

Gesellschaft für Anlagenund Reaktorsicherheit (GRS) mbH

Ableitung von Permeabilitäts-Porositätsrelationen für Salzgrus

Gesellschaft für Anlagenund Reaktorsicherheit (GRS) mbH

Ableitung von Permeabilitäts-Porositätsrelationen für Salzgrus

Ingo Müller-Lyda Heinz Birthler Eckhard Fein

Juli 1999

Anmerkung:

Die diesem Bericht zugrundliegenden Arbeiten wurden mit Mitteln des Bundesministeriums für Wirtschaft und Technologie (BMWi) unter dem Förderkennzeichen 02E8855-2gefördert.

Die Arbeiten wurden von der Gesellschaft für Anlagen und Reaktorsicherheit (GRS) mbH durchgeführt.

Die Verantwortung für den Inhalt dieser Veröffentlichung liegt allein bei den Autoren.

Deskriptoren: Endlager, Langzeitsicherheit, Meßwert, Permeabilität, Porosität, Salz, Statistik, Strömung, Versuchsauswertung

Vorwort

Die Bewertung der Langzeitsicherheit von Endlagern erfordert ein leistungsfähiges und erprobtes Instrumentarium. Dafür werden Rechenprogramme und Daten eingesetzt, mit denen die relevanten physikalischen und chemischen Prozesse bei Freisetzung von Schadstoffen, deren Ausbreitung im Deckgebirge und Exposition in der Biosphäre beschrieben werden. Ziel des Vorhabens "Wissenschaftliche Grundlagen zum Nachweis der Langzeitsicherheit von Endlagern", FKZ 02 E 8855 2, war die Verfolgung nationaler und internationaler Entwicklungen sowie die Auswertung wissenschaftlicher Ergebnisse. Dabei standen experimentelle und theoretische FuE-Vorhaben im Vordergrund, die wichtige Beiträge zu Modellvorstellungen und Modelldaten für Langzeitsicherheitsanalysen lieferten. Eine weitere relevante Aufgabe stellte die Entwicklung von Instrumentarien für die Langzeitsicherheitsanalyse von Endlagern in Hartgesteinsformationen dar.

Dieses sonderfinanzierte Vorhaben des Bundesministeriums für Wirtschaft und Technologie wurde in der Zeit vom 01.04.1996 bis 30.09.1999 durchgeführt. Zu den schwerpunktmäßig während des Projektes bearbeiteten Themen wurden die folgenden sechs wissenschaftlichen Einzelberichte angefertigt.

- GRS-Bericht 129 Erzeugung und Verbleib von Gasen in einem Endlager für radioaktive Abfälle
- GRS-Bericht 148 Ableitung von Permeabilitäts-Porositätsbeziehungen für Salzgrus
- GRS-Bericht 151 Permeabilität von aufgelockertem Steinsalz. Ableitung einer Relation zur Modellierung von Auflockerungszonen innerhalb von Langzeitsicherheitsanalysen
- GRS-Bericht 154 Spent Fuel Performance Assessment (SPA) for a hypothetical repository in crystalline formations in Germany

I

GRS-Bericht 155 Zusammenstellung und Auswertung geochemischer Untersuchungen zum Radionuklidverhalten aus ausgewählten Studien über Natürliche Analoga

GRS-Bericht 156 Grundlegende Ausbreitungsrechnungen mit dem Transportprogramm CHETLIN

In einem zusammenfassenden Abschlußbericht wurden außerdem alle während der Laufzeit des Projekts durchgeführten Arbeiten in Kurzbeiträgen zusammengefaßt:

GRS-Bericht 153 Wissenschaftliche Grundlagen zum Nachweis der Langzeitsicherheit von Endlagern. Abschlußbericht

Abstract

Durch den Strömungswiderstand von Versatzmaterialien und Verschlüssen wird der Transport von Laugen innerhalb eines Endlagers im Salinar behindert. Dieser Effekt wirkt sich beim Zufluß von Laugen in die Einlagerungsbereiche und beim Auspressen von kontaminierten Laugen aus dem Grubengebäude aus. Die bestimmende Größe für die Strömungswiderstände ist in diesem Falle die Permeabilität. Der durch den Gebirgsdruck verursachte Konvergenzprozeß verringert den vorhandenen Resthohlraum und damit auch die Permeabilität der Versatzmaterialien und Verschlüsse.

In Langzeitsicherheitsanalysen wird der Zusammenhang zwischen Porosität und Permeabilität für Salzgrus in der Regel durch eine Potenzfunktion beschrieben. Sowohl die Ableitung des bisher verwendeten Zusammenhangs als auch die Bestimmung der verwendeten Parameter basieren auf der Auswertung der experimentellen Daten, die Mitte 1983 zur Verfügung standen [14].

Im Jahre 1996 wurde bei der GRS unter Hinzunahme des bis Ende 1994 bekanntgewordenen zusätzlichen Datenmaterials eine verbesserte Relation für den Zusammenhang zwischen der Permeabilität und der Porosität für Salzgrusversatz abgeleitet. Der Ableitung dieser Relation lag eine Regression von insgesamt 67 Permeabilitätsmeßwerten nach der Porosität zugrunde, die sich auf Grund der Versuchsbedingungen und der Dokumentation als verwertbar erwiesen hatten. Nach den Ergebnissen dieser Arbeit kann die bisher verwendete Potenzfunktion grundsätzlich beibehalten werden, empfohlen wurde lediglich eine leichte Modifikation der Zahlenwerte für die Formelkoeffizienten. Daneben wurde anhand der insgesamt vorliegenden experimentellen Ergebnisse gezeigt, daß Permeabilität von feucht kompaktiertem Salzgrus signifikant stärker porositätsabhängig ist als die von trocken kompaktiertem Material. Daher wurden neben der gemeinsamen Regression mit allen Daten auch getrennte jeweils mit den Daten für feucht und trocken kompaktiertes Material durchgeführt und damit die Relationen abgeleitet, mit denen das unterschiedliche Verhalten Permeabilitäts-Porositätsrelationen beschrieben wird. Zusätzlich wurden für probabilistische Sicherheitsanalysen erstmalig die statistischen Verteilungsfunktionen der miteinander korrelierten Parameter der Permeabilitäts-Porositätsbeziehung bestimmt.

Für die 1996 durchgeführte Auswertung standen noch keine ausreichenden Daten für stark kompaktierten Salzgrus und damit für den für Langzeitsicherheitsanalysen besonders wichtigen Bereich der niedrigen Porositäten unterhalb 4% zur Verfügung.

Durch die Ergebnisse aus einigen zwischenzeitlich abgeschlossenen Versuchsprogrammen haben sich sowohl die Anzahl der insgesamt verfügbaren Meßdaten als auch der durch Messungen abgedeckte Porositätsbereich beträchtlich erhöht, wodurch die Ableitung der hier beschriebenen, besser abgesicherten Permeabilitäts-Porositätsrelationen mit erweitertem Gültigkeitsbereich ermöglicht wurde. Dabei konnte auf die in der Untersuchung von 1996 angewendeten speziellen statistischen Verfahren, insbesondere für die Ableitung der bivariaten Verteilungsfunktion für die Koeffizienten der Permeabilitäts-Porositätsrelationen, zurückgegriffen werden.

Mit abnehmender Porosität haben die Verteilung und die Vernetzung des Porenraums einen zunehmenden Einfluß auf die Permeabilität, so daß im Bereich sehr niedriger Porositäten zu unterscheiden ist zwischen der totalen Porosität und der Transportporosität als dem Porositätsanteil, durch den ein Fluidtransport erfolgen kann. Einzelne Meßreihen lassen erkennen, daß die Permeabilität bei sehr niedrigen totalen Porositäten schneller abnimmt als nach einer Extrapolation des Potenzgesetzes zu erwarten ist. Die derzeit vorhandene Datenbasis reicht aber für eine Regressionsanalyse mit einem verfeinerten Modell, in dem zwischen Transport- und Totalporosität unterschieden wird, noch nicht aus.

Inhaltsverzeichnis

	VorwortI
	AbstractIII
	InhaltsverzeichnisV
1	Einleitung1
2	Permeabilität von Salzgrus5
2.1	Theoretische Aspekte5
2.2	Porositätsarten6
2.3	Wechselwirkungen zwischen Salzgrus und Meßfluid7
3	Experimentelle Ergebnisse9
3.1	Die Datenbasis der GRS-Auswertung von 19969
3.2	Die BGR-Daten von 199511
3.3	Die Battelle-Daten von 1995 12
3.4	In-situ- und Labordaten aus dem DEBORA-Projekt
4	Methode der statistischen Auswertung 19
4 4.1	Methode der statistischen Auswertung 19 Bestwerte für die Koeffizienten der Regressionsgleichung 19
4 4.1 4.2	Methode der statistischen Auswertung
4 4.1 4.2 5	Methode der statistischen Auswertung 19 Bestwerte für die Koeffizienten der Regressionsgleichung 19 Statistische Verteilung der Regressionskoeffizienten 20 Statistische Auswertung 25
4 4.1 4.2 5 5.1	Methode der statistischen Auswertung 19 Bestwerte für die Koeffizienten der Regressionsgleichung 19 Statistische Verteilung der Regressionskoeffizienten 20 Statistische Auswertung 25 Lineare Regression nach der totalen Porosität 25
 4.1 4.2 5 5.1 5.2 	Methode der statistischen Auswertung 19 Bestwerte für die Koeffizienten der Regressionsgleichung 19 Statistische Verteilung der Regressionskoeffizienten 20 Statistische Auswertung 25 Lineare Regression nach der totalen Porosität 25 Nichtlineare Regression nach der Transportporosität 26
 4.1 4.2 5 5.1 5.2 5.3 	Methode der statistischen Auswertung19Bestwerte für die Koeffizienten der Regressionsgleichung19Statistische Verteilung der Regressionskoeffizienten20Statistische Auswertung25Lineare Regression nach der totalen Porosität25Nichtlineare Regression nach der Transportporosität26Meßfehler der Porosität27
 4.1 4.2 5.1 5.2 5.3 6 	Methode der statistischen Auswertung19Bestwerte für die Koeffizienten der Regressionsgleichung19Statistische Verteilung der Regressionskoeffizienten20Statistische Auswertung25Lineare Regression nach der totalen Porosität25Nichtlineare Regression nach der Transportporosität26Meßfehler der Porosität27Ergebnisse31
 4.1 4.2 5 5.1 5.2 5.3 6 6.1 	Methode der statistischen Auswertung19Bestwerte für die Koeffizienten der Regressionsgleichung19Statistische Verteilung der Regressionskoeffizienten20Statistische Auswertung25Lineare Regression nach der totalen Porosität25Nichtlineare Regression nach der Transportporosität26Meßfehler der Porosität27Ergebnisse31Koeffizienten der Permeabilitäts-Porositätsrelation31
 4.1 4.2 5.1 5.2 5.3 6.1 6.2 	Methode der statistischen Auswertung19Bestwerte für die Koeffizienten der Regressionsgleichung19Statistische Verteilung der Regressionskoeffizienten20Statistische Auswertung25Lineare Regression nach der totalen Porosität25Nichtlineare Regression nach der Transportporosität26Meßfehler der Porosität27Ergebnisse31Koeffizienten der Permeabilitäts-Porositätsrelation31Statistische Verteilung der Formelkoeffizienten36
 4.1 4.2 5.1 5.2 5.3 6 6.1 6.2 6.3 	Methode der statistischen Auswertung19Bestwerte für die Koeffizienten der Regressionsgleichung19Statistische Verteilung der Regressionskoeffizienten20Statistische Auswertung25Lineare Regression nach der totalen Porosität25Nichtlineare Regression nach der Transportporosität26Meßfehler der Porosität27Ergebnisse31Koeffizienten der Permeabilitäts-Porositätsrelation31Statistische Verteilung der Formelkoeffizienten36Unterschied zwischen totaler Porosität und Transportporosität41
 4.1 4.2 5 5.1 5.2 5.3 6 6.1 6.2 6.3 7 	Methode der statistischen Auswertung 19 Bestwerte für die Koeffizienten der Regressionsgleichung 19 Statistische Verteilung der Regressionskoeffizienten 20 Statistische Auswertung 25 Lineare Regression nach der totalen Porosität 25 Nichtlineare Regression nach der Transportporosität 26 Meßfehler der Porosität 27 Ergebnisse 31 Koeffizienten der Permeabilitäts-Porositätsrelation 31 Statistische Verteilung der Formelkoeffizienten 36 Unterschied zwischen totaler Porosität und Transportporosität 41 Zusammenfassung 43

9	Anhang: Zusammenstellung der Meßdaten		
	Abbildungsverzeichnis71		
	Tabellenverzeichnis73		

1 Einleitung

Die langfristige Sicherheit von Endlagern für radioaktive Abfälle muß mit Hilfe von Langzeitsicherheitsanalysen bewertet werden. Bei diesen Analysen müssen Strömungsvorgänge von Wasser, Laugen oder Gasen und der Transport von Schadstoffen durch die natürlichen und technischen Barrieren des Endlagers modelliert werden. Die technischen Barrieren sind vorrangig die Schacht- und Bohrlochverschlüsse und Dämme, mit denen die gefüllten Einlagerungsbereiche vom übrigen Grubengebäude abgetrennt werden. Für Endlager in tiefen Salzformationen ist nach den aktuellen Konzepten Salzgrus das wesentliche Baumaterial für solche Barrieren. Daraus folgt, daß die Permeabilität von Salzgrus einer der bestimmenden Parameter für die Strömungsverhältnisse und damit für den Schadstofftransport in bzw. aus einem Endlager im Salinar ist.

Die große Bedeutung der Permeabilität der technischen Barrieren für die Ergebnisse von probabilistischen Langzeitsicherheitsanalysen wird durch Abb. 1-1 verdeutlicht. Hier sind verschiedene Eingangsparameter aufsteigend nach ihrem Einfluß auf die in mehreren Langzeitsicherheitsanalysen (z.B. [8], [15]) berechneten Schadstoffreisetzungen aufgeführt. Diese Gegenüberstellung ist eine aktualisierte Version der entsprechenden Darstellung in [16]. Der Eingangsparameter "Exponent in n/k-Beziehung" ist dabei ein Maß für die Abhängigkeit der Permeabilität von kompaktiertem Salzgrus von dessen Porosität und entspricht der Konstanten m in der in Kapitel 4 dieses Berichts definierten Permeabilitäts-Porositätsrelation (4). Der Vergleich zeigt, daß die Salzgruspermeabilität einer der drei Parameter mit dem größten Einfluß auf die berechneten Freisetzungen in Endlagersicherheitsanalysen ist.

Die Permeabilität von kompaktiertem Salzgrus wird ihrerseits durch die mikroskopische Verteilung und die dreidimensionale Vernetzungsstruktur des Porenraums bestimmt. Daher ist die Permeabilität als makroskopische Kenngröße eine komplexe Funktion mit einer Vielzahl von Eingangsparametern, von denen freilich die Porosität der wichtigste ist. Mit einer Permeabilitätsrelation, die als Parameter nur den Mittelwert der Porosität permeabler Materialien enthält, kann die Variabilität der gemessenen Permeabilitäten jedoch nicht restlos beschrieben werden.

1

Abb. 1-1 Rangfolge der Einflußgrößen für Endlager-Sicherheitsanalysen

Durch Einbeziehung weiterer Einflußgrößen für Salzgrus, wie beispielsweise Korngrößenverteilung, Wassergehalt, Kompaktionsgeschwindigkeit oder eine Berücksichtigung der realen Porenraumstruktur läßt sich die restliche Variabilität zwar grundsätzlich weiter reduzieren, da diese Parameter jedoch entweder nicht vollständig bekannt sind oder für ein Endlager nicht von vornherein detailliert festgelegt werden können, muß in den Vorausberechnungen des potentiellen Schadstofftransports immer ein gewisses Maß an Unsicherheit in Kauf genommen werden.

Dem geschilderten Problem wird in probabilistischen Langzeitsicherheitsanalysen dadurch Rechnung getragen, daß die statistischen Unsicherheiten der Koeffizienten in der Permeabilitäts-Porositätsrelation explizit berücksichtigt werden. Die Größe dieser statistischen Unsicherheiten hängt von der Anzahl und der Streuung der Meßdaten ab, welche die Datenbasis für die statistische Ermittlung der Schätzwerte für die Formelkoeffizienten bilden. Daher kann man durch Berücksichtigung aller verfügbaren experimentellen Ergebnisse aus Untersuchungen des Zusammenhangs zwischen der Permeabilität und der Porosität von kompaktiertem Salzgrus die statistische Unsicherheit der Ergebnisse von Langzeitsicherheitsanalysen verringern. Dabei ist vorausgesetzt, daß die Meßwerte aufgrund der Randbedingungen im Experiment, der Beschaffenheit der untersuchten Proben und der Meßfehler in eine zusammenfassende statistische Analyse einbezogen werden können.

Wegen der großen Bedeutung der Permeabilität von Salzgrus für die Ergebnisse von Langzeitsicherheitsanalysen wurde bei der GRS bereits 1996 eine Sichtung der bis 1994 publizierten experimentellen Untersuchungen vorgenommen und aus den darin enthaltenen geeigneten Daten mittels statistischer Verfahren Permeabilitäts-Porositätsrelationen für trocken und feucht kompaktierten Salzgrus abgeleitet [5]. Diese statistische Untersuchung auf der Grundlage von 67 Meßwerten lieferte auch die Verteilungsfunktionen für die Schätzwerte der Formelkoeffizienten. Da seit 1994 eine Vielzahl weiterer experimenteller Daten veröffentlicht worden ist, ergab sich die Möglichkeit einer aktualisierten Analyse auf der Grundlage einer erheblich verbreiterten Datenbasis, deren Ergebnisse erheblich kleinere statistischen Unsicherheiten als die in [5] aufweisen. Außerdem wurden auch Meßergebnisse für stark kompaktierten Salzgrus vorgelegt, die gestatteten, den Geltungsbereich der Permeabilitäts-Porositätsrelation in den besonders für Langzeitsicherheitsanalysen wichtigen Bereich sehr niedriger Porositäten zu erweitern.

τ.

2 Permeabilität von Salzgrus

2.1 Theoretische Aspekte

Die theoretische Beschreibung der Permeabilität der Permeabilitätsänderungen poröser Materialien ist wegen der komplizierten Struktur und der Vernetzung der Hohlräume, durch die der Fluidtransport im Falle von Steinsalzgrus praktisch ausschließlich abläuft, problematisch. Für diese Beschreibung existieren eine Vielzahl empirischer und theoretisch begründeter Ansätze [4]. In einigen theoretischen Ansätzen wird die Porenstruktur vereinfachend durch einen Strömungskanal oder ein System von Strömungskanälen mit einer charakteristischen Weite, dem hydraulischen Radius, dargestellt [2]. Dieser Ansatz liefert nach einigen vereinfachenden Annahmen und Substitution einiger Modellparameter die Permeabilitäts-Porositätsbeziehung nach Kozeny

$$k \propto \frac{n^3}{1-n^2} = n^3 + n^5 + 0(n^7).$$

Darin bezeichnen k die Permeabilität und n die mittlere Porosität des durchströmten Materials. Die Potenzreihenentwicklung dieser Relation nach der Porosität zeigt, daß nach diesem Modell die Permeabilität stärker als mit n^3 anwächst. Ausgehend von solchen Modellen hat Stormont [18] ein allgemeines Potenzgesetz für die Permeabilität kin Abhängigkeit von der Porosität n

$$k \propto n^m$$
 (1)

abgeleitet. Der Exponent m, der die Permeabilitätsänderung in Abhängigkeit von Porositätsänderungen beschreibt, wird durch den sogenannten Archieschen Zementationsfaktor s [1] und einen weiteren Parameter a bestimmt

$$m = 2 \cdot a + s \,. \tag{2}$$

Der Parameter *a* liegt im Bereich zwischen 0 und 1, je nach dem, ob die Porositätsänderungen mehr durch Änderung der Durchmesser oder mehr der volumenbezogenen Oberflächen der Strömungskanäle hervorgerufen wird. Die Zementationsfaktoren wurden an Proben aus dem Forschungsbergwerk Asse für verschiedene Salzgesteinsarten bestimmt [9] und liegen jeweils ungefähr bei dem Wert 3. Aus diesen Zahlen folgt, daß der Porositätsexponent von Salzgrus innerhalb einer Bandbreite von 3 < m < 5liegen sollte. Die GRS-Analyse von 1996 [5] hat mit m = 3,84 für trocken kompaktierten Salzgrus einen Wert innerhalb dieser nach (2) theoretisch zu erwartenden Bandbreite ergeben, während der entsprechende Wert von m > 8 für feucht kompaktierten Salzgrus deutlich darüber lag.

