

Gesellschaft für Anlagenund Reaktorsicherheit (GRS) mbH

Gasfreisetzung aus chemisch-toxischen Abfällen in Untertagedeponien

Gesellschaft für Anlagenund Reaktorsicherheit (GRS) mbH

Gasfreisetzung aus chemisch-toxischen Abfällen in Untertagedeponien

Sven Hagemann Vijen Javeri Heinz Sprenger Udo Ziesche

Januar 2006

Anmerkung:

Die diesem Bericht zugrundeliegenden Arbeiten wurden mit Mitteln des Bundesministeriums für Bildung un d Forschung (BMBF) unter dem Förderkennzeichen 02 C 0689 gefördert.

Die Arbeiten wurden von der Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH durchgeführt.

Die Verantwortung für den Inhalt dieser Veröffentlichung liegt allein bei den Autoren.

GRS - 215 ISBN 3-931995-82-8

Deskriptoren: Aluminium, Deponie, Druck, Gasbildung, Langzeitsicherheit, Nichtaktiver Abfall, Sicherheit, Wasserstoff, Verordnung

Inhaltsverzeichnis

1	Einleitung und Zielsetzung	1
2	Kenntnisstand zur Gasfreisetzung aus Abfällen	3
2.1	Gasbildung bei chemisch-toxischen Abfällen	3
2.2	Temperaturentwicklung im Zusammenhang mit gasbildenden Prozessen	4
3	Experimentelle Methoden zur Bestimmung der Gasfreisetzung	7
3.1	Bisher beschriebene Methoden	7
3.2	Bestimmung der Gasfreisetzung: Allgemeine Methodik und	
	Versuchsaufbau	9
3.3	Realitätsnahe Versuchsführung: UTDnah	12
3.4	Beschleunigte Gasfreisetzung: GasMax	13
3.5	Gasfreisetzung unter Luftfeuchte	14
3.6	Gasfreisetzung ohne Wasserkontakt	15
3.7	Langfristige Gasfreisetzung	15
3.8	Versuche mit bioaktiven Substanzen	15
3.9	Gasfreisetzung im Technikumsversuch	15
4	Analytische Methoden	23
4.1	Mineralphasenanalyse	23
4.2	Feststoffanalytik mit der Röntgenfluoreszenzanalyse (RFA)	23
4.3	Bestimmung der chemischen Zusammensetzung wässriger Lösungen	
	mit ICP/OES und ICP/MS	24
4.4	Chlorid-Titration	26
4.5	Bestimmung der Wasserstoffaktivität (pH, pHCI) und der Lösungsdichte	26
4.6	Gaschromatographische Analyse der Gasphase	26
4.7	Bestimmung der Wärmekapazität von Abfall/Lösungsgemischen	27
5	Eingesetzte Abfälle und Lösungen	31
5.1	Entsorgung und Lagerung von Abfällen in Untertagedeponien und	
	untertägigen Hohlräumen	31
5.2	Im Vorhaben untersuchte Abfallproben	36
5.3	Ausgangsprodukte: Chemische Zusammensetzung und Phasenbestand	39
5.3.1	Chemische und mineralogische Zusammensetzung der Abfälle	39
5.3.2	Eingesetzte Lösungen	39

5.4	Verhalten gegenüber wässrigen Lösungen (ohne Gasbildung)	40
6	Gasfreisetzung in Abfall/Lösungs-Gemischen	41
6.1	Auswertung der Gasfreisetzungsversuche	41
6.2	Untersuchung der Gasfreisetzung mit dem Verfahren GasMax	42
6.2.1	Übersicht	42
6.2.2	Freigesetzte Gase: Wasserstoff, Kohlendioxid, Methan	45
6.2.3	Versuche mit Luft als Anfangsatmosphäre	47
6.2.4	Gasfreisetzung von Filterstäuben und Flugaschen aus der	
	Müllverbrennung	49
6.2.5	Gasfreisetzung von Schlacken und Kesselaschen aus der	
	Müllverbrennung	52
6.2.6	Gasfreisetzung von Flugaschen aus der Kohlefeuerung	53
6.2.7	Gasfreisetzung von Abfällen aus der Metallurgie und Metallverarbeitung	54
6.2.8	Sonstige Abfallgruppen	55
6.2.9	Abhängigkeit der Gasfreisetzung vom Abfall/Lösungsverhältnis	57
6.2.10	Abhängigkeit der Gasfreisetzung von der Korngröße	58
6.2.11	Einfluss bioaktiver Substanzen auf die Gasfreisetzung	60
6.3	Gasfreisetzung im Versuch UTDnah	62
6.3.1	Übersicht	62
6.3.2	Zeitlicher Verlauf der Druckentwicklung	64
6.4	Unterschiedliche Freisetzungsgeschwindigkeiten einzelner Gase	68
6.5	Langfristige Gasfreisetzung	70
6.6	Gasfreisetzung unter anaerob-feuchten Bedingungen (Indirekt-	
	Versuche)	73
6.7	Ursachen der Gasbildung	76
7	Untersuchung der Gasfreisetzung im Technikums-Maßstab	81
7.1	Übersicht über die vorgenommenen Versuche	81
7.2	Ausmaß und Geschwindigkeit der Gasfreisetzung	81
7.3	Thermische Effekte	83
7.4	Wärmekapazitäten von Abfall-/Lösungsgemischen und Abschätzungen	
	zur maximalen Temperaturerhöhung im Abfallkörper	86
8	Wirkung der Gasbildung auf die Barriereintegrität einer Modell-	
	Untertagedeponie	89
8.1	Einleitung	89

8.2	Rechenprogramm TOUGH2	
8.3	Gas- und Stofftransport in einem zweidimensionalen Grubengebäude	
8.3.1	Übersicht	
8.3.2	Rechenmodell	
8.3.3	Rechenfälle	
8.3.4	Ergebnisse	102
8.4	Übersicht über die Ergebnisse	121
9	Zusammenfassung und Ausblick	123
10	Literatur	127
	Abbildungsverzeichnis	133
	Tabellenverzeichnis	139
	Verzeichnis der häufig verwendeten Symbole	143
11	Anhang - Tabellen	145
11.1	Tabellen zu Kapitel 5	145
11.2	Tabellen zu Kapitel 6	192
12	Anhang - Abbildungen	199
12.1	Bilder zu Kapitel 6: Langzeitversuche (LZ)	199
12.2	Bilder zu Kapitel 7 (Technikumsversuche)	205

1 Einleitung und Zielsetzung

Die Nutzung untertägiger Hohlräume für die Entsorgung von Reststoffen spielt in der deutschen Abfallwirtschaft eine wichtige Rolle. Abfällen, die oberirdisch nicht verwertet und wegen ihres Gefährdungspotentials nicht auf oberirdischen Deponien abgelagert werden können, steht gemäß der TA Abfall (1991) nur noch die Entsorgung in Untertagedeponien (UTD) offen. Unter bestimmten Umständen, die die Bergversatzverordnung (BUNDESMINISTERIUM FÜR UMWELT, 2002b) definiert¹, ist zudem die als Verwertung eingestufte Verwendung von Abfällen als Versatz in untertägigen Hohlräumen möglich.

Als Grundlage für die Errichtung und den Betrieb untertägiger Entsorgungseinrichtungen dienen standortbezogene Sicherheitsbeurteilungen, deren Aufgabe in der Analyse der Gefährdungsmöglichkeiten bei der Errichtung, beim Betrieb und in der Nachbetriebsphase besteht. Ein wichtiger Baustein dieser Analysen ist die Voraussage des langfristigen Verhaltens von chemisch-toxischen Abfällen unter regulären wie auch unter Störfallbedingungen. Hierbei steht vor allem die Frage der Mobilisierbarkeit der in den Abfällen vorhandenen Schadstoffe im Vordergrund. *Ein* Teilaspekt der untertägigen Abfallentsorgung hat bislang jedoch nur eine verhältnismäßig geringe Aufmerksamkeit gefunden: *Die vom Abfall ausgehende Gasbildung*.

Die für die untertägige Entsorgung zuständigen Technischen Regelwerke sehen eine Überprüfung der Gasbildung vor, sowohl hinsichtlich der Betriebs- und Arbeitssicherheit (Ausschluss der Freisetzung toxischer, übelriechender und explosiver Gase oder Gasgemische unter Einlagerungsbedingungen) als auch hinsichtlich des langfristigen Verhaltens der Abfälle. So sind gemäß TA Abfall solche Abfälle von der Einlagerung ausgeschlossen, die unter Ablagerungsbedingungen (Konditionierungsform, Temperatur, Feuchte) oder durch Reaktion miteinander oder mit dem Salzgestein zur Bildung selbstentzündlicher, toxischer oder explosibler Stoffe oder Gase führen.

Eine in der Nachbetriebsphase auftretende Gasbildung kann über den Druckaufbau eine Reihe ungünstiger Auswirkungen auf die Sicherheit der UTD/UTV haben:

¹ Bis dahin galten nur die "Technischen Regeln für den Einsatz von bergbaufremden Abfällen als Versatz" (LÄNDERAUSSCHUSS BERGBAU 1996)

- In abgeschlossenen Grubenteilen können sich Drücke größer als der Fracdruck aufbauen, wodurch neue Wegsamkeiten durch die Barrieren geöffnet und Transportpfade sowohl für toxische Gase als auch für kontaminierte Lösungen geschaffen werden (JOCKWER et al., 1997). Der von der TA Abfall geforderte vollständige Abschluss der Schadstoffe von der Biosphäre ist dann unter Umständen nicht mehr gewährleistet.
- Sind Wegsamkeiten vorhanden, so kann der sich aufbauende Gasdruck neben der Gebirgskonvergenz einen zusätzlichen Antrieb zum Auspressen kontaminierter Flüssigkeiten darstellen (siehe z.B. MÜLLER et al., 1992).
- Es kann zur Entwicklung zündfähiger Gemische kommen (JOCKWER et al., 1997), wenn die Bildung brennbarer Gase schneller ist als der Verbrauch des Restsauerstoffs in den Einlagerungskammern.

Ziel dieses Forschungsvorhaben ist es, auf der Basis einer einfachen, standardisierbaren Versuchsmethodik eine systematische Vergleichsuntersuchung für die UTDrelevanten und UTV-zugelassenen Abfallarten vorzulegen, um gesichertere Aussagen zu ihrer Gasfreisetzung unter regulären- wie auch unter Störfallbedingungen treffen zu können.

2 Kenntnisstand zur Gasfreisetzung aus Abfällen

2.1 Gasbildung bei chemisch-toxischen Abfällen

Gasbildung ist ein bei oberirdischen Deponien lang untersuchter und weitgehend verstandener Prozess, der vor allem auf den biologischen Abbau organischer Abfallbestandteile zurückzuführen ist. Für untertägige Entsorgungseinrichtungen ist dieser Aspekt der Langzeitsicherheit bislang fast nur im Zusammenhang mit Endlagern für radioaktive Abfälle betrachtet worden (siehe z.B. LASER, 1991; PFEIFFER et al., 1991, MÜLLER et al., 1992; BRUSH, 1995; MÜLLER-LYDA, 1997; RODWELL, 2000; SCHNEIDER und HERZOG, 2000; OECD, 2001), bei denen die Gasbildung wegen der negativen Wirkung auf dichte Barrieresysteme als sicherheitsrelevanter Prozess eingestuft wird. Analoge Diskussionen für untertägige Entsorgungseinrichtungen nicht-radiaktiver Abfälle wurden bislang wenig geführt, wenn auch die für die untertätige Entsorgung von Abfällen zuständige Deponieverordnung (BUNDESMINISTERIUM FÜR UMWELT, 2002a) vorsieht, dass solche Abfälle von der Deponierung im Salzgestein ausgeschlossen sind, die "unter Ablagerungsbedingungen durch Reaktionen untereinander oder mit dem Gestein zu [...] einer Bildung selbstentzündlicher, toxischer oder explosiver Stoffe oder Gase [...] führen, soweit die Betriebssicherheit und die Integrität der Barrieren dadurch in Frage gestellt werden."

In jüngster Zeit sind zwei Fälle bekannt geworden, in denen gasbildende Prozesse eine Rolle bei größeren Bränden in untertägigen Entsorgungsanlagen spielten (Grube Teutschenthal, Thüringen; Stocamine, Elsaß, Frankreich)². Eine Anlage wurde daraufhin einschließlich der verbundenen Kaligrube aus Sicherheitsgründen endgültig geschlossen (Stocamine). Aus der Literatur ist seit längerer Zeit bekannt, dass zumindest bei einigen Abfallarten mit gasbildenden Vorgängen zu rechnen ist, besonders bei Kontakt mit wässrigen Lösungen. Besonders gut untersucht sind dabei Flugaschen aus der Müllverbrennung, deren Wasserstoffbildungspotential schon häufiger zu Explosionen in Anlagen zur Lagerung oder Verarbeitung dieser Produkte geführt hat (vgl. HJELMAR 1993, WILKE et al. 1998; MIZUTANI et al., 2000; MAGEL et al., 2001). Auf die Gasbil-

² Vgl. Berichterstattung z.B. unter MDR-Exact vom 30.7.2002: <u>http://www.mdr.de/exakt/archiv/217813.html</u> oder Deutschlandfunk http://www.dradio.de/dlf/sendungen/umwelt/132510/

dungsproblematik von Schlacken in Monodeponien wiesen z.B. FÖRSTNER und HIRSCHMANN (1997), JAROŠ und HUBER (1997) sowie KLEIN (2002) hin.

Eine etwas breitere Auswahl stellten bisher alleinig JOCKWER et al. (1997) in den Mittelpunkt ihrer Arbeiten: Rohrstäube, Strahlmittelrückstände, Flugaschen, Filteraschen aus Rauchgasreinigung und Eisensulfat. Die aus diesen Abfällen freigesetzten Gase bestanden vor allem aus Wasserstoff, Kohlendioxid, Kohlenmonoxid, Methan und Schwefelwasserstoff. Es wurden Freisetzungsmengen von 10 m³ Gas/t Abfall und mehr beobachtet.

JOCKWER et al. (1997) stellten beim Zutritt von Salzlösungen zu Rohrstaub eine Freisetzung von bis zu 6,5m³ H₂ je t Abfall innerhalb von acht Tagen fest. Selbst unter normaler Luftatmosphäre (ohne Einwirkung von Lösung) wurde nach acht Tagen eine Wasserstoffproduktion von bis zu 60 l je t Flugasche beobachtet. Das würde schon im letzteren Falle bei einem Volumenverhältnis von 1:1 (Abfall zu Resthohlraumvolumen) zu einem zündfähigen Gemisch führen (4 Vol% H2 in Luft). Ähnliche Ergebnisse erhielten JAROŠ und HUBER (1997) mit Müllverbrennungs-Schlacken (7-8 m³ H₂ je t Feststoff). Zu beachten ist, dass die Selbstzündtemperatur durch die Anwesenheit metallischer und anderer katalytisch wirksamer Oberflächen erheblich gesenkt wird, während gleichzeitig die Oxidation von Metallen durch Wasser stark exotherm ist und die Temperatur an den Metalloberflächen erhöht. So wurden z.B. in HMV-Schlacke-Deponien bis zu 90 ℃ gemessen (JAROŠ und HUBER, 1997). Wasserzugabe zu Schlacken kann zu so heftigen Reaktionen führen, dass es zu "Brodeln und Schäumen" (FÖRSTNER und HIRSCHMANN, 1997) kommen kann. Flugaschen zeigten mit Wasser eine "spontane und stark exotherme Reaktion mit erheblicher Wärmeentwicklung" (BRASSER, 1991). Die aufgeführten Aussagen zeigen, dass zur Gasbildung aus Abfällen weitgehend nur sporadische Erkenntnisse vorliegen. Eine tiefergehende systematische Analyse einer breiteren Auswahl von Abfällen hat bislang nicht stattgefunden.

2.2 Temperaturentwicklung im Zusammenhang mit gasbildenden Prozessen

Wärmeentwicklung ist eine bei oberirdischen Hausmülldeponien lang bekannte und untersuchte Erscheinung. Sie lässt sich zurückführen auf biologische Abbauprozesse organischer Substrate im Deponiekörper. Nach unserem Kenntnisstand sind thermische Effekte im Zusammenhang mit mineralischen Abfällen nur in zwei Fällen untersucht worden: Die Wärmeentwicklung in MVA-Schlacken-Monodeponien und die Hydratationswärme von Flugaschen, die als Zusatzstoff für bestimmte Zemente verwendet werden. KLEIN (2002) fasste die Erkenntnisse der vergangenen Jahre zu wärmeentwickelnden Prozessen in MVA-Schlackedeponien zusammen. Danach werden in Schlackedeponien selbst nach Lagerzeiten von 10 bis 20 Jahren Temperaturen von bis zu 90 ℃ gemessen. Als temperatursteigernd werden die Hydratation von Calciumsilikaten sowie die Oxidation metallischen Eisens verantwortlich gemacht. Allerdings wiesen thermodynamische Rechnungen von MUSSELMAN et al. (2000) darauf hin, dass selbst Hydratation und Metalloxidation zusammengenommen nicht für eine Jahre andauernde Aufheizung des Deponiekörpers ausreichen. Es müssen noch weitere exotherme Prozesse stattfinden. Ziel der Untersuchungen ist es deshalb auch festzustellen, in welcher Höhe thermische Effekte bei UTD-relevanten Abfallarten zu erwarten sind und ob ein Zusammenhang zwischen Wärmeentwicklung und Gasbildung besteht.

3 Experimentelle Methoden zur Bestimmung der Gasfreisetzung

3.1 Bisher beschriebene Methoden

Zur Untersuchung der Gasentwicklung aus Abfällen gibt es derzeit kein allgemein anerkanntes Standardverfahren. Wir werden daher zunächst einige von anderen Autoren angewandte Methoden vorstellen. Eine kontinuierliche Messmethode wurde von SCHON und HEIDENDAEL (1998) entwickelt. Dabei wird der Gasraum über dem Abfall-/Lösungs-System ständig von einem Argon-Strom durchspült, der nach der Abscheidung von Wasserdampf in einer bestimmten Frequenz gaschromatographisch auf den Wasserstoffgehalt geprüft wird. Mit Hilfe eines Gasstromsteuersystems lassen sich so bis zu sechs Ansätze gleichzeitig untersuchen. Der apparative und technische Aufwand ist beträchtlich und lohnt sich vor allem zu detaillierten Untersuchungen einzelner Stoffsysteme. Er wüchse zusätzlich an, wenn mit der Freisetzung verschiedener Gase gerechnet wird.

Die volumetrische Gasbestimmung nach Scheibler wendeten z.B. WILKE (1998) sowie JAROŠ und HUBER (1997) an. Feststoff und Lösung werden in einem Kolben zur Reaktion gebracht. Der aus der Gasfreisetzung resultierende Überdruck wird über einen Schlauch in einen wassergefüllten umgestülpten Messzylinder abgeleitet, der in einem offenen Wasserbecken steht. Dort lässt sich die entstandene Gasmenge direkt ablesen. Die Methode ist nur für wasserunlösliche Gase wie H₂ geeignet und gibt nur bei ausreichend hohen Gasentwicklungen auswertbare Resultate. Die Freisetzung der Gase H₂S, CO₂ und NH₃ ist nur sehr eingeschränkt erfassbar. Da es sich aufgrund der Messapparatur um ein System handelt, das im Gleichgewicht mit dem Umgebungsdruck steht, sind die Messwerte vom aktuellen Luftdruck abhängig. Außerdem ist eine Gasdiffusion aus dem oder in das System nicht auszuschließen.

Hält man das Volumen weitgehend konstant, so lässt sich die Gasbildung über den Druckaufbau verfolgen. Dieses Prinzip wird in der Schikorr-Zelle ausgenutzt, wie sie KREIS (1991) einsetzte. Hier wird der aufgebaute Gasdruck mit Hilfe eines angeschlossenen Quecksilbermanometers kontinuierlich gemessen. In der Ausführung von KREIS (1991) werden alle Öffnungen der Glasapparatur zugeschmolzen, so dass auch langfristig ein vollständiger Abschluss des Systems erreicht wird. Das Quecksilber ist eine wirksame Gassperre zwischen Reaktions- und Referenzraum; es ist allerdings ungeeignet, wenn sich H₂S entwickeln kann, mit dem es zu HgS reagiert. In solchen

7

Fällen muss auf Paraffin- oder Silikonöle ausgewichen werden. Hiermit sind Langzeit-Gasentwicklungsexperimente über viele Jahre möglich. Die Methode eignet sich besonders für Metallkorrosionsexperimente, bei denen von Beginn an klar ist, dass sich nur eine Gassorte (Wasserstoff) entwickeln kann. Bei Versuchsende lässt sich keine Probe nehmen, die Apparatur muss zur Probenahme teilweise zerstört werden. Stellt man nicht ganz so absolute Ansprüche an die Dichtigkeit, so lässt sich der Aufbau um einen Schliffansatz mit Septum erweitern, über den gegebenenfalls Gasproben gezogen werden können.

Ein Verfahren mit konstantem Gasvolumen wurde im Zuge des Projektes "Gaserzeugung und -freisetzung in Abfällen" von der GRS entwickelt. Es besteht in der isothermen Ausgasung des Abfalls mit oder ohne Lösungszusatz in Stickstoff- oder Luftatmosphäre in einem abgeschlossenen System festen Volumens. Hierzu werden ein bis zehn Gramm Abfall mit oder ohne Lösungszusatz in einem 500 ml mit Ventil und Septum verschlossenen Glaskolben eingewogen und mit Luft (aereobe Bedingungen) oder Stickstoff (anaerobe Bedingungen) beaufschlagt.

Der Glaskolben wird dann über einen Zeitraum von ein bis acht, für Langzeitversuche bis zu 700 Tagen bei konstanter Temperatur aufbewahrt. Anschließend erfolgen die Probenahme durch das Septum mit einer Gasspritze und eine gaschromatographische Bestimmung der Einzelkomponenten. Die Bestimmung der entwickelten Gasmengen erfolgt indirekt anhand des Restgasvolumens im Kolben und der ermittelten Gaskonzentrationen. Nachteil des Verfahrens ist, dass je Ansatz nur eine Gasmessung durchgeführt werden kann. Um Gasbildungs/Zeit-Kurven aufzunehmen ist daher eine Vielzahl von Ansätzen erforderlich.

Alle drei aufgeführten Methoden weisen bezüglich wichtiger Versuchs- und Messparameter gravierende Nachteile auf. Insbesondere sind sie für große Probenzahlen nicht geeignet. Der folgende Abschnitt beschreibt ein neu entwickeltes Verfahren, das diese Schwierigkeiten überwindet.

3.2 Bestimmung der Gasfreisetzung: Allgemeine Methodik und Versuchsaufbau

Gasfreisetzungsprozesse werden durch drei wesentliche Größen charakterisiert: die zeitlich veränderliche Gasfreisetzungsrate, die maximale Gasfreisetzung und die Zusammensetzung des entstehenden Gasgemisches. Der experimentelle Aufwand und die methodischen Einschränkungen bisher publizierter Untersuchungsmethoden ließen es bislang nicht zu, die genannten Größen bei einer großen Zahl von Abfällen zu messen. Für die Durchführung von Reihenuntersuchungen haben wir deshalb drei Laborverfahren entwickelt, mit denen die Untersuchung der Gasbildung unter verschiedenen Bedingungen möglich ist:

- 1. GasMax: Verfahren zur Ermittlung der maximalen Gasfreisetzung bei Wasserzutritt
- 2. UTDnah: Verfahren zur Ermittlung der Gasfreisetzungsrate unter realitätsnahen Bedingungen (mit oder ohne Wasserzutritt)
- INDirekt: Verfahren zur Ermittlung der Gasfreisetzungsrate bei Kontakt des Abfalls mit feuchter Luft definierter Wasseraktivität

Die Basis aller Verfahren bildet ein Messsystem, das von der Firma WTW ursprünglich für die Bestimmung des biologischen Sauerstoffbedarfes (BSB) entwickelt und von uns für die anstehenden Aufgaben angepasst wurde. Es handelt sich im Kern um eine 1I-Glasflasche mit aufschraubbarem elektronischem Druckmesskopf (OxiTop), der die Entwicklung des Flascheninnendruckes relativ zum Startwert kontinuierlich aufzeichnet (Abb. 1). Der Messbereich umfasst -500 bis +350 hPa bei einer Messunsicherheit von 1 hPa. Die Flasche verfügt über zwei angesetzte Seitenhälse mit Septum, über die eine Gasprobenahme möglich ist.

