berechnet worden. 3 Untersuchung von ATWS-Ereignissen unter verschiedenen Anfangs- und Randbedingungen

Um die Unterschiede im Druckverlauf und den zeitlichen Verlauf der DNBR (Dryout) Werte zu erfassen, sind die Ergebnisse der Transientenrechnungen, die in Abb. 3-4 bis Abb. 3-14, zusammengestellt sind, ausgewertet worden.

#### 3.1 Identifikation des führenden ATWS-Ereignisses

Entsprechend dem aktualisierten Entwurf des Regelwerks werden in einem ersten Schritt die folgenden Transienten mit Versagen der Reaktorschnellabschaltung unterstellt:

- 1. Ausfall der Hauptwärmesenke bei vorhandener Eigenbedarfsversorgung,
- 2. Ausfall der Hauptwärmesenke bei ausgefallener Eigenbedarfsversorgung,
- 3. Maximaler Anstieg der Dampfentnahme durch Öffnen der Umleitstation,
- 4. Maximaler Anstieg der Dampfentnahme durch Öffnen der Sicherheits- und Entlastungsventile,
- 5. Vollständiger Ausfall der Hauptspeisewasserversorgung,
- 6. Maximale Reaktivitätszufuhr durch Ausfahren von Steuerstäben oder Steuerstabgruppen,
- 7. Maximaler Abfall der Speisewassertemperatur,
- 8. Durchdringungsabschluss (DDA) bei vorhandener Eigenbedarfsversorgung,
- 9. Durchdringungsabschluss (DDA) bei ausgefallener Eigenbedarfsversorgung,
- 10. Maximaler Anstieg der Speisewasserdurchsätze,

Die zehn aufgelisteten Fälle sind mit laufenden und abgeschalteten Umwälzpumpen berechnet worden. Ergebnis der Auswertung ist, dass beim

 Ausfall der Hauptwärmesenke bei vorhandener Eigenbedarfsversorgung der höchste Reaktordruck auftritt und beim

9

 maximalen Anstieg des Speisewasserdurchsatzes der kleinste DNB-Wert errechnet wird.

Um die bei diesen beiden Störfällen aufgetretenen Maßnahmen zu verstehen und einordnen zu können, ist in Tabelle 3-1 und Tabelle 3-2 die zeitliche Folge der Ereignisse zusammengestellt worden.

| T <sub>Start</sub> | T <sub>Ende</sub> | TUSA ohne Eigenversorgung                               |
|--------------------|-------------------|---------------------------------------------------------|
| 801,92             |                   | Turbinen-SS Ventile schließen                           |
| 901,92             |                   | Dampfmassenstrom sinkt                                  |
|                    | 831               | Dampfmassenstrom ist gesunken                           |
| 805                |                   | Drehzahl der Hauptumwälzpumpe fallen                    |
|                    |                   | Bypass SS Ventile sind und bleiben offen                |
| 801,92             |                   | Bypassregelventile öffnen                               |
| 803,65             |                   | Bypassregelventil schließen                             |
|                    | 831,03            | Alle Bypassregelventile geschlossen                     |
| 802,83             |                   | Beginn der Stabbewegung                                 |
|                    | 832,6             | Ende der Stabbewegung                                   |
| 804                |                   | Spw-Iso-Armaturen beginnen zu schließen                 |
|                    | 841               | Ende des Schließens der Spw-Iso-Armaturen               |
| 802                |                   | Spw-Massenstrom in den RDB sinkt                        |
|                    | 831,6             | Ende der SPW-Massenstromabsenkung                       |
|                    |                   | Spw-Rückschlagarmatur beginnt zu sinken                 |
| 801,92             |                   | Schöpfrohrstellung beginnen zu sinken                   |
| 806,5              |                   | Massenstrom durch die Saugschieber sinkt                |
|                    | 856               | Massenstromabsenkung durch die Saugschieber ist beendet |

| Tabelle 3-1 | <b>TUSA ohne</b> | Eigenversorgung |
|-------------|------------------|-----------------|
|-------------|------------------|-----------------|