2.2 Porositätsarten

Für die Verfüllung der Hohlräume in einem Endlager im Salinar ist Salzgrus vorgesehen, der beim Auffahren von Strecken und Kammern mit Teilschnittmaschinen anfällt. Da für Laboruntersuchungen in der Regel die Grobfraktion des Salzgruses mit Korndurchmessern oberhalb 20 bis 30 mm entfernt werden muß, ist das Material dann feinkörniger als im Ausgangszustand. Solche Laborproben und der in situ eingebrachte Versatz können sich in der Anfangsdichte, im Feuchtegehalt, in der Temperatur, der Kompaktionsgeschwindigkeit, der Körnungslinie und der mineralogischen Zusammensetzung unterscheiden. Durch solche Unterschiede können Salzgrusproben mit gleicher Porosität Permeabilitäten zeigen, die um mehrere Größenordnungen differieren.

Entscheidend für den Stofftransport durch ein poröses Material ist die Transportporosität, die von dem durchgängigen, vernetzten Porensystem gebildet wird, durch das ein Fluid die Probe durchströmt. Daneben existieren noch die sogenannten Sackporen, die einseitig an das System der Transportporosität angeschlossen sind. In diesem Teil des Porenraums findet ein Ein- oder Abströmen von Fluiden nur bei Druckänderungen statt. Insofern kann dieser Porositätsanteil die Ergebnisse von Permeabilitätsmessungen mit instationären Methoden beeinflussen. Die Transportporosität und die Sackporen bilden die zugängliche Porosität n_{zug} . Schließlich treten noch isolierte, von außen unzugängliche Poren auf, mit denen überhaupt kein Fluid ausgetauscht wird. Dieser Porositätsanteil hat keinen Einfluß auf die Permeabilität und wird nur bei Messungen der totalen Porosität mit gravimetrischen Methoden mit erfaßt.

Dementsprechend unterscheidet man zwischen der Transportporosität n_{tr} , der zugänglichen Porosität n_{zug} und der totalen Porosität n_{tot} . Hierfür gilt immer $n_{tr} < n_{zug} < n_{tot}$. In den Untersuchungsberichten wird meistens n_{tot} angegeben, weil diese relativ einfach und auch während einer Kompaktion über die Volumenänderung der Probe meßbar ist.

6

Angaben über die Transportporosität n_{tr} werden in den Untersuchungsberichten in der Regel nicht gemacht. Im Hinblick auf die Permeabilität ist die Unterscheidung zwischen den Porositätsarten um so wichtiger, je niedriger die totalen Porositäten sind.

2.3 Wechselwirkungen zwischen Salzgrus und Meßfluid

Bei Permeabilitätsmessungen an porösen oder aufgelockerten Gesteinen im Labor ist es üblich, die Proben vor der Untersuchung zu trocknen. Damit sollen gleiche Voraussetzungen für alle Proben geschaffen und Zweiphasenströmungseffekte vermieden werden. In speziellen Untersuchungen wird dagegen auch der Feuchtigkeitseinfluß durch kontrollierte Wasser- oder Laugezugabe bei der Kompaktion untersucht. Obwohl die meisten der Proben, an denen die hier herangezogenen Meßwerte ermittelt wurden, aus ungetrocknetem Salzgrus hergestellt wurden und Feuchtegehalte unter 0,1 Gew.% aufweisen, ist für das Verhalten der Permeabilität auch entscheidend, ob diese Proben vor der Untersuchung in einer mehr oder weniger feuchten oder trockenen Atmosphäre aufbewahrt werden, da der Feuchtegehalt von feinkörnigem Salzgrus durch Wasseradsorption besonders bei relativen Luftfeuchten > 70% auf ca. 1 Gew.% ansteigt [6]. Das in Kapitel 3.3 beschriebene unterschiedliche Verhalten der Proben in den Untersuchungen von Battelle, die bei 35% oder 75% relativer Feuchte gelagert wurden, zeigt, daß schon kleinste adsorbierte Feuchtemengen das Durchlässigkeitsverhalten entscheidend beeinflussen können.

Insofern bezeichnet im folgenden verwendeten Begriff "feuchter Salzgrus" ungetrocknetes Material mit adsorptiv gebundener Feuchte, in dem noch keine separate, mobile flüssige Phase existiert und der daher von Salzgrus, der direkt durch Zumischung von Feuchte in Form von Wasser oder Lauge angefeuchtet wurde, unterschieden werden muß. Ergebnisse von Permeabilitätsmessungen an angefeuchtetem Salzgrus sind bisher nicht bekannt geworden.

Bei Materialien mit sehr geringer Porosität und dementsprechend engen Strömungskanälen spielt außerdem das Meßfluid eine nicht zu vernachlässigende Rolle. Mit abnehmender Porosität treten Wechselwirkungen zwischen dem Meßfluid und der Wand der Probenmatrix in den Vordergrund und führen zu scheinbaren Veränderungen der Permeabilität, die korrigiert werden müssen. Solche Effekte sind z.B. Gleitströmung, Turbulenz, Knudsen-Diffusion sowie Adsorption an den Oberflächen des Porenraums.

7

Durch hinreichende Variation der experimentellen Randbedingungen lassen sich solche Effekte grundsätzlich erkennen und korrigieren. Solche Messungen wurden bei den vorliegenden Untersuchungen nur in begrenztem Umfang durchgeführt, weil der experimentelle Aufwand dafür sehr hoch ist.

Wichtig ist in diesem Zusammenhang die Korrektion nach Klinkenberg, mit der die Anteile am Fluidstrom, die nicht durch das Darcy-Gesetz beschrieben werden, eliminiert werden können. Diese als Gleitströmung bezeichneten Strömungsanteile treten nur bei gasförmigen Meßfluiden und kleinen Porositäten auf, wenn die Porenweite in der Größenordnung der mittleren freien Weglänge der Gasteilchen liegt. Für eine derartige Korrektion muß ein Koeffizient experimentell aus Permeabilitätsmessungen bei verschiedenen Gasdrücken abgeleitet werden. Bei den in diesem Bericht berücksichtigten Daten wurde diese aufwendige Prozedur nur bei einem Teil der Battelle-Meßwerte durchgeführt.

In phänomenologischer Hinsicht erweist sich eine Unterteilung der Versuchsproben in die zwei Kategorien "feucht gelagert/kompaktiert" und "trocken gelagert/kompaktiert" als sinnvoll. Für eine einfache, allgemeine Permeabilitäts-Porositätsbeziehung für Langzeitsicherheitsanalysen liefert die zusätzliche Betrachtung von Korngrößen, Brucherscheinungen, Kompaktionsgeschwindigkeiten, Temperaturen oder sonstigen Einflußgrößen keine Aussagen, die auf einfache Weise mit einbezogen werden können.

3 Experimentelle Ergebnisse

Eine erste statistische Analyse von Permeabilitäts-Porositätsmeßdaten wurde von der GRS 1996 publiziert [5]. Hierfür standen insgesamt 67 verwertbare Permeabilitätsmeßdaten im Porositätsbereich zwischen 4% und 42% zur Verfügung. Durch eine Vielzahl neuer Untersuchungsergebnisse hat sich der durch Messungen abgedeckte Porositätsbereich, wie Abb. 3-1 verdeutlicht, entscheidend vergrößert. Ebenfalls erheblich vergrößert hat sich auch die Anzahl der Meßdaten, insbesondere für feucht kompaktierten Salzgrus. Die einzelnen in dieser Abbildung aufgeführten Untersuchungen werden in den folgenden Unterkapiteln näher beschrieben.

Abb. 3-1 Bereiche der in verschiedenen Untersuchungsreihen abgedeckten Permeabilitäten und Porositäten von kompaktiertem Salzgrus

3.1 Die Datenbasis der GRS-Auswertung von 1996

Dieser Arbeit lagen bis einschließlich 1994 publizierte Meßwerte aus verschiedenen deutschen und amerikanischen Untersuchungen für Salzgrus zugrunde. Aus diesem Datenmaterial wurden diejenigen eliminiert, bei denen entweder die Charakterisierung der Proben oder die Randbedingungen bei der Messung unzureichend waren. Das ergab einen Datensatz von 67 n/k-Meßwertepaaren, die in Abb. 3-2 in doppellogarith-

misch dargestellt sind. Eine Zusammenstellung aller Daten und einige Angaben zu deren Herkunft enthält Tab. 9-1.

Abb. 3-2 Datenbasis für die Ableitung der Permeabilitäts-Porositätsrelation in der GRS-Untersuchung von 1996 [5]. Kreise: feuchte Kompaktion, Kreuze: trockene Kompaktion

Die damalige Analyse ergab für feucht kompaktierten Salzgrus mit m = 8,7 einen signifikant höheren Porositätsexponenten der Permeabilität gegenüber m = 3,8 für trocken kompaktiertes Material. Die insgesamt 17 Meßwerte, die in [5] hinsichtlich der Kompaktion den Unterkategorien "feucht bruchhaft" und "feucht brucharm kompaktiert" zugeschrieben wurden, sind im Diagramm durch Kreissymbole hervorgehoben. Diese Werte werden im folgenden ausnahmslos der übergeordneten Kategorie "feucht kompaktiert" zugeordnet, d.h. eine Unterscheidung im Hinblick auf die kompaktionsbedingte Entstehung von Brüchen entfällt.

Diese Zuordnung weicht von der in [5] insofern ab, als dort nur eine Meßreihe mit insgesamt neun Werten der Unterkategorie "feucht und brucharm kompaktiert" zugerechnet worden war, weil sie einen mit $m \approx 9$ auffällig hohen Porositätsexponenten aufwies. Die Meßwerte der Unterkategorie "feucht bruchhaft" waren dagegen wegen des Porositätsexponenten von $m \approx 5$ der Kategorie "trocken kompaktiert" zugeordnet worden. Im Gegensatz dazu wurden diese Werte dieser Untersuchung der Kategorie "feucht kompaktiert" zugerechnet, weil die zahlreichen neuen Untersuchungsergebnisse zeigen, daß die Porositätsexponenten für feuchtes Material in der Regel doch zwischen im Bereich zwischen 5 und 6 liegen.

3.2 Die BGR-Daten von 1995

In der 1995 publizierten Untersuchung der Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) [18] wurden die Permeabilität und das Kompaktionsverhalten von Salzgrus mit Versuchsmaterial aus dem Forschungsbergwerk Asse im Labor untersucht. Das Ausgangsmaterial fiel bei Auffahrungen mit einer Teilschnittmaschine an; daraus wurden Proben mit unterschiedlichen oberen Korndurchmessern durch Absieben der Grobfraktion hergestellt. In den Messungen über die Porositätsabhängigkeit der Permeabilität wurden sieben Salzgrusproben mit oberen Korngrößen im Bereich zwischen 31,5 und 0,25 mm in einer axialen Kompaktions-Permeabilitäts-Prüfananlage untersucht. Die Anlage hat eine zylindrische Zelle zur Aufnahme des Probenmaterials mit 100 mm Durchmesser und maximal 200 mm Länge. Die Kompaktion in der Zelle erfolgte mit abnehmenden Vorschubgeschwindigkeiten von anfänglich 10, dann 5 und schließlich 2 mm/h entsprechend 14·10⁻⁶, 7·10⁻⁶, und 2,8·10⁻⁶ s⁻¹ [19]. Da das Probenmaterial vorher nicht getrocknet oder befeuchtet wurde und die Permeabilitätsmessung mit Öl als Meßfluid erfolgte, liegen die Feuchtegehalte innerhalb der typischen Bandbreite für Asse-Salzgrus, d.h. zwischen 0,04 und 0,10 Gew.%.

Als Meßfluid wurde ein spezielles Spindelöl mit niedriger Viskosität verwendet. Deswegen sind hier weder die speziellen Wechselwirkungen zu betrachten, die bei Messungen mit gesättigter Lauge vorkommen können, noch ist die bei Verwendung von Gasen wegen der geringen Strömungskanaldurchmesser erforderliche sogenannte Klinkenberg-Korrektur [10] notwendig.

In Abb. 3-3 sind die Meßwerte aller Datenreihen zusammengefaßt dargestellt. Die Zahlenwerte und weitere Informationen sind in Tab. 9-2 angegeben. Die Messungen zeigen neben der Porositätsabhängigkeit auch eine signifikante Abhängigkeit von der Korngröße. Diese wird aber in dieser Untersuchung aus den in der Einleitung genannten Gründen nicht weiter berücksichtigt. Für die folgenden Auswertungen werden die BGR-Meßdaten der Kategorie "trocken kompaktierter Salzgrus" zugeordnet.

11

Abb. 3-3 Meßwerte aus der BGR-Untersuchung von Stührenberg und Zhang [19]

3.3 Die Battelle-Daten von 1995

Unter Federführung der Battelle-Ingenieurtechnik GmbH wurde in Zusammenarbeit mit den Technischen Universitäten Darmstadt und Bergakademie Freiberg das Diffusionsund Permeabilitätsverhalten von kompaktiertem Salzgrus in einem breit angelegten, 1995 abgeschlossenen FuE-Programm [5] untersucht.

Das Ausgangsmaterial für die Untersuchungen wurde vom Salzbergwerk Asse und dem Grubenfeld Bernburg bezogen. Das Material aus der Asse wurde in unterschiedlichen Teufen und Horizonten bei Auffahrungen mit Teilschnittmaschinen gewonnen. Die einzelnen Meßergebnisse sind im Anhang in Kapitel 8 in Tab. 9-3 bis Tab. 9-26 zusammen mit den wichtigsten Eigenschaften der jeweils untersuchten Proben vollständig angegeben. Die Herkunft der in den einzelnen Untersuchungen verwendeten Probenmaterialien ist im Untersuchungsbericht und in den obengenannten Ergebnistabellen durch Kürzel charakterisiert, die zur Unterscheidung der Haupttypen die Bezeichnungen in der letzten Spalte von Tab. 3-1 enthalten:

Tab. 3-1	Hauptunterscheidungsmerkmale der Salzgrusproben in den Permeabilitäts-
	messungen von Battelle

Herkunft	Teufe	Horizont	Behandlung	Feuchte f/ff	Тур
Asse	490 m	Na3	Original	0,08%/1,2%	a4
Asse	700 m	Na3β-Liniensalz	Original	0,03%/0,8%	a7
Asse	850 m	Staßfurt Na2β	Original	0,02%/0,3%	a8
Asse	850 m	Staßfurt Na2β	<10mm, <3%Anhydrit	0,02%/0,3%	a3
Asse	850 m	Staßfurt Na2β	<10mm, <6%Anhydrit	0,02%/0,3%	a6
Bernburg		Leinesalz Na3ß	Gemisch		kg
Gewerbesalz		Vorversuche mit 50 mm Probendurchmesser			a50
Gewerbesalz		Vorversuche mit 100 mm Probendurchmesser			a100

Ein weiteres Unterscheidungsmerkmal der Proben besteht hinsichtlich der Bedingungen, unter denen das Ausgangsmaterial vor der Probenherstellung gelagert wurde. Die Kürzel für die einzelnen Meßreihen enden mit den Buchstaben f, ff und h, mit folgender Bedeutung:

- f: Lagerung bei ca. 30 °C und 35% relativer Luftfeuchte (r.F.), Vorkompaktion bei Raumtemperatur (RT)
- ff: Lagerung bei ca. 30 °C und 75% r. F., Vorkompaktion bei RT
- h: Lagerung bei ca. 100.°C unter Vakuum, Vorkompaktion bei ca. 150 °C.

Die bei der Lagerung unter "f"- bzw. "ff"-Bedingungen sind in der vorletzten Spalte in Tab. 3-1 angegeben. Die Wahl der Temperaturen orientierte sich an den Verhältnissen im Endlager bei der LAW-Lagerung (Kategorien f und ff) sowie bei der HLW-Bohrlochund Streckenlagerung (Kategorie h).

Der Salzgrus wurde bei 30 °C (f- und ff-Proben) oder 150 °C (h-Proben) zu zylindrischen Kernen mit ca. 100 mm Durchmesser und ca. 110 mm Länge vorkompaktiert. Diese Vorkompaktion erfolgte in einer hydraulischen Presse innerhalb eines Zeitraums von ca. 3 Minuten. Dabei wurden Drücke im Bereich zwischen 80 und 400 MPa aufgebracht, womit die Salzkerne auf Porositäten zwischen ca. 10% und 0,2% verdichtet wurden. Wenn man von einer Porosität von 30% für unkompaktierten Salzgrus ausgeht, ergibt sich eine Kompressionsrate dɛ/d*t* in der Größenordnung von ca. 1 ·10⁻³ s⁻¹. Dieser Wert ist 2-3 Größenordnungen höher als in den meisten der anderen Untersuchungen. Die Kerne wurden zur anschließenden Nachkompaktion und Permeabilitätsmessung in einen Druckautoklaven eingebaut. Diese erfolgten bei Raumtemperatur unter einem simulierten Gebirgsdruck von 20 MPa. Dabei wurden als Meßfluide Stickstoff und Wasserstoff verwendet.

Einige Proben enthalten einen erhöhten, definierten Anteil Anhydrit CaSO₄. Diese haben die Kennungen kg, a3 und a6, wobei die kg-Proben zwischen 0,7% und 1%, die a3-Proben zwischen 2% und 3% und die a6-Proben etwa 5% bis 6% CaSO₄ enthalten. Die a50- und a100-Proben haben Durchmesser von 50 bzw. 100 mm und wurden in Vorversuchen eingesetzt, bei denen eine Abhängigkeit von der Querschnittsfläche und der Einfluß von Randläufigkeiten untersucht wurden. Die einschließlich der Vorversuche insgesamt untersuchten acht verschiedenen Ausgangsmaterialien und die drei Lagerungsarten f, ff und h wurden jeweils miteinander kombiniert, so daß insgesamt 24 Meßreihen für Proben mit unterschiedlicher Charakteristik ermittelt worden sind. Die Daten zu den einzelnen Meßreihen wurden größtenteils an mehreren Kernen aus vorkompaktiertem Salz ermittelt.

Die einzelnen gemessenen Permeabilitäten für die Proben der f, ff und h-Kategorie sind in den Abb. 3-4 bis Abb. 3-6 in Abhängigkeit von der totalen Porosität dargestellt. Die Gesamtanzahl der Daten in den drei Kategorien beträgt 132 (f), 77 (ff) und 68 (h).

Abb. 3-4 Einzelmeßwerte der Battelle-Untersuchung [6] für kompaktierten Salzgrus der Kategorie "f" (Lagerung bei 30 °C bei 35% r.F.)

Abb. 3-5 Einzelmeßwerte der Battelle-Untersuchung [6] für kompaktierten Salzgrus der Kategorie "ff" (Lagerung bei 30 °C und 75% r.F.)

Abb. 3-6 Einzelmeßwerte der Battelle-Untersuchung [6] für heiß kompaktierten Salzgrus der Kategorie "h"

Zu beachten ist, daß die veröffentlichten Permeabilitätswerte in den Tabellen 6.32 bis 6.36 im Anhang von [6] und die dieser Arbeit zugrunde liegenden, von Battelle zur Verfügung gestellten Werte, die hier in den Tabellen 9-3 bis 9-26 wiedergegeben sind, geringfügig voneinander abweichen. Die in [6] angegebenen Permeabilitäten sind Anfangswerte aus längeren Meßzeiträumen, die unmittelbar zu Beginn der Messungen aufgenommen wurden. Die direkt von den obengenannten Institutionen mitgeteilten Meßwerte wurden demgegenüber erst einige Stunden später registriert. Diese Werte dienen den Experimentatoren als Grundlage für weitere Untersuchungen [7].

Der Bericht [6] enthält die Feststellung, daß das Permeabilitätsverhalten der Proben bei der Kompaktion bis 1,5% totaler Porosität von den Parametern Salzart, Herstellungsart und Feuchtegehalt nahezu unabhängig ist; erst bei der weiteren Kompaktion werden bei niedrigeren Dichten merkliche Einflüsse dieser Parameter verzeichnet. Aus Abb. 3-6 geht hervor, daß die Permeabilitäten der heißgepreßten Proben im Gegensatz zu den f- und ff-Proben auch bei den niedrigsten Porositäten niemals 10⁻²¹ m² unterschreiten. Dieses wird von den Autoren so interpretiert, daß die Salzproben eine Mindestmenge an Feuchtigkeit enthalten müssen, damit die durchgängigen Wegsamkeiten restlos geschlossen werden.