Statt nun den Sauerstoffverbrauch zu messen, lässt sich das Gerät auch zur Bestimmung eines Druckaufbaus verwenden. Hierzu wird der zu untersuchende Abfall oder die zu beobachtende Abfall-/Lösungsmischung in die Flasche gefüllt und mit Druckmesskopf verschlossen. Um eine isotherme Versuchsführung zu ermöglichen, werden die Flaschen in Thermoschränken aufbewahrt, die sich im Temperaturbereich von 5-40 °C auf \pm 1 °C einstellen lassen (Abb. 2).

Gegebenenfalls wird der Flascheninhalt mit Hilfe eines Magnetrührers gerührt. Der batteriegetriebene digitale Druckmesskopf ermittelt und speichert kontinuierlich über

einen Zeitraum von bis zu 90 Tagen die Druckänderung in Bezug auf den Ausgangsdruck in der Flasche, wobei je Versuch bis zu 400 Messwerte gespeichert werden können. Die Messdaten aller im Thermoschrank befindlichen Flaschen lassen sich per Infrarotstrahl innerhalb weniger Sekunden durch die geschlossene transparente Schranktür auf eine mobile Steuereinheit übertragen und dann weiter per Schnittstellenkabel direkt auf den Arbeitplatzrechner exportieren. Es genügt, die Messdaten einmal nach dem Ende des jeweiligen Messlaufs abzurufen. Das bei anderen Verfahren notwendige manuelle Ablesen und Übertragen oder die Verkopplung mit komplizierten Messwertkarten oder Dataloggern entfällt.

Die kontinuierliche Druckmessung erlaubt eine weitaus bessere Beurteilung des Versuchsverlaufs. Undichtigkeiten werden ebenso erkennbar wie zwischenzeitlich einander ablösende Einzelprozesse oder das Erreichen oder Nichterreichen von stabilen Druckniveaus. Die dargestellte Kombination von Duran-Flaschen und Druckmessköpfen erlaubt die Messungen von Drücken von 500 bis 1350 hPa, ein Bereich, der für die meisten experimentellen Anforderungen dieses Vorhabens ausreicht. Der Druck in den Gefäßen wird regelmäßig kontrolliert und - falls erforderlich – durch Durchstechen des Septums mit einer Kanüle reduziert.

Abb. 1: Versuchsflaschen mit Druckmessköpfen zur Bestimmung der Gasfreisetzung aus Abfällen.

> Links: mit eingehängtem Lösungs-Röhrchen für anaerob-feuchte Bedingungen; Mitte: Aufbau für die Gasmessung bei Abfällen nach Lösungszutritt (UTDnah: mit Alufolie, GasMax ohne); Rechts: Mobiler Controller zum Auslesen der Messdaten über Infrarot-Schnittstelle

Abb. 2: Thermoschränke zur Temperierung der Gasmessflaschen auf 25 bzw. $35 \pm 1 \,^{\circ}$ C

Von jedem Versuchsgefäß wird das Flaschenvolumen durch Auslitern mit Wasser bestimmt. Alle Messgefäße werden vor jedem Versuchseinsatz durch Aufheizen auf 35 °C und dreitägiges Beobachten des Druckverlaufes auf Dichtigkeit geprüft. Nur, wenn es innerhalb dieses Zeitraumes nicht zu einem Druckabfall kommt, werden die Gefäße eingesetzt. Nach dem Einfüllen des Probenmaterials werden alle Gefäße mit Stickstoff gespült.

Nach dem Versuch werden den Gefäßen Gasproben entnommen und gaschromatographisch analysiert. Die zu prüfenden Gase sind Wasserstoff, Kohlendioxid, Kohlenmonoxid, Schwefelwasserstoff und Kohlenwasserstoffe (Methan bis Butan). Außerdem wird Sauerstoff gemessen, wobei erhöhte Messwerte Hinweise auf Undichtigkeiten während des Versuches geben. Aus den Messwerten können die während des Versuches freigesetzten Gasmengen berechnet werden. Der zeitliche Druckverlauf gibt Aufschluss über die Kinetik Feststoff/Salzlauge-Reaktion während des Versuchszeitraumes. Die entstandenen Abfalleluate wurden nach dem Versuch chemisch untersucht. Neben der chemischen Analyse werden Dichte, pH- und pHCI-Wert bestimmt. Die reagierten Abfälle wurden auf ihren Mineralbestand röntgenographisch geprüft.

Die Gasfreisetzungversuche sollen drei grundlegende Fragen beantworten, die sich aus potentiellen Szenarien für die Nachbetriebsphase von Untertagedeponien ergeben. Unter normalen Bedingungen ist davon auszugehen, dass der abgelagerte Abfall, soweit er nicht als unverfestigter Schlamm vorliegt, trocken bleibt. Das für die meisten gasbildenden Reaktionen notwendige Wasser kann dann nur aus dem Abfall selbst oder aus der Umgebungsluft bzw. indirekt aus der Feuchte des umgebenden Wirtsgesteins stammen. Ein Versuchstyp befasst sich daher mit den Gasen, die der Abfall selbst oder beim Kontakt mit feuchter Luft freisetzt ("Indirekt"). Nur unter Störfallbedingungen tritt Wasser zu den abgelagerten Abfällen und füllt maximal die verbliebenen Hohlräume aus. Diese Randbedingungen werden möglichst realitätsnah im Verfahren "UTDnah" abgebildet. Die Gasfreisetzung kann verhältnismäßig langsam sein und gibt innerhalb typischer Untersuchungszeiträume keine Auskunft über die maximale Gasfreisetzung. Eine Beschleunigung der zugrundeliegenden chemischen Prozesse wird im Versuchstyp "GasMax" erreicht.

3.3 Realitätsnahe Versuchsführung: UTDnah

Nachdem die Porosität des zu untersuchenden Abfalls bestimmt worden ist, wird zum unbehandelten, nur grob zerkleinerten Abfall (~ 100 ml Schüttvolumen) gerade so viel Lösung hinzugegeben, dass das berechnete Porenvolumen ausgefüllt und der Abfall gerade mit Lösung bedeckt ist. Es ergeben sich abfallspezifische Lösungs-/ Feststoff-verhältnisse, die bei den untersuchten Abfällen zwischen 6,8:1 und 0,7:1 kg/kg gelegen haben. Die eingesetzten wässrigen Lösungen orientieren sich in ihrer Zusammensetzung an formationstypischen Wässern:

- Synthetische IP21-Lösung (eine für Kalisalzlagerstätten typische Gleichgewichtslösung, Hauptkomponente: Magnesiumchlorid, vgl. HERBERT und MÖNIG, 1996)
- Synthetische Gipshutlösung (eine für Steinsalzlagerstätten typische Gleichgewichtslösung, die an Halit und Gips gesättigt ist, vgl. HERBERT und MÖNIG, 1996)

 Synthetisches Steinkohlen-Grubenwasser (Zusammensetzung gemäß Standard-Grubenwasser der RAG f
ür Teufen von 800-1000 m, vgl. KLINGER, 1994)

Die Zusammensetzungen der Ausgangslösungen ist in Abschnitt 5.3.1 (S.39) dokumentiert. Nach Zugabe der Lösung werden die Gefäße mit Stickstoff gespült und verschlossen. In einigen Kontrollversuchen wurde zunächst *nicht* gespült, um den speziellen Einfluss des Luftsauerstoffs zu überprüfen. Um lichtsensitive biologische oder anorganische Zersetzungsprozesse auszuschließen, werden die Flaschen mit Aluminiumpapier eingehüllt. Die Versuchstemperatur beträgt jeweils 25 °C bei einer einheitlichen Versuchsdauer von 28 Tagen. Es wurden jeweils drei Parallelversuche angesetzt. Das Verfahren Gasmax dient vor allem zur Abschätzung der unter Störfallbedingungen zu erwartenden Gasfreisetzungsgeschwindigkeit.

3.4 Beschleunigte Gasfreisetzung: GasMax

Wie frühere Untersuchungen zeigten, reichen 28 Tage unter den Bedingungen der "UTDnah-Versuche" zum vollständigen Abschluss der gasbildenden Prozesse nicht aus. Um die Reaktionen zu beschleunigen, ist eine Verschärfung der Versuchsbedingungen notwendig. So wird beim GasMax-Versuch die Temperatur auf 35 °C erhöht, der Abfall im Mörser zerkleinert (nicht aber gemahlen), ein Überschuss an chemisch aggressiver IP21-Lösung zugesetzt und stark gerührt. Die Auswahl geeigneter und gleichzeitig kostengünstiger Rührkern/Magnetrührerkombinationen stellte eine nicht unerhebliche Schwierigkeit dar, da sich die zähen und schweren Abfall/Lösungsgemische durch die laborüblichen Geräte meist nicht bewegen ließen. Als Rührkerne wurden letztendlich Produkte mit hochmagnetischen Seltenerdlegierungen eingesetzt (Bola "Power"). Als Rührer diente das Modell Heidolph MR1000 (Abb. 3). Das Lösungs-/Feststoff-Massenverhältnis betrug einheitlich 4:1 bei einer Feststoffeinwaage von 50 g. Nach Zugabe der Lösung wurde das Gefäß mit Stickstoff gespült und verschlossen. Es wurden jeweils drei Parallelversuche angesetzt. Die Versuchsdauer betrug 28 Tage.

Durch Anwendung des GasMax-Verfahrens ließen sich etwa fünf bis zwanzig mal schnellere Reaktionsgeschwindigkeiten erzielen. Eine noch stärkere "Gasausbeute" ließe sich durch noch stärker erhöhte Temperaturen (>50 ℃) oder durch Einsatz sehr starker Säuren (<pH1) oder Laugen (>pH13) erzielen. Beide Manipulationen sind sehr realitätsfern und wurden zu Vorhabensbeginn verworfen.

Abb. 3: Messstand mit sechs Rühreinheiten

Ebenfalls unter GasMax-Bedingungen wurden die Siebfraktionen (< 2 mm und < 355 μm) zweier Abfälle (CA527 und CA548) eingesetzt, um den Einfluss der Korngröße auf die Gasfreisetzung festzustellen. Ebenfalls mit CA527 und CA548 wurde der Einfluss unterschiedlicher Feststoff-Lösungsverhältnisse untersuch. Dazu wurden zu 30 bzw. 15 g Abfall 150 ml IP21-Lösung gegeben.

3.5 Gasfreisetzung unter Luftfeuchte

An einigen stark gasfreisetzenden Abfällen wurde überprüft, ob eine Gasfreisetzung auch bei Kontakt mit Luftfeuchte auftreten kann. In einer Untertagedeponie können kleinere Wassermengen durch die Eigenfeuchte des Abfalls wie auch durch kleinere Tropf- oder Feuchtstellen des Wirtsgesteins eingetragen werden. Zur Simulation solcher Verhältnisse wird in das Messgefäß ein Köcher gehängt, der eine für das Wirtsgestein typische Lösung enthält, z.B. IP21-Lösung für Kalisalzlagerstätten (vgl. Abb. 1 links). Eine wasserverursachte Gasentwicklung ist dann nur durch Wassertransport über die Gasphase möglich. Um reproduzierbare Verhältnisse zu schaffen, werden die Ansätze bei 25 ℃ temperiert und mindestens 28 Tage beobachtet. Da die Gasfreisetzung in den meisten Fällen sehr langsam war, wurden die meisten Versuche unbefris-

tet verlängert, so dass zu Vorhabensende Zeiträume von bis zu 900 Tagen erreicht wurden.

3.6 Gasfreisetzung ohne Wasserkontakt

Diese Methode entspricht der in Abschnitt 3.5 beschriebenen, nur dass hier auf Einbringen eines Lösungsköchers verzichtet wird.

3.7 Langfristige Gasfreisetzung

Zur Untersuchung der langfristigen Gasentwicklung wurden ausgewählte "UTDnah"-Ansätze über die übliche Versuchszeit von 28 Tagen hinaus weitergeführt. Hierzu werden die Messintervalle verlängert und viele Messperioden aneinandergehängt. Einige Versuche liefen bei Abfassung dieses Berichtes bereits über drei Jahre, ohne dass es zu Komponenten-Ausfällen (Flaschendichtigkeit, Druckmesskopf, Septen) gekommen wäre. Diese Langzeitleistung beweist die hohe Verlässlichkeit des ausgewählten Messsystems.

3.8 Versuche mit bioaktiven Substanzen

Zur Beurteilung, ob anaerobe biologische Prozesse signifikant zur Gasbildung beitragen, werden Abfälle mit hoher Methangaserzeugung ausgewählt und mit einem kommerziellen Biohemmstoff ("Wasserbad-Konservierer", Firma Roth) versetzt. Die anschließende Versuchsführung erfolgt entsprechend der GasMax-Methode mit IP21-Lösung. In Vergleichsversuchen wird den Abfallproben als Substrat KNO₃ oder KH₂PO₄ hinzugegeben.

3.9 Gasfreisetzung im Technikumsversuch

Ziel dieser Versuche ist die Erfassung thermischer Effekte bei gasbildenden Prozessen. Sie können mit den zuvor beschriebenen Methoden wegen der isothermen Versuchsführung und des ungünstigen Flaschenoberflächen- /Feststoffverhältnisses nicht beobachtet werden. Entstehende Wärme wird von den Reaktionsgefäßen zum einen gepuffert und zum anderen schnell an die Umgebung abgeführt. Notwendig war also ein Versuchsmaßstab, bei dem die Wärmeentwicklung in einem kompakten Abfallkörper gemessen werden kann. Wir haben ihn durch Einsatz von Abfall in einer Größenordnung von etwa 15 l Schüttvolumen realisiert.

Im Einzelnen gehen wir dabei folgendermaßen vor: Die Versuche werden in 50 l-Weithalsfässern durchgeführt, die mit siebartig durchbohrten³ 17 l-Kunststoff-Innenbehältern versehen sind (Abb. 4, Abb. 5). Für diese Innenbehälter wurden passende verschließbare Beutel aus festem dickem Baumwollstoff angefertigt, die zur Aufnahme des Abfallmaterials dienen. Das effektive Füllvolumen der verschlossen Beutel beträgt etwa 15 l. Durch diese Konstruktion lässt sich der Abfall dauerhaft räumlich von der Lösung trennen, die in den Zwischenraum zwischen Innenbehälter und Fasswand gefüllt wird. Die Lösung dringt durch die Poren des Stoffes langsam seitlich in den Abfallkörper ein und reagiert mit diesem. Es entsteht unabhängig vom Aufschwemm- und Aufschlämmverhalten des Abfalls eine eindeutig lokalisierbare Reaktionszone, deren Temperatur durch eingebrachte Sensoren messbar ist. Hierzu werden zwei Thermoelemente eingesetzt, das erste mittig im Abfallkörper, das zweite am Außenrand des inneren Gefäßes also in der Salzlauge. Außerdem wird die Lufttemperatur des Laborraums aufgezeichnet. Ein Notebook dient als Datalogger für die Messfühler des gesamten Versuchsaufbaus.

Das Innengefäß wird nun in das Fass gestellt und mit einem Plastikbügel im Fasshals arretiert. Er verhindert das Auftreiben des Beutels beim Einfüllen der Lösung. Das Fass wird mit einem silikongedichteten Deckel gasdicht verschlossen (Abb. 6). In der Mitte des Deckels befindet sich ein speziell konstruierter abgedichteter Durchlass für zwei Gasschläuche (Zufluss und Abfluss) sowie zwei mit Silikon eingefasste Messkabel. Eine schematische Darstellung der Versuchsanordnung ist in Abb. 4 zu sehen.

Das Fass wird einen Tag mit Argon gespült, um vorhandenen Luftsauerstoff zu entfernen, aber auch um dem Abfall Zeit zu geben mit der Laborumgebung in ein thermisches Gleichgewicht zu gelangen. Am folgenden Tag wird der Durchlass vorsichtig geöffnet und mit einem Schlauch so viel Salzlauge eingefüllt, dass der Abfall gerade bedeckt ist. Hierfür waren etwa 23 I Lösung notwendig. Falls nicht genügend Volumen einer Abfallprobe zur Verfügung steht, um den Beutel vollständig zu füllen, wird entsprechend weniger Lösung eingesetzt. Als Lösung wurde entweder eine synthetische

³ 60 Löcher mit je 2,5 cm Durchmesser

Gipshutlösung oder eine in der Schachtanlage Asse II auftretende konzentrierte Salzlauge verwendet, deren Zusammensetzung nahe an IP21 liegt (Tab. 5, S.40).

Abb. 4: Reaktionsgefäß für Technikumsversuche zur Gasfreisetzung aus chemisch-toxischen Abfällen

Nach dem Einfüllen wird die Öffnung dicht verschraubt. Mit Hilfe von Kugelrotametern wird für jedes einzelne Fass ein konstanter Argon-Gasstrom durch das Fass geleitet (zwischen 0,5 und 2 l/min). Der Gasstrom musste einerseits hoch genug sein, um den entstehenden Wasserstoff unter die Explosionsgrenze (4 Vol%) zu verdünnen, andererseits klein genug, um die Nachweisgrenze für wichtige Spurengase im Abgasstrom nicht zu unterschreiten. Das Argon wird vor den Fässern durch eine Kaskade von salzlösungsgefüllten Waschflaschen geleitet, um einen Wasserdampfpartialdruck wie über den in den Fässern vorhandenen Lösungen zu erreichen. Die Dauer der Versuche richtete sich nach der beobachteten Gasentwicklung und lag zwischen 7 und > 300 Tagen. Wegen der Größe der Versuchseinrichtung war eine direkte Temperaturkontrolle nicht möglich. Jedoch ist die Temperatur im Laborraum durch den Einsatz von Klimaanlagen ganzjährig auf 25±2 ℃ fixiert. Die abgeleiteten Gasströme werden gesammelt und über ein Abzugsystem nach außen geleitet. Zur Probenahme wird der Gasstrom eines Fasses mit Hilfe eines T-Ventils umgelenkt. Sobald dieser Gasstrom stabil ist (Prüfung mit zusätzlichem Rotameter hinter den Fässern), wird er in vorher mehrfach gespülte und evakuierte Gasprobenbeutel geleitet. Die Probenahme erfolgt zuerst unmittelbar nach dem Verschließen des Fasses. Die weiteren Probenahmen erfolgten dann zunächst stündlich, später zweimal täglich oder in noch größeren Zeiträumen, je nach Verlauf der Gasentwicklung, mindestens jedoch einmal in der Woche.

Die Temperatur in Abfall und Lauge wurde während des gesamten Versuchs kontinuierlich aufgezeichnet. Die Versuche wurden solange fortgeführt, bis die Wasserstofffreisetzung beendet war, d. h., bis die gemessenen Wasserstoffkonzentrationen bei der Nachweisgrenze lagen. Nach Abbruch des Versuches wurden folgende Proben genommen:

- die das Innengefäss umgebenden Salzlauge (chem. Analyse)
- Lösung aus dem Festkörperinneren für die chemische Analyse sowie für Dichte- und pH-Messung (dazu wurde ein Teil des durchtränkten Abfalls zentrifugiert und die Probe dem Zentrifugat entnommen; war das nicht möglich – z.B. bei körnigen Schlacken – erfolgte die Entnahme aus dem inneren Behälter.)

Abb. 7 zeigt den gesamten Messstand. Eine Übersicht über die eingesetzte Abfall- und Lösungsmaßen ist in Tab. 79 (S. 197) zu finden.

Abb. 5: Vorbereitungen für einen Technikumsversuch I:

Einfüllen des Abfalls, Einsetzen der Thermoelemente, Verschließen des Abfallbeutels, fertig vorbereiteter Inneneinsatz mit zwei Thermoelementen, leeres Fass, Fass mit Einsatz und Stabilisierungsspange

Abb. 6: Vorbereitungen für einen Technikumsversuch II:

Abdichten der Deckellippe, Festschrauben des Deckels, Einfüllen der Lösung, Verschließen des Fasses und Spülen mit Argon, Einfüllen der Lösung, fertiges Fass mit festgeschraubten und gedichteten Durchlässen für Gas und Messkabel, Probenahme mit einem Gasbeutel

Abb. 7: Messstand für Technikumsversuche: Oben und unten rechts: abfallgefüllte Fässer, mittig: Gasregelstation, links: Gasdurchflussmessung, mitte unten: Notebook zur Messwertaufnahme

4 Analytische Methoden

4.1 Mineralphasenanalyse

Die Identifizierung der Mineralphasen erfolgt röntgendiffraktometrisch. Das Probenmaterial wird in einer Achat-Reibeschale zu einem feinen Pulver (Korngröße <100 µm) gemahlen. Dann wird 100-200 mg in die Aussparung eines Probenträgers aus Aluminium gefüllt, mittels einer kleinen Glasplatte verdichtet und eine glatte Probenoberfläche erzeugt. Die Messung erfolgt mit einem PHILIPS-Großgoniometer vom Typ PW 3050 unter Verwendung von Kupfer-K_a-Strahlung im 2 Θ - Winkelbereich zwischen maximal 5° und 75° mit einer Anregungsspannung von 40 kV bei einem Röhrenstrom von 55 mA. Die Winkelabtastrate beträgt 0,02° pro Sekunde. Die Beugungsspektren werden mit Hilfe des automatischen Steuerungssystems PW 3040 der Firma PHILIPS erfasst und graphisch mit dem Anwendungsprogramm X'Pert Graphics & Identify der Firma PHILIPS ausgewertet.

4.2 Feststoffanalytik mit der Röntgenfluoreszenzanalyse (RFA)

Zur Absicherung der analytischen Ergebnisse insbesondere zur Quantifizierung der nasschemisch schwierig quantifizierbaren Elemente Si und Al wurden im Auftrage der GRS röntgenfluoreszensspektroskopische Untersuchungen seitens der FUGRO Consult GmbH, Berlin, vorgenommen. Die Messung der Proben erfolgt mittels energiedispersiver Röntgenfluoreszenzanalyse mit polarisierter Röntgenstrahlung (P-EDRFA). Dazu kam als Analysenautomat ein X-LAB der Firma Spectro Analytical Instruments zum Einsatz. In Abhängigkeit von den vorgesehenen Messbedingungen bzw. methoden wurden unterschiedliche Präparate vorbereitet:

a) Pulver-Presstabletten mit unterschiedlichen Verdünnungsabstufungen

b) Schmelztabletten

Die Herstellung der Schmelztabletten erfolgt bei 1100*C. Damit verbunden ist ein Masseverlust durch Entweichen von CO₂ und Hydroxidwasser sowie Anteilen von SO₃ und Cl. Ein Massegewinn entsteht durch die Oxidation nichtflüchtiger Elemente. Die gesamte Gewichtsveränderung wird durch den LOI-Wert (loss of ignition) ausgedrückt, der demzufolge nicht mit dem Glühverlust bei 550°C (GV) gleichzusetzen ist. In Abhängigkeit von der Plausibilität des Ergebnisses wurden entweder der LOI oder der GV zur Ergänzung der Elementkonzentrationen zu 100 % herangezogen. Die RFA an sich und gewisse Spezifika in der Zusammensetzung dieses Probensortimentes bedingten folgende Probleme bei der Auswertung:

- Elemente der Ordnungszahlen < 11 werden nicht erfasst. Die teilweise theoretische Einbeziehung von C und H aus organischer Substanz, C aus Carbonaten bzw. flüchtigem CO₂ sowie H aus Hydroxiden in die Summe der Konzentrationen ist daher fehlerbehaftet.
- Beim gleichzeitigen Auftreten von Carbonaten und Sulfaten ließen sich die Beiträge des Gewichtsverlustes beim Schmelzen nicht zuordnen. Die Summe der Konzentrationen bei Probe 535 (FUGRO-Nr. 31) ergibt deshalb weniger als 100 %.
- 3. Beim Schmelzen entstanden offensichtlich flüchtige Chlorverbindungen oder waren teilweise primär vorhanden. Ihr Auftreten bedingte voneinander abweichende Messergebnisse bei unterschiedlichen Präparationen.
- 4. Einige Proben waren stark hygroskopisch. Probe 529 (FUGRO-Nr. 27) muss als instabil bezeichnet werden.
- 5. Teilweise hohe Fe-Gehalte sind die Ursache für eine Anhebung der Bestimmungsgrenze von Kobalt.
- 6. Die quantitative Bestimmung von Quecksilber wird durch das gleichzeitige Auftreten weiterer Schwermetalle u.a. Elemente in hoher Konzentration erschwert.