| T <sub>Start</sub> | T <sub>Ende</sub> | Maximaler Anstieg des Speisewasserdurchsatzes                       |
|--------------------|-------------------|---------------------------------------------------------------------|
| 800,01             |                   | RESA                                                                |
| 847                |                   | Turbinen SS Ventile schließen                                       |
| 805                |                   | Drehzahl der Hauptumwälzpumpen sinken                               |
|                    |                   | Bypass SS Ventile sind und bleiben offen                            |
| 801,8              |                   | Schöpfrohrstellung steigt                                           |
| 804                |                   | Saugschieber öffnen                                                 |
| 870,1              |                   | Mindestmengenventile öffnen                                         |
|                    | 890,4             | Mindestmengenventile schließen                                      |
|                    |                   | Saugschieber und Mindestmengenventile öffnen und schließen mehrmals |
| 804                |                   | Massenstrom durch die Rückschlagarmatur steigt                      |
| 873,4              |                   | Rückschlagarmatur öffnet                                            |
|                    | 900,1             | Rückschlagarmatur schließt                                          |
| 850                |                   | Speisewasser Iso-Armaturen variieren                                |
|                    |                   | Iso-Armaturen öffnen und schließen mehrmals                         |
| 848                |                   | Beginn der Stabbewegung                                             |
|                    | 971               | Ende der Stabbewegung                                               |

### Tabelle 3-2 Maximaler Anstieg des Speisewasserdurchsatzes

Für den Fall des maximalen Anstiegs des Speisewasserdurchsatzes ist der zeitliche Verlauf für die verschiedenen Korrelationen:

- Westinghouse W3,
- Hench-Levy,
- Israel-Casterline-Matzner,
- Biasi,

- Hydropress und
- Osmachin

berechnet worden.

Der kleinste Wert wird mit der Hydropress Korrelation berechnet. Für den Störfall Ausfall der Hauptwärmesenke mit Eigenbedarfsversorgung ist für eine typische Siedewasserreaktoranlage eine Unsicherheits- und Sensitivitätsstudie /GLA 11/ durchgeführt worden. Ergebnis dieser Studie ist, dass die verwendete Dryout–Korrelation der unsicherste Parameter mit den größten Auswirkungen ist. Da die Hydropress Korrelation die kleinsten Dryout–Werte berechnet, ist diese Korrelation für die weiteren Rechnungen zu wählen.

# 3.2 Durchführung von thermohydraulischen Sensitivitätsstudien als Entscheidungshilfen

Der zeitliche Verlauf der Variablen ist beim Störfall Ausfall der Hauptwärmsenke durch den Verlauf der Reaktorleistung und beim Abschalten der Umwälzpumpen durch den Verlauf des Massenstromes bestimmt. Die Reaktorleistung hängt im Wesentlichen vom Einfahren der Regelstäbe und der Dichterückwirkung ab. In einem ersten Schritt ist die Transiente mit unterschiedlichen Koeffizienten zur Beschreibung der Dichterückwirkung berechnet worden. Abb. 3-1 zeigt den Verlauf der Rückwirkung in Abhängigkeit von der Kühlmitteldichte. Ebenfalls sind die Zahlenwerte in der nachfolgenden Tabelle 3-3 angegeben. In der ersten Spalte stehen die Werte der Kühlmitteldichte. In der Spalte RHOREF stehen die zunächst berechneten Werte. Die Werte in der zweiten und dritten Spalte, RHO1 und RHO1a, sind numerische Variationen, um eine andere Steigung der Voidkurve zu erzeugen. Ähnliche Variationen sind für die Dopplerrückwirkung generiert worden (Tabelle 3-4, Abb. 3-3).

| Kühlmitteldichte (kg/m³) | RHORef   | RHO1   | RHO1a  |
|--------------------------|----------|--------|--------|
| 1,00E+02                 | -0,02330 | 0,005  | - 0,01 |
| 2,00E+02                 | -0,00588 | 0,009  |        |
| 3,00E+02                 | 0,00596  | 0,013  |        |
| 4,00E+02                 | 0,01388  | 0,0146 |        |
| 4,77E+02                 | 0,01856  | 0,016  |        |
| 5,00E+02                 | 0,02022  | 0,017  |        |
| 6,00E+02                 | 0,02588  | 0,019  |        |
| 7,00E+02                 | 0,02744  | 0,02   | 0,02   |