Die Porosität wird indirekt aus den Dichten der porösen Materialien und des Feststoffs bestimmt und ist demnach, wie in Kapitel 1 beschrieben, die totale Porosität n_{tot} einschließlich der unzugänglichen Porosität und der Sackporen. Die hier als beschreibende Größe relevante Transportporosität n_{tr} konnte nicht gemessen werden. Dagegen wurde der Zusammenhang zwischen dem Anteil der zugänglichen an der totalen Porosität n_{zug}/n_{tot} und den Bedingungen bei der Vorkompaktion für die verschiedenen Probenarten in [6] systematisch untersucht. Das Resultat dieser Untersuchungen lautet zusammengefaßt, daß im Bereich $n_{tot} < 2\%$ das Verhältnis zwischen der zugänglichen und der totalen Porosität n_{zug}/n_{tot} bei den untersuchten Proben zwischen ca. 0,35 und 0,8 beträgt und die Werte mit sinkenden Kompaktionsgeschwindigkeiten und -dauern zunehmen. Das legt den Schluß nahe, daß der Unterschied zwischen den beiden Porositätsarten bei der langsam ablaufenden Kompaktion im Endlager relativ gering ist.

Der Fehler der Porositätsmessung wird nicht explizit angegeben, läßt sich aber aus den ausführlichen Angaben im Bericht zu $\Delta n = \pm 0,3\%$ abschätzen. In einzelnen Fällen wurden offenbar sogar Porositäten < 0 errechnet, die in den Ergebnistabellen mit 0

16

angegeben werden. Aus der Konstanz des Meßfehlers folgt ein mit sinkendem n anwachsender relativer Fehler, der bei n = 0,3% bereits 100% beträgt. Wie aus den Abb. 3-4 bis Abb. 3-6 ersichtlich ist, liegen die Untergrenzen der für die Battelle-Messungen angegebenen Porositätsbereiche unter diesem Wert. Nachfolgend wird gezeigt, daß durch die Berücksichtigung der Daten mit n < 0,3% die Ergebnisse der Regressionsrechnungen signifikant beeinflußt.

3.4 In-situ- und Labordaten aus dem DEBORA-Projekt

Im Rahmen des DEBORA-Projektes [12] wurden einzelne Labormessungen an kompaktierten Salzgrusproben aus dem Forschungsbergwerk Asse durchgeführt. Die Daten sind im Anhang in der Tab. 9-29 aufgeführt. Sie dienten dem Vergleich mit Ergebnissen aus zwei In-situ-Versuchen, DEBORA 1 und 2, in denen ebenfalls Permeabilitäten und Porositäten von Salzgrus gemessen wurde (Tab. 9-27 und Tab. 9-28).

Abb. 3-7 Einzelmeßwerte der Permeabilität und Porosität aus In-situ- und Laborexperimenten aus dem DEBORA-Projekt [12]

Die Anzahl der im DEBORA-Projekt bisher ermittelten Permeabilitäten beträgt insgesamt 29, die ausnahmslos der Kategorie "trocken kompaktiert" zugeordnet werden können. Sie sind in Abb. 3-7 dargestellt. Die Kompaktion erfolgte bei den Labormessungen mit der linearen Stauchungsrate $\Delta L/\Delta t = -8,33 \ \mu m \ s^{-1}$ bzw. $d\epsilon/dt = -42 \cdot 10^{-6} \ s^{-1}$ und war damit um mehr als 3 Größenordnungen höher als in dem In-situ-Versuch, bei dem eine mittlere Rate $d\epsilon/dt$ von ca. $-3 \cdot 10^{-6} \ s^{-1}$ beobachtet wurde. Da in diesem Bereich, wie aus der gemeinsamen Darstellung aller Meßwerte in Abb. 3-7 hervorgeht, durch die unterschiedlichen Kompaktionsgeschwindigkeiten keine signifikanten Unterschiede hinsichtlich des Permeabilitätsverhaltens aufgetreten sind, ist die Unterscheidung nach der Herkunft der Daten, d.h. ob sie Labor- oder in-situ-Messungen entstammen, hier gegenstandslos. Sie werden daher im folgenden zu einem einzigen Meßdatensatz zusammengefaßt.

4 Methode der statistischen Auswertung

Die im folgenden beschriebene Methode der statistischen Auswertung der Meßdaten wurde bereits in [5] ausführlich dargestellt und beschränkt sich hier auf den zum Verständnis der Folgekapitel notwendigen Umfang.

4.1 Bestwerte für die Koeffizienten der Regressionsgleichung

Die doppellogarithmischen Darstellungen der gemessenen Permeabilitäten in Abhängigkeit von der Porosität wie die Diagramme in den Abb. 3-2 bis Abb. 3-7, legen einen linearen Zusammenhang zwischen dem Logarithmus der Permeabilität k und dem Logarithmus der Porosität n nahe:

$$\log(k) = \log(A) + m \cdot \log(n) . \tag{3}$$

Für die Konstanten A und m können mittels statistischer Standardverfahren Bestwerte berechnet werden, mit denen (3) optimal an die experimentellen Daten n_i und k_i (i = 1...N) angepaßt wird. Gleichung (3) äquivalent ist das auch theoretisch ableitbare Potenzgesetz (1) für den Zusammenhang zwischen der Permeabilität und der Porosität

$$k = A \cdot n^m \,. \tag{4}$$

Die Bestwerte m_0 und A_0 bzw. $\log(A)_0$ sind die Werte, mit denen (3) oder (4) optimale Approximationen der Meßwerte darstellen. Mit (4) als gewählter Approximationsfunktion lassen sich Schätzwerte

$$\overline{k_i} = A_0 \cdot n_i^{m_0} \tag{5}$$

für die Permeabilität in Abhängigkeit von der gemessenen Porosität angeben. Wenn ε_i^* die relativen Abweichungen zwischen den gemessenen Permeabilitäten k_i und den Schätzwerten nach (5) bezeichnet, ergibt sich die Beziehung

$$k_i = \overline{k_i} \cdot \varepsilon_i^* = A_0 \cdot n_i^{m_0} \cdot \varepsilon_i^*, \qquad (6),$$

die durch Logarithmierung in eine Geradengleichung

$$\log(k_i) = \log(A) + m \cdot \log(n_i) + \varepsilon_i \quad \text{mit} \quad \varepsilon_i = \log(\varepsilon_i^*) \tag{7}$$

übergeht. Mit der Summe S der gewichteten Quadrate der durch (7) definierten Residuen ε_i

$$S(\log(A), m) = \sum_{i=1}^{N} w_i \cdot \varepsilon_i^2 = \sum_{i=1}^{N} w_i \cdot \left(\log(k_i) - \log(A) - m \cdot \log(n_i)\right)^2$$
(8)

lassen sich die Schätzwerte für die Formelkoeffizienten $log(A)_0$ und m_0 über die Bedingung (9) eindeutig bestimmen. Die Wichtungsfaktoren w_i haben den Wert 1, wenn alle Meßwerte dieselbe Varianz aufweisen. Dieses bei den hier vorliegenden Meßwerten unterstellt, so daß im Normalfall $w_i = 1$ für alle *i* gilt. Nur bei der Bestimmung gemeinsamer Koeffizienten für Daten aus mehreren Kategorien, wie z.B. "feucht kompaktiert" und "trocken kompaktiert" in Kapitel 6.1 wird eine Wichtung vorgenommen, mit der ein Einfluß unterschiedlicher Stichprobenmengen kompensiert wird

$$S_0 = S(\log(A)_0, m_0) = \min(S) .$$
(9)

Die zur Bestimmung von S_0 übliche Methode der kleinsten Fehlerquadrate ist in jedem Statistiklehrbuch (z.B. [3]) beschrieben und liefert im Fall einer linearen Approximationsfunktion ein lineares System von Bestimmungsgleichungen.

4.2 Statistische Verteilung der Regressionskoeffizienten

Unter der Voraussetzung, daß die gemessenen Permeabilitäten k_i und Porositäten n_i eines Datensatzes mit *N* Meßwertpaaren durch das lineare Modell (3) beschrieben werden und die durch (7) definierten Residuen normalverteilt mit dem Mittelwert 0 und der Standardabweichung σ_i sind,

$$\varepsilon_{\rm I} = N(0,\sigma_{\rm e}) \tag{10}$$

sind die Koeffizienten log(A) und *m* ebenfalls normalverteilt nach

$$\log(A) = N(\log(A)_0, \sigma_{\log(A)}) \quad \text{und}$$
(11)

$$m = N(m_0, \sigma_m) \tag{12}$$

mit entsprechendem Mittelwert und Standardabweichung [3]. Aus (11) folgt schließlich, daß der Koeffizient A im Potenzgesetz (4) lognormal verteilt ist.

Zu dieser Ableitung sei angemerkt, daß eine Anpassung an ein nichtlineares Modell wie das Potenzgesetz (4) in der Regel auf ein nichtlineares Gleichungssystem führt, das nur iterativ lösbar ist. Wegen des erforderlichen relativ großen Rechenaufwands bei iterativen Methoden werden, um dieses Problem zu umgehen, gelegentlich sogenannte intrinsisch lineare Anpassungsfunktionen gewählt. Diese können durch eine einfache Transformation linearisiert werden, wie z.B. auch das Potenzgesetz (4) durch Logarithmierung. Durch die Transformation werden aber, wie im vorliegenden Fall aus (7) hervorgeht, auch die Residuen verändert, so daß sich bei einer Linearisierung andere Bestwerte ergeben als für das nicht transformierte Modell. In dieser Arbeit wurde die Regression nach den transformierten Variablen aber nicht wegen der rechentechnischen Vereinfachung vorgenommen, sondern um die relativen Abweichungen zwischen den Meß- und Schätzwerten zu minimieren. Da die größten und die kleinsten Permeabilitätsmeßwerte um mehrere Größenordnungen differieren, ergibt die Regression von k nach n die Bestwerte A_0 und m_0 für GI. (4), mit denen die Anpassung bei großen Permeabilitäten zwar etwas besser, jedoch im Bereich kleiner k wegen der großen relativen Abweichungen völlig unzureichend ist.

Mit der Fehlerquadratsumme der Residuen bei optimaler Anpassung S_0 lassen sich für vorgegebene Vertrauenswahrscheinlichkeiten Konfidenzbereiche für die wahren Parameter angeben, die durch folgende Bedingung festgelegt sind:

$$\left\{\log(A), m: S(\log(A), m) \le S_0 \cdot \left(1 + \frac{N}{N-2} \cdot \mathbf{F}_{2,N-2}^{\alpha}\right)\right\}.$$
 (13)

Darin bedeutet F die F-Verteilung mit den Freiheitsgraden 2 und *N*-2 zum Vertrauensniveau 1- α [3]. Die Konfidenzbereiche sind Ellipsen mit den Mittelpunktskoordinaten $(\log(A)_0, m_0)$. Mit den Definitionen von $s^2 = S_0/(N-2)$ als mittlerer Varianz der Residuen und \overline{x} als arithmetischem Mittel der Elemente eines Vektors x_i ergeben sich die Standardabweichungen für die Bestwerte für den Fall ohne Wichtung ($w_i = 1$) nach

$$\sigma_{\log(A)} = \sqrt{\frac{s^2 \cdot \sum \log(n_i^2)}{N \cdot \sum \left(\log(n_i^2) - \overline{\log(n)}\right)^2}} \quad \text{und}$$
(14)

$$\sigma_m = \sqrt{\frac{s^2}{\sum \left(\log(n) - \overline{\log(n)}\right)^2}} .$$
(15)

Für den speziellen Fall der unterschiedlichen Wichtung der Residuen werden die entsprechenden Werte nach den Gleichungen 2.11.9 bis 2.11.13 in [3] berechnet. Dabei sind die Elemente der Diagonalmatrix *V* die reziproken Wichtungsfaktoren, daß $V_{i,i} = 1/w_i$ und $V_{i,j} = 0$ sonst. Die Konfidenzintervalle für die Koeffizienten $\log(A)_0$ und m_0 für beliebige Vertrauenswahrscheinlichkeiten 1- α ergeben sich nach

$$\log(A)_0 \pm t(N-2, 1-\alpha/2) \cdot \sigma_{\log(A)}$$
 (16)

$$m_0 \pm t(N-2, 1-\alpha/2) \cdot \sigma_m$$
, (17)

d.h. durch Multiplikation der Standardabweichungen mit dem Wert der t-Verteilung für $(N-2, 1-\alpha/2)$. Die Schätzwerte für die Formelkoeffizienten A und m sind in der Regel korreliert. In [5] wurde gezeigt, daß die Korrelationskoeffizienten von $\log(A)$ und m bzw. A und m nach

$$\rho_{\log(A),m} = -\overline{\log(n)} \cdot \sigma_m / \sigma_{\log(A)}$$
(18)

$$\rho_{A,m} = m_0 \cdot \rho_{\log(A),m} \cdot \sigma_{\ln(A)} / \sigma_A \tag{19}$$

mit den in (14) und (15) definierten Standardabweichungen $\sigma_{\log_{(A)}}$ und $\sigma_{_m}$ und wegen

$$\sigma_A^2 = \overline{A}^2 \cdot \left[\exp\left(\sigma_{\ln(A)}^2 - 1\right) \right]$$
(20)

$$\overline{A} = \exp\left(\ln(A)_0 + \sigma^2_{\ln(A)}/2\right)$$
(21)

mit dem Mittelwert und der Standardabweichung von A verknüpft sind. Schließlich kann mit (22) unter Verwendung der Beziehungen (14) bis (19) die bivariate Dichteveteilung f(A,m)

$$f(A,m) = \frac{\exp\left[-\frac{1}{2}\left(\frac{m-m_0-\rho_{A,m}\cdot\frac{\sigma_m}{\sigma_{\ln(A)}}\cdot\ln\frac{A}{A_0}}{\sigma(m)\cdot\sqrt{1-\rho_{A,m}}}\right)^2 - \frac{1}{2}\left(\frac{\ln\frac{A}{A_0}}{\sigma_{\ln(A)}}\right)^2\right]}{2\pi\cdot A\cdot\sigma_m\cdot\sigma_{\ln(A)}\cdot\sqrt{1-\rho_{A,m}}}$$
(22)

für die normalverteilte Variable *m* und die lognormalverteilte Variable *A* berechnet werden. In (22) bezeichnet $\sigma_{ln(A)}$ die Standardabweichung von ln(A), die sich nur um einen konstanten Faktor von $\sigma_{log(A)}$ unterscheidet

$$\sigma_{\ln(A)} = \sigma_{\log(A)} \cdot \ln(10) . \tag{23}$$

5 Statistische Auswertung

5.1 Lineare Regression nach der totalen Porosität

In einem ersten Schritt werden die Koeffizienten $log(A)_0$ und m_0 nach (9) und die zugehörigen Grenzen der 95%-Konfidenzbereiche für verschiedene Datensätze nach (16) und (17) berechnet. Eine separate Regression der insgesamt 37 einzelnen Meßreihen aus beiden Kategorien (24 aus [6], 8 aus [19], 3 aus [12] und 2 aus [5]) ergibt eine entsprechende Anzahl von Wertepaaren mit den Koeffizienten m_0 und $log(A)_0$. Die Koeffizienten für die einzelnen Meßreihen, die zwischen zwei und 50 Datenpaare enthalten, sind über einen relativ weiten Bereich verteilt. Die in Abb. 5-1 dargestellte Verteilung zeigt einen annähernd linearen Verlauf. Dieses bedeutet, daß $log(A)_0$ und m_0 stark miteinander korreliert sind.

Abb. 5-1 Bestwerte für die Formelkoeffizienten $log(A)_0$ und m_0 aus der Regression von 37 Einzelmeßreihen

Das Ergebnis der Regression der m_0 - nach den $\log(A)_0$ -Werten ist in Abb. 5-1 wiedergegeben. Mit dem dort angegebenen linearen Zusammenhang zwischen m_0 und $\log(A)_0$ läßt sich die zweiparametrige Permeabilitäts-Porositätsrelation auf eine einparametrige Relation reduzieren. Diese Möglichkeit der Vereinfachung wird im folgenden nicht weiterverfolgt, da die Anpassung mit einer einparametrigen Relation notwendigerweise schlechter ist als mit einer zweiparametrigen Relation.

In einem zweiten Schritt werden die vorliegenden Meßreihen den Kategorien "feucht" und "trocken kompaktiert" zugeordnet und für diese Kategorien entsprechende Regressionsanalysen durchgeführt. Dabei hat sich herausgestellt, daß die Berücksichtigung der Meßwerte für Proben mit sehr niedriger totaler Porosität besondere Betrachtungen erfordert. Diese betreffen zum einen die Unterscheidung der Total- und der Transportporosität und zum anderen die Meßfehler für die Porosität. Dieses wird in den folgenden Unterkapiteln beschrieben

5.2 Nichtlineare Regression nach der Transportporosität

Wie in Kapitel 1 erläutert wurde, ist nicht die hier als Meßwert vorliegende totale Porosität n_{tot} , sondern vielmehr die Transportporosität n_{tr} die permeabilitätsbestimmende Größe. Es ist daher zu prüfen, ob mit einer Modifikation des Ansatzes (3) eine bessere Anpassung im Bereich niedriger Porositäten erzielt werden kann. Da immer $n_{tr} < n_{tot}$ gilt, kann in der Regressionsfunktion (3) die totale Porosität durch eine erste Näherung für die Transportporosität ersetzt werden.

$$n_{tr} = n_{tot} - n_0 \tag{24}$$

Der Wert für n_0 kann dann über eine Regression der dreiparametrigen, gegenüber (3) im Porositätsterm erweiterten nichtlinearen Regressionsfunktion

$$\log(k) = \log(A) + m \cdot \log(n - n_0) \tag{25}$$

bestimmt werden. Nach der Definition (24) ist n_0 der Anteil an der totalen Porosität, der nicht für den Fluidtransport zur Verfügung steht.

Die Bestwerte, mit denen (25) optimal an die Meßdaten angepaßt wird, werden ebenfalls durch Minimierung der Quadratsumme S der ungewichteten Residuen nach Gl. (9) bestimmt, die in diesem Fall für die erweiterte Regressionsfunktion

$$S(\log(A), m, n_0) = \sum_{i=1}^{N} \varepsilon_i^2 = \sum_{i=1}^{N} \left(\log(k_i) - \log(A) - m \cdot \log(n_i - n_0) \right)^2$$
(26)

berechnet wird. Es ergibt sich damit ein nichtlineares Gleichungssystem für die Bestwerte, das mit dem in dem Programmsystem MATHCAD-Professional [11] implementierten Standardverfahren nach Marquardt-Levenberg [14] iterativ gelöst wird.

5.3 Meßfehler der Porosität

Wie bereits in Kapitel 3.3 erwähnt, werden bei einzelnen Meßreihen aus der Battelle-Untersuchung Porositätswerte angegeben, die kleiner als der Meßfehler sind. Nachfolgend wurde untersucht, wie sich ein Ausschluß dieser Daten auf die Ergebnisse der Regression auswirkt. Dazu wurden die Bestwerte für alle Meßreihen, die Daten mit Porositäten < 0,3% enthalten, noch einmal unter Ausschluß dieser Werte bestimmt. Die Ergebnisse sind in Abbildung Abb. 5-2 als Großbuchstaben und die entsprechenden, bereits in Abb. 5-1 enthaltenen A_0 - und m_0 -Werte für den gesamten Porositätsbereich als Kleinbuchstaben aufgetragen. Gleiche Buchstaben beziehen sich auf dieselbe Meßreihe und sind durch Pfeile verbunden. Wenn die Daten für die Porositäten <0,3% dieselben statistischen Merkmale besitzen wie die Daten der gesamten Meßreihe, müssen die Mittelwerte der Abweichungen zwischen den jeweiligen A_0 - und m_0 -Werten nahe 0 liegen.

Die gleichmäßige Orientierung der Pfeile zeigt aber, daß die durch die A_0 - und m_0 -Werte bestimmten Punkte immer in Richtung auf das Achsenkreuz bei (-14, 1) wandern. Das bedeutet, daß die Regressionskoeffizienten systematisch geändert werden, wenn die Meßdaten mit niedrigen Porositäten einbezogen werden. Der Ausschluß der Werte mit sehr niedriger bzw. unsicherer Porosität führt daher immer zu größeren m_0 - und $\log(A)_0$ Werten, also steileren Regressionsgeraden. Das bedeutet, daß die gemessenen $\log(k)$ -Werte im Bereich sehr kleiner Porositäten langsamer ansteigen, als nach der Regressionsgerade für n>0 zu erwarten ist.
Die systematische Verschiebung der Regressionsparameter ist nicht dadurch erklärbar, daß die Regression nach der totalen Porosität n_{tot} anstatt nach der Transportporosität n_{tr} erfolgte. Weil nämlich immer $n_{tr} < n_{tot}$ gilt, würde der Anstieg im Bereich niedriger Porositäten noch geringer sein und die Diskrepanz dadurch noch größer werden.