4.3 Bestimmung der chemischen Zusammensetzung wässriger Lösungen mit ICP/OES und ICP/MS

Die zu analysierenden Ausgangslösungen und Eluate werden nach der Filtration (0,45 µm) zur Konservierung 1:10 verdünnt und mit Salpetersäure angesäuert. Um den analytischen Aufwand für die Vielzahl der durchgeführten Versuche auf einem vertretbaren Niveau zu halten, wurden auf der Basis der Schadstoffgehalte in den untersuchten Abfällen 25 Elemente festgelegt, deren Eluatkonzentrationen routinemäßig quanti-

tativ bestimmt werden. Dazu gehören einerseits Na, K, Ca, Mg, Cl und S als Hauptelemente, vor allem der als Auslauglösungen eingesetzten Salzlösungen, sowie andererseits Al, B, Cd, Co, Cu, Fe, Ni, Zn, Sn, Mo, Tl, Sb, Pb, Cr, Mn, Ti, Bi, Si, Hg. Ein Hinweis auf die Vollständigkeit der Analyse liefert auch eine Bilanzierung über die Kationen- und Anionengehalte.

Teilweise enthalten die Eluate mehrere hundert Gramm pro Liter an verschiedenen Salzen. Dies wird bei der Analytik der Salzlösungen durch entsprechende Matrixanpassungen der Messlösungen berücksichtigt. Besondere Bedeutung erhielt dies, wenn sich im Laufe eines Versuches aufgrund der Auslaugung von Schwer- und Übergangsmetallionen und wegen ablaufender Ausfällungsreaktionen die Zusammensetzungen der Salzlösung stark veränderten.

Zur Analyse der Elemente werden die Atomemission mit induktiv gekoppeltem Plasma (ICP-OES) und die Atommassenspektrometrie mit Probeneinführung über ein induktiv gekoppeltes Plasma (ICP-MS) eingesetzt. Dabei wird die ICP-OES hauptsächlich zur Messung der Hauptelemente sowie für Elemente, die sich gut zur Emission anregen lassen, verwendet. Die ICP-MS eignet sich besonders gut für Elemente mit höherer Masse, da bei diesen Matrixstörungen sehr klein sind. Zur Absicherung aller analytischen Ergebnisse werden routinemäßig umfangreiche Qualitätssicherungsmaßnahmen durchgeführt, die in /HER 96/ beschrieben sind.

Für die ICP-OES-Messungen wird ein Gerät des Typs JY 70 P der Firma ISA JOBIN YVON mit argongespültem Polychromator und zusätzlichem Monochromator verwendet. Die Kalibration des Messgerätes wird für jedes Extraktionsverfahren bzw. jede Extraktionslösung mit einer entsprechenden, matrixangepassten Standardlösung durchgeführt. Auf eine exakte Ermittlung der Nachweis- und Bestimmungsgrenzen wird verzichtet. Werte, die unterhalb des "praktischen Arbeitsbereiches" liegen, werden deshalb nicht quantifiziert und in den Ergebnistabellen mit n.b. (nicht bestimmbar) versehen.

Die ICP-MS-Messungen erfolgen mit einem Gerät des Typs "VG Plasma Quad 2" der Firma Fisons Instruments. Die Messlösung wird zerstäubt und das Aerosol mit Hilfe eines Trägergases in ein induktiv gekoppeltes Plasma transportiert. Dort wird das Aerosol getrocknet, verdampft, in seine Elemente zerlegt und ionisiert. Die entstandenen ionisierten Isotope werden im Massenspektrometer entsprechend ihrer Masse voneinander getrennt und mit einem Elektronenvervielfacher detektiert. Eine quantitative Aussage über die Elementkonzentrationen ist bei natürlicher Isotopenverteilung in der Messlösung durch Kalibrierung mit Bezugslösungen möglich, wobei ein linearer Zusammenhang zwischen den gezählten Elektronen (counts) bei der jeweiligen Masse und der Konzentration des dieser Masse zugeordneten Elements besteht.

4.4 Chlorid-Titration

Chlorid wird argentometrisch durch potentiometrische Titration bestimmt. Das Verfahren ist abgeleitet aus der DIN 38405 Teil 1. Für die Qualitätssicherung erfolgte eine statistische Überwachung wie bei der ICP-OES.

4.5 Bestimmung der Wasserstoffaktivität (pH, pHCl) und der Lösungsdichte

Zur Messung der pH-Werte wird ein pH-Meter der Firma METROHM (Typ 713) sowie eine Glaselektrode derselben Firma verwendet. Die Kalibrierung erfolgt mit zertifizierten Pufferlösungen der pH-Werte 4,0 und 8,0. Wegen des hohen Salzgehaltes vieler Eluate beinhalten die hiermit ermittelten Messwerte einen nicht genau quantifizierbaren systematischen Fehler. Er kann aufgrund eigener bislang nicht veröffentlichter Untersuchungen bis zu 2 pH-Einheiten ausmachen. Aus diesem Grund werden zusätzlich pHCI-Messungen mit kombinierten Glas/Chlorid-Elektroden durchgeführt, die mit HCI-Lösungen bekannter mittlerer Chlorwasserstoff-Aktivität kalibrierbar sind. Lösungsdichten werden mit dem Dichteschwinger DMA 48 der Firma Paar ermittelt.

4.6 Gaschromatographische Analyse der Gasphase

Nach Abschluss des Versuchszeitraums erfolgte die Gasprobenahme durch eines der vorhandenen Septen. Die Analyse der Gase H₂, CO, CO₂, O₂, H₂S, SO₂ und CH₄ wird gaschromatographisch mit vier parallel angeordneten GC-Messsystemen durchgeführt, die durch Auswahl der Trennsäulen und der Detektionssysteme jeweils für die Quantifizierung bestimmter Gase optimiert sind. Die Kalibration erfolgt mit Hilfe zertifizierter Prüfgase. Nähere Angaben zum Aufbau der Systeme und zu ihrer Funktionsweise sind bei JOCKWER et al. (1997) zu finden.

4.7 Bestimmung der Wärmekapazität von Abfall/Lösungsgemischen

Diese Methode wurde für die Bestimmung der Wärmekapazität von restfeuchten Abfallproben aus Gasfreisetzungsversuchen konzipiert. Wegen der durch diese Versuche vorgegebenen Randbedingungen wurde eine Genauigkeit von 10 % des Messwertes als hinreichend festgelegt.

Für die kalorimetrische Messung wird ein isoperiboles Erwärmungskalorimeter in temperaturkonstanter Umgebung verwendet. Das Kalorimeter besteht aus einem Dewar-Gefäß mit Deckel, Magnetrührer und einer elektrischen Heizung. Die Temperatur wird mit einem Pt100-Widerstandsthermometer gemessen. Als Wärmeempfänger wird demineralisiertes Wasser eingesetzt.

Die zugeführte Wärmemenge Q beträgt bei einer Temperaturerhöhung des Wärmeempfängers um ΔT und der Wärmekapazität des gesamten Kalorimeters C_K:

$$Q = C_{K} \cdot \Delta T \tag{1}$$

Die Wärmekapazität C_{K} des Kalorimeters wird experimentell bestimmt. Dazu wird über das Heizelement eine definierte elektrische Energie E eingetragen und die Temperaturdifferenz ΔT gemessen. Die elektrische Energie wird vollständig in Wärme umgewandelt. Ist U die Spannung an den Enden des Heizelements, I die Stromstärke und t die Zeitdauer der Energiezufuhr, erhält man die elektrische Energie bei Gleichstrom:

$$Q \equiv E = U \cdot I \cdot t \tag{2}$$

Misst man U in [V], I in [A] und t in [s], so erhält man mit Formel 1 die Wärmekapazität des Kalorimeters direkt in [J/K]:

$$C_{K} [J/K] = U [V] \cdot I [A] \cdot t [s] / \Delta T$$
(3)

Die Temperaturdifferenz ∆T wird aus der Gangbeobachtung des Kalorimeters, also der Aufnahme des zeitlichen Temperaturverlaufs entnommen. Bei kalorimetrischen Messungen lassen sich drei Phasen unterscheiden, die Vorperiode, die Hauptperiode und die Nachperiode (Abb. 8). Die Vorperiode beginnt, sobald sich im Kalorimeter durch Rühren thermisches Gleichgewicht eingestellt hat, und die Temperatur sich nur noch linear mit der Zeit ändert. Die Hauptperiode beginnt mit dem Einbringen der Probe; die

Nachperiode, sobald der zeitliche Temperaturverlauf wegen des Ausgleichs mit der Umgebung wieder linear ist.

Abb. 8: Flächenausgleichsverfahren zur Bestimmung der Temperaturdifferenz ΔT

Im Idealfall (spontaner Temperaturausgleich in einem trägheitslosen Kalorimeter) geht die Dauer der Hauptperiode gegen Null und der Temperatursprung entspricht dem gesuchten ΔT . Im Realfall ist der Wärmeübergang nicht spontan. Außerdem findet zusätzlich ein Wärmeaustausch mit der Umgebung statt. Die Temperaturänderung des Kalorimeters lässt sich näherungsweise mit dem Newton'schen Abkühlungsgesetz beschreiben:

$$dT / dt = K \cdot (T_0 - T(t))$$
(4)

Dabei ist T(t) die Temperatur zum Zeitpunkt t. Die Geschwindigkeitskonstante K [s⁻¹] kann als konstant betrachtet werden, solange die Temperaturdifferenz T_0 -T < 6 K ist. Gibt es weitere Parameter, die den Temperaturverlauf beeinflussen, sind diese auf der rechten Seite der Formel einzufügen. So wird z.B. durch das Rühren Wärme eingetragen. Hält man diese Parameter jedoch während der Versuche zeitlich konstant, wird ihr Einfluss in dem nachfolgend beschriebenen Flächenausgleichsverfahren hinreichend berücksichtigt.

Wegen des asymmetrischen Temperaturverlaufs der Hauptperiode hat sich zur Bestimmung von ΔT in der Praxis das Flächenausgleichsverfahren bewährt. Dazu werden Vor- und Nachperiode bis zum Zeitpunkt $t_{\Delta T}$ extrapoliert, wobei $t_{\Delta T}$ so gewählt wird, dass die sich bildenden Flächen F_V zwischen der extrapolierten Vorperiode und der Hauptperiode bis zum Zeitpunkt $t_{\Delta T}$ und F_N zwischen der extrapolierten Nachperiode und der Hauptperiode ab dem Zeitpunkt $t_{\Delta T}$ gleich groß werden (Abb. 8). Die Differenz zwischen extrapolierter Vorperiode und extrapolierter Nachperiode zum Zeitpunkt $t_{\Delta T}$ ist die gesuchte Temperaturdifferenz ΔT .

Zur Bestimmung der Wärmekapazität von Abfall-/Lösungsgemischen wurden Abfallproben aus den Fässern der abgeschlossenen Technikumsversuche entnommen und in 30 ml-Schnappdeckelgläschen gefüllt. Die Wärmekapazität der Gläschen wurde separat bestimmt und bei der Berechnung berücksichtigt. Die gefüllten Gläschen über eine Stunde in einem Thermostaten auf 35,0° aufgeheizt und anschließend in das Lösungskalorimeter überführt. Die Messungen dauerten einschließlich Vor- und Nachperiode etwa eine Stunde.

5 Eingesetzte Abfälle und Lösungen

5.1 Entsorgung und Lagerung von Abfällen in Untertagedeponien und untertägigen Hohlräumen

Nach Informationen des STATISTISCHEN BUNDESAMTES (2004) beträgt das jährliche Aufkommen an besonders überwachungsbedürftigen Abfällen etwa 14 Mio t⁴. Hiervon wurden im Jahre 2002 567.100 t in Untertagedeponien (UTD) entsorgt. In als "Verwertungsanlagen" (UTV) bezeichneten untertägigen Hohlräumen wurden weitere Abfallmengen in Höhe von etwa 1,26 Mio t (2002) verbracht. Welcher Anteil davon besonders überwachungsbedürftig ist, lässt sich aus allgemein zugänglichen Statistiken schwer erschließen, doch verweist der B.U.N.D⁵ darauf, dass 1999 von 2,1 Mio t "gelagerten" Abfällen 0,68 Mio t besonders überwachungsbedürftig waren. Insgesamt ist von etwa 1 Mio t untertägig entsorgter oder "verwerteter" besonders überwachungsbedürftiger Abfälle auszugehen.

Gemäß der Abfallstatistik des STATISTISCHEN BUNDESAMTES (2004) entfielen im Jahre 2002 von 567.000 t einheimischen, besonders überwachungsbedürftigen Abfällen 414.000 t auf Rückstände von Abfallverbrennungsanlagen (EAK-Grundschlüssel 1901, z.B. Filterstäube). Weitere 58.900 t entfallen auf metallhaltige Abfälle (z.B. Strahlmittelreste) und 30.500 t auf Bau- und Abbruchabfälle. Zur Art der in UTVs eingebrachten besonders überwachungsbedürftigen Abfälle gibt es keine Aussagen in der Statistik. Ihr ist lediglich zu entnehmen, dass Abfälle aus Kraftwerken (538.000 t, z.B. Schlacken und Aschen), Abfälle aus Müllverbrennungsanlagen (337.000 t) sowie Gießereiabfälle (139.000 t) die aufkommensstärksten Stoffe sind, die im untertägigen Bergbau als Versatz verwertet werden.

Zu diesen Mengen kommen noch importierte Abfälle. Aus der Statistik über die "Grenzüberschreitende Verbringung von genehmigungspflichtigen Abfällen 2002" (UMWELTBUNDESAMT 2004) geht hervor, dass es sich bei den meisten importierten Abfällen mit Entsorgungsart "Dauerlagerung" um Verbrennungsprodukte handelt: Rost-

⁴ Auf der Grundlage der Erhebungen 1996-2002. Stand Januar 2005

⁵ http://www.bund-nrw.de/files/bergversatz_tabelle.pdf 22.02.2005 auf der Basis eines Hintergundpapiers des BMU zur Bergversatzverordnung
und Kesselaschen, Filterstäube, Filterkuchen, Schlacken, Schlämme, sonstige Abgasreinigungsrückstände. Weitere wichtige Abfallgruppen sind Transformatoren, arsenund quecksilberhaltige Abfälle sowie sonstige Produktionsschlämme.

Zu Beginn des Vorhabens stand uns nur die wesentlich weniger aussagekräftige Abfallstatistik für das Jahr 1993 (STATISTISCHES BUNDESAMT, 1997) zur Verfügung. Auf der Grundlage dieser Daten haben wir jene Abfälle zu identifizieren versucht, die

- 1. besonders überwachungsbedürftige sind
- 2. in Mengen von mehr als 100 t jährlich anfallen
- 3. bekanntermaßen in großen Mengen in UTD oder UTV eingelagert worden sind

Die Richtigkeit der so vorgenommenen Auswahl hat sich nach Bekanntmachung der neuen Abfallstatistiken, die anhand des neuen Europäischen Abfallkatalog (EAK) erstellt wurden, in den meisten Fällen bestätigt (Tab. 2). Im Einzelnen sind wir von folgenden Überlegungen ausgegangen:

In der Abfallstatistik von 1993 waren insgesamt 62 Abfallarten (nach altem LAGA-Schlüssel)⁶ als UTD-relevant anzusehen. Ihr Jahresaufkommen betrug 1993 etwa 540.000 t (PTE, 1999). Davon wurden etwa 150.000 t deponiert, wobei aus der Abfallstatistik nicht zu erschließen war, wieviel davon in Untertagedeponien eingelagert wurde. Für die untertägige Entsorgung spielten neben diesen 62 Klassen noch weitere Abfallgruppen ein große Rolle. So sind gemäß BRASSER et al. (1998) auch Flugaschen aus Abfallverbrennungsanlagen (LAGA-Schlüssel 31309) als UTD-relevant einzustufen, die wegen ihrer Zusammensetzung ein ebenso hohes Gefährdungspotential auf-

⁶ Im Verlaufe des Vorhabens wurden die Abfalldeklarationsvorschriften zweimal geändert. In der Vorberetungsphase galt der von der Länderarbeitsgemeinschaft Abfall (LAGA) eingeführten Abfallschlüssel, die aktuellste zum Vorhabensbeginn verfügbare Abfallstatistik (für das Jahr 1993) und damit auch unsere Abfallauswahl bezogen sich ebenfalls auf diesen Schlüssel. Die im Verlaufe des Vorhabens beschafften Abfälle wiesen weitestgehend die vom 1.1.1999 bis 31.12.2001 vorgeschriebenen Bezeichnungen nach dem Europäischen Abfallkatalog (EAK, engl. EWC) auf. Diese Schlüssel werden auch bei der Beschreibung der analytischen und experimentellen Ergebnisse verwendet. Seit dem 1.2.2002 ist ein überarbeiteter EAK-Katalog gültig, der hier noch keine Anwendung findet.

weisen können, wie die entsprechenden Flugaschen aus Sonderabfallverbrennungsanlagen.

Von diesen 63 Abfallarten waren 1993 laut Abfallstatistik zehn nicht deponiert worden (vgl. Tab. 1) oder es fehlten genauere Angaben. Weitere 19 fielen in einer jährlichen Menge von unter 100 t an. Damit verblieben noch 34 Abfallarten mit einem Jahresaufkommen von über 100 t, die zusammen mehr als 99,7% der deponierten UTDrelevanten Abfälle ausmachen. Allein die beiden am stärksten anfallenden Abfallarten (Filterstäube und feste Verbrennungsrückstände aus Abfallverbrennungsanlagen) machen mehr als 59% des Gesamtaufkommens aus. Es handelt sich dabei gerade um jene Abfälle, deren hohes Wasserstofffreisetzungspotential durch neuere Untersuchungen nachgewiesen ist (vgl. JAROŠ und HUBER, 1997; JOCKWER et al., 1997).

Tab. 1:Verteilung der UTD-relevanten Abfälle nach Abfallaufkommen auf der Basis
der Abfallstatistik für das Jahr 1993)*

Deponierte Abfallmenge [t]	Anzahl der Abfälle mit dargestelltem Abfallaufkommen	Anteil dieser Abfälle an gesamter deponierter Menge von UTD-	Bezeichnung der Abfälle (nur die stärksten beiden
		relevanten Abfallen	Klassen)
0 (nicht aufgetre- ten)	10	0%	
10>x>0	6	0,02%	
100>x>10	12	0,2%	
1000>x>100	19	3%	
10.000>x>1000	11	24%	
50.000>x>10.000	2	14%	Filterstäube aus SVA, PCB-haltige Er- zeugnisse
x>50.000	2	59%	Filterstäube aus HMV, feste Verbrennungs- rückstände aus HMV

)* einschließlich Flugaschen aus Abfallverbrennungsanlagen (31309)

Zieht man die in Verwertungsanlagen eingebrachten Abfälle hinzu, rücken noch weitere Abfallarten in den Blickpunkt, z.B.

- Schlacken und Aschen aus Abfallverbrennungsanlagen (LAGA-Schlüssel 31308; Jahresaufkommen 1993: 860.000 t). Etwa 80.000 t davon werden unbehandelt untertägig als Versatz verbracht (FÖRSTNER und HIRSCHMANN, 1997)
- Schlacken aus Sonderabfallverbrennungsanlagen (LAGA 31310; Jahresaufkommen 1993: 39.000 t)

- REA-Gipse (31315; Jahresaufkommen 1993: 3.900.000 t)
- Braunkohleaschen (31305; Jahresaufkommen 1993:15.900.000 t)
- Filterstäube aus Feuerungsanlagen (31301; Jahresaufkommen 1993: 4.200.000 t)

EAK	Kapitel / Gruppe	UTD-Menge [1000 t] ⁸
06	Abfälle aus anorganischen chemischen Prozessen	59,1
0604	Metallhaltige Abfälle	58,9
0607	Abfälle aus der Halogenchemie	0,1
07	Abfälle aus organischen chemischen Prozessen	6,8
0701	HZVA organischer Grundchemikalien	0,9
0703	HZVA organischer Farbstoffe und Pigmente	1,4
0704	HZVA organischer Pestizide	1,8
0706	HZVA von Fetten, Schmiermitteln, Seifen etc.	0,7
0707	HZVA von Feinchemikalien und Chemikalien	1,9
10	Anorganische Abfälle aus thermischen Prozessen	18,5
1001	Kraftwerke und andere Verbr. Anlagen (außer 19)	1,1
1003	Thermische Al-Metallurgie	13,3
1004	Thermische Pb-Metallurgie	1,1
1005	Thermische Zn-Metallurgie	0,3
1006	Thermische Cu-Metallurgie	2,7
11	Anorg. metallhaltige Abfälle aus Metallbearb./besch., NE- Hydrometallurgie	6,4
1101	Flüssige Abfälle aus Metallbearb./besch.	3,1
1103	Schlämme und Feststoffe aus Härteprozessen	3,3
14	Abfälle von als Lösemittel verw. organischen Stoffen	0,1
1401	Metallentfettung und Maschinenwartung	0,1
16	Abfälle, die nicht anderswo im Katalog aufgeführt	2,7
1602	Gebrauchte Geräte und Shredderrückstände	2,5
1605	Gase und Chemikalien in Behältern	0,3
17	Bau- und Abbruchabfälle	30,5
1701	Beton, Ziegel, Fliesen, Keramik, Materialien auf Gips-Basis	15,2
1702	Holz, Glas, Kunststoff	1,8
1705	Erd- und Hafenaushub	13,4
1706	Isoliermaterial	0,1
19	Abfälle aus Abfallbehandlungsanlagen, öffentl. Abwasser- behandlanlg. und der öffentl. Wasserversorgung	442,9
1901	Verbrennung oder Pyrolyse von Siedlungs- und ähnlichen Abfäl- len	414,3
1902	Spez. chem-phys. Behandlung industrieller Abfälle (Dechrom., Cyanidentf., Neutralisation)	19,0
1907	Deponiesickerwasser	9,6
20	Siedlungsabfälle und ähnliche gewerbl. und industr. Abfälle	0,1
2001	Getrennt gesammelte Fraktionen	0,1
GESAMT		567.1

Tab. 2:Besonders überwachungsbedürftige Abfälle, die 2002 in Untertagedepo-
nien entsorgt wurden (STATISTISCHES BUNDESAMT, 2004)⁷

⁷ Ohne Importe

⁸ Die unter 4-stelligem Schlüssel angegebenen Mengen sind immer Teilmengen der 2-stelligen Schlüssel

5.2 Im Vorhaben untersuchte Abfallproben

Insgesamt wurden 78 Abfallproben zur späteren Untersuchung beschafft. EAK-Abfallgruppen mit hohem jährlichem Aufkommen wurden dabei verstärkt berücksichtigt. Nach einer ersten Eingangskontrolle wurden einige Abfälle aussortiert, weil sie offensichtlich keine erhöhte Gasfreisetzung aufweisen oder weil wir aus Gründen des Arbeitsschutzes auf eine nähere Untersuchung verzichteten. In den folgenden Aufzeichnungen (Tab. 3 undTab. 4) findet sich die Liste der untersuchten Abfallproben.