# Tabelle 3-3 Kühlmitteldichterückwirkung in Abhängigkeit von der Kühlmitteldichte



Abbildung 3-1 Reaktivität in Abhängigkeit von der Kühlmitteldichte

In Abb. 3-3 bis Abb. 3-14 sind die wichtigen Systemparameter dargestellt "

| Brennstabtemperatur ( °C ) | DOPRef   | DOP1  | DOP2  | DOP3  |
|----------------------------|----------|-------|-------|-------|
| 2,00E+02                   | 0,032000 | 0,021 | 0,027 | 0,032 |
| 4,750E+02                  | 0,024500 |       |       |       |
| 5,00E+02                   | 0,023781 |       |       |       |
| 6,,00E+02                  | 0,021507 |       |       |       |
| 7,00E+02                   | 0,019416 |       |       |       |
| 8,00E+02                   | 0,017469 |       |       |       |
| 9,00E+02                   | 0,015632 |       |       |       |
| 1,00E+03                   | 0,013894 |       |       |       |
| 1,1E+03.                   | 0,012229 |       |       |       |
| 1,2E+03.                   | 0,010645 |       |       |       |
| 1,4E+03.                   | 0,007651 |       |       | 0,05  |
| 1,6E+03.                   | 0,004846 |       |       |       |
| 1,8E+03.                   | 0,002215 |       |       |       |
| 2,0E+03.                   | 0,000280 | 0,015 | 0,015 |       |

 Tabelle 3-4
 Dopplerrückwirkung In Abhängigkeit von der Brennstabtemperatur



Abbildung 3-2 Reaktivität in Abhängigkeit von der Brennstabtemperatur

Für die Gesamtrückwirkung ist der Anteil der Kühlmitteldichte maßgeblich. Der negative Anteil des Dopplers infolge des Aufheizens der Brennstäbe ist nur gering. Daraus folgt, dass der Druckanstieg infolge des Schließens der Turbinenschnellschlussventile bestimmend ist für den Leistungsanstieg zu Beginn der Transiente. Die Rückwirkungsparameter RHO1a, DOPRef führen zum kleinsten Leistungsanstieg und die Rückwirkungsparameter RHORef, DOP1 ergeben den größten Leistungsanstieg. Mit dem größten Leistungsanstieg ist der kleinste DNB-Wert verbunden. Der zeitliche Verlauf des Reaktordruckes bei Änderung der Kühlmitteldichterückwirkung ist in Abb. 3-4 und Abb. 3-10 dargestellt. In Abb. 3-9 ist der Verlauf des DNB im Heißkanal im fünften Node dargestellt.

3.3 Ergebnisse für Punktkinetik mit 100 % Reaktorleistung, TUSA mit ausgefallener Eigenbedarfsversorgung, unterschiedliche Kühlmitteldichterückwirkung



Abbildung 3-3 Vergleich des Reaktordruckes (Ausschnitt aus Bild 3-4)



Abbildung 3-4 Vergleich des Reaktordruckes











Abbildung 3-7 Vergleich der mittleren Brennstabtemperatur



Abbildung 3-8 Vergleich der mittleren Kühlmitteltemperatur



Abbildung 3-9 Vergleich der DNBR im Heißkanal im 5. Node



Abbildung 3-10 Vergleich der Dichterückwirkung

3.4 Ergebnisse für Punktkinetik mit 100 % Reaktorleistung, TUSA mit ausgefallener Eigenbedarfsversorgung, unterschiedliche Dopplerrückwirkung



Abbildung 3-11 Vergleich des Reaktordruckes (Ausschnitt aus Bild 3-12)



Abbildung 3-12 Vergleich des Reaktordruckes



Abbildung 3-13 Vergleich der DNBR im Heißkanal im 5. Node



Abbildung 3-14 Vergleich der Dichterückwirkung

#### 4 Zusammenfassung

Der Bericht beschreibt die Vorbereitungsarbeiten und die durchgeführten Orientierungsrechnungen um die notwendige Plattform für die SWR ATWS Analyse vorzubereiten.