Abb. 5-2 Systematische Verschiebung der Bestwerte für die Formelkoeffizienten $log(A)_0$ und m_0 bei der Regression der Battelle-Meßwerte ohne (Großbuchstaben) und mit Porositäten n < 0,3% (Kleinbuchstaben)

Es ist aber auch zu berücksichtigen, daß die Porositätsmeßwerte mit einem absoluten Fehler von $\pm 0,3\%$ behaftet sind. Dieses bezüglich *n* symmetrische Fehlerintervall wird durch die Transformation auf $\log(n)$ um so stärker unsymmetrisch, je kleiner *n* wird, weil sich die Untergrenze stärker nach unten als die Obergrenze nach oben verlagert. Ein Zahlenbeispiel verdeutlicht diesen Sachverhalt: für $n = 1\% \pm 0,3\%$ ergibt sich ein $\log(n)$ -Intervall von (-2,155; -2,0; -1,886) und für $n = 0,35\% \pm 0,3\%$ dagegen von (-3,301; -0,2456; -2,187). Daraus folgt, daß den kleinen, fehlerbehafteten Porositätsmeßwerten im Mittel zu niedrige $\log(n)$ -Werte zugeordnet werden, wodurch der $\log(n)$ -Bereich vergrößert wird, was wiederum, wie im folgenden Kapitel gezeigt wird, bei der Regression zu niedrige *m* Werte ergibt. Hierdurch lassen sich die aus Abb. 5-2 hervorgegangenen systematischen Unterschiede hinreichend erklären. Daher kann an dem Modell der Relationen (3) bzw. (4) festgehalten werden.

Dieser spezielle Effekt, der durch die logarithmische Transformation der mit einem konstanten Meßfehler behafteten Porositäten verursacht wird, beeinflußt die Ergebnisse der Regression für die Meßreihen, die Daten mit sehr niedrigen Porositäten enthalten. Im folgenden wird daher immer unterschieden, ob die Werte mit n < 0,3% in die Regressionsanalysen einbezogen wurden oder nicht.

6 Ergebnisse

Die wichtigsten Ergebnisse der Regressionsanalysen sind für verschiedene Datensätze in Tab. 6-1 zusammengefaßt. In diese Tabelle wurden auch die entsprechenden Werte aus der GRS-Untersuchung von 1996 [5] aufgenommen, um einen Vergleich mit den neuen Ergebnissen zu ermöglichen. Die Regression für die insgesamt 9 Einzelwerte der Kategorie "feucht" ergab seinerzeit einen mit 8,721 \pm 4,608 relativ hohen und unsicheren Porositätsexponenten *m*, vgl. Tab. 6-1, 2. Zeile. Hierbei wurden, wie bereits in Kapitel 3.1 beschrieben ist, die beiden in Tab. 9-1 aufgeführten Datensätze BGR XII und XIII mit 8 Einzelwerten wegen der hohen Kompaktionsgeschwindigkeiten der Kategorie "trocken kompaktiert" zugeordnet, obwohl diese an relativ feuchtem Material gemessen wurden. Die Tabelle enthält in der 4. Zeile die Ergebnisse für eine neue Analyse derselben Daten einschließlich der Datensätze BGR XII und XIII. Hierfür ergibt sich mit 4,873 \pm 2,069 ein niedrigerer Porositätsexponent, ein kleineres Konfidenzintervall und insgesamt eine Annäherung an die Ergebnisse für die Kategorie "trocken kompaktiert".

Datensatz	N	n _{min}	$\log(A)_{\circ}$	A _o	m _o	$\Delta \log(A)$	Δm	$\rho_{\log(A),m}$	$\rho_{A,m}$
1996 alle	67	4,3%	-9,736	1,837.10-10	3,823	0,595	0,673	0,9518	0,8419
1996 feucht	9	8,9%	-5,864	1,365.10-6	8,721	3,860	4,608	0,9920	0,0032
1996 trocken	58	4,3%	-9.572	1.632.10-10	3,726	0,629	0,710		
1996,feucht	17	4,9%	-8,973	1,064·10 ⁻⁹	4,873	2,097	2,069	0,9715	0,1712
trocken	367	0,3%	-9,885	1,303.10-10	3,841	0,217	0,151	0,9159	0,9011
feucht	117	0,3%	-8,127	7,464·10 ⁻⁹	5,253	0,952	0,553	0,9645	0,6887
alle ungew.	484	0,3%	-9,561	2,748.10-10	4,175	0,251	0,166	0,9266	0,9063
alle gew.	484	0,3%	-9.205	6,237·10 ⁻¹⁰	4.497	0,310	0,196	0,8813	0,8522
alle ungew.	521	0,0%	-10,28	5,200.10.11	3,565	0,256	0,156	0,9141	0,8936

Tab. 6-1Ergebnisse der Regressionsanalysen für verschiedene Sätze von n/k-Daten-
paaren. Die Δ-Werte entsprechen 95% Vertrauenswahrscheinlichkeit

6.1 Koeffizienten der Permeabilitäts-Porositätsrelation

Die Daten der Kategorie "trocken kompaktiert" mit Porositäten > 0,3% sind in Abb. 6-1 gemeinsam mit ihrer zugehörigen Ausgleichsgeraden dargestellt.

Abb. 6-1 Zusammenfassung aller Meßwerte der Kategorie "trocken kompaktiert" mit n > 0,3% und Ausgleichsgerade mit der Steigung $m_0 = 3,84$

Abb. 6-2 Zusammenfassung aller Meßwerte der Kategorie "feucht kompaktiert" mit n > 0,3% und Ausgleichsgerade mit der Steigung $m_0 = 5,25$

Die Steigung der Ausgleichsgeraden beträgt m = 3,84 und ist damit gegenüber dem Ergebnis der Analyse von 1996, die, wie Tab. 6-1 zeigt, den Wert m = 3,73 ergeben hatte, praktisch unverändert. Die entsprechende Darstellung für die Daten der Kategorie "feucht kompaktiert" zeigt Abb. 6-2. Die Steigung der Ausgleichsgeraden beträgt hier m = 5,25. Dieser Wert liegt, wie bereits die Ergebnisse in Tab. 6-1 zeigten, signifikant über der Steigung der Ausgleichsgeraden für die Daten der Kategorie "trocken kompaktiert". Auffällig ist, daß im Bereich 0,3% < n < 2% einige der gemessenen Permeabilitäten an der unteren Nachweisgrenze und deutlich unterhalb des Streubereichs der übrigen Meßwerte liegen. Diese Werte werden trotzdem in die folgenden Auswertungen einbezogen, da der Bericht keinen Hinweis auf Meßfehler enthält.

Die Daten beider Kategorien sind in Abb. 6-3 zusammengefaßt. Die Regression wurde jeweils einschließlich und ausschließlich der Daten mit Porositäten n < 0,3% und mit ungewichteten Residuen ($w_i = 1$) durchgeführt. Die beiden Regressionsgeraden haben unterschiedliche Steigungen: für den Datensatz einschließlich der Werte mit Porositäten < 0,3% ergibt sich ein m_0 - Wert von 3,57 und ohne Berücksichtigung dieser Werte ein signifikant abweichender Wert von 4,18.

Abb. 6-3 Zusammenfassung aller Meßwerte mit Ausgleichsgerade für alle Daten $(m_0 = 3,57)$ und für alle Daten mit n > 0,3% $(m_0 = 4,18)$

Abb. 6-4 Vergleich der Approximationsgeraden bei Regression mit gewichteten und ungewichteten Residuen

Die Anzahlen der Daten in den Kategorien "feucht" mit N = 117 und "trocken" mit N = 367 verhalten sich etwa wie 1:3. Dadurch gehen die Daten der Kategorie "trocken" bei die Regression aller Daten mit entsprechend größerem Gewicht ein. Um den Einfluß dieses Ungleichgewichts auf das Ergebnis der Regression für alle Daten zu eliminieren, wird die Regression mit gewichteten Residuen wiederholt, in der die geringere Datenmenge in der Kategorie "feucht" durch den Wichtungsfaktor $N_{trocken}/N_{feucht} = 3,14$ kompensiert wird. Die entsprechende Regressionsgerade hat die Steigung $m_0 = 4,5$. Dieser Wert entspricht ziemlich genau dem arithmetischen Mittel der m_0 -Werte für die beiden Kategorien, vgl. Tab. 6-1. In Abb. 6-4 ist die Ausgleichsgerade für die Anzahlgewichtete Regression für die Daten aus beiden Kategorien mit Porositäten n > 0,3% der entsprechenden Regressionsgeraden für ungewichtete Residuen aus Abb. 6-3 ge-genübergestellt.

Die Bestwerte für die Formelkoeffizienten aus den Regressionsanalysen für die in Tab. 6-1 aufgeführten Datensätze sind in Abb. 6-5 noch einmal graphisch mit den zugehörigen Konfidenzbereichen nach (13) für 95-% Vertrauenswahrscheinlichkeit dargestellt. Die Konfidenzbereiche sind Ellipsen. Das Längenverhältnis ihrer Hauptachsen wird durch den Korrelationskoeffizienten $\rho_{\log(d),m}$ bestimmt. Für $\rho = 0$ ist der Konfidenzbereich kreisförmig, geht mit wachsendem ρ in eine zunehmend schlankere Ellipse über und entartet schließlich für $\rho = 1$ in eine Gerade. Die Form der Ellipsen Abb. 6-5 spiegelt somit die hohen Korrelationskoeffizienten $\rho_{\log(d),m} > 0,9$ in Tab. 6-1 wider. Die Orientierung der langen Hauptachsen entspricht dem durch die (A_0, m_0)-Datenpunkte in Abb. 5-1 und Abb. 5-2 gegebenen Trend.

Abb. 6-5 95%-Konfidenzintervalle für die Koeffizienten log(A) und *m* des linearen log(k)/log(n)-Modells (3) für verschiedene Stichproben mit *N* Meßdaten

Aus diesem Diagramm lassen sich folgende, auf einer statistischen Sicherheit von 95% basierende Aussagen ableiten:

1. Die Konfidenzbereiche für die Bestwerte A_0 und m_0 für die Meßwerte der beiden Kategorien "feucht" und "trocken kompaktiert" überlappen sich nicht. Daher gelten unterschiedliche Permeabilitäts-Porositätsrelationen bzw. unterschiedliche Koeffizienten für die jeweilige Permeabilitäts-Porositätsrelation.

- 2. Die Konfidenzbereiche der Bestwerte für die Datensätze mit bzw. ohne die Meßwerte mit n < 0,3% überlappen sich nicht. Die Regression liefert daher signifikant unterschiedliche Ergebnisse und bestätigt daher den bereits aus Abb. 5-2 qualitativ erkennbar gewordenen Einfluß der mit relativ großen Meßunsicherheiten behafteten niedrigen Porositätsmeßwerte.
- 3. Der Konfidenzbereich der Bestwerte für die 484 Daten mit n > 0,3% liegt nahezu vollständig innerhalb des Konfidenzbereichs für die Daten aus der GRS-Untersuchung von 1996. Die Analyse auf Grundlage der erheblich erweiterten Datenbasis hat daher keine signifikante Änderung der früheren Ergebnisse ergeben, sondern diese präzisiert und deren statistische Unsicherheit erheblich verringert.
- 4. Die Regression aller Daten mit ungewichteten Residuen liefert ein Ergebnis, das von der Anzahl der Daten in den beiden Kategorien abhängig ist. Dieses Verhältnis wird durch die Probenspezifikation in den durchgeführten Untersuchungen bestimmt und ist daher zufällig. Die aus dem zahlenmäßigen Übergewicht der Daten resultierende Überbewertung der Kategorie "trocken" kann durch eine gegenläufige Wichtung der Daten der Kategorie "feucht" kompensiert werden.
- 5. Die ermittelten Konfidenzbereiche f
 ür die Porosit
 ätsexponenten von trockenem Material liegen innerhalb der theoretisch erwarteten Bandbreite zwischen 3 und 5, vgl. Kap. 2.1. Die h
 öheren Werte f
 ür das feucht kompaktierte Material deuten auf einen Zementationsfaktor s > 3 f
 ür feuchten Salzgrus hin.

6.2 Statistische Verteilung der Formelkoeffizienten

Die bivariate Verteilungsfunktion (22) der korrelierten Formelkoeffizienten A und m kann mit Hilfe der Größen in Tab. 6-1 berechnet werden. Das Diagramm in Abb. 6-6 zeigt die Verteilungsdichte f(A,m), die sich aus den insgesamt 67 Einzeldaten der GRS-Analyse von 1996 bzw. den Daten aus der ersten Zeile von Tab. 6-1 ergibt. Über die dreidimensionale Kurvendarstellung von f(A,m) wurde eine entsprechende Isoliniendarstellung f(A,m) = const. gelegt. Aus dieser Darstellung werden die symmetrische Normalverteilung von m und die unsymmetrische Lognormal-Verteilung von log(A) ersichtlich. Die Verteilungsfunktion f(A,m) erreicht ihren Maximalwert von

8,76·10⁻⁹ nicht bei den Bestwerten A_0 , und m_0 , d.h. im Punkt (1,837·10⁻¹⁰; 3,823), sondern im Punkt mit den Koordinaten (1,192·10⁻¹⁰; 3,65). Diese Verschiebung ist eine Folge des Faktors A im Nenner von (22).

Abb. 6-6 Bivariate Dichtefunktion für die Koeffizienten der Permeabilitäts-Porositätsrelation (22) für die 67 Daten in der GRS-Auswertung von 1996

Abb. 6-7 Bivariate Dichtefunktion der Koeffizienten A und m des Potenzgesetzes für alle Daten der Kategorie "feucht kompaktiert" (oberes Diagramm) und "trokken kompaktiert" (unteres Diagramm) für die Daten mit n > 0,3%

Die Verteilungsfunktion für die Daten der Kategorie "feucht kompaktiert" ist oben in Abb. 6-7 dargestellt. Bei dem Vergleich mit der entsprechenden Darstellung für die GRS-Untersuchung von 1996 in Abb. 6-6 ist zu beachten, daß die sich Maßstäbe der *f*-und *A*-Achsen um den Faktor 50 unterscheiden. Die Asymmetrie der Verteilung ist bezüglich der Variablen *A* noch ausgeprägter als im vorangehenden Diagramm.

Das untere Diagramm in Abb. 6-7 enthält die entsprechende Darstellung für die Kategorie "trocken kompaktiert". Der Maximalwert von f(A,m) beträgt 1,5·10¹¹ und liegt damit um den Faktor 850 höher als der für die Kategorie "feucht kompaktiert" im oberen Diagramm in Abb. 6-7. Die im Vergleich zum oberen Diagramm länglichere Form der f(A,m)-Isolinien wird durch die relativ stärkere Korrelation von A und m hervorgerufen. Nach den Angaben in Tab. 6-1 beträgt der Wert des Korrelationskoeffizienten $\rho_{A,m}$ für die Kategorie "feucht" 0,61 gegenüber 0,90 für die Kategorie "trocken". Demgegenüber ist das Größenverhältnis der Korrelationskoeffizienten $\rho_{\log(A),m}$ mit 0,96 gegenüber 0,92 gerade umgekehrt.

Die gemeinsame Verteilungsfunktion für alle 521 Daten der Kategorien "feucht" und "trocken" zeigt das obere Diagramm in Abb. 6-8. Zum Vergleich ist in dem unteren Diagramm das Ergebnis für dieselben Daten ausschließlich derjenigen mit Porositäten < 0,3% dargestellt. Obwohl sich beide Diagramme sehr ähneln, weisen die beiden Verteilungsfunktionen große Unterschiede auf. Dieses wird aus den um den Faktor 5 unterschiedlichen Maßstäben der *f*- und *A*-Achsen und der verschobenen *m*-Achse ersichtlich.

Das Maximum von f(A,m) liegt für den vollständigen Datensatz bei 3,0·10¹¹ und für den mit eingeschränktem Porositätsbereich bei 5,8·10¹⁰. Da die formbestimmenden Parameter σ_m , $\sigma_{\log(A)}$ und $\rho_{A,m}$ sich für beide Kurven nur geringfügig, die A_0 und m_0 -Werte dagegen signifikant unterscheiden, werden die unterschiedlichen Kurvenmaxima in erster Linie durch den Faktor 1/*A* in (22) hervorgerufen. Die spitzere Form von f(A,m) für alle Meßwerte zeigt sich daher nur in der Lognormal-Verteilung und bedeutet keine geringere statistische Unsicherheit von A_0 und m_0 .

Abb. 6-8Bivariate Dichtefunktion der Koeffizienten A und m des Potenzgesetzes(22) für alle 521 Einzeldaten (oberes Diagramm) und die 484 Daten mitPorositäten n > 0,3% (unteres Diagramm)

Schließlich ist in Abb. 6-9 die resultierende Dichtefunktion aus der Regression mit gewichteten Residuen dargestellt, bei der die unterschiedlichen Datenzahlen in den Kategorien "feucht" und "trocken kompaktiert" kompensiert sind.

 Abb. 6-9 Bivariate Dichteverteilung der Koeffizienten A und m des Potenzgesetzes
 (22) für die Daten der Kategorien "feucht" und "trocken kompaktiert" mit Porositäten > 0,3% mit Wichtung zur Kompensation der unterschiedlichen Zahl der Daten in den Kategorien

6.3 Unterschied zwischen totaler Porosität und Transportporosität

Für einige Meßreihen wurde auch eine Regression an die in Kapitel 5.2 beschriebene dreiparametrige Funktion (25) vorgenommen, mit der versucht wurde, den Anteil n_0 der nicht für den Fluidtransport verfügbaren Porosität an der totalen Porosität n_{tot} zu bestimmen. Dabei hat sich nur für die BGR-Meßdaten mit $n_0 = 0,34\%$ ein plausibler Wert ergeben. Die Meßdaten und die Ausgleichskurven nach der linearen und der nichtlinearen Regression zeigt Abb. 6-10. Bei den Battelle-Meßdaten ergeben sich in allen Fällen unsinnige n_0 -Werte < 0, was auf die in einigen Fällen bei sehr kleinen Porositäten gemessenen hohen Permeabilitätswerte zurückgeführt werden kann, vgl. Abb. 3-4 bis Abb. 3-6.

Abb. 6-10 Regression der BGR-Daten nach dem linearen 2-parametrigen Modell (3) und dem nichtlinearen 3-parametrigen Modell (25)

Aus den DEBORA- und den GRS-132-Daten läßt sich kein n_0 -Wert ableiten, weil diese Reihen keine Daten mit ausreichend niedrigen Porositäten im Bereich unterhalb 1 -2% enthalten, in dem ein merklicher Unterschied zwischen Transportporosität und totaler Porosität erwartet werden kann. Insofern hat das hier aus den BGR-Daten abgeleitete Ergebnis nur qualitativen Charakter.

7 Zusammenfassung

Die Permeabilität der künstlichen, hauptsächlich aus kompaktiertem Salzgrus bestehenden technischen Barrieren ist einer der maßgeblichen Parameter für die Strömungs- und Transportvorgänge in einem Endlager im Salinar. Die Permeabilität von Salzgrus ist näherungsweise proportional zur vierten Potenz der Porosität und damit extrem porositätsabhängig. Da die Porosität der technischen Barrieren und des Versatzes in einem Endlager während der Nachbetriebsphase wegen der Gebirgskonvergenz stetig abnimmt, ändern sich die Permeabilitäten und damit die Strömungswiderstände entsprechend stark.

Seit einer früheren, 1996 durchgeführten statistischen Datenanalyse zur Ableitung einer Permeabilitäts-Porositätsrelation für Salzgrus, der insgesamt 67 Meßwerte zugrunde lagen, wurden umfangreiche neue experimentelle Ergebnisse publiziert. Aus diesem Grund wurde die Analyse mit einer erheblich erweiterten Datenbasis, die 521 Meßwerte umfaßt, aktualisiert.

Die neue Untersuchung hat bestätigt, daß der Feuchtegehalt des Salzgruses das Permeabilitätsverhalten maßgeblich beeinflußt. Daher wurden jeweils unterschiedliche Relationen für feucht und trocken kompaktierten Salzgrus abgeleitet. Dabei ist "trockener Salzgrus" definiert als natürliches Material, das vor der Kompaktion entweder getrocknet oder in trockener Atmosphäre gelagert wurde und damit maximal ca. 0,15% Feuchte enthält und "feuchter Salzgrus" als Material, dessen Feuchte durch Wasseradsorption bei der Lagerung in feuchter Atmosphäre erhöht wurde, aber noch keine flüssige Phase enthält.