CA- Nr.	Abfallbezeichnung	EAK- Schlüssel	LAGA- Schlüssel
30	Filterstäube aus Sonderabfallverbrennungsanlagen	19 01 99 D1	31311
157	Filterstäube	10 01 02	31301
203	Stäube aus der Verbrennung	19 01 03 /	
		19 01 04	
301	Reaktionsprodukte aus Abgasreinigung von Son-	19 01 05/	31313
000	dermullverbrennung	19 01 07	01011
302	Filterstaube aus Sonderabfailverbrennungsanlagen	19 01 99 D1	31311
305	Schlämme aus industrieller Abwasserreinigung	19 08 04	94801
405	Braunkohlenflugasche	10 01 02	31301
501	feste Salze, ammoniumhaltig ("Ammoniumsulfat")	06 03 10	51540
502	Salze, cyanidhaltig, entspr. 11 03 01 cyanid-haltige Abfälle (verbrauchte Härtesalze)	06 03 11	
503	Abfälle a.n.g., entspr. 11 03 02 andere Abfälle ("ver- brauchte Härtesalze, nitrat-/nitrithaltig")	06 03 99	
506	Flugasche (Filterstaub aus Krematorium)	10 01 02	
508	Flugasche aus der Sonderabfallverbrennung (E- Filterstaub)	19 01 99 D1	31311
509	Schlacke aus der Sonderabfallverbrennung	19 01 99 D2	31310
511	Ammoniumhaltige Salze	06 03 10	
512	Batterien	20 01 20	
514	E-Filterstaub	19 01 99 D1	
519	Verbrauchter Strahlsand	12 02 01	
520	VA-Schlacke	19 01 01	
521	Strahlsand	12 02 01	
522	Bleiacetatpapier	06 04 05	
523	Rauchgasreinigungsrückstand (Mineralölraffinerie)	19 01 07	
527	Rost- und Kesselaschen und –schlacken (MVA)	19 01 01	
528	Flugasche (MVA)	19 01 03	
529	Feste Abfälle aus der Gasreinigung (MVA)	19 01 07	
532	Ammoniumchlorid	06 03 10	
533	Klärschlammasche	10 01 01	
534	Steinkohlenflugasche	10 01 02	
536	Filterstaub trocken	19 01 03	
537	Filterstaub konditioniert	19 01 03	
538	Filterstaub trocken	19 01 03	
539	Filterstaub konditioniert	19 01 03	

Tab. 3: Übersicht über die untersuchten Abfälle I

CA- Nr.	Abfallbezeichnung	EAK- Schlüssel	LAGA- Schlüssel
540	Filterstaub trocken	19 01 03	
541	Filterstaub konditioniert	19 01 03	
542	Filterkuchen	19 01 05	
543	Feste Abfälle aus der Gasreinigung (NaCl)	19 01 07	
544	Feste Abfälle aus der Gasreinigung (Gips)	19 01 07	
545	Hg-haltige Abfälle - Elektrolyserückstände	06 04 04	
546	Gießereialtsand	10 10 02	
547	SAV-Schlacke	19 01 99 D2	
548	MVA-Schlacke	19 01 01	
549	Abwasserschlamm (Chem. Industrie)	19 08 04	
550	Feste Abfälle aus der Gasreinigung	10 03 13	
551	Glas-Strahlmittelreste	06 04 05	
552	Stahl-Strahlmittelreste	06 04 05	
553	Schleifschlamm	12 01 11	
554	BAS1 Quecksilberhaltiger Bauschutt und Boden	06 04 04	35326
555	BAS2 Abfall aus der trockenen Gasreinigung	10 06 07	
556	BAS3 Abfall aus der nassen Gasreinigung (Eisen-Arsenschlamm)	10 06 06	
557	BAS4 Feste Abfälle aus der Gasreinigung (Al-Metallurgie)	10 03 13	31217
558	BAS5 Reaktions- und Destillationsrückstände (Salzrückstände aus der Glyzerindestillation)	07 06 08	
600	Schleifschlamm ölhaltig	12 01 11	
601	Strahlmittelrückstand	06 04 05	
602	Flugasche aus der Sonderabfallverbrennung (E- Filterstaub)	19 01 99 D1	31311
603	Rost- und Kesselaschen und –schlacken (MVA)	19 01 01	313
604	Flugasche (MVA)	19 01 03	31309
605	MVA Filterstaub konditioniert Typ 1	19 01 07	
606	MVA Filterstaub nicht konditioniert Typ 1	19 01 07	
607	MVA-Schlacke entschrottet Typ 2	19 01 01	
608	Kesselasche SAV	19 01 01	
609	Feste Abfälle aus der Gasreinigung (Al-Metallurgie)	10 03 13	
610	Schlacke (SAV)	19 01 99 D2	31310
611	E-Filterstaub (SAV)	19 01 99 D1	31311

Tab. 4: Übersicht über die untersuchten Abfälle II

5.3 Ausgangsprodukte: Chemische Zusammensetzung und Phasenbestand

5.3.1 Chemische und mineralogische Zusammensetzung der Abfälle

Tab. 27 und folgende (S.145ff.) fassen die mit Hilfe der Röntgenfluorszenzanalyse (RFA)und den nassanalytischen Methoden gefunden Elementgehalte der untersuchten Abfallproben zusammen. Eine Übersicht über die röntgenographisch gefundenen Phasen in den Abfällen und den festen Reaktionsprodukten der Gasfreisetzungsversuche geben Tab. 43 ff. (S. 161ff.). Die Analyseergebnisse werden im Zusammenhang mit den Ergebnissen der Gasfreisetzungsversuche diskutiert.

5.3.2 Eingesetzte Lösungen

Für die Versuche wurden Lösungen verwendet, die als typische Tiefenwässer von Kalisalz-, Steinsalz- oder Steinkohleformationen anzusehen sind. Im Einzelnen handelt es sich um:

- 1. Synthetisches Steinkohlen-Grubenwasser (Zusammensetzung gemäß Standard-Grubenwasser der RAG für Teufen von 800-1000 m, vgl. KLINGER, 1994)
- Synthetische Gipshutlösung (eine f
 ür Steinsalzlagerst
 ätten typische Gleichgewichtslösung, die an Halit und Gips ges
 ättigt ist, vgl. HERBERT und M
 ÖNIG, 1996)
- 3. Synthetische IP21-Lösung (eine für Kalisalzlagerstätten typische Gleichgewichtslösung, reich an Magnesiumchlorid, vgl. HERBERT und MÖNIG, 1996)
- 4. Natürlich auftretende Lauge aus der Schachtanlage Asse 2. Probenahmestelle AS009, Zusammensetzung ähnlich IP21-Lösung. Nur innerhalb der Technikumsversuche verwendet als Ersatz für synthetische IP21-Lösung, die sich in der notwendigen Menge nur unter großem Aufwand hätte herstellen lassen

Tab. 5 gibt eine Übersicht über die genaue Zusammensetzung dieser Lösungen.

Element	Steinkohlen- Grubenwasser (TW)	Gipshut- Lösung	IP21-Lösung	Asse-Lösung AS009 für Technikums- versuche
		[mo	l/kg]	
Na	2,058	6,155	0,451	0,328
К	0,014	n.b.	0,631	0,307
Mg	0,045	n.b.	4,384	4,487
Ca	0,051	0,040	n.b.	n.b.
Sr	0,002	n.b.	n.b.	n.b.
Ba	0,002	n.b.	n.b.	n.b.
CI	2,272	6,155	9,195	8,945
SO ₄	n.b.	0,040	0,327	0,332
Dichte [kg/l]	1,0818	1,2000	1,2915	1,3085
Labornr.	23163	23153	23162	27371

 Tab. 5:
 Zusammensetzung der verwendeten wässrigen Lösungen

5.4 Verhalten gegenüber wässrigen Lösungen (ohne Gasbildung)

Die Eluatkonzentrationen sind in Tab. 53 und folgende (S.171ff) zusammengefasst. Eine Diskussion erfolgt im Zusammenhang mit der Auswertung der Gasfreisetzungsversuche.

6 Gasfreisetzung in Abfall/Lösungs-Gemischen

6.1 Auswertung der Gasfreisetzungsversuche

Neben den von den Drucksensoren aufgezeichneten Flascheninnenraumdrücken werden noch einige weitere Informationen benötigt, um die absoluten Gasmengen und die auf die Abfallmassen bezogenen Gasfreisetzungen zu berechnen. Das Leervolumen der Flaschen V_{Leer} wird für jede Flasche durch Auslitern mit Wasser bestimmt. Ein Teil des Innenraumes wird durch den Abfall mit dem Feststoffvolumen V_{Abf} eingenommen. Diese Größe errechnet sich aus der eingesetzten Abfallmasse m_{Abf} und der bestimmten Feststoffdichte ρ_{Abf} . Außerdem wird eine Menge wässriger Lösung V_{Lös} sowie der Rührkern mit den Volumen V_{Rühr} eingefüllt. Es verbleibt als Gasraum das Volumen V_{Gas}:

$$V_{Gas} = V_{Leer} - V_{Abf} - V_{L\ddot{o}s} - V_{R\ddot{u}hr}$$

Am Anfang des Versuches befindet sich im Gasraum nur das Spülgas (Stickstoff), das während des Einfüllens der Lösung und des Abfalls etwas Luftsauerstoff (bis zu 3 Vol%) enthalten kann. Das Spülgas ist am Versuchsbeginn absolut trocken und sättigt sich während des Einfüllens der Lösung (also vor Messbeginn) und innerhalb der ersten Messperiode (1,87 h)⁹ mit Wasserdampf. Hierdurch entsteht ein Druckanstieg in der Größenordnung von 8-13 hPa (UTDnah, 25℃) bzw. 75-95 hPa (GasMax, 35℃; siehe z.B. Abb. 9). Der wesentlich höhere Druckanstieg beim GasMax-Versuch resultiert vor allem aus dem temperaturabhängig höheren Gasdruck (Effekt: etwa +35 hPa) und dem höheren Gleichgewichts-Wasserpartialdruck (Effekt: etwa +25 hPa). Zur Bestimmung des auf reiner Gasentwicklung beruhenden Druckanstiegs wird vom gemessenen Gasdruck der erste Messwert (nach 1,87 h) abgezogen. Nach unserer Erfahrung setzt die Gasentwicklung in den allermeisten Fällen langsam genug ein, so dass dieses erste Referenz-Messsignal noch nicht überlagert ist. Drucksenkend wirken sich in der Anfangsphase Absorptionsprozesse aus. Ein geringer Teil des Spülgases löst sich in der Messlösung. Wesentlich kräftiger machen sich Sauerstoffkontaminationen bemerkbar, die häufig durch Oxidationsprozesse gebunden werden und damit einen

⁹ Der Versuchszeitraum von 28 Tagen wird jeweils in 360 gleichlange Messperioden mit je 1,87 h geteilt, an deren Ende eine Druckmessung stattfindet.

deutlichen Druckabfall verursachen können. Hiermit lassen sich alle Messergebnisse erklären, bei denen selbst nach Versuchsende negative Differenzdrucke gemessen wurden. Alle Ergebnisse aus GasMax-Versuchen beziehen sich auf die Versuchstemperatur 35℃. Die bei 25℃ zu erwartenden Drücke wären etwa 3% kleiner.

Abb. 9: Druckverlauf bei drei parallelen GasMax-Versuchen. Hier besonders zu beachten: der Drucksprung (etwa 95 hPa) innerhalb der ersten Messperiode (1,87 h).

6.2 Untersuchung der Gasfreisetzung mit dem Verfahren GasMax

6.2.1 Übersicht

Die Auswertung der Gasfreisetzungsversuche zeigte, dass Gasentwicklung ein bei praktisch allen untersuchten Abfallarten auftretendes Phänomen ist. Anhand der empfindlichen gaschromatographischen Analysemethoden konnte eine Wasserstoffentwicklung bei 61 von 64 Abfällen nachgewiesen werden¹⁰. In 43 Fällen überschritt die

¹⁰ d.h. im Gasraum der Messflaschen wurde mehr als 25 vpm H₂ gefunden.

freigesetzte Menge 0,01 m³/t¹¹ (Abb. 10). Anhand der Druckmessungen ließ sich bei 34 Abfällen eine Gasproduktion von mehr als 0,5 M3/t Abfall feststellen. 27 Abfälle setzten zwischen 0,5 und 5 m³ Gas/t Abfall frei. In sieben Fällen wurden mehr als 5 m³ H²/t gefunden, sechs davon mit mehr als 10 m³/t, bei zwei Ansätzen sogar über 20,8 m³/t (CA553, ein Schleifschlamm) und 28,6 m³/t (CA557, Gasreinigungsrückstand) (Tab. 6). Beim Schleifschlamm CA553 wurden nach Zusatz von Phosphat sogar 40,8 m³/t gefunden (siehe Abschnitt 6.2.11, S. 60).

Abfall	Bezeichnung	Gasfreisetzung [m ³ /t]
CA557	Feste Abfälle aus der Gasreinigung (Al-Metallurgie)	28,6
CA553	Schleifschlamm	20,8
CA548	MVA-Schlacke	12,2
CA512	Batterie	12,0
CA609	Feste Abfälle aus der Gasreinigung (Al-Metallurgie)	11,2
CA551	Glas-Strahlmittelreste	11,0
CA600	Schleifschlamm, ölhaltig	6,7

 Tab. 6:
 Beim Versuch GasMax besonders stark gaserzeugende Abfälle

Bei den sieben besonders stark emittierenden Abfällen handelt es sich um zum einen um Abfälle aus der Metallindustrie (Schleifschlämme, Strahlmittelreste usw.), zum anderen um eine Müllverbrennungsschlacke (Tab. 6). Der Metallgehalt der ersten Gruppe ist offensichtlich: Glänzende Metallspäne (Eisen, Stahl oder Aluminium) lassen sich mit bloßem Auge erkennen. Besonders auffällig verhielt sich der Gasreinigungsrückstand CA557, der aus der Aluminium-Industrie stammt. Das leichte Pulver enthält feinste Aluminiumpartikel wie auch größere Späne und setzt Gas bereits unmittelbar nach dem Hinzufügen wässriger Lösung frei. Die Gasbildungsreaktion ist nach 28 Tagen noch nicht abgeschlossen. Die bis dahin entwickelte Wasserstoffmenge entspricht einem metallischen Aluminiumgehalt von etwa 3 Gew%.

Eine vollständige Übersicht mit den erhaltenen Messdaten zeigt Tab. 74 und folgende. (S. 192f.). Ein Übersicht bietet Abb. 11.

¹¹ Die Gasmenge bezieht sich jeweils auf die Versuchstemperatur, bei GasMax also auf 35°C. Die Gasmenge bei 25°C wäre wegen der Temperaturabhängigkeit des Einheitsvolumens der etwa 3% kleiner.

Abb. 10:

Abb. 11: Nach Abfallarten mentelle Spannweiten bei Parallelversuchen an Anwendung der Methode gruppierte "GasMax". Übersicht der Die beobachteten Fehlerbalken Gasfreisetzung bei zeigen die experi-

6.2.2 Freigesetzte Gase: Wasserstoff, Kohlendioxid, Methan

Drei Gase ließen sich in signifikanten Mengen bei den Analysen nachweisen: Wasserstoff, Kohlendioxid und Methan. Wasserstoff stellt in den meisten Fällen den Hauptbestandteil der entstehenden Reaktionsgase dar. Besonders bei den stark gaserzeugenden Abfällen ist Wasserstoff praktisch das alleinig auftretende Gas (Abb. 12). Die Kohlendioxidproduktion geht bis auf zwei Ausnahmen nicht über 1 m³/t hinaus (Abb. 13). Nur beim Abwasserschlamm CA305 und bei den verbrauchten nitrat-/nitrithaltigen Härtesalzen CA502 und CA502 wurden mehr, nämlich 1,9 bzw. 2,1 m³/t gefunden. Ausschließlich CO₂ trat außerdem beim Abwasserschlamm CA549 und beim Abfall aus der trockenen Gasreinigung (Cu-Metallurgie) CA555 auf.

Methan trat nur vereinzelt in signifikanten Mengen auf, nur bei drei Abfällen überschritten die Mengen 0,1 m³/t: CA557, CA550 und CA609 (0,25; 0,20 bzw. 0,17 m3/t, Abb. 14). Bei allen drei Produkten handelt es sich um Gasreinigungsrückstände aus der Aluminium-Metallurgie, die gleichzeitig eine hohe Freisetzung an Wasserstoff zeigen. Wahrscheinlich ist in den Abfällen neben metallischem Aluminium auch Aluminiumcarbid vorhanden, das bei der Zersetzung mit Wasser Methan freisetzt. Die Probe CA609 verbreitet zudem einen deutlichen Ammoniakgeruch, was auf die Anwesenheit von hydrolysierendem Aluminiumnitrid hinweist. Aluminiumnitrid und Aluminiumcarbid entstehen neben Aluminiumoxid beim Verbrennen von Aluminium in Gegenwart von Luftstickstoff und Kohlenstoffquellen (z.B. CO_2 oder organischer Kohlenstoff wie Öl). Ammoniak wurde nicht gaschromatographisch gemessen, jedoch ließ sich nach wässrigem Auszug 4,3 g/kg NH₄ im Abfall nachweisen.

Weitere Gase wie Kohlenmonoxid, Ethan, Propan und H₂S ließen sich in der Gasphase nur in untergeordneten Mengen finden (<0,01 m³/t). Schwefelwasserstoff ist allenfalls wegen seines nachteiligen Geruchs und seiner Toxizität auch in diesen kleinen Konzentrationen von Interesse. Quantifizierbare Mengen fanden wir nur bei zwei Abfällen aus der Kohleverbrennung: dem Filterstaub CA157 (402 vpm) und der Braunkohleflugasche CA405 (508 vpm).

Abb. 13: Nach Abfallarten gruppierte Übersicht der freigesetzten CO2-Mengen beim

Versuch GasMax

46

Abb. . 12: stoff beim Versuch GasMax Vergleich der freigesetzten Mengen an Methan, Kohlendioxid und Wasser-

Abb. 14: Nach Abfallarten gruppierte Übersicht der freigesetzten CH₄-Mengen beim Versuch GasMax

6.2.3 Versuche mit Luft als Anfangsatmosphäre

Einige Versuche wurden mit Luft als Anfangsatmosphäre durchgeführt. Als Beispiel sei hier die Umsetzung der Müllverbrennungsschlacke CA 548 mit IP21-Lösung dargestellt (Abb. 15). Mit Stickstoff als Anfangsatmosphäre ergibt sich im Mittel ein Druckanstieg von 631 hPa. Liegt am Anfang jedoch Luft vor, so sind nur 223 hPa zu beobachten. In beiden Fällen ist Wasserstoff das hauptsächliche Reaktionsgas (13,5 bzw. 8,2 m³/t). Daneben tritt noch Kohlendioxid auf (0,58 bzw. 0,37 m³/t). Beim Versuch mit Luft verschwindet der anfänglich vorhandene Sauerstoff ganz.

Das Gasbilanzdiagramm (Abb. 16) macht deutlich, dass sich beim Luft-Versuch zwei Effekte überlagern: der vollständige Verbrauch von Sauerstoff (4,0 m³/t wahrscheinlich innerhalb der ersten drei Tage (siehe Kurvenverlauf mit negativen Druckdifferenzen) und die Erzeugung einer großen Menge Wasserstoff (8,2 m³/t, siehe Abb. 17). Für den Sauerstoffverbrauch können prinzipiell drei Reaktionstypen verantwortlich sein: anorganische Oxidationsreaktionen in der Lösung (z.B. 4 Fe²⁺ + O₂ +2 H₂O \rightarrow 4 Fe³⁺ + 4 OH⁻), in der Gasphase (2 H₂ + O₂ \rightarrow H₂O) oder ein biologischer Abbau organischer Substanzen. Die beim Versuch in Stickstoffatmosphäre gefundenen höheren Wasserstoffmengen weisen darauf hin, dass bei der aeroben Versuchsführung entweder ein Teil des wahrscheinlich durch Metallkorrosion gebildeten Wasserstoffs durch Reaktion mit Sauerstoff gebunden wurde oder gar nicht erst entstanden ist (z.B. wegen $2 \text{ Fe}+3 \text{ O}_2 + 3 \text{ H}_2\text{O} \rightarrow 2 \text{ Fe}(\text{OH})_3$. In jedem Fall ist bei Anwesenheit von Abfällen mit Wasserstoffbildungspotential mit einem raschen Sauerstoffverbrauch in der Einlagerungskammer zu rechnen.

Abb. 15: Gasentwicklung der MVA-Schlacke CA548 im GasMax-Versuch mit Luft (unten) und mit N₂ als Ausgangsatmosphäre (oben)

Abb. 16: Gasbilanz der Umsetzung der Müllverbrennungsschlacke CA548 mit IP21 im GasMax-Versuch (ohne Wasserdampf-Partialdrücke)

Abb. 17: Gasfreisetzung und -verbrauch bei der Umsetzung der Müllverbrennungsschlacke CA548 mit IP21 im GasMax-Versuch

6.2.4 Gasfreisetzung von Filterstäuben und Flugaschen aus der Müllverbrennung

Filterstäube und Flugaschen aus der Abfallverbrennung (EAK 19 01 99D1, z.T. auch 19 01 03 und 19 01 07) zeigten überwiegend kleine Gasfreisetzungen. Von sechzehn Proben zeigten neun eine Gasfreisetzung von weniger als 0,5 m³/t. Bei sieben Abfällen wurden allerdings Gasmengen zwischen 0,5 bis 4 m³/t gefunden (Tab. 7). Ein spezifischer Unterschied in der gebildeten Gasmenge von Rückständen aus der Sonderabfallverbrennung (SAV, 19 01 99 D1) und der Hausmüllverbrennung (MVA, 19 01 03 und 19 01 07) ließ sich nicht erkennen. Das Hauptreaktionsgas ist Wasserstoff. Kohlendioxid tritt mit weniger als 0,1 m³/t auf. Lediglich beim E-Filterstaub CA602 macht es 0,7 m³/t aus. Von allen auf Kohlenstoff untersuchten Filterstäuben (Proben ab CA500) weist dieser Abfall den höchsten Gehalt an organischem Kohlenstoff auf (1,3 Gew%), während die Werte der anderen Proben 0,5 Gew% nicht überschreiten.

Niedrige Gasfreisetzungen (0,04 – 0,42 m³/t) fand LASER (1991) bei der Reaktion alkalischer (Zement-) Wässer mit Aschen aus der Verbrennung radiaktiv kontaminierter Mischabfälle. Hingegen beobachteten MIZUTANI et al. (2000) bei sechs japanischen Flugaschen mehr als 9 m³/t, dabei einmal 54 m³/t. Die freigesetzte Gasmenge korreliert mit den Aluminiumgehalten, die mit durchschnittlich 7,5 Gew% erheblich höher sind als die unserer - deutschen - Abfallproben (2,2 Gew%).

Abfall-	Bezeichnung	EAK-	Gasfrei-	H ₂	CO ₂	CH ₄
probe		Schlussel	setzung			
			Druck- GC-Analytik			tik
			mes-			
			sung	F 3 /J		
				[m /1		
CA030	Filterstäube aus Sonderabfall-	19 01 99 D1				
	verbrennungsanlagen		0,09	0,01	0,00	0,000
CA203	Stäube aus der Verbrennung	19 01 03 /	0,35	0,50	0,06	0,002
CA302	Filterstäube aus Sonderabfall-	19 01 99 D1				
	verbrennungsanlagen		0,16	0,03	0,01	0,001
CA508	Flugasche aus der Sonderab-	19 01 99 D1				
	fallverbrennung (E-Filterstaub)	_	2,29	2,01	0,52	0,082
CA514	E-Filterstaub	19 01 99 D1	0,07	0,06	0,01	0,001
CA528	Flugasche (MVA)	19 01 03	2,32	2,53	0,13	0,009
CA536	Filterstaub trocken	19 01 03	0,06	0,50	0,00	0,004
CA537	Filterstaub konditioniert	19 01 03	0,73	0,25	0,09	0,000
CA538	Filterstaub trocken	19 01 03	0,92	1,75	0,05	0,011
CA539	Filterstaub konditioniert	19 01 03	-0,35	0,26	0,06	0,000
CA540	Filterstaub trocken	19 01 03	2,94	2,81	0,08	0,023
CA541	Filterstaub konditioniert	19 01 03	1,25	1,39	0,14	0,002
CA602	Flugasche aus der Sonderab-	19 01 99 D1				
	fallverbrennung (E-Filterstaub)		4,08	3,30	0,73	0,060
CA604	Flugasche (MVA)	19 01 03	0,02	0,07	0,00	0,005
CA605	MVA Filterstaub konditioniert	19 01 07				
	Тур 1		0,18	0,27	0,00	0,000
CA606	MVA Filterstaub nicht konditio-	19 01 07				
	niert Typ 1		0,30	0,76	0,00	0,002
CA611	E-Filterstaub (SAV)	19 01 99 D1	0,26	0,05	0,01	0,001

 Tab. 7:
 Gasfreisetzung bei Filterstäuben und Flugaschen aus der Müllverbrennung

Um die Handhabbarkeit zu erhöhen, wie auch um die Stützeigenschaften zu verbessern, werden Filterstäube durch Vermischen mit wässrigen Lösungen und geeigneten Zusatzstoffen verfestigt (vgl. MUCHNA 1996). Hierbei werden die calcinierenden Eigenschaften der in großen Mengen enthaltenen Calciumoxid- und Calciumsilikatphasen genutzt. Die Wasserzugabe darf dabei nicht zu groß ausfallen, da sonst keine oder nur eine sehr verspätete Verfestigung erreicht wird. Gasbildende Prozesse werden bei dieser Konditionierung ebenfalls ausgelöst, wie schon PFEIFFER et al. (1991) an zementierten Aschen aus der Verbrennung schwach- und mittelradiaktiver Abfälle zeigen konnten. Es stellt sich in diesem Zusammenhang die Frage, ob die gasbildenden Prozesse im Zuge der Konditionierung schon zum Abschluss kommen. Es wurden daher vier Filterstäube in ursprünglicher wie auch in konditionierter Form beschafft und ihre Gasbildung beim Kontakt mit IP21-Lösung untersucht: CA536/537 und CA538/539, CA540/CA541 und CA606/CA605. Die Abfallanalysen zeigten, dass es trotz zeitnaher Probenahme bei konditionierten und unveränderten Ausgangsstoffen nicht möglich war, eine chemisch-stoffliche Identität zu gewährleisten. Mit Hilfe einer Korrelationsanalyse konnte jedoch nachgewiesen werden, dass die als Paare gekennzeichneten Abfälle tatsächlich zueinander gehören. Beim Paar CA606/CA605 bestehen allerdings Zweifel, ob noch von gleichartigen Stoffen zu sprechen ist¹². In Tab. 8 und Abb. 18 sind die wesentlichen Ergebnisse zusammengefasst.