Mit Schreiben vom 09.11.2010 wurde mit dem Änderungsdienst Rev. 1 eine Vertragsänderung beantragt, damit das ursprünglich vorgesehene Arbeitsprogramm in den Jahren 2011 und 2012 fortgesetzt werden kann.

Unter den Bedingungen des fehlenden Haushaltes für das Jahr 2011 wurde der Vertrag zunächst nur bis Ende 2010 abgeschlossen, ohne dass in einzelnen Arbeitspunkten Inhalte angepasst wurden. Es wurde somit davon ausgegangen, dass das Vorhaben bei Verfügbarkeit entsprechender Haushaltmittel um diese gekürzten Mittel aufgestockt wird, um somit das angebotene Arbeitsprogramm vollständig umsetzen zu können.

Auf Grund der Verzögerung bei der Beschaffung der Wirkungsquerschnittdaten eines aktuellen Kernbeladeplans (die Daten waren im Dezember 2010 noch nicht verfügbar), konnte der Arbeitspunkt AP 1.3 "Übernahme eines aktuellen Kernbeladungsplans" nicht bis Ende 2010 bearbeitet werden. Der Arbeitspunkt wurde daraufhin in das Jahr 2011 verschoben.

#### 5 Literatur

- /ATH 06b/ H. Austregesilo, C. Bals, A. Hora, G. Lerchl, P. Romstedt, ATHLET Mod 2.0 Models and Methods; GRS-P-1 / Vol. 4, July 2006
- /DRÄ 08/ P. Dräger, H. Glaeser et alt. Ermittlung des Standes von Wissenschaft und Technik bei der Durchführung und Bewertung von Störfallanalysen und der Verwendung von Analysesimulatoren, GRS-A-3438, August 2008
- /POI 99a/ W. Pointner,
   Störfallsimulator Philippsburg I, Qualifikation der Datenbasis, GRS-A-2691,
   März 1999
- /POI 99b/ W. Pointner,
   Leittechnikmodule der Sicherheitssysteme f
  ür das KKW Philippsburg 1, (KKP 1), GRS-A-2778, September 1999
- /POI 99c/ W.Pointner,
   Leittechnikmodule der Betriebssysteme f
  ür das KKW Philippsburg 1; (KKP 1), GRS-A-2784, September 1999
- /JAK 98/ Z. Jakubowski,
   Leittechnikmodule des Reaktorschutzsystems und der elektrischen Stromversorgung f
  ür das KKW Philippsburg 1(KKP 1), GRS-A-2625, August 1998
- /JAK 99/ Z. Jakubowski, , W. Pointner,
   Datenbasis f
  ür das KKW Philippsburg I, Bedienungsanleitung f
  ür den anlagenspezifischen Störfallsimulator, GRS-A-2696, M
  ärz 1999
- /GLA 11/ H. Glaeser, B. Krzykacz-Hausmann, T. Skorek, Ergebnisse einer Unsicherheits - und Sensitivitätsanalyse für den Siedewasserreaktor, noch nicht veröffentlicht

# 6 Verteiler

### Druckexemplare:

Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit

| AG RS I 3, Dr. Mergel   | 1x |
|-------------------------|----|
| GRS                     |    |
| Autoren (vek, per, smk) | Зх |
| Gesamtauflage           | Зx |

### PDF-Version:

| BMU,                     | AG RS I 3, Dr. Mergel |  |
|--------------------------|-----------------------|--|
| GRS                      |                       |  |
| Geschäftsführer          |                       |  |
| Bereichsleiter           |                       |  |
| Projektcontrolling (roo) |                       |  |
| Abteilungsleiter/        |                       |  |
| Projektleiter (vek)      |                       |  |
| Autoren                  |                       |  |
| TECDO (rop)              |                       |  |
|                          |                       |  |