Die Permeabilitäts-Porositätsrelation mit den statistischen Bestwerten für trocken kompaktierten Salzgrus mit Porositäten > 0,3% lautet:

$$k = 1,303 \cdot 10^{-10} \cdot n^{3,841} \quad [\text{m}^2] . \tag{27}$$

Darin ist für *n* die totale Porosität als dimensionsloser Zahlenwert einzusetzen. Die entsprechende Relation für feucht kompaktierten Salzgrus lautet:

$$k = 7,464 \cdot 10^{-9} \cdot n^{5,253} \quad [m^2] .$$
(28)

Die gemeinsame Regression aller Daten mit n > 0,3% aus beiden Kategorien ohne Berücksichtigung der unterschiedlichen Anzahl der Meßdaten ergibt als Permeabilitäts-Porositätsrelation

$$k = 2.540 \cdot 10^{-10} \cdot n^{4,175} \quad [\text{m}^2] . \tag{29}$$

Wenn der Einfluß der unterschiedlichen Anzahlen der Daten in beiden Kategorien durch eine Regressionsanalyse mit entsprechend gewichteten Residuen kompensiert wird, ergibt sich ein Porositätsexponent, der etwa dem arithmetischen Mittel der Exponenten für die beiden Datenkategorien entspricht:

 $k = 6,237 \cdot 10^{-10} \cdot n^{4,497} \quad [m^2] \tag{30}$

Die aus der Streuung der Eigenschaften der untersuchten Salzgrusproben und aus den Meßfehlern resultierenden Konfidenzbereiche für die Porositätsexponenten von trokkenem Material liegen innerhalb und von feucht kompaktiertem Material oberhalb der theoretisch erwarteten Bandbreite 3 < m < 5. Die Ursachen für den höheren Wert bei den feuchten Proben sind ungeklärt.

Die hier angegebenen Permeabilitäts-Porositätsrelationen wurden über Regressionen nach der totalen Porosität abgeleitet. Eine Regression nach den Transportporositäten war nicht möglich, weil diese Größe schwierig zu ermitteln ist und daher wegen des damit verbundenen hohen Aufwands nicht gemessen worden war. Ein Versuch, den nicht für den Fluidtransport beitragenden Anteil an der totalen Porosität statistisch zu ermitteln, lieferte nur in einem Fall ein plausibles Ergebnis, dessen generelle Gültigkeit nicht gesichert ist.

Die Streuung der in die Regressionsanalyse eingegangenen Meßwerte bedingt eine statistische Unsicherheit der Schätzwerte für die beiden Koeffizienten m und A in dem Potenzgesetz für die Permeabilitäts-Porositätsrelation. Die statistische Analyse hat ergeben, daß diese Koeffizienten stark miteinander korreliert sind. Ihre statistische Verteilung kann durch eine spezielle bivariate Dichtefunktion beschrieben werden. In dieser Dichtefunktion ist der Porositätsexponent m normalverteilt und der Koeffizient A lognormal verteilt. Die Dichtefunktion, deren allgemeine Form durch GI. (22) wieder-

gegeben wird, läßt sich auf eine Zahlenwertgleichung mit sechs Koeffizienten reduzieren:

$$f(A,m) = \frac{c_1}{A} \cdot \exp\left[-\left(c_2 \cdot m + c_3 + c_4 \cdot \ln(A)\right)^2 - \left(c_5 \cdot \ln(A) + c_6\right)^2\right].$$
 (31)

Die Koeffizienten c_1 bis c_6 sind in Tab. 7-1 für die einzelnen in Kapitel 6.2 beschriebenen statistischen Analysen aufgeführt. Gl. (31) kann in probabilistischen Rechnungen zur Ziehung von *A/m*-Wertepaaren verwendet werden, die dann in die einzelnen Spiele einer Monte-Carlo-Simulation als Koeffizienten in der Permeabilitäts-Porositätsrelation eingehen. Dabei kann je nach Situation der entsprechende Koeffizientensatz für die Kategorien "feucht kompaktiert", "trocken kompaktiert" oder beliebigen Salzgrus unterschieden werden.

Tab. 7-1	Koeffizienten in der Formel für die bivariate Dichteverteilung (31) aus der
	Regressionsanalysen für verschiedene Datenkategorien

Kategorie	<i>C</i> ₁	C ₂	<i>C</i> ₃	C ₄	C ₅	C ₆
trocken	18,594	21,281	-214,05	-5,812	2,798	63,762
feucht	0,7113	3,947	-29,731	-0,6073	0,6032	11,961
alle, ungewichtet	15,139	19,763	-195,75	-5,145	2,405	52,940
alle, gewichtet	8,361	13,533	-127,88	-3,162	1,941	41,138

Die publizierten Meßdaten mit totalen Porositäten < 0,3% wurden nicht berücksichtigt, da für diese Werte gezeigt werden konnte, daß deren relative Meßfehler eine unzulässige, systematische Verringerung der mittels Regressionsanalysen bestimmten Porositätsexponenten zur Folge haben.

Die statistisch ermittelten Permeabilitäts-Porositätsrelationen (27) bis (30) sind im Bereich 0,3% < n < 42% durch Meßwerte abgesichert. Sie ergeben für n = 0,3% Permeabilitäten zwischen $5 \cdot 10^{-22}$ und $3 \cdot 10^{-20}$ m², d.h. sie reichen bis an den Bereich der Permeabilität von festem Steinsalz von ca. 10^{-21} m² heran. Damit wurde das Ziel dieser Arbeit erreicht, nämlich die Berechnung einphasiger Darcy-Strömungen und ihrer Schwankungsbreiten innerhalb von probabilistischen Langzeitsicherheitsanalysen mit einer dafür hinreichenden Genauigkeit zu ermöglichen.

8 Literatur

- [1] Archie, G. E.: Electrical Resistivity as an Aid in Core Analysis Interpretation.
 Trans. Am. Institute of Mining Engineers; 146, 54 (1942)
- [2] Carman, P. C.: Flow of Gases through Porous Media. Butterworth, London (1956)
- [3] Draper, N.; Smith, H.: Applied Regression Analysis. Wiley New York (1966)
- [4] Dullien, F. A. L.:Porous Media. Fluid Transport and Pore Structure. Second Edition. Academic Press Inc San Diego (1992)
- [5] E. Fein, I. Müller-Lyda, R. Storck: Ableitung einer Permeabilitäts-Porositätsbeziehung für Salzgrus und Dammbaumaterialien. Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, GRS-132, Braunschweig (1996)
- [6] Fröhlich, H.; Förster, S.; Hohenthanner, C. R.: Bestimmung des Diffusionsund Permeabilitätsverhaltens von Wasserstoff in Steinsalz und kompaktiertem Salzgrus. Abschlußbericht. Battelle Ingenieurtechnik. Eschborn (1995)
- [7] Fröhlich, H.: persönliche Mitteilung Battelle IT (1998)
- [8] Hirsekorn, R.-P.; Nies, A.; Rausch, H.; Storck, R.: Performance Assessments of Confinements for Medium-Level and α-contaminated Waste (PACOMA), Rock Salt Option, Final Report. EUR-13634 EN, Luxemburg, (1991)
- [9] Kessels, W., Flentge, I., Kolditz, H.: DC Geoelectric Sounding to determine Water Content in the Salt Mine Asse (FRG). Geophysical Prospecting, 436-446, 1985
- [10] Klinkenberg, L. J.: The Permeability of Porous Media to Liquids and Gases.
 Drilling and Production Practice. American Petroleum Institute, Vol. 2, 200-213, 1941

- [11] MathSoft Inc.: MathCad PLUS 6.0-Benutzerhandbuch. Anhang D: Numerische Methoden. Cambridge, Mass., USA (1996)
- [12] Rothfuchs, T. et. al.: Gas Generation and Migration in Crushed Salt.)
 Proceedings of the Pegasus Meeting Naantali, Finland, 25.26 May 1998.
 EUR-DOC XII/276/98-EN, S. 137-149 (1988)
- [13] Sachs, L: Angewandte Statistik. Springer-Verlag, 1992
- [14] Seber, G. A. F.; Wild, C. J.: Nonlinear Regression. Wiley (1989)
- [15] Storck, R.; Aschenbach, J.; Hirsekorn, R.-P.; Nies, A.; Stelte, N.: Disposal in Salt formations. EUR 11778 EN. Luxemburg (1988)
- [16] Storck, R.: Langzeitsicherheitsnachweise unter Berücksichtigung von Unsicherheiten. Atomwirtschaft Jahrg. XXXVIII, Nr. 4 S. 285 - 290 (1993)
- [17] Storck, R.; Buhmann, D.; Hirsekorn, R.-P.; Kühle, K.; Lührmann, L.: Das Programmpaket EMOS zur Analyse der Langzeitsicherheit eines Endlagers für radioaktive Abfälle. Version 5. GRS-122. Braunschweig, März 1996
- [18] Stormont, J. C.; Daemen, J. J. K.: Laboratory Study of Gas Permeability Changes in Rock Salt During Deformation. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. Vol. 29 No. 4, pp. 325-342, 1992
- [19] Stührenberg, D.; Zhang, C.: Untersuchungen zum Kompaktionsverhalten von Salzgrus als Versatzmaterial für Endlagerbergwerke im Salz. Abschlußbericht zum Vorhaben 02 E 8552 8. Bundesanstalt für Geowissenschaften und Rohstoffe. Hannover (1995)

Tab. 5-1 Datenbasis del GINS-Datenanalyse von 1990 3	Tab. 9-1	enbasis der GRS-Datenanalyse vo	n 1996 [5
--	----------	---------------------------------	------------

Kennung	grs					
Quelle	Verschiedene Autoren [5]					
Versuchsreihe	Untersuchungen verschiedener Experimentatoren					
Meßfluid	verschiedene	verschiedene				
Material	Salzgrus					
Körnung	unterschiedlich					
Probengröße	unterschiedlich					
Brucherscheinungen	teilweise					
Meßfehler	unterschiedlich, Pe	rmeabilität schätzung	sweise 10%			
Feuchtegehalt	Einordnung nach fe	eucht und trocken It.	GRS-Bericht [5]			
Bemerkungen	ausführliche Diskus	ssion im GRS-Bericht				
Porosität n []	Permeabilität k [m²]	Porosität n []	Permeabilität k [m²]			
#17	E	#Spiers	s (feucht)			
4.188·10 ⁻⁰¹	6.8000·10 ⁻¹³	9.0000.10-02	1.2300.10-15			
3.922·10 ⁻⁰¹	6.4000·10 ⁻¹³	1.1000·10 ⁻⁰¹	1.7300.10-15			
3.706·10 ⁻⁰¹	4.1000·10 ⁻¹³	1.4000.10-01	1.0900.10-14			
3.436·10 ⁻⁰¹	3.0000·10 ⁻¹³	1.6000·10 ⁻⁰¹	1.3000.10-13			
2.745·10 ⁻⁰¹	2.4000·10 ⁻¹³	2.1000·10 ⁻⁰¹	2.1800·10 ⁻¹³			
2.522·10 ⁻⁰¹	8.1000.10-14	#A&S-5				
2.322·10 ⁻⁰¹	5.9000·10 ⁻¹⁴	4.2000·10 ⁻⁰¹	1.3000.10-11			
2.175·10 ⁻⁰¹	4.3000.10-14	3.4000.10-01	4.6000.10-12			
2.072·10 ⁻⁰¹	3.7000.10-14	3.2000·10 ⁻⁰¹	5.3000·10 ⁻¹²			
1.905·10 ⁻⁰¹	3.4000.10-14	#A8	kS-32			
1.726·10 ⁻⁰¹	2.9000.10-14	3.8000·10 ⁻⁰¹	3.6000.10-11			
1.673·10 ⁻⁰¹	3.0000·10 ⁻¹⁴	3.2000·10 ⁻⁰¹	2.5000·10 ⁻¹¹			
#lfT-V	Valt3	2.8000.10-01	1.3000.10-11			
6.000·10 ⁻⁰²	3.80·10 ⁻¹⁵	#ITC	-Wipp			
6.000·10 ⁻⁰²	7.00·10 ⁻¹⁵	2.6000·10 ⁻⁰¹	4.0000·10 ⁻¹²			
8.000·10 ⁻⁰²	5.60·10 ⁻¹⁴	2.1000·10 ⁻⁰¹	8.0800·10 ⁻¹³			
9.000.10-02	3.90.10-14	1.6000.10-01	1.3000.10-13			
1.100.10-01	2.25.10-13	#ITC	-Avery			
1.200.10-01	1.83.10-13	2.4700·10 ⁻⁰¹	3.2400·10 ⁻¹²			
1.500.10-01	8.58·10 ⁻¹³	2.1800.10-01	1.6900.10-12			
1.500.10-01	9.50·10 ⁻¹³	1.9600.10-01	8.0900·10 ⁻¹³			
2.000.10-01	1.85.10-12	1.7200.10-01	3.5700·10 ⁻¹³			
2.400·10 ⁻⁰¹	9.50.10-12	1.4600.10-01	1.2400 10-13			
		1.3300.10-01	4.6400 10-14			

Tab 9.1 (Fortsetzung)

#E	3GR 20-25	#BGR	XII (feucht)
1.8800·10 ⁻⁰¹	7.8000 10-12	8.3500×10 ⁻⁰²	2.3400.10-14
1.5100·10 ⁻⁰¹	1.2000·10 ⁻¹²	4.9000·10 ⁻⁰²	8.2100.10-15
1.1900·10 ⁻⁰¹	6.4000·10 ⁻¹³	#BGR XIII (feucht)	
1.0600·10 ⁻⁰¹	1.3000·10 ⁻¹³	6.7000·10 ⁻⁰²	1.3700.10-16
5.2000·10 ⁻⁰²	3.0000.10-15	6.7000·10 ⁻⁰²	8.8900.10-15
4.6000·10 ⁻⁰²	8.5000·10 ⁻¹⁵	6.7000·10 ⁻⁰²	1.9800.10-15
#BGR/HMI		6.7000·10 ⁻⁰²	2.2900·10 ⁻¹⁶
1.7300.10-01	2.0000·10 ⁻¹³	6.7000·10 ⁻⁰²	5.2100·10 ⁻¹⁵
1.7300.10-01	5.0000·10 ⁻¹³	6.7000·10 ⁻⁰²	1.9900.10-15
9.9000·10 ⁻⁰²	2.4000 10-14	#IfT	alt (feucht)
9.9000·10 ⁻⁰²	1.8000 10-14	1.5000.10-01	3.3200.10-13
4.3000.10-02	7.1000.10 ⁻¹⁶	1.5000·10 ⁻⁰¹	5.0000·10 ⁻¹³
4.3000.10-02	1.0000.10-15	1.7800.10-01	9.5000·10 ⁻¹³
4.3000.10-02	8.5000·10 ⁻¹⁶	1.7800.10-01	9.5000·10 ⁻¹³

Kennung	bgr					
Quelle	BGR-Untersuchun	gsbericht [19])				
Versuchsreihe	Permeabilitäten für	Permeabilitäten für unterschiedliche Körnungen				
Meßfluid	Spindelöl	Spindelöl				
Material	Salzgrus	<u> </u>				
Körnung	Referenzversatz, o	bere Korngröße variie	ert			
Probengröße	leicht unterschiedli	ch				
Brucherscheinungen	n.a.					
Meßfehler	Porosität ca. 1% al	osolut, Permeabilität r	n.a.			
Feuchtegehalt	Kategorie trocken		9			
Bemerkungen	weitere Information	nen im BGR-Bericht [19]			
Porosität n []	Permeabilität k [m ²]	Porosität n []	Permeabilität k [m²]			
Oberer Korndurg	chmesser 31 mm	Oberer Korndu	rchmesser 2 mm			
2.8950·10 ⁻⁰¹	4.1470·10 ⁻¹²	2.7520·10 ⁻⁰¹	8.0350·10 ⁻¹³			
2.7120·10 ⁻⁰¹	5.4910.10-12	2.5500·10 ⁻⁰¹	4.4310·10 ⁻¹³			
2.5160.10-01	4.1820.10-12	2.3300.10-01	2.6600.10-13			
2.3090.10-01	3.8020.10-12	2.0960.10-01	2.6700.10-13			
2 0900.10-01	2 3810 10-12	1 8460.10-01	1.2170.10.13			
1 8580.10	4 1220.10 ⁻¹²	1 5840.10-01	7 7340.10-14			
1.6100.10 ⁻⁰¹	2 5050.10 ⁻¹²	1 2050.10-01	2 3870.10 ⁻¹⁴			
1.0100.10	1 4290 10-12	0.0300.10-02	6 4920 10 ⁻¹⁵			
1.0600.10-01	2 4100 10 ⁻¹³	9.9300·10	1 4570 10-15			
7 7000 10-02	5.4190.10 6.0150.10 ⁻¹⁴	5.7200·10	1.4570.10 ⁻¹⁶			
7.7200.10	0.9150.10	5.3500.10	5.4230.10			
6.4800·10 ⁻²	3.1620.10	3.9400.10	5.1210.10			
5.2900.10	9.4620.10	3.2500.10	1.4/50.10			
4.1500.10	2.0250.10	2.5200.10	8.7360.10			
3.3100.10**	3.3330.10	1.7600.10**	7.0380.10			
2.3100.10	1.5040.10"	1.3700.10.02	1.5760.10			
2.0400.10-02	5.1700·10 ⁻¹⁸	1.0100.10.02	1.7900.10			
Oberer Korndurg	hmesser 16 mm	Oberer Korndur	chmesser 0,5 mm			
2.7810.10	1.6170.10 ⁻¹²	3.5690·10 ^{·01}	3.7600·10 ^{·13}			
2.6470·10 ⁻⁰¹	2.7630·10 ⁻¹²	3.3980·10 ⁻⁰¹	5.1720·10 ⁻¹³			
2.4490·10 ⁻⁰¹	1.7590·10 ⁻¹²	3.2140·10 ⁻⁰¹	3.7380·10 ⁻¹³			
2.2220·10 ⁻⁰¹	1.6090·10 ⁻¹²	3.0190·10 ⁻⁰¹	2.4770·10 ⁻¹³			
1.9820 10-01	2.7920.10-13	2.8140.10-01	2.2210·10 ⁻¹³			
1.7250·10 ⁻⁰¹	5.2770·10 ⁻¹³	2.5880·10 ⁻⁰¹	1.4720.10-13			
1.4510.10-01	1.7960·10 ⁻¹³	2.3590.10-01	1.2380.10-13			
1.1570.10-01	1.5500.10-13	2.2490.10-01	1.2920.10-13			
9.7100.10-02	8.0830.10-14	2.1590.10-01	1.5450.10-13			
8.0700.10-02	3.7210.10-14	2.0570.10-01	1.7150.10 ⁻¹³			
6.3100.10-02	8.0790.10-15	1.9510.10-01	1.1270.10-13			
5.1000.10-02	1.9680.10 ⁻¹⁵	1.7300.10.01	6.2930.10 ⁻¹⁴			
3.9700.10-02	7,2380.10'16	1.5620.10-01	3 4330.10-14			
3 4700.10-02	2 9130.10 ⁻¹⁶	1.3690.10.01	2 1370.10 ¹⁴			
2 8500.10-02	1 3730.10-16	1 2060 10'01	1 1000.10 ⁻¹⁴			
1 8000 1002	1 2010 10 ⁻¹⁷	1 0220 10 ⁻⁰¹	7 5970 10 ⁻¹⁵			
1 4600 10-02	5 5260 10 ⁻¹⁸	P 2000 10 ⁻⁰²	F 0100 10 ⁻¹⁶			
1,4000.10	1 5000 10:18	7 2000 10-02	5.9100·10			
1.1000.10	1.0020.10	1.2000.10	0.8090.10			

Tab. 9-2 Ergebnisse der BGR-Untersuchung [19]