Tab. 8:Vergleich der Wasserstoffentwicklung von Filterstäuben vor und nach der
Konditionierung (GasMax-Versuch)

Filterstaub-Probe	Beobachtete H ₂ -Freisetzung [m ³ /t]			
	unbehandelt	konditioniert		
CA536/537 erster Versuch (11/2000)	0,73	0,68		
CA536/537 zweiter Versuch (05/2002)	0,50	0,25		
CA538/539	1,75	0,26		
CA540/541	2,81	1,39		
CA606/605	0,77	0,27		

Wie zu erkennen ist, bewirkte die Konditionierung in allen vier Fällen eine Reduktion der H₂-Freisetzung um etwa 50 bis 85%. Andere Gase waren bei diesen Abfällen nur in untergeordneter Menge zu finden. Es verbleibt jedoch stets ein merkliches Restpotential. Hieraus ist zu schließen, dass die Flugaschen so schnell abbinden - also Wasser in Hydratphasen fixieren - so dass die gasbildenden Prozesse nur zum Teil wirksam werden.

Zu denken gibt das Paar CA536/CA537, bei dem im ersten Versuch kein signifikanter Abfall der Gasfreisetzung beim Übergang zur konditionierten Probe beobachtet werden konnte. Die dazugehörigen Versuche gehörten zur den ersten, die mit der neuentwickelten GasMax-Methode untersucht wurden. Sie wurden einige Zeit später wiederholt,

¹² Die Paare CA536/537, CA538/539 und CA540/CA541 wiesen bei den Komponenten Ti, Cl, Ca, K, Mg, Na, SO₄, Al, B, Cd, Co, Cr, Cu, Fe, Mn, Ni und Zn einen Korrelationskoeffizienten von 0,95 und höher auf, während der Korrelationskoeffizient für zwei verschiedene Flugstäube höchstens 0,87 erreicht. Bei den als "Paar" angelieferten Abfällen CA605/CA606 beträgt der Korrelationskoeffizient nur 0,87, so dass man von chemisch unterschiedlichen Stoffen ausgehen muss.

weil genauere Prüfungen zeigten, dass es jeweils bei allen drei Parallelversuchen zu Undichtigkeiten gekommen war, so dass kein oder nur ein zu geringer Druckaufbau gemessen wurde. Die chemische Analyse des Gasraumes ist aber als verlässlich anzusehen und weist beim Paar CA536/537 auch in der ersten Serie auf eine starke Wasserstoffbildung hin, die durch die Konditionierung kaum verändert wurde. Zwischen den beiden Mess-Serien sind etwa anderthalb Jahre vergangen¹³. Die gesunkenen Messwerte könnten darauf hinweisen, dass es innerhalb dieses Zeitraumes zu weitergehenden Oxidations- und Korrosions-, oder anderen Stoffumwandlungsprozessen gekommen ist, die das Gasbildungspotential nachhaltig vermindert haben. Eine genauere Klärung zur zeitlichen Entwicklung dieser Frage wäre wünschenswert.

Abb. 18: Wasserstoffbildung bei unbehandelten und konditionierten Filterstäuben

6.2.5 Gasfreisetzung von Schlacken und Kesselaschen aus der Müllverbrennung

Zu dieser Gruppe gehören neun Abfälle der Schlüsselnummern 19 01 99 D2 (SAV) und 19 01 01 (MVA). Bis auf die entschrottete MVA-Schlacke CA607 zeigten alle anderen Schlacken, zumindest in einem der Parallelversuche, eine merkliche Gasfreiset-

¹³ Die Bereitstellung der Abfallproben erfolgte im Juni 2000. Bis zur ersten Messung sind also sechs Monate, bis zur zweiten dreiundzwanzig Monate vergangen.

zung über 0,4 m³/t (Tab. 9). Die Werte von 4,35 m³/t (CA527) und 12,17 m³/t (CA548) Gasbildung zeigen, dass in Abhängigkeit vom Abfallsubstrat und von der Prozessführung mit einer hohen bis sehr hohen Gasfreisetzung zu rechnen ist. In beiden Fällen war die Gasbildung nach 28 Tagen noch nicht abgeschlossen, so dass auch noch erhebliche höhere Gasmengen möglich sind. Wasserstoff machte den Hauptteil der gebildeten Gasmenge aus. Daneben tritt CO₂ in Mengen von 0,56 (CA548), 0,7 (CA527) 0,34 (CA520) und 0,27 m³/t (CA603) verhältnismäßig stark auf. Eine Korrelation mit den bei in dieser Abfallgruppe häufig hohen Gehalten an organischem Kohlenstoff (z.B. CA540: 3,0 Gew%; CA520: 3,3 Gew%; CA610: 15,1 Gew%) ließ sich nicht herstellen.

Abfallprobe	Bezeichnung	EAK- Deklaration	Gasfrei- setzung	H ₂	CO ₂	CH ₄
			Druck- GC-Analytil Messung		ytik	
				[m ³	/t]	
CA509	Schlacke aus der Sonderab- fallverbrennung	19 01 99 D2	0,25	0,13	0,10	0,003
CA520	VA-Schlacke	19 01 01	0,53	0,30	0,34	0,004
CA527	Rost- und Kesselaschen und –schlacken (MVA)	19 01 01	4,25	2,20	0,72	0,001
CA547	SAV-Schlacke	19 01 99 D2	0,60	0,37	0,23	0,003
CA548	MVA-Schlacke	19 01 01	12,17	13,03	0,56	0,005
CA603	Rost- und Kesselaschen und –schlacken (MVA)	19 01 01	0,82	0,47	0,27	0,001
CA607	MVA-Schlacke entschrottet Typ 2	19 01 01	0,16	0,01	0,00	0,000
CA608	Kesselasche SAV	19 01 01	0,08	0,13	0,03	0,005
CA610	Schlacke (SAV)	19 01 99 D2	0,65	0,45	0,03	0,002

 Tab. 9:
 Gasfreisetzung von Schlacken und Kesselaschen aus der Müllverbrennung

Ein signifikanter Unterschied zwischen Schlacken aus der Sonderabfallverbrennung (19 01 99 D2) und der Hausmüllverbrennung (19 01 01) war nicht zu erkennen. Die ebenfalls zur letzteren Abfallgruppe gehörende Kesselasche CA608 wies nur eine geringe Gasfreisetzung in Höhe von etwa 0,13 m³ H₂/t auf. Gasfreisetzungen in ähnlicher Größenordnung fanden HUSAIN und KRASZNAI (1994) bei der Behandlung von Kesselaschen aus der Verbrennung schwachradioaktiver Mischabfälle mit Natriumhydroxidlösungen (0 bis mehr als 27 m³/t).

6.2.6 Gasfreisetzung von Flugaschen aus der Kohlefeuerung

Die fünf untersuchten Aschen setzten beim Kontakt mit IP21 im GasMax-Versuch nur wenig Gase frei (Tab. 10). Die Produktion an Wasserstoff ist verschwindend gering

 $(<0,04 \text{ m}^3/\text{t})$ und nur die Klärschlammasche CA533 zeigt eine merkbare Freisetzung von CO₂ (0,27 m³/t).

Abfallpro- be	Bezeichnung	EAK- Deklara-	Gasfrei- setzung	H ₂	CO ₂	CH ₄
		tion	Druck- messung	Ö	C-Analyti	ik
				[m ³	/t]	
CA157	Filterstäube	10 01 02	-0,41	0,00	0,00	n.b.
CA405	Braunkohlenflugasche	10 01 02	-0,04	0,01	0,03	n.b.
CA506	Flugasche (Filterstaub aus Krematorium)	10 01 02	0,52	0,01	0,03	0,001
CA533	Klärschlammasche	10 01 01	0,16	0,04	0,27	0,000
CA534	Steinkohlenflugasche	10 01 02	0,01	0,00	0,08	0,000

Tab. 10: Gasfreisetzung bei Flugaschen aus der Kohlefeuerung

6.2.7 Gasfreisetzung von Abfällen aus der Metallurgie und Metallverarbeitung

Zu dieser Gruppe gehören drei Gasreinigungsrückstände der Schlüsselnummern 10 03 XX (Abfälle aus der thermischen Al-Metallurgie), zwei Gasreinigungsrückstände aus 10 06 XX (Abfälle aus der thermischen Cu-Metallurgie), ein Gießerei-Altsand aus 10 10 XX (Abfälle vom Gießen von NE-Metallen), zwei Schleifschlämme aus 12 01 XX (mechanische Formgebung von Metallen), zwei Strahlsande aus 12 02 XX (Oberflächenbehandlung von Metallen) und zusätzlich noch drei Strahlmittelrückstände aus 06 04 05 (metallhaltige Abfälle). Während die beiden Strahlsande, wie auch die beiden Gasreinigungsrückstände aus der Kupfer-Metallurgie beim GasMax-Versuch nur wenig Gasbildung zeigen (0,21 bis 0,66 m³/t), gehören die anderen Abfallproben zu den stärksten Gasemittenten der Vorhabens überhaupt (Tab. 11). Mit bis zu 28,55 m³/t Gasproduktion treten besonders die Abfälle aus der Al-Metallurgie hervor (CA550, CA557, CA609). Hier waren auch verhältnismäßig hohe Kohlendioxid- und immer recht hohe Methanmengen zu beobachten $(0,17 - 0,27 \text{ m}^3/\text{t}, \text{vgl.} \text{ auch Diskussion unter})$ 6.2.2, S. 45). Auch die Schleifschlämme zeigen mit 6,65 (CA600) bzw. 20,81 m³/t (CA553) eine erhebliche Gasfreisetzung. Die vor allem aus Eisen bestehende Probe CA553 wurde in einem zusätzlichen Versuch statt mit IP21-Lösung mit 0,1 molarer HCI-Lösung versetzt und zeigte in diesem Fall eine Gasfreisetzung von 39 m³/t. Unter gleichen Bedingungen erreichte der Abfall CA557 eine Freisetzung von 26,7 m³/t, was dem Wert aus dem GasMax-Versuch entspricht. Die drei Strahlmittelrückstände zeigten ebenfalls starke Freisetzungsraten (bis 11 m³/t). Abfälle aus der Aluminiumindustrie

werden auch für den Brand im Entsorgungsbergwerk Teutschenthal verantwortlich gemacht¹⁴.

Abfallpro- be	Bezeichnung	EAK- Deklarati-	Gasfreiset- zung	H ₂	CO ₂	CH ₄
		on	Druckmes- sung	Druckmes- GC-Analytik		rtik
				[m ³ /t]		
CA519	Verbrauchter Strahlsand	12 02 01	0,21	0,00	0,18	0,000
CA521	Strahlsand	12 02 01	0,66	0,50	0,18	0,000
CA551	Glas-Strahlmittelreste	06 04 05	11,00	10,84	0,06	0,008
CA552	Stahl-Strahlmittelreste	06 04 05	4,61	4,62	0,00	0,038
CA601	Strahlmittelrückstand	06 04 05	0,00	0,05	0,05	0,000
CA553	Schleifschlamm	12 01 11	20,81	18,30	0,04	0,068
CA600	Schleifschlamm ölhaltig	12 01 11	6,65	5,26	0,01	0,004
CA546	Gießereialtsand	10 10 02	1,02	1,13	0,02	0,001
CA555	Abfall aus der trockenen Gasreinigung	10 06 07	0,49	0,05	0,45	0,001
CA556	Abfall aus der nassen Gasreinigung	10 06 06	0,25	0,00	0,04	0,000
CA550	Feste Abfälle aus der Gasreinigung	10 03 13	4,60	4,62	0,00	0,202
CA557	Feste Abfälle aus der Gasreinigung	10 03 13	28,55	27,40	0,67	0,255
CA609	Feste Abfälle aus der Gasreinigung (Al- Metallurgie)	10 03 13	11,20	10,86	0,00	0,166

 Tab. 11:
 Gasfreisetzung bei Flugaschen aus der Metallurgie und Metallverarbeitung

6.2.8 Sonstige Abfallgruppen

In dieser Gruppe sind weitere Abfallarten zusammengefasst, die nur in einzelnen Proben vorlagen oder sonst keine besonderen Charakteristika aufwiesen (Tab. 12) . Vier feste Abfälle aus der Gasreinigung (EAK-Schlüssel 19 01 07) zeigten eher schwache Gasfreisetzungen bis maximal 0,53 m³/t. Es handelt sich um Rückstände, die gemäß röntgenographischer und chemischer Analyse weitgehend aus Gips und Halit bestehen und somit vor allem der Rauchgasentschwefelung und dem HCI-Absorber entstammen. Auch der untersuchte Filterkuchen (CA542) und die Reaktionsprodukte aus Abgasreinigung (CA301) setzen kaum Gase frei. Die untersuchten Batterien CA521 wie-

¹⁴ Vgl. Dokumentation der Bürgerinitiative "Sicheres Bergwerk" Teutschenthal: <u>http://home.t-online.de/home/woellegret/bihome.htm</u> (21.01.2005)

sen mit 12,0 m³/t eine erwartungsgemäß sehr hohe Gasfreisetzung auf. Von den fünf Abfällen der Gruppe "Verbrauchte Salze und Lösungen" (EAK 06 03 XX/ 06 04 XX) ist nur ein nitrat/nitrithaltiges Härtesalz hervorzuheben. Es enthält etwa 33 Gew.% Carbonat, so dass die in der Gasphase gefundenen hohen CO₂-Konzentrationen (8-11 Vol%) und die daraus berechnete CO₂-Freisetzung von 2,1 m³/t nicht verwundern. Auf signifikante Mengen NO₂ oder NO gaben die Gasanalysen keinen Hinweis. Zu vermerken sind noch zwei quecksilberhaltige Abfälle (Bauschutt CA554 und Elektrolyserückstand CA545) die 2,7 und 0,5 m³/t Gasfreisetzung aufweisen.

Abfallpro-	Bezeichnung	EAK-	Gas-	H ₂	CO ₂	CH ₄
be		On On	Druckmes-	GC	-Analy	/tik
			sung	<u> </u>		
				[m³/t]		
CA523	Rauchgasreinigungsrück- stand (Mineralölraffinerie)	19 01 07	-0,11	0,00	0,12	0,000
CA529	Feste Abfälle aus der Gasreinigung (MVA)	19 01 07	-0,05	0,53	0,02	0,007
CA543	Feste Abfälle aus der Gasreinigung (NaCI)	19 01 07	0,22	0,00	0,01	0,000
CA544	Feste Abfälle aus der Gasreinigung (Gips)	19 01 07	0,01	0,00	0,01	n.b.
CA301	Reaktionsprodukte aus Abgasreinigung von Son- dermüllverbrennung	19 01 05	0,14	0,01	0,02	0,001
CA542	Filterkuchen	19 01 05	0,13	0,00	0,07	0,000
CA512	Batterien	20 01 20	12,01	11,45	0,05	0,001
CA502	Salze, cyanidhaltig, entspr. 11 03 01 cyanid- haltige Abfälle (verbrauch- te Härtesalze)	06 03 11	0,65	0,00	0,55	0,000
CA501	feste Salze, ammonium- haltig ("Ammoniumsulfat")	06 03 10	0,31	0,04	0,01	0,000
CA511	Ammoniumhaltige Salze	06 03 10	0,17	0,00	0,01	0,000
CA532	Ammoniumchlorid	06 03 10	-0,02	0,00	0,06	0,000
CA503	Abfälle a.n.g., entspr. 11 03 02 andere Abfälle ("verbrauchte Härtesalze, nitrat-/nitrithaltig")	06 03 99	2,91	0,00	2,13	0,000
CA545	Hg-haltige Abfälle - Elekt- rolyserückstände	06 04 04	0,52	0,00	0,34	0,000
CA554	Quecksilberhaltiger Bau- schutt und Boden	06 04 04	2,70	2,52	0,21	0,001
CA558	Reaktions- und Destillati- onsrückstände	07 06 08	0,55	0,00	0,00	0,000

Tab. 12: Gasfreisetzung von sonstigen Abfallarten

6.2.9 Abhängigkeit der Gasfreisetzung vom Abfall/Lösungsverhältnis

Wird das Lösungs-Feststoffverhältnis (L/S) beim GasMax-Versuch erhöht, so lässt sich bei der Reaktion der Schlacke CA548 mit IP21-Lösung ein signifikanter Abfall der freigesetzten Gasmenge beobachten (Tab. 13). Dieses Absinken wird durch die geringe Freisetzung an Wasserstoff verursacht, die von der schwachen Zunahme der CO₂-Konzentration im Gasraum nicht ausgeglichen werden kann. Ein einfacher Zusammenhang mit dem pH der Lösung ergibt sich nicht: die pH-Werte sind bei allen Ansätzen in etwa gleich. Der wesentlichste chemische Unterschied der Eluate ist der steigende Sulfatgehalt, der mit zunehmendem L/S-Verhältnis von 950 über 2.600 auf schließlich 12.000 mg/l steigt. Die Ausgangslösung (IP21) enthält 26.000 mg/l SO₄²⁻; je weniger davon nach der Reaktion mit dem Abfall in der Lösung verbleibt, je mehr ist es durch Reaktion mit freiem Calciumoxid als Sulfat gebunden (Gips ist über XRD als Hauptphase im Reaktionsprodukt nachgewiesen). Je mehr Gips entsteht, so ließe sich folgern, desto mehr wird der Zugriff der Lösung auf die in der Abfallmatrix eingebundenen metallischen Anteile erschwert. Je weniger Calciumoxid als Gips gebunden ist, desto mehr kann es Kohlendioxid binden, desto weniger ist davon in der Gasphase zu finden. In die gleiche Richtung gingen die Erkenntnisse von MIZUTANI et al. (2000). Sie fanden, dass die Gasbildungsgeschwindigkeit bei niedrigen L/S-Verhältnissen am höchsten ist, die integral freigesetzte Gasmenge war jedoch gleich. Analoge Effekte sind beim Abfall CA527 nicht auszumachen. Die Gasfreisetzung zeigt keinen eindeutig identifizierbaren Trend und auch bei den Eluaten sind keine signifikanten Unterschiede in Chemismus oder pH zu entdecken.

Tab. 13:Gasfreisetzung im GasMax-Versuch bei verschiedenen Abfall-/ Lösungs-
verhältnissen. Untersuchte Abfälle: Müllverbrennungsschlacken CA548 und
CA527

Abfall-Probe	Gasfreisetzung	H ₂	CO ₂	CH₄
	Druckmessung	GC-Analytik		
		[m ³ /t]		
CA548-L:S=3,81:1	12,17	13,03	0,563	0,0048
CA548 L:S= 6,33:1	7,59	7,29	0,727	0,0028
CA548 L:S= 12,62:1	6,91	5,89	1,117	0,0033
CA527 L:S =3,81:1	4,25	2,20	0,715	0,0009
CA527 L:S = 6,33:1	1,58	0,43	0,557	0,0005
CA527 L:S =12,70:1	3,99	2,02	1,389	0.0051

6.2.10 Abhängigkeit der Gasfreisetzung von der Korngröße

An zwei Müllverbrennungsschlacken mit hoher Gasfreisetzung wurde geprüft, inwieweit die Gasbildung von der Korngröße abhängig ist. Hierzu wurde die brockenförmigen Ausgangssubstanz zunächst aufgemahlen und durch Sieben zwei Feinfraktionen hergestellt. Im GasMax-Versuch zeigte sich bei beiden untersuchten MVA-Schlacken CA527 und CA548, dass die feineren Fraktionen (0,355-2 mm und <0,355 mm) jeweils deutlich weniger Gas (v.a. Wasserstoff) freisetzten als der unveränderte Ausgangsstoff (Abb. 19, Tab. 14). Gasbildende, also metallische Anteile sind in der Grobfraktion also am stärksten vertreten. Dies entspricht den Erkenntnissen von LASER (1991) zur Gasfreisetzung aus Schlacken. Auch hier zeigte die Feinstfraktion <0,2 mm praktische keine, die Grobfraktion >5 mm die größte Gasfreisetzung. Auch bei MIZUTANI et al. (1999)

wies die gröbere Fraktion die höhere Gasfreisetzung auf. Eine Erklärung könnte sein, dass Grobkörnigkeit gerade eine Voraussetzung für das Vorhandensein gasbildender metallischer Phasen ist. Nur wenn die Metallpartikel ausreichend groß oder durch ausreichend dicke Oxid-, Carbid oder Nitrid-Krusten vor den oxidierenden Brenngasen geschützt sind, sind sie in der Lage, die Verweilzeit des Abfalls in der Brennkammer zu überstehen.

Die Zusammensetzung wie auch die pH-Werte der zueinandergehörenden Eluate unterscheiden sich nicht wesentlich voneinander, so dass davon auszugehen ist, dass sich auch der Chemismus der verschiedenen Fraktionen nicht signifikant unterscheidet.

Abfall-Probe	Gasfreisetzung	H ₂	CO ₂	CH₄
	Druckmessung	GC-Analytik		
		[m ³ /t]		
CA527-Ur	4,25	2,20	0,715	0,0009
CA527-2mm	2,05	1,71	0,357	0,0012
CA527-355µm	0,80	0,51	0,284	0,0007
CA548-Ur	12,17	13,03	0,563	0,0048
CA548-2mm	5,27	5,05	0,444	0,0008
CA548-355µm	1,12	0,98	0,167	0,0012

Tab. 14: Abhängigkeit der Gasfreisetzung von der Korngröße (GasMax-Versi	uch)
--	------

6.2.11 Einfluss bioaktiver Substanzen auf die Gasfreisetzung

An einigen Abfällen wurde überprüft, ob die beim GasMax-Versuch gefundene verhältnismäßig hohe Methangasbildung bei den Abfallproben CA508, CA550 und CA553 auf anaerobe biologische Prozesse zurückzuführen ist. Hierzu wurde den Abfall/Lösungsmischungen ein biohemmender Wasserbad-Konservierer zugesetzt. Die Methangasbildung sollte hierdurch zumindest eingeschränkt werden. Umgekehrt wäre zu erwarten, dass sich der Zusatz von Düngestoffen wie Phosphat oder Nitrat biofördernd auswirkt.

Tab. 15 und Abb. 20 zeigen, dass die Methangasbildung beim SAV-E-Filterstaub CA508 und beim Gasreinigungsrückstand CA550 eindeutig nicht von Biozid- oder Düngerzusätzen abhängig ist. Eine biologische Methangasproduktion ist damit sehr unwahrscheinlich. Die Ergebnisse beim stark kohlenstoffhaltigen Schleifschlamm CA553 (TOC 3,8%) sind etwas schwieriger zu interpretieren. Zwar führt der Zusatz eines Konservierungsstoffes nicht zur Abnahme der CH₄-Menge, die Zugabe von Phosphat erhöht sie aber beträchtlich von 0,068 auf 0,247 m³/t. Allerdings wird gleichzeitig auch wesentlich mehr Wasserstoff freigesetzt (40,8 m³/t!), der Abfallumsatz somit insgesamt erhöht. Die Wasserstofffreisetzung ist am Versuchsende noch nicht abgeschlossen und geht linear weiter. Immerhin eine Verdopplung der Methanmenge bringt noch der Zusatz von Nitrat. Die Kohlendioxidmenge bleibt in beiden Fällen verhältnismäßig konstant oder sinkt sogar. Sie ist erheblich kleiner als die freigesetzte Methanmenge, was gegen eine anaerobe biologische Produktion spricht.

Insgesamt gehen wir aufgrund der Versuchsergebnisse davon aus, dass sowohl die gefundenen Methan- als auch die Kohlendioxidmengen anorganischen Zersetzungsreaktionen entstammen.

60

Abb. 20: Einfluss bioaktiver Substanzen auf die Gesamt-Gasbildung und die Methanbildung ausgewählter Abfallproben (GasMax-Versuch)

Tab. 15:	Einfluss bioaktiver Substanzen auf die Gasfreisetzung ausgewählter Abfall-
	proben

Abfall-Probe	Gasfreisetzung	H ₂	CO ₂	CH ₄	
	Druckmessung	GC-Analytik			
		[m ³ /t]			
CA553	20,81	18,30	0,042	0,068	
CA553-Algizid	15,29	20,30	0,020	0,056	
CA553-PO4	40,79	52,57	0,038	0,247	
CA553-NO3	21,03	26,01	0,027	0,118	
CA508-Ur	2,29	2,01	0,523	0,082	
CA508-Algizid	2,27	1,95	0,510	0,085	
CA508-PO4	1,94	1,79	0,435	0,078	
CA508-NO3	2,19	1,65	0,458	0,078	
CA550-Ur	4,60	4,62	0,002	0,202	
CA550-Algizid	1,61	1,65	0,005	0,216	
CA550-PO4	1,51	1,20	0,001	0,197	
CA550-NO3	3,96	3,90	0,001	0,207	

6.3 Gasfreisetzung im Versuch UTDnah

6.3.1 Übersicht

Von den zuvor mit dem Verfahren GasMax untersuchten Abfällen wurden insgesamt 29 Proben zur weiterausgesucht, um ihre Gasfreisetzung unter den Bedingungen der Methode "UTDnah" zu prüfen. Der bei dieser Versuchsvariante vorgenommene Verzicht auf jegliches Rühren und die niedrigere Temperatur führte in der Mehrzahl der Fälle zu einer erwartungsgemäß niedrigeren Gasfreisetzung. Ein typisches Beispiel ist die Umsetzung des Strahlmittelrückstandes CA551 mit wässrigen Lösungen. Während im GasMax-Versuch nach etwa vier Tagen die maximale Gasfreisetzung erreicht ist, findet man bei den drei UTDnah-Ansätzen selbst nach 28 Tagen noch einen kontinuier-lichen Druckanstieg, der das GasMax-Niveau bei weitem noch nicht erreicht hat (Abb. 21).

Abgesehen von zwei Ausnahmen war dieses Phänomen auch bei allen anderen Ansätzen zu beobachten (Abb. 22): der Filterstaub (MVA) CA538, wo mit Gipshutlösung und Steinkohlewasser höhere Gasmengen freigesetzt wurden sowie der Gasreinigungsrückstand (Al-Metallurgie) CA609, wo nach Kontakt mit Gipshutlösung mit 22,4 m³/t eine um das doppelt höhere Gasmenge als beim GasMax-Versuch gefunden wurde. Der UTDnah-Versuch mit IP21-Lösung lieferte bei diesem Abfall hingegen nur 1,5 m³/t. In beiden Fällen unterscheidet sich der pH-Wert der Abfall/Lösungsmischung beträchtlich. Während bei Reaktion mit IP21-Lösung Werte um 6,5-7,8 auftraten, was auf eine wirksame Magnesiumoxychlorid-Pufferung hinweist, führte die Reaktion mit Gipshutlösung zu einem pH von 10,3 bis 11,5. Unter diesen stark alkalischen Bedingungen sind die entstehenden Hydroxid/Oxid-Schichten auf korrodierenden Metalloberflächen wesentlich weniger stabil und können so das Metall nicht so wirksam vor weiterem Angriff der korrosiven Salzlösung schützen. Ein genauerer Blick auf die Versuchsergebnisse der UTDnah-Messreihe macht deutlich, dass diese pH-Unterschiede bei den meisten aus thermischen Prozessen stammenden Abfällen auftritt (Flugaschen, Flugstäube, Schlacken, Gasreinigungsrückstände). Er ist auch meist mit einer höheren Gasproduktion verbunden. Die genannten Abfallarten enthalten regelmäßig große Mengen basisch reagierender Metalloxide, vor allem CaO, die in IP21-Lösungen durch die Bildung von Brucit gepuffert werden in Gipshutlösungen aber zu hohen pH-Werte führen.

Die Art der entstandenen Gase änderte sich gegenüber den GasMax-Versuchen nicht. Weiterhin blieb Wasserstoff das dominierende gasförmige Produkt der Abfall/Lösungsreaktion. Die CO₂-Produktion war bei den UTDnah-Versuchen meist wesentlich kleiner, bei einem großen Teil der Ansätze wird es gar nicht mehr gefunden (Abb. 23).

Abb. 21: Strahlmittelrückstand CA551: Vergleich der zeitlichen Druckentwicklung bei vier unterschiedlichen Versuchsmethoden

Abb. 23: Vergleich der CO₂-Freisetzung bei unterschiedlichen Untersuchungsmethoden

6.3.2 Zeitlicher Verlauf der Druckentwicklung

Abb. 24 zeigt den typischen Druckverlauf bei UTDnah- und GasMax-Versuchen. Zunächst ist ein kurzer steiler Anstieg auf 10 bis 40 hPa (UTDnah) zu beobachten, der durch die schnell abgeschlossene Sättigung der Luft mit Wasserdampf hervorgerufen wird. Da die GasMax-Versuche bei einer höheren Temperatur durchgeführt werden (35 °C), ist hier der Drucksprung entsprechend höher. Der weitere Verlauf entspricht meist dem Typ in Abb. 25: Nach einer Phase des kontinuierlichen Druckanstiegs flacht die Kurve langsam ab und erreicht ein konstantes Niveau. Bei den UTDnah-Versuchen wird dieses Niveau nur selten erreicht, bei den GasMax-Versuchen in den meisten Fällen.

Anders war die Entwicklung bei der Müllverbrennungsschlacke CA548 (Abb. 26) und beim Gasreinigungsrückstand aus der Al-Metallurgie CA557 (Abb. 27). Die GasMax-Versuche zeigten nach einer Phase der langsamen Gasentwicklung, die etwa vier bis acht Tage anhält, einen weitaus ausgeprägteren Anstieg, der später wieder abflachte. Hier benötigte das Reaktionssystem offensichtlich eine gewisse Induktionszeit, um die volle Gasbildungsgeschwindigkeit zu entfalten. Interessant ist ein Blick auf jene Abfälle, die auch im UTDnah-Versuch hohe Gasfreisetzungen zeigten. Hier fand häufig zu Versuchsanfang eine starke, teils heftige Gasbildung statt. Das extremste Beispiel ist der Gasreinigungsrückstand aus der Al-Metallurgie CA609. Innerhalb von drei Minuten setzte diese Probe in Gipshutlösung 4,5 m³/t Wasserstoff frei, innerhalb eines Tages 24,9 m³/t (Abb. 28). In Steinkohlengrubenwasser beträgt die maximale tägliche Wasserstoffbildung noch 7,0 m³/t, in IP21-Lösung jedoch nur 1,7 m³/t. Nur noch wenige andere Abfall/Lösungspaare zeigen ähnlich auffallend schnelle Gasbildungen: Die Batterien CA512 mit IP21-Lösung (9,4 m³/(t·d), andere Lösungstypen nicht untersucht), der MVA-Filterstaub CA538 mit Gipshutlösung (1,1 m³/(t·d)) und nochmals Gasreinigungsabfälle aus der Al-Metallurgie: CA609 mit Gipshutlösung (3,7 m³/(t·d)).

HUSAIN und KRASZNAI (1994) konnten zeigen, dass im Falle aluminiumhaltiger Kesselaschen aus der Verbrennung schwachradioaktiver Mischabfälle eine vollständige Gasfreisetzung innerhalb eines Tages erreichbar ist, wenn als Reaktionslösung ein Überschuss an 8 N NaOH-Lösung verwendet wird. Schon die Verwendung ebenfalls sehr basischer Natriumsilikatlösungen verschleppt den Prozess erheblich. Standardverfahren zur Ermittlung der maximalen chemischen Gasfreisetzung sollten daher unter so beschriebenen verschärften Bedingungen durchgeführt werden.

Abb. 24: Gasfreisetzung beim Abfall CA548: Reaktion mit IP21-Lösung im GasMax-Versuch (obere drei Kurven) und im UTDnah-Versuch (untere drei Kurven) während der ersten vier Tage

Abb. 25: Gasfreisetzung beim Filterstaub CA540: Reaktion mit Gipshutlösung im UTDnah-Versuch

Abb. 26: Gasfreisetzung beim Abfall CA548: Reaktion mit IP21-Lösung im GasMaxund im UTDnah-Versuch innerhalb von 28 Tagen

Abb. 27: Gasfreisetzung beim Gasreinigungsrückstand aus der Al-Metallurgie CA557: Reaktion mit IP21-Lösung. Die zwischenzeitliche Schätzung war wegen eines Fehlers bei der Datenerfassung notwendig

Abb. 28: Zeitliche Gasentwicklung beim Kontakt des Abfalls aus der Aluminiummetallurgie CA 557mit Gipshutlösung (2 Parallelversuche)
6.4 Unterschiedliche Freisetzungsgeschwindigkeiten einzelner Gase

Es ist anzunehmen, dass sich nicht alle Gase mit gleicher Geschwindigkeit bilden. Zur Überprüfung wurde ein besonderer GasMax-Versuch mit dem Gasreinigungsrückstand aus der Al-Metallurgie CA557 durchgeführt. Eine Gasprobenahme erfolgte hier etwa alle 4-6 Tage, so dass auch Aufschlüsse über die gasspezifischen Bildungskinetiken möglich waren. Die Entwicklung des freigesetzten Gesamtgasvolumens (Abb. 29, unten rechts) orientiert sich weitgehend am starken Anstieg der Wasserstoffmenge (dito, oben links) und beschreibt einen praktisch linearen Anstieg. Einen ähnlichen Verlauf zeigt auch die CO₂-Menge (dito, oben rechts), zumindest in zwei von drei Ansätzen. Im Gegensatz dazu ist die Methangasbildung (dito, Mitte links) bei der ersten Probenahme (6 Tage) bereits zu 2/3 abgeschlossen und nähert sich asymptotisch einem Grenzwert. Auch Kohlenmonoxid (Mitte rechts) scheint sich in der ersten Versuchsphase schneller zu bilden. Anfänglich vorhandener Sauerstoff (unten links) wird innerhalb der ersten dreizehn Tage weitgehend verbraucht.

 Abb. 29: Zeitabhängige Freisetzung einzelner Gasarten bei der Reaktion von CA557 mit IP21-Lösung (GasMax-Versuch). Die Gasmenge bei Sauerstoff (unten links) beschreibt die im Reaktionsgefäß verbliebene Gasmenge

6.5 Langfristige Gasfreisetzung

Nachdem eine Anzahl von UTDnah-Versuchen vorgelegen hatte, wurde bald klar, dass die in diesem Verfahren aufgefundenen Gasfreisetzungen noch über das Versuchsende hinausgehen mussten. Zum einen waren die Gasentwicklungskurven häufig noch im Anstieg begriffen, zum anderen war das Niveau der GasMax-Versuche regelmäßig noch nicht erreicht. Aus diesem Grunde haben wir uns entschlossen, einige Abfallproben über einen längeren Zeitraum zu beobachten und die Versuche erst dann abzubrechen, wenn kein weiterer Druckanstieg mehr zu beobachten war. Uns interessierte hierbei nicht nur, wie lange die Prozesse bei stark gasentwickelnden Abfällen andauerten, sondern auch, ob es bei Abfällen mit langsamer Gasentwicklung im späteren Verlauf zur Beschleunigung der Prozesse kommen könnte.

Insgesamt wurden 11 Abfälle auf diese Weise untersucht. Die Versuchsdauer dieser Langzeitansätze betrug mindestens 12 Wochen (112 Tage). Versuche, bei denen sich eine fortlaufende Gasentwicklung zeigte, wurden über diese Marke hinaus fortgesetzt und erreichten zum Zeitpunkt der Berichtserstellung bis zu 1100 Tage Versuchsdauer. Sie werden teilweise über das Projektende hinaus fortgesetzt.

Tab. 16 und Abb. 58 (S.199ff.) fassen die wesentlichen Versuchsergebnisse zusammen. Am schwächsten war die Gasentwicklung bei den Abfällen CA405, CA520 und CA539 ausgeprägt. Doch selbst hier ließen sich interessante zeitliche Effekte beobachten. So findet die Gasentwicklung bei der MVA-Schlacke CA520 erst bei etwa 120 Tagen ihren Abschluss, erreicht aber nicht das Niveau aus dem GasMax-Versuch. Bei der Braunkohleflugasche CA405 wird die anfängliche, bis zum 28. Tage reichende, leichte Druckzunahmen durch eine spätere auftretende Druckabnahme wieder kompensiert. Möglicherweise werden zunächst gebildete Gase (hier vor allem H₂S und CO₂) durch Sekundärreaktionen wieder gebunden. Die kaum wahrnehmbare Gasbildung beim konditionierten Filterstaub CA539 scheint sich beim Ansatz in Gipshutlösung nach 84 Tagen etwas zu beschleunigen. Solche unerwarteten Anstiege in der Gasbildungsgeschwindigkeit werden auch bei anderen Abfällen beobachtet, am markantesten beim Ansatz mit CA557 (Gasreinigungsrückstand Al-Metallurgie) in IP21-Lösung (Abb. 30). Die ohnehin schon starke Wasserstoffentwicklung gewinnt nach etwa 400-500 Tagen an zusätzlicher Dynamik. Während bis etwa zum 400 Tag eine Gasbildungsgeschwindigkeit von 4 l/(t·d) zu beobachten ist, steigt dieser Wert bis zum 700. Tag kontinuierlich auf das doppelte an, um dann bis zum 1000. Tag wieder auf das anfängliche Niveau abzusinken. Welche Ursachen hierfür verantwortlich sind, lässt

sich allein aus der Druckkurve nicht erschließen. Messdaten aus der Lösung ließen sich während des laufenden Versuches nicht gewinnen. Denkbar ist jedoch eine Änderung des chemischen Milieus, insbesondere des pH-Wertes aufgrund langsamer sekundärer Umsetzungsprozesse (z.B. Hydrolysereaktionen).

Bei den anderen Abfallproben waren keine außergewöhnlichen Entwicklungen festzustellen. Selbst nach sehr langen Zeiträumen wurde das Niveau der entsprechenden GasMax-Ergebnisse nicht erreicht. Ein weitgehend konstantes Druckniveau haben nur drei schwach gasentwickelnde Abfälle erreicht: CA305 (nach 180 Tagen), CA508 (700 d), CA520 (120 d). Bei den anderen schwach gasentwickelnden Abfällen (Tab. 17) sind noch leichtere Druckänderungen zu beobachten. Hier geht die Gasentwicklung weitgehend unvermindert fort und liegt mittlerweile weit über den Ergebnissen der einfachen 28-Tage-Messungen. In einem Fall (CA553) ist nach 1000 Tagen fast das Niveau des GasMax-Versuches erreicht. Bei den anderen Ansätzen bleiben die Gasdrücke auch nach 800-1000 Tagen um etwa die Hälfte (CA508 und CA527) oder noch stärker (CA548 und CA557) hinter den GasMax-Messungen zurück.

Probe	Gasentwicklung nach Tagen							UTD nah	Gas- Max		
	1	10	28	56	112	250	500	820	1000	28	28
CA305	0,13	0,44	0,52	0,67	0,70	0,77) ²				0,56	1,41
CA405	0,11	0,15	0,18	0,14	0,04					-0,15	-0,04
CA508	0,06	0,32	0,50	0,61	0,75	0,96	1,25	1,32		0,53	2,29
CA520	0,00	0,02	0,09	0,14	0,22					-	0,53
CA527	0,01	0,13	0,25	0,36	0,56	1,06	1,73	2,48	2,70) ¹	0,22	4,25
CA538	0,07	0,12	0,17	0,21	0,31	0,38*				0,29	0,92
CA539	0,03	0,03	0,08	0,09	0,16					0,26	-0,35
**CA539	0,01	0,02	0,06	0,04	0,19					0,53	-
CA548	0,02	0,10	0,29	0,42	0,58	0,91	1,60	2,12	2,41	0,21	12,17
CA553	-0,03	0,08	0,50	1,49	3,59	7,42	12,11	16,02	18,04) ¹	0,73	20,81
CA554	0,04	0,08	0,12	0,13	0,17	0,24*				0,17	2,70
CA557	0,32	0,50	0,61	0,70	0,94	1,34	2,27	3,92	4,37	1,68	28,55

Tab. 16: Langfristige Gasfreisetzung bei ausgewählten Abfallproben

)¹ nach 972 Tagen)² nach 220 Tagen

** Langzeitversuch mit Gipshutlösung

Abfall-Probe	Versuchs- dauer	Gas- freisetzung	H ₂	CO2	CH₄
		Druck- messung		GC-Analytik	
	[d]		[m	³ /t]	
CA305	220	0,77	n.b.	0,689	n.b.
CA405	202	0,04	0,00	0,002	0,0003
CA508	755	0,76	0,43	0,22	0,0114
CA520	168	0,22	0,05	0,139	0,0003
CA538	214	0,38	0,52	0,003	0,0051
CA539-Gipshut	168	0,19	0,10	0,002	0,0003
CA539	164	0,16	0,06	0,007	0,0003
CA554	220	0,24	0,00	0,134	n.b.

 Tab. 17:
 Gasentwicklung bei den abgeschlossenen Langzeitversuchen

Abb. 30: Langfristige Gasfreisetzung beim Ansatz CA557/IP21-Lösung (UTDnah)

6.6 Gasfreisetzung unter anaerob-feuchten Bedingungen (Indirekt-Versuche)

Von besonderem Interesse für die Betriebssicherheit wie auch für die Langzeitsicherheit unter regulären Bedingungen ist die Frage, welche Gasentwicklung bei Anwesenheit von Luftfeuchtigkeit zu erwarten ist. Als maximale Luftfeuchtigkeit in nicht bewetterten Abschnitten einer UTD im Salinar ist die derjenige Wasserdampfpartialdruck anzusehen, der sich über einer gesättigten Lösung der örtlich vorkommenden Salzminerale ergibt. Höhere Luftfeuchtigkeiten werden durch Bildung gesättigter Salzlösungen abgebaut. In Kaliformationen ist IP21-Lösung als Gleichgewichtslösung anzusehen, die sich bei Anwesenheit carnallititischer Gesteine ergibt. Die Wasseraktivität einer IP21-Lösung beträgt ca. 0,51, ihr Wasserdampfpartialdruck ca. 16,2 hPa.

Die einzigen beiden uns vorliegenden Hinweise zur Gasfreisetzung beim Zutritt von Luftfeuchtigkeit stammen von LASER (1991), der von einer wahrnehmbaren Gasfreisetzung (0,3 ml Gas/g Abfall in 10 Tagen) bei Müllverbrennungsschlacken in Kontakt mit feuchter Luft berichtete¹⁵ und von JOCKWER et al. (1997), die eine Freisetzung von bis zu 60 l H₂ je t Flugasche innerhalb von acht Tagen feststellten. Unsere Untersuchungen stützten sich auf acht Abfälle mit hoher Gasfreisetzung, die der konstanten Luftfeuchtigkeit einer IP21-Lösung ausgesetzt wurden.

Die Ergebnisse in der folgenden Tab. 18 wie auch Abb. 31 zeigen deutlich, dass eine nachweisbare Gasentwicklung in allen Fällen auftritt. In den meisten Fällen bleiben Gasbildungsgeschwindigkeit und -ausmaß weit hinter den Messwerten aus den UTDnah und GasMax-Versuchen zurück. Nach 56 Tagen lässt sich in vier von acht Fällen Wasserstoff in einer Menge von 0,1 m³/t und mehr feststellen. In einem Fall (CA538) entspricht dies mehr als der Hälfte des beim UTDnah-Versuch gefunden Wertes. Beim Schleifschlamm CA553 entspricht die im Indirekt-Versuch nach 56 Tagen gefundene Wasserstoffmenge noch etwa einem Fünftel des UTDnah-Wertes. Gänzlich anders sieht die Situation für diesen Abfall nach langer Reaktionsdauer aus: Nach einer Induktionsphase von etwa 40 Tagen beschleunigt sich die Gasfreisetzung erheblich und erreicht in zwei von drei Parallelansätzen die gleiche Größenordnung wie bei direktem Lösungskontakt (Abb. 32). Nach 820 Tagen beträgt die durchschnittliche Gasentwicklung des Abfalls CA553 bei indirektem Lösungskontakt 11,82 m³/t. Ein ergänzender

¹⁵ Die untersuchten Schlacken aus der Verbrennung radiaktiv kontaminierter Mischabfälle mit verhältnismässig hohen Gehalten größtenteils metallischen Aluminiums von bis zu 9 Gew%.

Versuch zeigte zudem, dass beim Fehlen jeglichen Wasserangebots keine Gasentwicklung stattfindet. Die im Indirekt- und UTDnah-Versuch gefundenen gleichlaufenden Gasentwicklungen weisen auf einen gemeinsamen geschwindigkeitsbestimmenden Reaktionsmechanismus hin. Für die Wasserstoffentwicklung dürfte vor allem Eisen verantwortlich sein, das mindestens 45 Gew% der Abfallmasse ausmacht. Der geschwindigkeitsbestimmende Schritt ist offensichtlich nicht mit dem Transport des Wassers an die Oberfläche des metallischen Eisen verbunden. Selbst die verbundenen Prozesse des Verdampfens, des Gastransports und der Adsorption auf der Eisenoberfläche sind noch schneller als die eigentliche Korrosionsreaktion. Bei allen anderen Abfällen finden wir im Indirekt-Versuch weitaus niedrigere Werte. Es handelt sich hier (bis auf die Batterien CA512) durchgehend um Stoffe mit nachgewiesenem oder vermutetem Anteil an metallischem Aluminium, für das offensichtlich ein direkter Lösungskontakt entscheidend für den Fortgang der Korrosionsreaktion ist.

Bemerkenswert ist die verhältnismäßig starke Bildung von Methan beim Gasreinigungsrückstand CA557. Sie erreicht zwar nun ein Fünftel des Wertes aus dem Gas-Max-Versuch, dies ist aber eine erhebliche Menge im Vergleich zum Wasserstoff, bei dem nur etwa ein Vierhundertstel der GasMax-Menge beobachtet wird. Mit der Bildung des Methans wahrscheinlich aus Aluminiumcarbid ist also wesentlich schneller zu rechnen als mit der Korrosion metallischen Aluminiums.