Kennung	bgr		
9.0000·10 ⁻⁰³	1.8770·10 ⁻¹⁹	5.2300·10 ⁻⁰²	1.2400·10 ⁻¹⁸
Oberer Kornd	urchmesser 8 mm	4.8600·10 ⁻⁰²	3.6850·10 ⁻¹⁹
2.8900·10 ⁻⁰¹	2.6340·10 ⁻¹³	Oberer Kornde	urchmesser 0,25 mm
2.6970.10-01	2.7020·10 ⁻¹²	3.9090·10 ⁻⁰¹	2.2830·10 ⁻¹³
2.4830·10 ⁻⁰¹	4.4790·10 ⁻¹³	3.7490·10 ⁻⁰¹	1.9330·10 ⁻¹³
2.2630·10 ⁻⁰¹	1.0370·10 ⁻¹²	3.5750·10 ⁻⁰¹	2.7770·10 ⁻¹³
2.0230·10 ⁻⁰¹	5.0380·10 ⁻¹³	3.3910.10 ⁻⁰¹	1.7970.10-13
1.7700·10 ⁻⁰¹	2.2080·10 ⁻¹³	3.1970·10 ⁻⁰¹	1.0770·10 ⁻¹³
1.4860·10 ⁻⁰¹	2.8800·10 ⁻¹³	2.9900·10 ⁻⁰¹	6.6860·10 ⁻¹⁴
1.2060·10 ⁻⁰¹	6.4670·10 ⁻¹⁴	2.7710·10 ⁻⁰¹	8.1110.10-14
1.0210.10-01	2.1580·10 ^{·14}	2.5340·10 ⁻⁰¹	5.1380·10 ⁻¹⁴
7.6600.10-02	3.0850·10 ⁻¹⁵	2.2810·10 ⁻⁰¹	3.7040·10 ⁻¹⁴
5.7800·10 ⁻⁰²	1.5570.10	2.0140·10 ⁻⁰¹	1.8520.10 ⁻¹⁴
4.4700·10 ⁻⁰²	3.6320·10 ⁻¹⁶	1.9140·10 ⁻⁰¹	1.8790.10-14
3.2500.10-02	2.6720·10 ⁻¹⁷	1.7860·10 ⁻⁰¹	1.1290.10-14
2.5900.10-02	1.2390.10-17	1.6670·10 ⁻⁰¹	1.2910.10-14
2.1100.10-02	1.4470·10 ⁻¹⁸	1.5560·10 ⁻⁰¹	1.8910.10-14
1.7000.10-02	6.5600·10 ⁻¹⁹	1.4370·10 ⁻⁰¹	1.8290.10-14
1.3900.10-02	9.4500·10 ⁻²⁰	1.3140.10-01	1.2620.10-14
Oberer Kornd	urchmesser 4 mm	1.1940·10 ⁻⁰¹	6.5240·10 ⁻¹⁵
3.8440·10 ⁻⁰¹	2.2250·10 ⁻¹²	1.0710·10 ⁻⁰¹	3.3670·10 ⁻¹⁵
3.4660.10-01	2.6190·10 ^{·12}	9.4500.10-02	2.6440.10-15
3.0820.10-01	2.5010·10 ⁻¹²	8.2200·10 ⁻⁰²	1.4500.10-15
2.6980.10-01	1.7510·10 ^{·12}	6.8800 10 ⁻⁰²	4.8330·10 ⁻¹⁶
2.3160.10.01	1.0800·10 ⁻¹²	5.5000·10 ⁻⁰²	8.8410·10 ⁻¹⁷
1.9240.10-01	4.9340·10 ⁻¹³	4.1700.10-02	1.7840·10 ⁻¹⁷
1.5350.10-01	2.1880 10 ⁻¹³	2.9700.10-02	1.5490.10-18
1.1470.10-01	4.5690·10 ⁻¹⁴		
8.4400.10-02	2.5990.10-14		
7.6800.10-02	1.6140.10-14	2008) 	
6.2100.10-02	5.7280·10 ⁻¹⁵		
3.9600.10-02	5.0260.10 ⁻¹⁶		
3.3400.10-02	3.2610·10 ⁻¹⁶		
1.9500.10-02	2.6830.10-17		
1.2500.10-02	2.8010·10 ⁻¹⁸		
7.9000.10-03	1.2700·10 ⁻¹⁹		

Tab. 9-3Ergebnisse der Battelle-Untersuchung [6] an trocken gelagerten 100-mm-Proben aus dem Forschungsbergwerk Asse

Kennung	a100f	a100f				
Quelle	Battelle Abschlußb	ericht [6]				
Versuchsreihe	Voruntersuchung z	ur Durchmesserabh	nängigkeit[100 mm]			
Meßfluid	Wasserstoff		-			
Material	kompaktierter Asse	-Salzgrus 850 m Te	eufe			
Körnung	< 100 mm					
Probengröße	Ø 96 mm, Länge 1	00 mm				
Brucherscheinungen						
Meßfehler	Längen 0,05%, Dic	Längen 0,05%, Dichte 0,3%, Permeabilität 10%				
Feuchtegehalt						
Bemerkungen	Lagerung bei 35%	Luftfeuchte				
Porosität n []	Permeabilität k [m²]	Porosität n []	Permeabilität k [m²]			
1.000·10 ⁻³	2.00.10-18	1.100.10-2	8.00.10-18			
1.700·10 ⁻³	1.10.10-18	1.200·10 ⁻²	9.50·10 ⁻¹⁹			
2.500·10 ⁻³	1.20.10-18	1.200·10 ⁻²	9.00·10 ⁻¹⁸			
2.600·10 ⁻³	1.40·10 ⁻¹⁸	1.250·10 ⁻²	1.10.10-17			
2.600.10-3	1.80.10-18	3.350·10 ⁻²	3.00·10 ⁻¹⁵			
7.000·10 ⁻³	2.40.10-18	3.500·10 ⁻²	1.25·10 ⁻¹⁵			
7.500·10 ^{·3}	3.00·10 ⁻¹⁸	4.200·10 ⁻²	1.30.10-15			
9.500·10 ⁻³	2.70·10 ⁻¹⁸					

Tab. 9-4 Ergebnisse der Battelle-Untersuchung [6] an feucht gelagerten 100-mm Proben aus dem Forschungsbergwerk Asse

Kennung	a100ff				
Quelle	Battelle Abschlußb	ericht [6]]			
Versuchsreihe	Voruntersuchung z	ur Durchmesserabh	längigkeit [100 mm]		
Meßfluid	Wasserstoff				
Material	kompaktierter Asse	-Salzgrus 850 m Te	eufe		
Körnung	< 100 mm				
Probengröße	Ø 96 mm, Länge 100 mm				
Brucherscheinungen					
Meßfehler	Längen 0,05%, Dic	hte 0,3%, Permeab	ilität 10%		
Feuchtegehalt					
Bemerkungen	Lagerung bei 75%	Luftfeuchte	5 <u>1915</u> 192 19		
Porosität n []	Permeabilität k [m²]	Porosität n []	Permeabilität k [m²]		
1.200.10-2	7.00.10-18	3.500·10 ⁻²	9.90·10 ⁻¹⁶		
1.250·10 ⁻²	2.40.10-18	4.300·10 ⁻²	6.00·10 ⁻¹⁵		
3.050·10 ⁻²	5.40·10 ⁻¹⁶	4.500·10 ⁻²	7.00.10-15		

Tab. 9-5Ergebnisse der Battelle-Untersuchung [6] an heiß kompaktierten 100-mm-Proben aus dem Forschungsbergwerk Asse

Kennung	a100h					
Quelle	Battelle Abschlußb	Battelle Abschlußbericht[6]				
Versuchsreihe	Voruntersuchung z	ur Durchmesserabhä	ngigkeit [100 mm]			
Meßfluid	Wasserstoff	12				
Material	kompaktierter Asse	-Salzgrus aus 850 m	Teufe			
Körnung	< 100 mm					
Probengröße	Ø 96 mm, Länge 1	00 mm				
Brucherscheinungen		54				
Meßfehler	Länge 0,05%, Dich	Länge 0,05%, Dichte 0,3%, Permeabilität 10%				
Feuchtegehalt						
Bemerkungen	heißgepreßt, Lager	rung bei 100 °C im W	/ärmeschrank			
Porosität n []	Permeabilität k [m²]	Porosität n []	Permeabilität k [m²]			
1.000·10 ⁻³	2.00·10 ⁻²¹	7.000·10 ^{·3}	1.80·10 ⁻¹⁸			
2.000·10 ⁻³	7.00·10 ⁻²¹	9.000·10 ⁻³	7.50·10 ⁻¹⁹			
2.500·10 ⁻³	6.00·10 ⁻¹⁹	1.700·10 ⁻²	4.50·10 ⁻¹⁸			
4.500·10 ⁻³	1.30·10 ⁻¹⁹	2.700·10 ⁻²	2.00.10-16			
6.000·10 ⁻³	8.00·10 ⁻¹⁹					

Tab. 9-6Ergebnisse der Battelle-Untersuchung [6] an trocken gelagerten 50-mm-Proben aus dem Forschungsbergwerk Asse

Kennung	a50f					
Quelle	Battelle Abschlußb	ericht[6]				
Versuchsreihe	Voruntersuchung z	ur Durchmesserabhär	ngigkeit [50 mm]			
Meßfluid	Wasserstoff					
Material	kompaktierter Asse	-Salzgrus aus 850 m	Teufe			
Körnung	< 10 mm					
Probengröße	Ø ~50 mm, Länge	100 mm				
Brucherscheinungen						
Meßfehler	Längen 0,05%, Dic	Längen 0,05%, Dichte 0,3%, Permeabilität 10%				
Feuchtegehalt						
Bemerkungen	Lagerung bei 35%	Lagerung bei 35% Luftfeuchte				
Porosität n []	Permeabilität k [m²]	Porosität n []	Permeabilität k [m²]			
1.500·10 ⁻³	9.00·10 ⁻¹⁹	6.500·10 ⁻³	5.00·10 ⁻¹⁸			
2.000·10 ⁻³	7.00·10 ⁻¹⁹	1.450·10 ⁻²	2.10·10 ⁻¹⁷			
2.500·10 ⁻³	2.50·10 ⁻¹⁸	1.600·10 ⁻²	2.80·10 ⁻¹⁷			
2.500·10 ⁻³	5.50·10 ⁻¹⁸	1.700·10 ⁻²	2.00·10 ⁻¹⁷			
4.000·10 ⁻³	1.70·10 ⁻¹⁸	3.550·10 ⁻²	2.40·10 ⁻¹⁶			
4.500·10 ⁻³	1.30.10-18	3.600·10 ⁻²	2.00.10-16			
4.500·10 ⁻³	5.50·10 ⁻¹⁸	4.800·10 ⁻²	2.00.10-15			
5.000·10 ⁻³	3.50·10 ^{·18}	4.800·10 ⁻²	1.20.10-15			
6.000·10 ⁻³	4.70·10 ⁻¹⁸	5.000·10 ⁻²	1.25.10 ⁻¹⁵			

 Tab. 9-7
 Ergebnisse der Battelle-Untersuchung [6] an feucht gelagerten 50-mm

Kennung	a50ff	a50ff				
Quelle	Battelle Abschlußb	Battelle Abschlußbericht[6]				
Versuchsreihe	Voruntersuchung z	ur Durchmesserabh	nängigkeit [50 mm]			
Meßfluid	Wasserstoff					
Material	kompaktierter Asse	-Salzgrus 850 m Te	eufe			
Körnung	< 10 mm					
Probengröße	Ø~50 mm, Länge	Ø ~50 mm, Länge 100 mm				
Brucherscheinung	en					
Meßfehler	Längen 0,05%, Dio	Längen 0,05%, Dichte 0,3%, Permeabilität 10%				
Feuchtegehalt						
Bemerkungen	Lagerung bei 75%	Luftfeuchte				
Porosität n []	Permeabilität k [m²]	Porosität n []	Permeabilität k [m²]			
6.500·10 ⁻³	2.20.10-18	9.500·10 ⁻³	1.30.10-17			
6.000·10 ⁻³	3.30.10-18	1.300.10-2	4.00.10.19			
7.500.10-3	2.10.10.18	2.250·10 ⁻²	2.00.10-17			
7.500.10-3	3.10.10-18	$3.10 \cdot 10^{-18}$ $2.550 \cdot 10^{-2}$ $2.70 \cdot 10^{-17}$				
8.000.10-3	1.30.10-17	3.450.10-2	1.70.10-16			
8.500.10-3	3.00.10-17	3.550.10-2	3.00·10 ⁻¹⁶			
9.500·10 ⁻³	9.00.10-19					

Proben aus dem Forschungsbergwerk Asse

Tab. 9-8Ergebnisse der Battelle-Untersuchung [6] an heiß kompaktierten 50-mm-Proben aus dem Forschungsbergwerk Asse

Kennung	a50h					
Quelle	Battelle Abschlußb	Battelle Abschlußbericht [6]				
Versuchsreihe	Voruntersuchung z	ur Durchmesserabhä	ngigkeit [50 mm]			
Meßfluid	Wasserstoff					
Material	kompaktierter Asse	-Salzgrus 850 m Te	ufe ·			
Körnung	< 10 mm					
Probengröße	Ø~50 mm, Länge	Ø~50 mm, Länge 100 mm				
Brucherscheinungen						
Meßfehler	Längen 0,05%, Dic	hte 0,3%, Permeabili	tät 10%			
Feuchtegehalt						
Bemerkungen	heißgepreßt, Lager	rung bei 100 °C im V	/ärmeschrank			
Porosität n []	Permeabilität k [m²]	Porosität n []	Permeabilität k [m²]			
9.000·10 ⁻³	7.00.10-18	7.00·10 ⁻¹⁸ 5.000·10 ⁻² 4.00·10 ⁻¹⁶				
1.000.10-2	8.00·10 ⁻¹⁸ 5.700·10 ⁻² 6.00·10 ⁻¹⁵					
3.500·10 ⁻²	2.50·10 ⁻¹⁸	6.100·10 ⁻²	3.50.10-15			
3.600·10 ⁻²	6.00·10 ⁻¹⁹					

Kennung	a3f	a3f			
Quelle	Battelle Abschlußb	Battelle Abschlußbericht [6]			
Versuchsreihe	Untersuchung des	Anhydriteinflusses,	ca. 3%		
Meßfluid	Wasserstoff				
Material	kompaktierter Salz	grus aus der Asse, v	verschiedene Tiefen		
Körnung					
Probengröße	Ø 96 mm, Länge 1	00 mm			
Brucherscheinunger	<u>1</u>				
Meßfehler	Längen 0,05%, Dio	hte 0,3%, Permeab	lität 10%		
Feuchtegehalt					
Bemerkungen	Lagerung bei 35%	Lagerung bei 35% Luftfeuchte			
Porosität n []	Permeabilität k [m ²]	Porosität n []	Permeabilität k [m²]		
4.820·10 ⁻²	8.48·10 ⁻¹⁶	1.400.10-3	2.17·10 ⁻¹⁹		
4.820·10 ⁻²	9.62.10	1.400·10 ⁻³	1.85·10 ⁻¹⁹		
5.000·10 ⁻²	9.09·10 ⁻¹⁶	4.100·10 ⁻³	2.58·10 ⁻¹⁹		
3.540·10 ⁻²	1.30.10-16	4.600·10 ⁻³	2.61.10 ⁻¹⁹		
3.580.10 ⁻²	1.25.10-16	2.300·10 ⁻³	2.03·10 ⁻¹⁹		
3.540·10 ⁻²	9.93.10-17	4.600·10 ⁻³	3.26·10 ⁻¹⁹		
1.600·10 ⁻²	1.20.10-17	2.600·10 ⁻³	3.09·10 ⁻¹⁹		
1.650·10 ⁻²	7.67·10 ⁻¹⁸	2.300.10-3	3.05·10 ⁻¹⁹		
1.420·10 ⁻²	7.39·10 ⁻¹⁸	2.300.10-3	2.75·10 ⁻¹⁹		
6.400·10 ⁻³	1.66.10-18	5.100·10 ⁻³	1.13 10 18		
6.000·10 ⁻³	1.44.10 ⁻¹⁸	1.400.10-3	2.17·10 ⁻¹⁹		
5.100·10 ⁻³	1.13.10-18	1.400.10-3	1.85·10 ⁻¹⁹		

Tab. 9-9Ergebnisse der Battelle-Untersuchung an trocken gelagerten Proben aus
dem Forschungsbergwerk Asse mit ca. 3% Anhydritgehalt

Kennung	a3ff	a3ff				
Quelle	Battelle Abschlußb	Battelle Abschlußbericht [6]				
Versuchsreihe	Abhängigkeit vom	Anhydritanteil, ca. 3	% Anhydritgehalt			
Meßfluid	Wasserstoff					
Material	kompaktierter Salz	grus aus der Asse,	verschiedene Tiefen			
Körnung						
Probengröße	Ø 96 mm, Länge 1	Ø 96 mm, Länge 100 mm				
Brucherscheinung	en					
Meßfehler	Längen 0,05%, Dic	tte 0,3%, Permeab	ilität 10%			
Feuchtegehalt						
Bemerkungen	Lagerung bei 75%	Luftfeuchte	e Diversitein			
Porosität n []	Permeabilität k [m²]	Porosität n []	Permeabilität k [m²]			
4.580.10-2	2.63.10-16	1.470.10-2	8.75.10-20			
4.040.10-2	2.33.10-16	1.740.10-2	4.75.10-19			
3.900·10 ⁻²	2.72.10-17	2.72·10 ⁻¹⁷ 1.100·10 ⁻² 2.80·10 ⁻²⁰				
3.490.10-2	9.82.10-17	9.82·10 ⁻¹⁷ 7.800·10 ⁻³ 2.80·10 ⁻²⁰				
3.940.10-2	5.48·10 ⁻¹⁷	1.010.10-2	2.80.10-20			
3.340.10-2	3.15.10-17					

 Tab. 9-10
 Ergebnisse der Battelle-Untersuchung [6] an feucht gelagerten Proben aus dem Forschungsbergwerk Asse mit ca. 3% Anhydritgehalt

Tab. 9-11Ergebnisse der Battelle-Untersuchung [6] an heiß kompaktierten Probenaus dem Forschungsbergwerk Asse mit ca. 3% Anhydritgehalt

Kennung	a3h			
Quelle	Battelle Abschlußbe	ericht [6]		
Versuchsreihe	Abhängigkeit vom /	Anhydritanteil, ca. 3	% Anhydritgehalt	
Meßfluid	Wasserstoff			
Material	kompaktierter Salz	grus aus der Asse,	verschiedene Teufen	
Körnung				
Probengröße	Ø 96 mm, Länge 1	Ø 96 mm, Länge 100 mm		
Brucherscheinungen				
Meßfehler	Längen 0,05%, Dic	hte 0,3%, Permeab	ilität 10%	
Feuchtegehalt				
Bemerkungen	heißgepreßt, Lager	rung bei 100 °C im V	Närmeschrank	
Porosität n []	Permeabilität k [m²]	Porosität n []	Permeabilität k [m²]	
5.700·10 ⁻²	5.58·10 ⁻¹⁵	3.480·10 ⁻²	1.49.10.18	
6.030·10 ⁻²	2.56.10-15	1.010.10-2	6.45·10 ⁻¹⁹	
5.000·10 ⁻²	2.48.10-16	9.600·10 ⁻³	1.83.10-18	

Kennung	a6f				
Quelle	Battelle Abschlußbericht [6]				
Versuchsreihe	Abhängigkeit vom	Anhydritanteil, ca. 64	% Anhydritgehalt		
Meßfluid	Wasserstoff				
Material	kompaktierter Salz	grus aus der Asse, v	verschiedene Tiefen		
Körnung					
Probengröße	Ø 96 mm, Länge 1	Ø 96 mm, Länge 100 mm			
Brucherscheinungen					
Meßfehler	Längen 0,05%, Dic	hte 0,3%, Permeabi	lität 10%		
Feuchtegehalt					
Bemerkungen	Lagerung bei 35%	Lagerung bei 35% Luftfeuchte			
Porosität n []	Permeabilität k [m²]	Porosität n []	Permeabilität k [m²]		
3.440·10 ⁻²	1.54.10-16	8.400.10-3	1.34.10-18		
3.710·10 ⁻²	1.14·10 ⁻¹⁶ 7.700·10 ⁻³ 1.50·10 ⁻¹⁸				
2.620·10 ⁻²	2.91·10 ⁻¹⁷ 1.000·10 ⁻² 3.89·10 ⁻¹⁹				
2.930·10 ⁻²	5.04·10 ⁻¹⁷ 1.000·10 ⁻² 5.13·10 ⁻¹⁹				
1.500.10-2	3.93·10 ⁻¹⁸	6.600·10 ⁻³	7.21.10-19		
1.480·10 ⁻²	3.77·10 ⁻¹⁸	2.700.10-3	3.24.10-19		

Tab. 9-12Ergebnisse der Battelle-Untersuchung an trocken gelagerten Proben aus
dem Forschungsbergwerk Asse mit ca. 6% Anhydritgehalt

 Tab. 9-13
 Ergebnisse der Battelle-Untersuchung [6] an feucht gelagerten Proben

 aus dem Forschungsbergwerk Asse mit ca. 6% Anhydritgehalt

Kennung	a6ff				
Quelle	Battelle Abschlußb	Battelle Abschlußbericht [6]			
Versuchsreihe	Abhängigkeit vom	Anhydritanteil, ca. 6	% Anhydritgehalt		
Meßfluid	Wasserstoff				
Material	kompaktierter Salz	grus aus der Asse,	verschiedene Teufen		
Körnung					
Probengröße	Ø 96 mm, Länge 1	Ø 96 mm, Länge 100 mm			
Brucherscheinunger	1				
Meßfehler	Längen 0,05%, Dic	hte 0,3%, Permeab	ilität 10%		
Feuchtegehalt					
Bemerkungen	Lagerung bei 75% L	uftfeuchte			
Porosität n []	Permeabilität k [m²]	Porosität n []	Permeabilität k [m ²]		
3.530·10 ⁻²	2.61.10.16	5.900·10 ⁻³	2.43·10 ⁻¹⁹		
3.400·10 ⁻²	1.14.10-16	7.700.10-3	3.46·10 ⁻¹⁹		
2.530·10 ⁻²	1.02.10.17	5.000·10 ⁻³	2.80.10-20		
2.260·10 ⁻²	9.20·10 ^{·18} 7.100·10 ^{·3} 2.80·10 ^{·20}				
9.600·10 ⁻³	1.48.10-18	8.000·10 ⁻³	2.80·10 ⁻²⁰		
8.400·10 ⁻³	2.17.10-18	7.700.10-3	2.80·10 ⁻²⁰		

Tab. 9-14Ergebnisse der Battelle-Untersuchung [6] an heiß kompaktierten Proben
aus dem Forschungsbergwerk Asse mit ca. 6% Anhydritgehalt

Kennung	a6h					
Quelle	Battelle Abschlußb	Battelle Abschlußbericht [6]				
Versuchsreihe	Abhängigkeit vom /	Anhydritanteil, ca. 6%	Anhydritgehalt			
Meßfluid	Wasserstoff	-1917				
Material	kompaktierter Salz	grus aus der Asse, ve	rschiedene Tiefen			
Körnung			*			
Probengröße	Ø 96 mm, Länge 1	Ø 96 mm, Länge 100 mm				
Brucherscheinungen						
Meßfehler	Längen 0,05%, Dic	Längen 0,05%, Dichte 0,3%, Permeabilität 10%				
Feuchtegehalt						
Bemerkungen	heißgepreßt, Lager	rung bei 100•C im Wä	rmeschrank			
Porosität n []	Permeabilität k [m²]	Permeabilität $k [m^2]$ Porosität $n []$ Permeabilität $k [m^2]$				
7.220·10 ⁻²	1.69.10-14	1.69·10 ⁻¹⁴ 4.070·10 ⁻² 8.85·10 ⁻¹⁶				
4.870·10 ⁻²	1.39·10 ⁻¹⁵	1.39·10 ⁻¹⁵ 1.440·10 ⁻² 2.95·10 ⁻¹⁸				
4.970·10 ⁻²	3.57·10 ⁻¹⁶ 1.210·10 ⁻² 4.07·10 ⁻¹⁸					
4.270·10 ⁻²	7.65·10 ⁻¹⁶	1.370·10 ⁻²	3.72.10-18			
3.800·10 ⁻²	3.86·10 ⁻¹⁶					

Tab. 9-15Ergebnisse der Battelle-Untersuchung an trocken gelagerten Proben aus
Bernburger Korngemisch mit ca. 1% Anhydritgehalt

Kennung	kgf	kgf			
Quelle	Battelle Abschlußb	Battelle Abschlußbericht [6]			
Versuchsreihe	Abhängigkeit vom	Anhydritanteil, ca. 1	% Anhydritgehalt		
Meßfluid	Wasserstoff				
Material	Bernburger Kornge	misch, verschieden	le Teufen		
Körnung					
Probengröße	Ø 96 mm, Länge 1	00 mm			
Brucherscheinunge	n				
Meßfehler	Längen 0,05%, Dio	hte 0,3%, Permeab	ilität 10%		
Feuchtegehalt					
Bemerkungen	Lagerung bei 35%	Lagerung bei 35% Luftfeuchte			
Porosität n []	Permeabilität k [m²]	Porosität n []	Permeabilität k [m²]		
4.600·10 ⁻⁰³	2.62·10 ⁻¹⁹	3.840·10 ⁻⁰²	2.21·10 ⁻¹⁶		
4.600·10 ⁻⁰³	4.70·10 ⁻¹⁹	3.880·10 ⁻⁰²	9.00·10 ⁻¹⁶		
5.000·10 ⁻⁰⁴	1.07·10 ⁻¹⁹	4.020.10 ⁻⁰²	1.03·10 ⁻¹⁵		
4.600·10 ⁻⁰³	7.54·10 ⁻¹⁹	5.250·10 ⁻⁰²	1.88·10 ⁻¹⁴		
5.500·10 ⁻⁰³	3.81·10 ⁻¹⁹	5.270·10 ⁻⁰²	1.20.10-14		
6.000·10 ⁻⁰³	8.07·10 ⁻¹⁹	5.410·10 ⁻⁰²	1.38·10 ⁻¹⁴		
8.800·10 ⁻⁰³	3.72·10 ⁻¹⁸	6.620·10 ⁻⁰²	3.53.10-14		
1.150.10-02	1.63·10 ⁻¹⁸	6.650·10 ⁻⁰²	2.88·10 ⁻¹⁴		
1.250.10-02	3.50·10 ⁻¹⁸	7.320.10.02	9.97·10 ⁻¹⁴		
2.520·10 ⁻⁰²	1.91.10-16	7.500.10-02	7.90.10 ⁻¹⁴		
2.860.10-02	2.26·10 ⁻¹⁶	7.620.10-02	8.00.10-14		
3.790.10-02	1.28.10 ⁻¹⁵	7.670.10-02	8.00.10-14		

Tab. 9-16Ergebnisse der Battelle-Untersuchung [6] an feucht gelagerten Proben
aus Bernburger Korngemisch mit ca. 1% Anhydritgehalt

Kennung	kgff	kgff					
Quelle	Battelle Abschlußb	Battelle Abschlußbericht [6]					
Versuchsreihe	Abhängigkeit vom	Abhängigkeit vom Anhydritanteil, ca. 1% Anhydritgehalt					
Meßfluid	Wasserstoff	Sand - San					
Material	Bernburger Kornge	misch, verschiedene	Teufen				
Körnung	5012 5012 5003						
Probengröße	Ø 96 mm, Länge 1	00 mm					
Brucherscheinungen							
Meßfehler	Längen 0,05%, Dic	hte 0,3%, Permeabilit	ät 10%				
Feuchtegehalt							
Bemerkungen	Lagerung bei 75%	Lagerung bei 75% Luftfeuchte					
Porosität n []	Permeabilität k [m²]	Porosität n []	Permeabilität k [m²]				
7.620.10-02	7.63·10 ⁻¹⁴	3.970·10 ⁻⁰²	4.66·10 ⁻¹⁶				
7.610.10-02	7.21.10 ⁻¹⁴	4.250·10 ⁻⁰²	1.84·10 ⁻¹⁵				
7.930·10 ⁻⁰²	7.50·10 ⁻¹⁴	3.280.10-02	6.41·10 ^{·17}				
6.290·10 ⁻⁰²	2.30·10 ⁻¹⁴	2.960.10-02	2.83·10 ⁻¹⁷				
6.740·10 ⁻⁰²	2.47·10 ⁻¹⁴	3.190.10-02	8.94·10 ^{·18}				
6.370·10 ⁻⁰²	1.98·10 ⁻¹⁴	1.340.10-02	2.80·10 ⁻²⁰				
5.400·10 ⁻⁰²	5.39·10 ⁻¹⁵	5.39·10 ⁻¹⁵ 7.400·10 ⁻⁰³ 2.80·10 ⁻²⁰					
5.540·10 ⁻⁰²	5.39·10 ⁻¹⁵	5.39·10 ⁻¹⁵ 8.300·10 ⁻⁰³ 2.80·10 ⁻²⁰					
5.310.10-02	2.34·10 ⁻¹⁵	6.900·10 ⁻⁰³	2.80·10 ^{·20}				
3.880·10 ⁻⁰²	3.28·10 ⁻¹⁶		3.28·10 ⁻¹⁶				

Tab. 9-17Ergebnisse der Battelle-Untersuchung [6] an heiß kompaktierten Proben
aus Bernburger Korngemisch mit ca.1% Anhydritgehalt

Kennung	kgh	kgh				
Quelle	Battelle Abschlußbericht [6]					
Versuchsreihe	Abhängigkeit vom	Anhydritanteil, ca. 1%	Anhydritgehalt			
Meßfluid	Wasserstoff					
Material	Bernburger Kornge	emisch, verschiedene	Teufen			
Körnung						
Probengröße	Ø 96 mm, Länge 1	00 mm				
Brucherscheinungen						
Meßfehler	Längen 0,05%, Dic	Längen 0,05%, Dichte 0,3%, Permeabilität 10%				
Feuchtegehalt						
Bemerkungen	heißgepreßt, Lager	rung bei 100 °C im W	ärmeschrank			
Porosität n []	Permeabilität k [m²]	Permeabilität k [m ²] Porosität n [] Permeabilität k [m ²]				
6.650·10 ⁻⁰²	1.15·10 ⁻¹³	1.690·10 ⁻⁰²	5.23·10 ⁻¹⁸			
6.330·10 ⁻⁰²	3.57·10 ⁻¹⁴	1.090.10-02	4.91.10 ⁻¹⁹			
6.490·10 ⁻⁰²	7.56.10-14	7.56·10 ⁻¹⁴ 8.800·10 ⁻⁰³ 4.44·10 ⁻¹⁹				
3.990·10 ⁻⁰²	1.98·10 ⁻¹⁵	1.98·10 ⁻¹⁵ 6.900·10 ⁻⁰³ 1.96·10 ⁻¹⁹				
3.110.10-02	5.29·10 ⁻¹⁶ 2.100·10 ⁻⁰³ 1.76·10 ⁻²⁰					
3.960·10 ⁻⁰²	1.94·10 ⁻¹⁵	1.94·10 ⁻¹⁵ 5.800·10 ⁻⁰³ 2.31·10 ⁻²⁰				
1.590.10-02	3.00·10 ^{·18}	1.040·10 ^{·01}	9.83·10 ⁻¹⁹			
1.360.10-02	2.27·10 ⁻¹⁸					

Kennung	a4f					
Quelle	Battelle Abschlußbericht [6]					
Versuchsreihe	Hygroskopisches As	se-Salz aus 490 m	Teufe			
Meßfluid	Wasserstoff					
Material	kompaktierter Salzg	rus				
Körnung						
Probengröße	Ø 96 mm, Länge 10	0 mm				
Brucherscheinunger						
Meßfehler	Längen 0,05%, Dich	te 0,3%, Permeabili	tät 10%			
Feuchtegehalt						
Bemerkungen	Lagerung bei 35% Luftfeuchte					
Porosität n []	Permeabilität k [m²]	Porosität n []	Permeabilität k [m²]			
3.430·10 ⁻²	1.50.10-15	4.800·10 ⁻³	5.30·10 ⁻¹⁸			
3.490·10 ⁻²	1.77.10-15	9.200·10 ⁻³	1.00.10-20			
7.700·10 ⁻³	2.20.10-18	1.170·10 ⁻²	4.50·10 ⁻¹⁸			
6.800·10 ⁻³	4.10.10-18	1.090·10 ⁻²	1.00.10-19			
5.800·10 ⁻³	3.50·10 ⁻¹⁸	1.650·10 ⁻²	5.50·10 ⁻¹⁷			
8.200·10 ^{·3}	3.70·10 ⁻¹⁸	1.590·10 ⁻²	5.50·10 ⁻¹⁷			
3.400·10 ^{·3}	1.80·10 ⁻¹⁸	1.430·10 ⁻²	3.00·10 ⁻¹⁷			
3.400·10 ⁻³	1.50·10 ⁻¹⁸	1.200.10-2	3.10·10 ⁻¹⁷			
2.600 10 ⁻³	2.00.10-18	2.00·10 ⁻¹⁸ 1.140·10 ⁻² 2.05·10 ⁻¹⁷				
6.200·10 ⁻³	4.00.10-18	1.190.10-2	1.90·10 ⁻¹⁷			
5.600·10 ⁻³	3.60.10-18	9.000·10 ⁻³	5.00·10 ⁻²²			

Tab. 9-18Ergebnisse der Battelle-Untersuchung [6] an trocken gelagerten 100-mm-Proben aus dem Forschungsbergwerk Asse aus 490 m Teufe

 Tab. 9-19
 Ergebnisse der Battelle-Untersuchung [6] an feucht gelagerten Proben aus dem Forschungsbergwerk Asse aus 490 m Teufe

Kennung	a4ff			
Quelle	Battelle Abschlußbericht [6]			
Versuchsreihe	Hygroskopisches Asse-Salz aus 490 m Teufe			
Meßfluid	Wasserstoff			
Material	kompaktierter Salzgrus			
Körnung				
Probengröße	Ø 96 mm, Länge 100 mm			
Brucherscheinungen				
Meßfehler	Längen 0,05%, Dichte 0,3%, Permeabilität 10%			
Feuchtegehalt				
Bemerkungen	Lagerung bei 75% Luftfeuchte			
Porosität n []	Permeabilität k [m²]	Porosität n []	Permeabilität k [m²]	
6.800·10 ⁻²	6.60·10 ⁻¹⁴	1.680·10 ⁻²	5.00·10 ⁻²³	
3.870·10 ⁻²	2.80·10 ⁻¹⁵	1.540·10 ⁻²	5.00·10 ⁻²³	
Kennung	a4h			
------------------------	------------------------	--	------------------------	--
Quelle	Battelle Abschlußb	ericht [6]		
Versuchsreihe	Hygroskopisches A	sse-Salz aus 490 n	n Teufe	
Meßfluid	Wasserstoff			
Material	kompaktierter Salz	grus		
Körnung				
Probengröße	Ø 96 mm, Länge 1	00 mm		
Brucherscheinungen				
Meßfehler	Längen 0,05%, Dic	Längen 0.05%, Dichte 0.3%, Permeabilität 10%		
Feuchtegehalt				
Bemerkungen	heißgepreßt, Lager	rung bei 100°C im W	ärmeschrank	
Porosität n []	Permeabilität k [m²]	Porosität n []	Permeabilität k [m²]	
7.100·10 ⁻³	3.50·10 ⁻¹⁹	2.000·10 ⁻⁴	4.00·10 ⁻²⁰	
7.400·10 ⁻³	3.20·10 ⁻¹⁹	6.000·10 ⁻⁴	6.40·10 ⁻¹⁹	
4.000·10 ⁻⁴	2.70.10-20	0	3.70.10-20	

Tab. 9-20Ergebnisse der Battelle-Untersuchung [6] an heiß kompaktierten Proben
aus dem Forschungsbergwerk Asse aus 490 m Teufe

Tab. 9-21Ergebnisse der Battelle-Untersuchung an trocken gelagerten 100-mm-
Proben aus dem Forschungsbergwerk Asse aus 700 m Teufe

Kennung	a7f		
Quelle	Battelle Abschlußbericht [6]		
Versuchsreihe	Hygroskopisches A	Hygroskopisches Asse-Salz aus 700 m Teufe	
Meßfluid	Wasserstoff		
Material	kompaktierter Salz	grus	
Körnung			
Probengröße	Ø 96 mm, Länge 1	00 mm	
Brucherscheinungen			
Meßfehler	Längen 0,05%, Dic	hte 0,3%, Permeabili	tät 10%
Feuchtegehalt			
Bemerkungen	Lagerung bei 35%	Luftfeuchte	
Porosität n []	Permeabilität k [m²]	Porosität n []	Permeabilität k [m ²]
3.550.10-2	1.00.10-15	9.200·10 ⁻³	2.70·10 ⁻¹⁸
3.490·10 ⁻²	1.00.10-15	8.200·10 ⁻³	2.70·10 ⁻¹⁸
3.480·10 ⁻²	1.00.10-15	9.800·10 ⁻³	5.00·10 ⁻²³
2.590·10 ⁻²	1.50·10 ⁻¹⁶	1.070·10 ⁻²	5.00·10 ⁻²³
8.900·10 ⁻³	6.30·10 ⁻¹⁹	4.300·10 ⁻³	2.00.10-22
9.200·10 ⁻³	1.02·10 ⁻¹⁹	3.700·10 ⁻³	1.50·10 ⁻²¹
7.600·10 ⁻³	1.80·10 ⁻¹⁹	3.400·10 ⁻³	5.00·10 ⁻²³
9.000·10 ⁻³	9.40·10 ⁻¹⁹	3.400·10 ⁻³	1.50.10-22
4.400·10 ⁻³	6.00·10 ⁻²³	1.300·10 ⁻²	6.00·10 ⁻¹⁸
3.800·10 ⁻³	1.00.10.22	1.120·10 ⁻²	5.00·10 ⁻²³
4.500·10 ⁻³	5.00·10 ⁻²³	1.220.10-2	5.00·10 ⁻²³
7.300.10-3	3.40·10 ⁻¹⁸	1.300.10 ⁻²	6.00·10 ⁻¹⁸

 Tab. 9-22
 Ergebnisse der Battelle-Untersuchung [6] an feucht gelagerten Proben aus dem Forschungsbergwerk Asse aus 700 m Teufe

Kennung	a7ff			
Quelle	Battelle Abschlußb	Battelle Abschlußbericht [6]		
Versuchsreihe	Asse-Salz aus 700	m Teufe		
Meßfluid	Wasserstoff			
Material	kompaktierter Salz	grus		
Körnung				
Probengröße	Ø 96 mm, Länge 1	00 mm		
Brucherscheinungen				
Meßfehler	Längen 0,05%, Dic	Längen 0,05%, Dichte 0,3%, Permeabilität 10%		
Feuchtegehalt			4	
Bemerkungen	Lagerung bei 75%	Luftfeuchte		
Porosität n []	Permeabilität k [m²]	Porosität n []	Permeabilität k [m²]	
4.100·10 ⁻²	3.00·10 ⁻¹⁵			
4.210·10 ⁻²	4.00·10 ⁻¹⁵	6 R.		