Abfall- Probe	Gas- freisetzung (UTDnah IP21, 28 d)	H₂ (UTDnah IP21, 28 d)	Druck nach 56 d	H ₂	CO2	CH₄
			[m	³ /t]		
CA508	0,53	0,22	0,20	0,00	0,012	0,0013
CA512	4,76	9,63	0,53	0,18	0,000	0,0002
CA527	0,22	0,13	-0,10	0,06	0,001	0,0003
CA538	0,29	0,37	0,27	0,18	0,000	0,0030
CA539	0,26	0,14	0,07	0,01	0,001	0,0003
CA548	0,21	0,26	-0,12	0,04	0,001	0,0003
CA553	0,73	0,709	0,12	0,16	0,005	0,0008
CA557	1,68	1,68	0,14	0,07	0,000	0,0517
	Langzeitvers	uch 820 d	nach 820 d			
CA553 820d	14,61	Versuch läuft noch	13,44	Versuch läuft noch		

Tab. 18:Vergleich der Wasserstoffentwicklung bei direktem (UTDnah, IP21) und
indirektem Wasserkontakt (Luftfeuchte über IP21)

Abb. 31: Vergleich der Wasserstoffentwicklung bei direktem (UTDnah, IP21) und indirektem Wasserkontakt (Luftfeuchte über IP21)

Abb. 32: Wasserstoffbildung bei Einwirkung von Luftfeuchte bzw. Lösung (IP21) auf den ölhaltigen Schleifschlamm CA553

6.7 Ursachen der Gasbildung

Gasbildung kann auf verschiedenen biologischen, chemischen und physikalischen Prozessen beruhen. Ein rein physikalischer Effekt ist die Desorption von Gasen von der Oberfläche der Abfallpartikel. Beispiel hierfür ist die Desorption von Kohlendioxid (CO₂) bei Rohrstäuben (JOCKWER et al., 1997).

Von meist größerer Relevanz ist die Gasbildung, die aus chemischen Umsetzungen resultiert. Eine Übersicht über die möglichen Prozesse liefert Tab. 19. Hierzu ist meistens die Anwesenheit von Wasser erforderlich – als Feuchtigkeit in der Luft bzw. im Abfall oder wirksamer als Lösung. Wichtigster chemischer Prozess ist die Bildung von Wasserstoff aus Metallkorrosionsprozessen. Viele Abfälle enthalten bedeutende Mengen fein verteilter, z.T. elementar vorliegender und damit hochreaktiver Metalle, die beim Kontakt mit Wasser oxidiert werden. Hier sind besonders Eisen, Aluminium und Zink zu nennen, die z.B. in Strahlmittelrückständen, Rohrstäuben, aber auch Flugaschen auftreten (siehe z.B. OBERSTE-PADTBERG und SCHWEDEN, 1990; CHANDLER et al., 1997). Die Reaktion verläuft prinzipiell nach folgendem Muster ab:

 $M + n H_2O \rightarrow M(OH)_n + n/2 H_2$

In Flugstäuben aus der Müllverbrennung wird vor allem feinverteiltes Aluminium für die Gasentwicklung verantwortlich gemacht. OBERSTE-PADTBERG und SCHWEDEN (1990) konnten nachweisen, dass hier flugfähige Metallflitter auftreten, die beim Zerkleinern aluminiumhaltiger Hausmüll-Komponenten entstehen (Haushaltsfolie, Al-beschichtete Getränkekartons, Verpackungen von Fertiggerichten). Beim Eintritt in den Feuerungsraum werden sie bei ungenügender Verweilzeit mit dem Gaszug weitgehend unverbrannt in die Rauchgasreinigungsanlage überführt. In Müllverbrennungsschlacken und Rauchgasreinigungsrückständen fanden MAGEL et al. (2001) neben metallischem Aluminium noch Eisen, Kupfer, sowie Al-Si-Fe-Legierungen sowie mit Al vergesellschaftete Siliziumkristalle. Die Metall-Partikel treten vornehmlich isoliert auf, können aber auch von glasigem Material eingeschlossen sein, so dass ein korrosiver Verbrauch kinetisch stark gehindert sein kann. Es ist davon auszugehen, dass in Zonen ungenügender Sauerstoffzufuhr als metallische Partikel "überlebt" oder sich im Zuge von Reduktionsprozessen, z.B. gemäß

 $MO_n + n CO \rightarrow M + n CO_2$ neu bebildet werden.
 Tab. 19:
 Mögliche anorganisch gasbildende Prozesse

Prozess	Abfallart	Gebildete Gase
Metallkorrosion	Schlacken, Flugaschen, metallische Installationen	H ₂
Desorption adsorbierter Gase	Rohrstäube, Schlacken	CO ₂ , H ₂
Abbau organischer Abfallanteile	Rohrstäube, leicht- und mittelradioaktive Abfälle	CO ₂ , CH ₄
Zersetzung von Sulfiden, Cyaniden, Carbiden, Ammo- niumverbindungen u.a.	viele Abfallarten, z.B. Braunkohleflugaschen,	H₂S, HCN, NH₃, CH₄

Die Geschwindigkeit und der Verlauf der Korrosion hängen bei Aluminium und Zink stark von der Basizität der zutretenden Lösungen ab. Während unter neutralen Bedingungen Al und Zn schnell von gut haftenden und dichten Oxidschichten eingehüllt werden, lösen sich diese in stärker alkalischen Lösungen unter Bildung von Hydroxokomplexen auf und hinterlassen eine ungeschützte Metalloberfläche, die weiter angegriffen werden kann. Welchen pH-Wert eine Reaktionslösung einnimmt, hängt von der Pufferkapazität der eingesetzten Lösung, der Basizität des Abfalls und dem Abfall/Lösungsverhältnis ab. Bei Flugaschen sind meistens calciumoxidhaltige Substanzen anwesend, die pH-Werte von 10-11 hervorrufen (BRASSER, 1991, WILKE et al., 1998). Ist ausreichend Chlorid vorhanden, wird die Oxid-Schutzschicht auf Al-Partikeln selbst bei neutralen pH-Werten instabil (MUSSELMANN et al., 2000).

Höhere pH-Werte werden erreicht, wenn die Ausgangslösung keine Pufferwirkung entfalten kann und der Abfall selbst basisch reagiert. Zu den nicht oder nur schwach puffernden Lösungen gehören die verwendete Gipshutlösung wie auch das Steinkohlen-Grubenwasser. IP21-Lösung puffert hingegen stark, weil das enthaltene Magnesium gemäß

 $2Mg^{2+} + 3OH^{-} + 2CI^{-} + 4H_2O \rightarrow Mg_2CI_2(OH)_3 \cdot 4H_2O$

den pH-Wert bei etwa 7-8 stabilisiert. Unter diesen Bedingungen verlaufen viele Korrosionsreaktionen wegen der sich aufbauenden Oxid- und Hydroxid-Schutzschichten eher langsam. Andererseits ist IP21-Lösung chemisch aggressiver, weil die Chlorid-Aktivität höher ist und chloridinduzierten Lochfraß fördert. Je nach Art des Abfalls kann mal die eine, mal die andere Lösung zu höheren Korrosionsraten führen. Allgemein lässt sich jedoch sagen, dass Abfälle aus thermischen Prozessen wegen ihres Gehaltes an Calciumoxid in schwachpuffernden Lösungen (Gipshut, Steinkohlen-Grubenwasser) meist schneller reagieren, während Abfälle, die neutral reagieren, schneller in IP21-Lösungen umgesetzt werden.

Die chemische Zersetzung betrifft vor allem Hochtemperaturverbindungen, die in Gegenwart von Wasser nicht stabil sind. In Rückständen aus der Müllverbrennung können z.B. Carbide vorliegen, die bei Wasserzutritt zu Methan oder anderen Kohlenwasserstoffen reagieren können. Ein typisches Beispiel ist Aluminiumcarbid, das sich mit Wasser gemäß

 $\mathsf{AI}_4\mathsf{C}_3 + 12 \;\mathsf{H}_2\mathsf{O} \not \rightarrow 4 \;\mathsf{AI}(\mathsf{OH})_3 + 3 \;\mathsf{CH}_4$

zu Aluminiumhydroxid und Methan umsetzt. In gleicher Weise setzt Aluminiumnitrid Ammoniak frei

AIN +3 H₂O \rightarrow AI(OH)₃ + NH₃

Liegen in den Abfällen Sulfide vor, so kann gemäß

 $H^+ + HS^- \rightarrow H_2S$

Schwefelwasserstoff freigesetzt werden, wenn die Reaktionslösungen sauer sind. Unter gleichen Bedingungen können Carbonate zersetzt und Kohlendioxid ausgetrieben werden. Aus Ammoniumverbindungen wird hingegen unter basischen Bedingungen nach

 $NH_4^+ + OH^- \rightarrow NH_3 + H_2O$

Ammoniak gebildet.

Ein weiterer wichtiger Prozess ist die mikrobielle Zersetzung von organischen Stoffen durch Bakterien, Hefen und Pilze, die bei ausreichendem Nährstoff- und Wasserangebot stattfindet. Beispielsweise enthalten Schlacken aus der Müllverbrennung, die zum Teil als Versatz untertage verwertet werden, bis zu 7 Gew% organischen Kohlenstoff (TOC, FÖRSTNER und HIRSCHMANN, 1997). Bei anderen Abfällen, z.B. Flugaschen fand BRASSER (1991) Werte um 20% TOC. Zum Abbau der organischen Substanzen ist eine ausreichende Sauerstoffversorgung fördernd (aerobe Bedingungen), aber je nach Art der Mikroorganismen nicht unbedingt notwendig, wenn ein anderer Energielieferant zur Verfügung steht (z.B. Nitrat oder Sulfat: anaerobe Bedingungen). Im Falle aerober Bedingungen entsteht als gasförmiges Umsetzungsprodukt im wesentlichen CO₂, im Falle anaerober Verhältnisse ein Gemisch von Kohlendioxid und Methan in etwa äquivalentem Verhältnis (MÜLLER et al., 1992). Organisch gebundener Schwefel kann dabei in H₂S umgewandelt werden. Welche Größenordnung die mikrobielle Aktivität bei chemisch-toxischen Abfällen unter anaeroben Bedingungen und Salzlaugenzutritt haben kann, ist nach derzeitigem Kenntnisstand ungeklärt. Auch unsere Untersuchungen konnten keinen abschließenden Aufschluss geben. Sicher ist, dass nicht der gesamte organische Kohlenstoff als Substrat zur Verfügung steht. Gemäß neuerer Literaturangaben ist von der Abbaubarkeit des organischen Kohlenstoffs in Müllverbrennungsschlacken in der Größenordnung von 5 bis 40% auszugehen (AMIN und LEPOM, 1995; FÖRSTNER und HIRSCHMAN, 1997).

Eine große Bedeutung hat der mikrobielle Abbau organischer Substanzen bei der Diskussion der Gasbildung aus schwach- und mittelradioaktiven Mischabfällen (Stichwort Blähfässer, vgl. MÜLLER-LYDA, 1997). Hierbei handelt es sich aber häufig nicht wie bei UTD-typischen Abfällen um weitgehend mineralisierte Reststoffe, sondern um organikreiche unveränderte Sammelabfälle.

7 Untersuchung der Gasfreisetzung im Technikums-Maßstab

7.1 Übersicht über die vorgenommenen Versuche

Insgesamt wurden 11 Abfälle in insgesamt 21 Ansätzen mit Gipshut- oder Asselösung untersucht. Ein Versuchsabbruch erfolgte erst, wenn sich weder thermische Effekte noch eine fortgesetzte Gasentwicklung bemerkbar machten. Nach etwa 4-10 Wochen waren diese Bedingungen für die meisten Ansätze erfüllt. Einige Ansätze wurden noch weiter fortgeführt (bis zu 30 Wochen), zum Zeitpunkt der Berichtsabfassung (September 2004) stehen noch drei Fässer unter Beobachtung. Sie werden als Langzeitversuche auf unbestimmte Zeit weiter beobachtet.

7.2 Ausmaß und Geschwindigkeit der Gasfreisetzung

Die in den Technikums-Ansätzen erzielten kumulierten Gasmengen erreichen analog zu den UTDnah-Untersuchungen im allgemeinen nicht die in GasMax-Versuchen gefundenen Niveaus (Tab. 20, Abb. 64ff. S.205ff.). Ausnahmen sind der Gasreinigungsrückstand CA600 und der Schleifschlamm CA609, die mit bis zu 13,79 m³/t bzw. bis zu 42,66 m³/t Wasserstoffentwicklung das drei- bis vierfache der GasMax-Werte zeigen (bei allerdings erheblich längeren Reaktionszeiten). Hiermit wird in Ergänzung zu den vorherigen Laborversuchen deutlich, dass der GasMax-Versuch zwar gut geeignet ist, um stark gasentwickelnde Abfälle zu identifizieren, aber nicht immer in der Lage ist, die volle Gasfreisetzung erkennen zu lassen. Hierfür wären wesentlich aggressivere Bedingungen (pH, Druck, Temperatur) notwendig, als sie einer Untertagedeponie zu erwarten und in unseren experimentellen Methoden vorgesehen waren.

Nur im Falle des Schleifschlamms CA609 erwies sich Gipshutlösung als das wesentlich aggressivere Medium (34-42 m³/t), wahrscheinlich wegen der fehlenden Pufferwirkung des Magnesiums und dem daraus resultierenden erheblich höherem pH-Wert. Mit Asse-Lösung wurden bei ähnlich hohen Versuchszeiten nur 3 und 8 m³/t erzielt. Bei den anderen Abfällen orientieren sich die Messergebnisse an den mittels UTDnah-Versuchen erhaltenen Werten.

Die Gasfreisetzungsgeschwindigkeit ist im allgemeinen kleiner als im entsprechenden UTDnah-Versuch, so in den Ansätzen CA609/Asse-Lösung (TV4, Abb. 65, S.206) oder CA551/Asse-Lösung (TV19, Abb. 73, S. 214). Ähnliche Geschwindigkeiten ergaben

sich beim Paar CA609/Gipshutlösung (TV16, Abb. 71, S.212). Die kompakteren Abfallkörper in den Technikumsversuchen dürften den Zutritt von Lösung zu den Abfalloberflächen erheblich verlangsamen und damit auch die gasbildenden Reaktionen. In noch größeren Dimensionen (BigBags) ist mit noch niedrigeren Geschwindigkeiten zu rechnen.

In Einzelfällen können kurzzeitig erheblich höhere Gasfreisetzungsraten auftreten als die Durchschnittswerte in Tab. 20 vermuten lassen. Besonders bei den stark gasentwicklunden Abfällen ist der Hauptteil der Gasentwicklung innerhalb der ersten Versuchstage abgeschlossen (CA512/Asse., CA557/Asse., CA606/Asse., CA609/Gips.), so dass die Gasfreisetzungsgeschwindigkeit Spitzenwerte von 2 (CA512/Asse. TV10, TV15) bis 3 m³/(t·d) (CA609/Gips. TV9, TV16) annimmt. Eine Korrelation zwischen Abfallherkunft, Reaktionslösung und Freisetzungsrate ließ sich dabei nicht erkennen.

Abfall	Ver-	Lösung	letzte	Kumulierte	Mittlere H ₂ -	H ₂ -Menge
	such		Messung	H ₂ -Menge	Freiset-	GasMax
			nach		zungs-	(IP21, 28 d)
					geschwin-	
			[d]	[m ³ /t]	$\frac{\text{digkent}}{[m^3/(t d)]}$	[m ³ /t]
510	10		[0]			
512	10	Asse-Losung	232	5,06	0,0218	11,440
512	15	Asse-Losung	153	5,84	0,0381	11,448
551	19	Asse-Lösung	140	5,96	0,0426	10,843
552	5	Asse-Lösung	49	0,22	0,0045	4,618
557	3	Asse-Lösung	62	0,32	0,0052	27,402
600	2	Asse-Lösung	383	13,79	0,0360	5,256
600	7	Asse-Lösung	261	6,61	0,0253	5,256
600	11	Gipshut	48	0,00	0,0000	-
602	1	Asse-Lösung	67	0,18	0,0028	3,304
602	8	Asse-Lösung	46	0,15	0,0033	3,304
602	17	Gipshut	42	0,06	0,0014	-
603	12	Asse-Lösung	82	0,12	0,0015	0,468
603	14	Gipshut	27	0,07	0,0025	-
605	21	Asse-Lösung	16	0,04	0,0024	0,268
606	20	Asse-Lösung	66	0,89	0,0134	0,765
609	4	Asse-Lösung	364	8,02	0,0220	10,858
609	6	Asse-Lösung	219	3,03	0,0138	10,858
609	9	Gipshut	251	42,66	0,1700	-
609	16	Gipshut	141	34,06	0,2416	-
610	13	Asse-Lösung	40	0,01	0,0003	0,048
610	18	Gipshut	7	0,00	0,0000	-

 Tab. 20:
 Erzeugte Wasserstoffmengen in den Technikumsversuchen

7.3 Thermische Effekte

In allen Technikumsversuchen wurde neben der Analyse des Gasraumes die Temperaturentwicklung in der außenliegenden Lösung und im Abfallinneren gemessen. Auftretende wärmebildende Reaktionen machen sich vor allem durch eine positive Temperaturdifferenz Abfallinneres/Außenlösung bemerkbar. Besonders am Anfang der Abfall/Lösungs-Reaktion war ein plötzlicher Temperatursprung im Abfallinneren und zeitlich versetzt in der Außenlösung bemerkbar. Ein besonders auffälliges Beispiel zeigt Abb. 33. Hier reagierte der MVA-Filterstaub CA606 mit Asse-Lösung. Nach Zugabe der Lösung beim Zeitpunkt 0 d steigt die Abfallinnentemperatur am Messpunkt abrupt auf 44,5 °C an, sinkt dann wahrscheinlich aufgrund nachfließender Lösung für einige Minuten wieder auf Normaltemperatur ab (im Bild nicht zu sehen) und steigt nach der dritten Minute bis zur 27. Minute wieder auf 35,2℃ an. Aufgrund der längere Zeit erhöhten Innentemperatur lässt sich schließen, dass die Wärmeentwicklung bis etwa zum fünften Reaktionstag weitergeht. Für den thermischen Ausgleich mit der Umgebung wird nur etwa ein Tag benötigt. Die anschließend noch vorhandene Temperaturdifferenz Innen/Außen von 0,4-0,5 ℃ ist auf messtechnische Gründe zurückzuführen und bleibt bis zum Versuchsende stabil. Weitere Temperaturkurven sind in Abb. 75ff. (S. 216ff.) dargestellt.

Abb. 33: Temperaturentwicklung beim Ansatz TV20: MVA-Filterstaub mit Asse-Lösung (CA606/Asse-Lösung)

Die Wasserstoffentwicklung ist gegenüber der Temperaturentwicklung immer zeitlich verschoben, wie beim Versuch TV20 zu sehen ist (Abb. 34): Das Maximum der H₂-

Gasentwicklung tritt etwa sechs Stunden nach dem Temperatur-Peak auf und klingt dann innerhalb von sieben Tagen langsam ab. Hiermit ist jedoch nicht nachgewiesen, dass Temperaturentwicklung und Gasbildung zwei unabhängige Prozesse sind. Wasserstoff, der sich im Abfallkörper bildet, benötigt eine gewisse Zeit, um im Zuge eines 2-Phasen-Flusses durch die Abfallmatrix in den Gasraum zu gelangen.

Ein Abfall, dessen maximale Gasfreisetzungsgeschwindigkeit etwa zehnmal höher ist als von CA606, sollte einen noch stärkeren Temperatureffekt hervorrufen. Tatsächlich überschreitet die maximale Temperaturerhöhung beim Ansatz TV9 (Gasreinigungsabfall aus der Al-Metallurgie CA609/ Gipshutlösung) kaum die 4 ℃-Grenze, bleibt dafür aber parallel zur Gasentwicklung länger auf höherem Niveau (Abb. 35). Das Maximum der Gasbildungsgeschwindigkeit ist allerdings erst nach 24 h zu beobachten. Ein ähnliches Verhalten zeigen auch andere stark gasentwickelnde Abfälle (z.B. TV10, TV13, TV16). Umgekehrt werden Temperaturerhöhungen in der gleichen Größenordnung auch bei Ansätzen ohne große Gasfreisetzung gefunden, z.B. bei TV1 (E-Filterstaub/Asse). Die Ergebnisse lassen sich gut mit den Versuchen von HASSETT und EYLANDS (1997) vergleichen, die die Hydratationswärme von Flugaschen untersuchten. Auch bei ihren Ansätzen, bei denen 100 g Asche mit 200 g Wasser vermischt wurden, stieg die Temperatur je nach Asche und Ansatz nur um 3-5 ℃.

Aus den Versuchsergebnissen sind zwei wichtige Schlussfolgerungen zu ziehen: Selbst starke Wasserstoffentwicklung führt bei den Technikumsansätzen nicht zu einer signifikanten Temperaturerhöhung. Andere chemische Prozesse wie die Hydratation von Calciumsilikat-Phasen erzeugen gleich hohe oder sogar wesentlich höhere Temperatursprünge.

Es ist zu erwarten, dass in größeren Systemen, z.B. einer gefluteten Abfallkammer, höhere Temperaturen auftreten. Zum einen sinkt die zum Wärmeaustausch notwendige Oberfläche im Verhältnis zum Abfallvolumen immer mehr ab, zum anderen werden die Wegstrecken zwischen dem Ort der Wärmeerzeugung (Abfallinneres) und der Wärmeabfuhr (salinares Wirtsgestein) im Mittel immer länger, so dass die Wärme länger im Abfallkörper verbleibt und zu einer nachhaltigeren und stärkeren Temperaturerhöhung führt. Solche Systeme lassen sich im Technikumsmaßstab nicht wiedergeben. Eine quantitative Abschätzung der in realen Abfallkammern möglichen Temperatureffekte muss zukünftigen Untersuchungen vorbehalten bleiben. In ähnlicher Weise konnte KLEIN (2002) bei Versuchen mit abgelagerter Müllverbrennungsschlacke selbst im Containermaßstab keine nennenswerte Temperaturerhöhungen nachweisen, obwohl eine aus gleichartigem Material aufgebaute Schlackedeponie Temperaturen bis zu 90 °C aufwies. Ein direkter Vergleich seiner Untersuchungen mit den Verhältnissen in einer UTD ist zudem nicht möglich. Während eine Schlackedeponie zumindest vor der endgültigen Oberflächenabdichtung einem durchsickernden Niederschlagswasser ausgesetzt ist, hat der Abfall in der UTD nur Kontakt mit seiner eigenen Restfeuchtigkeit. Im Störfall kann hingegen eine weitgehende Flutung der Einlagerungskammer auftreten. Weiterhin ist zu beachten, dass die Dimension von Schlackedeponien die Ausmaße von UTD-Einlagerungskammern um Größenordnungen übersteigt.

Abb. 34: Beobachtete zeitliche Entwicklung der Temperaturdifferenz (Abfallkörper/ umgebende Lösung) und Wasserstoffbildungsgeschwindigkeit beim Technikumsversuch TV20 (MVA-Filterstaub CA606/Asse-Lösung)

Abb. 35: Beobachtete zeitliche Entwicklung der Temperaturdifferenz (Abfallkörper – umgebende Lösung) und Wasserstoffbildungsgeschwindigkeit beim Technikumsversuch TV9 (Gasreinigungsabfälle aus der Al-Metallurgie CA609/Gipshutlösung)

7.4 Wärmekapazitäten von Abfall-/Lösungsgemischen und Abschätzungen zur maximalen Temperaturerhöhung im Abfallkörper

Mit Hilfe der in Kapitel 4.7 beschriebenen Methode wurde die in Tab. 21 dargestellten Wärmekapazitäten von Abfall-/Lösungsgemischen ermittelt. Aufgrund des Lösungsgehaltes der feuchten Proben weisen die Versuchsrückstände Wärmekapazitäten auf, die stark vom Wert für Wasser (4,18 kJ/K·kg) beeinflusst werden. In Kombination mit den in den Technikumsversuchen ermittelten maximalen Temperaturerhöhungen lässt sich gemäß

$$\Delta Q = C_{\rho} \Delta T \tag{5}$$

eine erzeugte Wärmemenge ∆Q berechnen, die zum Zeitpunkt des Temperaturmaximums mindestens freigesetzt worden sein muss. Der so ermittelte Wert gilt unter der Annahme, das der Abfall bis zum Zeitpunkt des Temperaturmaximums keine Wärme an die Umgebung abgegeben hat (adiabatische Erwärmung nur des Abfalls) und, dass nach dem Temperaturmaximum keine weitere Wärme produziert worden ist. Tatsächlich gibt der Abfall Wärme sofort an die Umgebung ab, wenn diese kälter ist. Die Menge der bis zum Temperaturmaximum abgegebenen Wärme hängt von der Geschwindigkeit der Aufheizung und der Wärmeübergangsgeschwindigkeit im System Abfall/ Beutel/ Innenbehälter/ Lösung/ Fasswand/ Laborumgebung ab. Für eine genauere Abklärung der Wärmebilanz bei Abfall-/Lösungsreaktionen wären zusätzliche kalorimetrische Messungen und definierten Randbedingungen notwendig, z.B. in einem isothermen Reaktionskalorimeter.