Tab. 9-23Ergebnisse der Battelle-Untersuchung [6] an heiß kompaktierten 100-mm-Proben aus dem Forschungsbergwerk Asse aus 700 m Teufe

Kennung	a7h		
Quelle	Battelle Abschlußb	ericht [6]	
Versuchsreihe	Asse-Salz aus 700	m Teufe	
Meßfluid	Wasserstoff		
Material	kompaktierter Salz	grus	
Körnung			
Probengröße	Ø 96 mm, Länge 10	00 mm	
Brucherscheinungen		959 ic	
Meßfehler	Längen 0,05%, Dichte 0,3%, Permeabilität 10%		
Feuchtegehalt			
Bemerkungen	heißgepreßt, Lager	ung bei 100 °C im Wä	irmeschrank
Porosität n []	Permeabilität k [m²]	Porosität n []	Permeabilität k [m²]
1.070.10-2	4.00·10 ⁻¹⁹	1.700·10 ⁻³	1.20·10 ⁻²⁰
7.900.10-3	5.60·10 ⁻¹⁹	2.000·10 ^{·3}	1.76·10 ⁻¹⁹
4.000·10 ⁻⁴	3.60·10 ⁻²⁰	4.600·10 ⁻³	3.00·10 ⁻²¹

Kennung	a8f		
Quelle	Battelle Abschlußb	ericht [6]	
Versuchsreihe	Anhydritisches Ass	e-Salz aus 850 m To	eufe
Meßfluid	Wasserstoff		4
Material	kompaktierter Salz	grus	
Körnung			
Probengröße	Ø 96 mm, Länge 1	00 mm	
Brucherscheinungen			
Meßfehler	Längen 0,05%, Dic	hte 0,3%, Permeabi	lität 10%
Feuchtegehalt			
Bemerkungen	Lagerung bei 35%	Luftfeuchte	
Porosität n []	Permeabilität k [m²]	Porosität n []	Permeabilität k [m²]
Porosität <i>n</i> [] 3.350·10 ⁻²	Permeabilität <i>k</i> [m ²] 1.40·10 ⁻¹⁵	Porosität <i>n</i> [] 1.100·10 ⁻³	Permeabilität <i>k</i> [m ²] 2.00·10 ⁻¹⁸
Porosität <i>n</i> [] 3.350·10 ⁻² 3.510·10 ⁻²	Permeabilität k [m ²] 1.40·10 ^{·15} 1.35·10 ^{·15}	Porosität <i>n</i> [] 1.100·10 ⁻³ 2.500·10 ⁻³	Permeabilität <i>k</i> [m ²] 2.00·10 ⁻¹⁸ 1.20·10 ⁻¹⁸
Porosität <i>n</i> [] 3.350·10 ⁻² 3.510·10 ⁻² 4.180·10 ⁻²	Permeabilität k [m ²] 1.40·10 ⁻¹⁵ 1.35·10 ⁻¹⁵ 1.35·10 ⁻¹⁵	Porosität <i>n</i> [] 1.100·10 ³ 2.500·10 ³ 1.600·10 ³	Permeabilität <i>k</i> [m ²] 2.00·10 ^{·18} 1.20·10 ^{·18} 1.10·10 ^{·18}
Porosität n [] $3.350 \cdot 10^{-2}$ $3.510 \cdot 10^{-2}$ $4.180 \cdot 10^{-2}$ $2.900 \cdot 10^{-3}$	Permeabilität k [m ²] 1.40·10 ⁻¹⁵ 1.35·10 ⁻¹⁵ 1.35·10 ⁻¹⁵ 1.80·10 ⁻¹⁸	Porosität <i>n</i> [] 1.100·10 ³ 2.500·10 ³ 1.600·10 ³ 1.100·10 ²	Permeabilität k [m ²] 2.00·10 ⁻¹⁸ 1.20·10 ⁻¹⁸ 1.10·10 ⁻¹⁸ 8.20·10 ⁻¹⁸
Porosität n [] $3.350 \cdot 10^{-2}$ $3.510 \cdot 10^{-2}$ $4.180 \cdot 10^{-2}$ $2.900 \cdot 10^{-3}$ $7.100 \cdot 10^{-3}$	Permeabilität k [m ²] 1.40·10 ⁻¹⁵ 1.35·10 ⁻¹⁵ 1.35·10 ⁻¹⁵ 1.80·10 ⁻¹⁸ 2.40·10 ⁻¹⁸	Porosität n [] 1.100·10 ⁻³ 2.500·10 ⁻³ 1.600·10 ⁻³ 1.100·10 ⁻² 1.130·10 ⁻²	Permeabilität k [m²] 2.00·10 ⁻¹⁸ 1.20·10 ⁻¹⁸ 8.20·10 ⁻¹⁸ 9.20·10 ⁻¹⁸
Porosität n [] $3.350 \cdot 10^2$ $3.510 \cdot 10^2$ $4.180 \cdot 10^2$ $2.900 \cdot 10^3$ $7.100 \cdot 10^3$ $9.700 \cdot 10^3$	Permeabilität k [m ²] 1.40·10 ⁻¹⁵ 1.35·10 ⁻¹⁵ 1.35·10 ⁻¹⁵ 1.80·10 ⁻¹⁸ 2.40·10 ⁻¹⁸ 2.50·10 ⁻¹⁸	Porosität n [] 1.100·10 ³ 2.500·10 ³ 1.600·10 ³ 1.100·10 ² 1.130·10 ² 1.210·10 ²	Permeabilität k [m²] 2.00·10 ⁻¹⁸ 1.20·10 ⁻¹⁸ 1.10·10 ⁻¹⁸ 8.20·10 ⁻¹⁸ 9.20·10 ⁻¹⁸ 1.10·10 ⁻¹⁷
Porosität n [] $3.350 \cdot 10^{-2}$ $3.510 \cdot 10^{-2}$ $4.180 \cdot 10^{-2}$ $2.900 \cdot 10^{-3}$ $7.100 \cdot 10^{-3}$ $9.700 \cdot 10^{-3}$ 0	Permeabilität k [m ²] 1.40·10 ⁻¹⁵ 1.35·10 ⁻¹⁵ 1.35·10 ⁻¹⁵ 1.80·10 ⁻¹⁸ 2.40·10 ⁻¹⁸ 2.50·10 ⁻¹⁸ 1.20·10 ⁻¹⁸	Porosität n [] 1.100·10 ³ 2.500·10 ³ 1.600·10 ³ 1.100·10 ² 1.130·10 ² 1.210·10 ² 1.110·10 ²	Permeabilität k [m²] 2.00·10 ⁻¹⁸ 1.20·10 ⁻¹⁸ 1.10·10 ⁻¹⁸ 8.20·10 ⁻¹⁸ 9.20·10 ⁻¹⁸ 1.10·10 ⁻¹⁷ 8.80·10 ⁻¹⁸
Porosität n [] $3.350 \cdot 10^{-2}$ $3.510 \cdot 10^{-2}$ $4.180 \cdot 10^{-2}$ $2.900 \cdot 10^{-3}$ $7.100 \cdot 10^{-3}$ $9.700 \cdot 10^{-3}$ 0 $2.800 \cdot 10^{-3}$	Permeabilität k [m²] 1.40·10 ⁻¹⁵ 1.35·10 ⁻¹⁵ 1.35·10 ⁻¹⁵ 1.80·10 ⁻¹⁸ 2.40·10 ⁻¹⁸ 2.50·10 ⁻¹⁸ 1.20·10 ⁻¹⁸ 1.80·10 ⁻¹⁸	Porosität n [] 1.100·10 ⁻³ 2.500·10 ⁻³ 1.600·10 ⁻³ 1.100·10 ⁻² 1.130·10 ⁻² 1.210·10 ⁻² 1.110·10 ⁻² 1.170·10 ⁻²	Permeabilität k [m²] 2.00·10 ⁻¹⁸ 1.20·10 ⁻¹⁸ 1.10·10 ⁻¹⁸ 8.20·10 ⁻¹⁸ 9.20·10 ⁻¹⁸ 1.10·10 ⁻¹⁷ 8.80·10 ⁻¹⁸ 6.20·10 ⁻¹⁸

Tab. 9-24Ergebnisse der Battelle-Untersuchung [6] an trocken gelagerten 100-mm-Proben aus dem Forschungsbergwerk Asse aus 850 m Teufe

Tab. 9-25Ergebnisse der Battelle-Untersuchung [6] an feucht gelagerten -Probenaus dem Forschungsbergwerk Asse aus 850 m Teufe

Kennung	a8ff		
Quelle	Battelle Abschlußb	ericht [6]	
Versuchsreihe	Anhydritisches Ass	e-Salz aus 850 m T	eufe
Meßfluid	Wasserstoff		
Material	kompaktierter Salz	grus	
Körnung			
Probengröße	Ø 96 mm, Länge 1	00 mm	
Brucherscheinunge	n		
Meßfehler	Längen 0,05%, Dic	hte 0,3%, Permeab	ilität 10%
Feuchtegehalt			
Bemerkungen	Lagerung bei 75%	Luftfeuchte	
Porosität n []	Permeabilität k [m²]	Porosität n []	Permeabilität k [m²]
3.030·10 ⁻²	5.30·10 ⁻¹⁶	3.800·10 ⁻³	5.00·10 ⁻²³
3.500·10 ⁻²	1.00.10 ⁻¹⁵	1.250·10 ⁻²	2.50·10 ⁻¹⁸
5.500·10 ⁻³	3.00·10 ^{·19}	4.360·10 ⁻²	6.00·10 ⁻¹⁵
4.000·10 ^{·3}	2.60·10 ⁻¹⁹	4.510·10 ⁻²	7.00·10 ⁻¹⁵
1.000·10 ⁻³	5.00·10 ⁻²³	3.480·10 ⁻²	2.00·10 ⁻¹⁵

Tab. 9-26Ergebnisse der Battelle-Untersuchung an heiß kompaktierten Proben aus
dem Forschungsbergwerk Asse aus 850 m Teufe

Kennung	a8h		
Quelle	Battelle Abschlußb	ericht [6]	
Versuchsreihe	Anhydritisches Ass	e-Salz aus 850 m T	eufe
Meßfluid	Wasserstoff		
Material	kompaktierter Salz	grus	
Körnung			
Probengröße	Ø 96 mm, Länge 1	00 mm	
Brucherscheinungen			
Meßfehler	Längen 0,05%, Dic	hte 0,3%, Permeabi	lität 10%
Feuchtegehalt	5.0 ······		
Bemerkungen	heißgepreßt, Lager	rung bei 100 °C im V	Värmeschrank
Porosität n []	Permeabilität k [m²]	Porosität n []	Permeabilität k [m²]
9.300·10 ⁻³	7.60·10 ⁻¹⁹	3.000.10 ⁻⁴	4.00·10 ⁻²¹
1.690·10 ⁻²	4.50·10 ⁻¹⁸	0	1.00·10 ⁻²⁰
2.650·10 ⁻²	2.00.10-16	1.400·10 ⁻³	7.00.10-21
7.500·10 ⁻³	1.67·10 ⁻¹⁸	0	1.80·10 ⁻¹⁹
6.300·10 ⁻³	8.30·10 ⁻¹⁹	0	9.40·10 ⁻²⁰
4.500·10 ⁻³	1.20.10-19	7.400·10 ⁻³	4.30·10 ⁻¹⁸
1.700·10 ⁻³	5.70·10 ⁻¹⁹	2.610·10 ⁻²	1.70·10 ⁻¹⁶

 Tab. 9-27
 Abgeleitete Permeabilitäts- und Porositätswerte aus dem In-situ-Versuch

 DEBORA-1 im Forschungsbergwerk Asse

Kennung	deb1		
Quelle			
Versuchsreihe	Salz der Asse		
Meßfluid	Stickstoff		
Material	kompaktierter Salzg	grus	
Körnung	0-10 mm		
Probengröße	Ringspalt: Innen-Ø:	420 mm Außen-Ø: v	ariabel < 600 mm
Brucherscheinungen			
Meßfehler			
Feuchtegehalt			
Bemerkungen			
Porosität n []	Permeabilität k [m²]	Porosität n []	Permeabilität k [m²]
4.36·10 ⁻¹²	0.257	1.30·10 ⁻¹³	0.153
2.28·10 ⁻¹²	0.215	1.13·10 ⁻¹³	0.147
4.61·10 ⁻¹³	0.171	1.03·10 ⁻¹³	0.147
2.59·10 ⁻¹³	0.162	8.59·10 ⁻¹⁴	0.147
1.01·10 ⁻¹³	0.159	6.54·10 ⁻¹⁴	0.144

Tab. 9-28 Abgeleitete Permeabilitäts- und Porositätswerte aus dem In-situ-Versuch DEBORA-2 im Forschungsbergwerk Asse

Kennung	deb2		
Quelle			
Versuchsreihe	Salz der Asse		
Fluid			
Material	kompaktierter Salzg	grus	
Körnung			
Probengröße			
Brucherscheinungen			
Meßfehler			
Feuchtegehalt			
Bemerkungen			
Porosität n []	Permeabilität k [m²]	Porosität n []	Permeabilität k [m²]
1.34.10-10	0.367	3.75·10 ⁻¹²	0.2043
4.74·10 ⁻¹¹	0.323	1.97·10 ^{·12}	0.183
1.13.10 ⁻¹¹	0.256	1.16.10-12	0.163
6.37·10 ⁻¹²	0.2297	1.01.10-12	0.153

Tab. 9-29Ergebnisse der GRS-Untersuchungen aus dem begleitenden Laborpro-
gramm des DEBORA-Projekts

Kennung	debL		
Quelle		2	
Versuchsreihe	Salz der Asse		
Fluid			
Material	kompaktierter Salz	grus	
Körnung			
Probengröße			
Brucherscheinungen			
Meßgenauigkeit			
Feuchtegehalt			
Bemerkungen			
Porosität n []	Permeabilität k [m²]	Porosität n []	Permeabilität k [m²]
1.0011.10-01	5.36·10 ⁻¹⁴	5.2890.10-02	2.20·10 ⁻¹⁵
7.0470.10-02	1.43·10 ⁻¹⁴	4.2750.10-02	7.25·10 ⁻¹⁶
5.3370·10 ⁻⁰²	3.63·10 ⁻¹⁵	3.0260.10-02	9.75·10 ⁻¹⁷
4.3950·10 ⁻⁰²	1.18·10 ⁻¹⁵	1.5080.10-02	2.56·10 ⁻¹⁸
2.5880·10 ⁻⁰²	7.48·10 ⁻¹⁷	4.9670·10 ⁻⁰²	8.07·10 ⁻¹⁶
6.8020·10 ⁻⁰²	6.19·10 ⁻¹⁵	1.4940.10-02	2.81·10 ⁻¹⁸

Abbildungsverzeichnis

Abb. 1-1	Rangfolge der Einflußgrößen für Endlager-Sicherheitsanalysen2
Abb. 3-1	Bereiche der in verschiedenen Untersuchungsreihen abgedeckten Permeabilitäten und Porositäten von kompaktiertem Salzgrus
Abb. 3-2	Datenbasis für die Ableitung der Permeabilitäts-Porositätsrelation in der GRS-Untersuchung von 199610
Abb. 3-3	Meßwerte aus der BGR-Untersuchung von Stührenberg und Zhang 12
Abb. 3-4	Einzelmeßwerte der Battelle-Untersuchung für kompaktierten Salzgrus der Kategorie "ff"14
Abb. 3-5	Einzelmeßwerte der Battelle-Untersuchung für kompaktierten Salzgrus der Kategorie "ff"15
Abb. 3-6	Einzelmeßwerte der Battelle-Untersuchung für heiß kompaktierten Salzgrus der Kategorie "h"15
Abb. 3-7	Einzelmeßwerte der Permeabilität und Porosität aus In-situ- und Laborexperimenten aus dem DEBORA-Projekt
Abb. 5-1	Bestwerte für die Formelkoeffizienten $log(A)_0$ und m_0 aus der Regression von 37 Einzelmeßreihen25
Abb. 5-2	Bestwerte für die Formelkoeffizienten $log(A)_0$ und m_0 aus der Regression der Battelle-Meßreihen
Abb. 6-1	Zusammenfassung aller Meßwerte der Kategorie "trocken" mit $n > 0,3\%$ und Ausgleichsgerade
Abb. 6-2	Zusammenfassung aller Meßwerte der Kategorie "feucht" mit $n > 0,3\%$ und Ausgleichsgerade
Abb. 6-3	Zusammenfassung aller Meßwerte mit Ausgleichsgerade für alle Daten und alle Daten mit $n > 0,3\%$

Abb. 6-4	Vergleich der Approximationsgeraden bei Regression mit gewichteten und ungewichteten Residuen
Abb. 6-5	95%-Konfidenzintervalle für die Koeffizienten $log(A)$ und <i>m</i> des linearen $log(k)/log(n)$ -Modells für verschiedene Stichproben
Abb. 6-6	Bivariate Dichtefunktion für die Koeffizienten des Potenzgesetzes der Permeabilitäts-Porositätsrelation für die Daten in der GRS-Auswertung 37
Abb. 6-7	Bivariate Dichtefunktion der Koeffizienten des Potenzgesetzes für alle Daten der Kategorien "feucht" und "trocken"
Abb. 6-8	Bivariate Dichtefunktion der Koeffizienten A und m des Potenzgeset- zes für alle Einzeldaten und die Daten mit Porositäten $n > 0,3\%$
Abb. 6-9	Bivariate Dichteverteilung der Koeffizienten <i>A</i> und <i>m</i> des Potenzgeset- zes für die Daten der Kategorien "feucht" und "trocken" mit Porositäten > 0,3% mit Wichtung nach der Zahl der Daten in den Kategorien
Abb. 6-10	Regression der BGR-Daten nach dem linearen 2-parametrigen Modell und dem nichtlinearen 3-parametrigen Modell

Tabellenverzeichnis

Tab. 3-1	Hauptunterscheidungsmerkmale der Salzgrusproben in den
	Permeabilitätsmessungen von Battelle13
Tab. 6-1	Ergebnisse der Regressionsanalysen für verschiedene Sätze von n/k-
	Datenpaaren
Tab. 7-1	Koeffizienten in der Formel für die bivariate Dichteverteilung aus der
	Regressionsanalysen für verschiedene Datenkategorien45
Tab. 9-1	Datenbasis der GRS-Datenanalyse von 199649
Tab. 9-2	Ergebnisse der BGR-Untersuchung51
Tab. 9-3	Ergebnisse der Battelle-Untersuchung an trocken gelagerten 100-mm-
	Proben aus dem Forschungsbergwerk Asse53
Tab. 9-4	Ergebnisse der Battelle-Untersuchung an feucht gelagerten 100-mm-
	Proben aus dem Forschungsbergwerk Asse53
Tab. 9-5	Ergebnisse der Battelle-Untersuchung an heiß kompaktierten 100-mm-
	Proben aus dem Forschungsbergwerk Asse54
Tab. 9-6	Ergebnisse der Battelle-Untersuchung an trocken gelagerten 50-mm-
	Proben aus dem Forschungsbergwerk Asse
Tab. 9-7	Ergebnisse der Battelle-Untersuchung an feucht gelagerten 50-mm-
	Proben aus dem Forschungsbergwerk Asse
Tab. 9-8	Ergebnisse der Battelle-Untersuchung an heiß kompaktierten 50-mm-
	Proben aus dem Forschungsbergwerk Asse55
Tab. 9-9	Ergebnisse der Battelle-Untersuchung an trocken gelagerten Proben
	aus dem Forschungsbergwerk Asse mit ca. 3% Anhydritgehalt
Tab. 9-10	Ergebnisse der Battelle-Untersuchung an feucht gelagerten Proben
	aus dem Forschungsbergwerk Asse mit ca. 3% Anhydritgehalt
Tab. 9-11	Ergebnisse der Battelle-Untersuchung an heiß kompaktierten Proben
	aus dem Forschungsbergwerk Asse mit ca. 3% Anhydritgehalt
Tab. 9-12	Ergebnisse der Battelle-Untersuchung an trocken gelagerten Proben
	aus dem Forschungsbergwerk Asse mit ca. 6% Anhydritgehalt
Tab. 9-13	Ergebnisse der Battelle-Untersuchung an feucht gelagerten Proben
	aus dem Forschungsbergwerk Asse mit ca. 6% Anhydritgehalt
Tab. 9-14	Ergebnisse der Battelle-Untersuchung an heiß kompaktierten Proben
	aus dem Forschungsbergwerk Asse mit ca. 6% Anhydritgehalt

Tab. 9-15	Ergebnisse der Battelle-Untersuchung an trocken gelagerten Proben
	aus Bernburger Korngemisch mit ca. 1% Anhydritgehalt
Tab. 9-16	Ergebnisse der Battelle-Untersuchung an feucht gelagerten Proben
	aus Bernburger Korngemisch mit ca. 1% Anhydritgehalt61
Tab. 9-17	Ergebnisse der Battelle-Untersuchung an heiß kompaktierten Proben
	aus Bernburger Korngemisch mit ca.1% Anhydritgehalt62
Tab. 9-18	Ergebnisse der Battelle-Untersuchung an trocken gelagerten 100-mm-
	Proben aus dem Forschungsbergwerk Asse aus 490 m Teufe63
Tab. 9-19	Ergebnisse der Battelle-Untersuchung an feucht gelagerten Proben
	aus dem Forschungsbergwerk Asse aus 490 m Teufe
Tab. 9-20	Ergebnisse der Battelle-Untersuchung an heiß kompaktierten Proben
	aus dem Forschungsbergwerk Asse aus 490 m Teufe
Tab. 9-21	Ergebnisse der Battelle-Untersuchung an trocken gelagerten 100-mm-
	Proben aus dem Forschungsbergwerk Asse aus 700 m Teufe 64
Tab. 9-22	Ergebnisse der Battelle-Untersuchung an feucht gelagerten Proben
	aus dem Forschungsbergwerk Asse aus 700 m Teufe
Tab. 9-23	Ergebnisse der Battelle-Untersuchung an heiß kompaktierten 100-mm-
	Proben aus dem Forschungsbergwerk Asse aus 700 m Teufe
Tab. 9-24	Ergebnisse der Battelle-Untersuchung an trocken gelagerten 100-mm-
	Proben aus dem Forschungsbergwerk Asse aus 850 m Teufe
Tab. 9-25	Ergebnisse der Battelle-Untersuchung an feucht gelagerten -Proben
	aus dem Forschungsbergwerk Asse aus 850 m Teufe
Tab. 9-26	Ergebnisse der Battelle-Untersuchung an heiß kompaktierten Proben
	aus dem Forschungsbergwerk Asse aus 850 m Teufe
Tab. 9-27	Abgeleitete Permeabilitäts- und Porositätswerte aus dem In-situ-
	Versuch DEBORA-1 im Forschungsbergwerk Asse
Tab. 9-28	Abgeleitete Permeabilitäts- und Porositätswerte aus dem In-situ-
	Versuch DEBORA-2 im Forschungsbergwerk Asse
Tab. 9-29	Ergebnisse der GRS-Untersuchungen aus dem begleitenden
	Laborprogramm des DEBORA-Projekts

.

Gesellschaft für Anlagenund Reaktorsicherheit (GRS) mbH

Schwertnergasse 1 50667 Köln Telefon +49 221 2068-0 Telefax +49 221 2068-888

Forschungsinstitute **85748 Garching b. München** Telefon +49 89 32004-0 Telefax +49 89 32004-300

Kurfürstendamm 200 **10719 Berlin** Telefon +49 30 88589-0 Telefax +49 30 88589-111

Theodor-Heuss-Straße 4 **38122 Braunschweig** Telefon +49 531 8012-0 Telefax +49 531 8012-200

www.grs.de