Tab. 21:	Ermittelte	Wärmekapazitäten	von	Abfall-/Lösungsgemischen	sowie	die
	mindesten	s bei der Reaktion e	rzeug	te Wärmemengen		

Abfall	Ver- such	Lösung	Wärmekapazität	Maximale Temperatur- erhöhung während des Versuches	Erzeugte Wärmemenge zum Zeitpunkt der höchsten Temperatur- erhöhung (Untergrenze)
		A 1 "	[kJ/(K·kg)]	[K]	[kJ/kg]
CA512	15	Asse-Losung	1,48 ± 0,15	3,8	5,62
CA552	5	Asse-Lösung	1,17 ± 0,13	1,6	1,87
CA557	3	Asse-Lösung	2,07 ± 0,25	1,9	3,93
CA600	11	Gipshut	1,56 ± 0,16	0,6	0,94
CA600	7	Asse-Lösung	1,30 ± 0,11	2,4	3,12
CA602	1	Asse-Lösung	2,02 ± 0,23	3,2	6,46
CA602	17	Gipshut	2,03 ± 0,16	2,1	4,26
CA602	8	Asse-Lösung	2,04 ± 0,22	10,4	21,22
CA603	12	Asse-Lösung	1,11 ± 0,11	1,7	1,89
CA603	14	Gipshut	1,19 ± 0,10	2,7	3,21
CA605	21	Asse-Lösung	1,73 ± 0,17	0,6	1,04
CA606	20	Asse-Lösung	1,80 ± 0,15	19,5	35,10
CA609	6	Asse-Lösung	1,96 ± 0,18	2,1	4,12
CA609	16	Gipshut	2,40 ± 0,21	3,9	9,36
CA609	9	Gipshut	2,36 ± 0,18	6,2	14,63

Unabhängig von solchen Messungen sind Abschätzungen zur maximalen Wärmeproduktion und Temperaturerhöhung in Abfall-/Lösungsmischungen auf der Grundlage tabellierter Werte möglich. Geht man davon aus, dass die Wärmeentwicklung und Wasserstoffproduktion in Abfällen weitestgehend von der Korrosion metallischen Aluminiums hervorgerufen wird, so lässt sich folgende Beispiel anführen. Ein Abfall, der 10 m³ oder 410 mol H₂/t freisetzt, beinhaltet dann gemäß der Reaktionsformel

2 AI + 6 $H_2O \rightleftharpoons$ 2 AI(OH)₃ + 3 H_2

273 mol oder 7 kg Al je t Abfall. Die Wärmebilanz für diese Korrosionsreaktion beträgt -1706 kJ/mol Al oder -63.200 kJ/kg Al (LIDE, 1991). 7 kg Aluminium in einer t Abfall erzeugen eine Reaktionswärme von 465.000 kJ. Gehen wir davon aus, dass die Porosität des Abfalls 0,5 beträgt, die Korndichte 2,5 g/cm³ und die Lösungsdichte 1,25, dann hat der Abfall einen Anteil am resultierenden Abfall-/Lösungsschlamm von 0,66 t/t. Eine Tonne Schlamm produziert dann 0,66·10 m³ H₂ und damit 0,66·(465.000) kJ = -310.000 kJ an Wärme. Wenn man in einer groben Näherung Reaktionsenthalpie und Wärmekapazität (2000 kJ/t Schlamm) als temperaturunabhängig annimmt und die Gasphase (H₂) vernachlässigt, so ergibt sich gemäß Formel 5 (s.o.) eine maximale Temperaturerhöhung von 155 K. Aufgrund der zahlreichen Einschränkungen und Abschätzungen ist dieser Wert nur ein groben Anhaltspunkt. Sie macht aber deutlich, dass selbst bei moderaten Metallgehalten (hier 0,7 Gew% Al) erhebliche Wärmemengen allein aufgrund der Metallkorrosion entstehen. Bei Abfällen mit höheren Aluminiumgehalten wie dem Abfall aus der Al-Metallurgie CA557 (geschätzt ca. 3 Gew%, vgl. S. 43) oder einigen Müllverbrennungsschlacken ist mit einer noch höheren Wärmeproduktion und höheren Temperaturen zu rechnen, wenn sie mit Wasser in Kontakt kommen.

Unberücksichtigt bleibt bei diesen Überlegungen der Einfluss des wärmeleitenden und wärmepuffernden Wirtsgesteins. Im Zuge einer Wärmeausbreitungsrechnung mit realen Grubengeometrien sollte geklärt werden, welche Temperaturen in Ablagerungskammern einer UTD im Salinar im Falle eines Wasserzutritts zu reagierenden Abfällen zu erwarten ist. In oberirdischen Verbrennungsschlacken-Monodeponien tritt der Effekt des umgebenden Gesteins hingegen zurück. Hier sind die Volumina der Schlackenkörper so groß, dass eine Wärmeableitung nur in den wenigen Randbereichen wirksam wird. Unter diesen Umständen sind die selbst nach jahrelanger Ablagerung noch beobachteten hohen Temperaturen im Deponiekörper (KLEIN, 2002) gut erklärbar.

8 Wirkung der Gasbildung auf die Barriereintegrität einer Modell-Untertagedeponie

8.1 Einleitung

Im Rahmen von Analysen zur Langzeitsicherheit einer Untertagedeponie für chemischtoxische Abfälle in einem Salzstock wird für den Störfall postuliert, dass die Salzlauge in das Grubengebäude eindringt. Dabei sind Strömungen in Bereichen des Grubengebäudes u.a. infolge der Gesteinskonvergenz zu erwarten, wodurch chemisch-toxische Substanzen nach Lösung in der Flüssigkeitsphase in der Untertagedeponie transportiert und umverteilt werden können. Die Strömung bzw. der Schadstofftransport kann auch durch molekulare Diffusion, hydrodynamische Dispersion, Naturkonvektion sowie durch Gasbildung verursacht werden. Gase, vorwiegend Wasserstoff, entstehen infolge der chemischen Wechselwirkungen zwischen den Abfällen bzw. Abfallgebinden und der eingeflossenen Salzlauge.

Zur Beschreibung der Transportvorgänge im Grubengebäude im Salinar kann das dreidimensionale Rechenprogramm TOUGH2 für eine poröse Konfiguration verwendet werden. In der GRS wurde bereits mit TOUGH2 der Gas- und Stoff- bzw. Nuklidtransport unter Berücksichtigung der Gesteinsheterogenität, der Gesteinskonvergenz, der Naturkonvektion, der Gasbildung, der Zweiphasenströmung, der variablen Laugendichte, der molekularen Diffusion und der hydrodynamischen Dispersion sowie der nichtlinearen Adsorption am Festkörper bei unterschiedlichen Bedingungen im Nahfeld und auch im Fernfeld untersucht. Die bisherigen Untersuchungen zum Gas-, Stoff-, Nuklid-und Wärmetransport haben gezeigt, dass TOUGH2 mit den eigenen Modellerweiterungen zur Gesteinskonvergenz bei Zweiphasenströmung insgesamt zufriedenstellende Ergebnisse liefert und zur Analyse des Gas- und Schadstofftransports für eine beliebige poröse Konfiguration als geeignet angesehen werden kann.

Nach einer kurzen Beschreibung des Rechenprogramms TOUGH2/EOS7R in Abschnitt 7.2 werden im Rahmen einer orientierenden Analyse im Abschnitt 7.3 dieses Berichtes die gemeinsamen Auswirkungen der Gasbildung und der Gesteinskonvergenz auf die Druckentwicklung und auf die Schadstoffaustragung aus einer Untertagedeponie anhand eines vereinfachten zweidimensionalen Modells eines Grubengebäudes im Salzgestein bei definierten Modellannahmen untersucht. Dabei werden u.a. die Permeabilität des Deponieverschlusses und die Gesteinskonvergenz variiert.

8.2 Rechenprogramm TOUGH2

Das Rechenprogramm TOUGH2 wurde von K. Prueß und Mitarbeitern am Lawrence Berkeley Laboratory, USA zur Simulation der transienten Zweiphasenströmung und des Wärmetransports in einer dreidimensionalen anisotropen porösen Konfiguration entwickelt (PRUEß, 1987, 1991, 1995). Da TOUGH2 vornehmlich zur Berechnung der Zweiphasenströmung und des Wärmetransports konzipiert ist, enthält TOUGH2 keine Modelle zur Simulation der Gasbildung, der Gesteinskonvergenz und der chemischen Wechselwirkung. Abhängig von der verwendeten Version von TOUGH2 werden bis zu zwei Phasen und fünf Komponenten (Stoffe) betrachtet:

- Die Flüssigkeitsphase bzw. das Flüssigkeitsgemisch besteht aus:
 - Wasser bzw. Salzlauge (Komponente 1),
 - Schadstoff oder Tracer oder Salzlauge (Komponente 2),
 - Mutternuklid (Komponente 3),
 - Tochternuklid (Komponente 4),
 - einem im Wasser löslichen Gas (Komponente 5).
- Die Gasphase bzw. das Gasgemisch besteht aus:
 - Wasserdampf,
 - Luft, Wasserstoff oder Kohlendioxid.

In TOUGH2 werden bis zu sechs Erhaltungsgleichungen unter Berücksichtigung der Advektion, Diffusion, Dispersion und der Nuklidadsorption für eine ein- bis dreidimensionale Konfiguration mit der integralen Finite-Differenzen-Methode gelöst, wobei das Modellgebiet mit Volumenelementen diskretisiert wird:

- Massenerhaltung für die Primärkomponente,
- Massenerhaltung für die Sekundärkomponente in der Flüssigkeitsphase,
- Massenerhaltung für das Mutternuklid in der Flüssigkeitsphase,
- Massenerhaltung für das Tochternuklid in der Flüssigkeitsphase,
- Massenerhaltung für die Gaskomponente,
- eine gemeinsame Energieerhaltung mit dem thermischen Gleichgewicht zwischen allen Komponenten und Gestein.

Zur Beschreibung der Strömung werden zwei Darcy-Gleichungen gelöst:

- Darcy-Gleichung für die Flüssigkeitsphase,
- Darcy-Gleichung für die Gasphase,
- Kapillardruck $p_{kap} = (p_G p_F) = f$ (Phasenanteil, Permeabilität),
- Permeabilität der Flüssigkeitsphase = f (Richtung, Phasenanteil),
- Permeabilität der Gasphase = f (Richtung, Phasenanteil).

Die grundlegenden Bestimmungsgleichungen wurden bereits in den bisherigen GRS-Berichten zu den Untersuchungen mit den verschiedenen Versionen von TOUGH2 erläutert und der Stand der Verifikation bzw. der Validation wurde dargelegt (z.B. JA-VERI, 1996c). In die Dreikomponenten-Version TOUGH2/EOS7 (Wasser, Salzwasser bzw. Schadstoff und Gas) und in die Fünfkomponenten-Version TOUGH2/EOS7R zusätzlich mit zwei Radionukliden wurden eigene Modellerweiterungen zur Berücksichtigung der Gesteinskonvergenz bei Zweiphasenströmung, der Gesteinsheterogenität, des radioaktiven Zerfalls, der zeitabhängigen Randbedingungen erster und dritter Art sowie der richtungsabhängigen Diffusion bzw. Dispersion und der nichtlinearen Nuklidadsorption eingeführt (JAVERI, 2000b, 2000c). Die bisherigen Untersuchungen zum Gas-, Stoff-, Nuklid- und Wärmetransport bei unterschiedlichen Bedingungen haben gezeigt, dass TOUGH2 mit den oben erwähnten Modellerweiterungen insgesamt zufriedenstellende Ergebnisse liefert und zur Analyse des Gas- und Nuklidtransports für eine beliebige poröse Konfiguration als geeignet angesehen werden kann.

Nachfolgend sei nur die Erweiterung zur Gesteinskonvergenz erwähnt, die zu einem Austreiben der Fluidmasse, einer zeitabhängigen Porosität und damit zu einer zeitabhängigen Permeabilität eines komprimierbaren Versatzmaterials führt (JAVERI, 1996c, 2000c).

Die Porosität k sei eine Funktion der Permeabilität n und der Richtung:

$$k = k (n, Richtung)$$
 (6)

Die Permeabilität n ist abhängig vom Druck p, der Zeit t und der Temperatur T:

$$n = n (p, T, t)$$
 (7)

Die zeitliche Abhängigkeit der Porosität n_t wird vor allem von der Konvergenz C_L beschrieben:

$$n_t = (1/n) (dn/dt) = C_L / n$$
 (8)

Sie ist selbst eine Funktion von Druck p, Temperatur und Porosität:

$$C_{L} = C_{Ref} f_{1} (p) f_{2} (n) f_{3} (T)$$
 (9)

CRef:konstante Referenzkonvergenzratef1, f2, f3:Funktionen zur Berücksichtigung der Abhängigkeit von Druck, Porosität
und Temperatur.

Die Druckabhängigkeit f_1 der Konvergenzrate wird beschrieben durch einen Ausdruck, der den Gebirgsdruck $p_{Gebirge}$ und den Druck p_F in der Flüssigphase umfasst:

$$f_1 = (1 - p_F / p_{Gebirge})^m, \qquad f_1 = 0 \text{ bei } p_F \ge p_{Gebirge}$$
(10)

Die Abhängigkeit von der Porosität f_2 baut im wesentlichen auf der Referenzporosität n_{Ref} und dem Spannungsexponenten m auf.

$$n_1 = 1 - n / n_{Ref}$$
 (11)

$$n_2 = (nn_1)^{(1/m)}$$
(12)

$$f_2 = nn_1 (n_1^2 + n_2)^{-m}$$
 bei $n < n_{Ref}$, $f_2 = 1$ bei $n \ge n_{Ref}$ (13)

Die Temperaturabhängigkeit f₃ spielt in unserem Modell keine Rolle, da wir von konstanter Temperatur ausgehen

$$f_3 = 1$$
 bei T = konstant (14)

Zu beachten ist außerdem, dass die Konvergenz beim Erreichen der Minimalporosität n_{min} zum Stillstand kommt:

$$C_{L} = 0 \text{ bei } n < n_{\min} \tag{15}$$

Ist ein Materialgebiet offen bzw. unversetzt, dann gilt

$$n_t = C_L \tag{16}$$

Die zeitliche Porositätsänderung verursacht einen zusätzlichen Massen- und Enthalpiestrom. Bei der Euler-Darstellung, die in TOUGH2 verwendet wird und bei der das gesamte Volumen konstant bleibt, lauten der Lösungsmassenstrom Q_F , die Gasmassenstrom Q_G bzw. der Enthalpiestrom E_F für die jeweilige Komponente (Komponenten-Index i : 1 bis 5) aus dem Gestein infolge der zeitlichen Porositätsabnahme:

 $S_F = V_F / V_{Hohlraum}$

 $S_{G} \!\!=\! V_{G} \! / V_{Hohlraum}$

 $Q_{\text{F,por,i}} = n \; V_{\text{gesamt}} \left| n_{t} \right| \; \rho_{\text{F}} \; S_{\text{F}}, \; X_{\text{F,i}},$

 $Q_{G,por} = n ~V_{gesamt} ~|n_t| ~\rho_G ~S_G, \label{eq:QGport}$

 $X_{F,i} = (m_i/m)_F,$

 $E_{F,por} = Q_{F,por} h_F,$

 $E_{G,por} = Q_{G,por} \ h_G.$

- h spezifische Enthalpie [J/kg] (h_F: der Lösungsphase, h_G: der Gasphase)
- m Masse [kg]
- S Sättigung
- X Massenanteil
- V Volumen [m³]
- ρ Dichte [kg/m³]

8.3 Gas- und Stofftransport in einem zweidimensionalen Grubengebäude

8.3.1 Übersicht

Der Laugen- bzw. der Schadstofftransport in einem Grubengebäude einer Untertagedeponie im Steinsalz kann durch Gase, vorwiegend Wasserstoff, beeinflusst werden, die infolge der chemischen Wechselwirkungen zwischen den Abfällen bzw. Abfallgebinden und der eingedrungenen Salzlauge entstehen. Die wesentlichen Mechanismen zur Gasbildung sind: Korrosion, mikrobielle Zersetzung und Radiolyse.

In diesem Kapitel wird anhand eines zweidimensionalen Modells eines vereinfachten Grubengebäudes der Einfluss einer Wasserstoffquelle im Deponiefeld auf den Druckaufbau und auf die Schadstoffaustragung untersucht. Das gewählte Modell erfasst einen Schacht, zwei Verschlüsse, ein Deponiefeld und ein Abbaufeld (Abb. 36 und Tab. 22) und entspricht der Vorgehensweise in JAVERI (1996b, 2000c).

Gebiet 1: Deponiefeld ohne Gasquelle, variable Porosität, Volumen = 7,77E6 m³, Schadstoffmasse = 1E8 kg Gebiet 13 : Deponiefeld mit Gasquelle, konstante Porosität, Volumen = 3E4 m³ Gebiet 2: Abbaufeld ohne Gasquelle, variable Porosität, Volumen = 40E6 m³

Abb. 36: Zweidimensionales Modell zum Gas und Schadstofftransport in einer Untertagedeponie

Materialgebiet	n _o	n _{min}	n _t = (δn/δt) / n, [1/s]	Permeabilität k [m ²]	Minimaler Kapillardruck, [Pa]
1 : Salzgrus- Deponiefeld	0,65	0,005	$C_{Ref} f_1 (p) f_2 (n) / n$	1,837 · 10 ⁻¹⁰ · n ^{3,823}	0,56 k ^{-0,346}
2 : Salzgrus- Abbaufeld	0,4	0,005	$C_{Ref} f_1 (p) f_2 (n) / n$	1,837 · 10 ⁻¹⁰ · n ^{3,823}	0,56 k ^{-0,346}
3 : Verschluss	0,1	0,1	0	1,0 · 10 ⁻¹⁵	86734
6 : Randbedingung	0,4	0,4	0	1,0 · 10 ⁻¹¹	3582
11 bzw. 13: Kiessand	0,4	0,4	0	1,0 · 10 ⁻¹¹	3582

Tab. 22:	Verzeichnis	der häufig	verwendeten	Materialdaten

n: Porosität; n₀: Anfangsporosität; n_{min}: Minimalporosität C_{Ref} : Referenz-Konvergenzrate = -0,005 1/Jahr; m: Spannungsexponent = 4; p_R : Gebirgsdruck = 137 bar; n_{Ref} : Referenz-Porosität = 0,3

8.3.2 Rechenmodell

Zu einer orientierenden Untersuchung des gemeinsamen Gas- und Stofftransports wird ein zweidimensionales isothermes Modell eines Grubengebäudes im Steinsalz postuliert (Abb. 36). Am unteren Ende des 700 m tiefen Schachts befindet sich ein Deponiefeld mit einem Volumen von 7,8·10⁶ m³. Durch zwei Verschlüsse wird das Deponiefeld mit den Schadstoffen bzw. Abfällen vom Schacht und vom Abbaufeld abgetrennt. Das Deponiefeld und das Abbaufeld sind mit dem komprimierbaren Salzgrus versetzt. Der Schacht ist mit Kiessand versetzt. Die Verschlüsse und der Kiessand werden als nicht komprimierbar angesehen.

Am oberen Schachtende dringt die Salzlauge in das Modellgebiet ein. Im Deponiefeld können nicht kondensierbare Gase - überwiegend Wasserstoff - infolge der chemischen Wechselwirkungen zwischen den Abfällen bzw. den Abfallbehältern und der eingedrungenen Salzlauge entstehen. Der Abfall wird durch einen fiktiven Schadstoff gelöst in der Salzlauge dargestellt und kann nur durch die Flüssigkeitsphase transportiert werden. Durch die Gasbildung und durch die Gesteinskonvergenz im Deponiefeld und im Abbaufeld wird das zweiphasige Gemisch in den Verschluss dann in den Schacht transportiert, durch den das Gemisch in die Umgebung ausgetragen wird. Von Anfang an ist der Schadstoff in der Lauge vollständig aufgelöst und damit beweglich. Das Fluidgemisch besteht aus drei Komponenten:

- 1. Salzlauge
- 2. gelöster Schadstoff in der Lauge
- 3. Wasserstoff in der Gasphase und in gelöster Form in der flüssigen Phase.

Der Schadstoff beeinflusst die Stoffeigenschaften des Flüssigkeitsgemisches nicht. Die Dichte ρ_F und die Viskosität μ_F der flüssigen Phase werden durch die Eigenschaften der Salzlauge bestimmt:

$$\rho_{\mathsf{F}} = 1,292 \cdot \rho_{\mathsf{Wasser}} \left(\mathsf{p}, \mathsf{T} \right) \tag{17}$$

$$\mu_{\rm F} = 6,29 \cdot \mu_{\rm Wasser} \left({\rm p}, {\rm T} \right) \tag{18}$$

Zur Bestimmung der Stoffeigenschaften der Gasphase, die aus feuchtem Wasserstoff besteht, werden folgende Werte für die Gaskonstante und die Viskosität verwendet:

$$R_{\text{Wasserstoff}} = 4124 \text{ J} / (\text{kg·K})$$
(19)

$$\mu_{\rm G} = 8,95 \cdot 10^{-6} \, \text{Pa·s} \tag{20}$$

Die Löslichkeit des Wasserstoffs im Wasser wird nach dem Henry'schen Gesetz, das für Gase mit geringer Löslichkeit gilt, ermittelt, wobei $C_{Henry} = 10^{10}$ Pa angenommen wird.

Eine wesentliche Voraussetzung für die Gasbildung ist das Vorhandensein von Feuchtigkeit bzw. von Wasser in der Nähe der Abfallgebinde. Die wesentlichen Mechanismen zur Gasbildung sind: Korrosion, mikrobielle Zersetzung und Radiolyse. Bei einer Langzeitbetrachtung wird die gesamte Gasbildung durch die Korrosion der metallischen Bestandteile - hauptsächlich Eisen, Aluminium und Zink - bestimmt. Die Korrosion hängt stark von den Umgebungsbedingungen wie Sauerstoffanteil, Wasseranteil und Temperatur ab und führt hauptsächlich zur Wasserstoffbildung. Die Korrosionsrate wird häufig als Abtragsrate in µm/Jahr angegeben. Abhängig von den metallischen Bestandteilen und von den Umgebungsbedingungen kann die Korrosionsrate zwischen 0,01 und 1000 µm/Jahr liegen (SMAILOS et al., 1993). Aus der Korrosionsrate kann man die Gasbildungsrate ableiten. Da die Gasbildung ein wichtiger Parameter ist, aber nur ungenau abgeschätzt werden kann, ist bei der Transportanalyse eine breite Variation der Gasbildungsrate dringend erforderlich. Bei der vorliegenden Analyse, bei der die Auswirkung der Gasbildung auf den Druckaufbau und auf den Stofftransport im Vordergrund steht, wird die Gasbildungsrate Q_{wasserstoff} gemäß der in Tab. 23 postulierten Abfallmengen postuliert. Die Werte für die Gasfreisetzung lehnen sich an Messwerte aus diesem Vorhaben an.

Nr.	Тур	Maximale Gasfreiset- zung [m ³ /t]	Anteil (Volumen)	Gasfrei- setzungs- geschwin- digkeit [m ³ /t·a]
1	Quecksilberhaltiger Bauschutt und	2,6	20%	0,39
	Boden			
2	Abfall aus der trockenen Gasreinigung	0,47	20%	0,047
3	Abfall aus der nassen Gasreinigung	0,1	20%	0,1
4	Feste Abfälle aus der Gasreinigung	50	20%	1,8
5	Reaktions- und Destillationsrückstän-	0	20%	0
	de			

Tab. 23: Abgelagerte Abfallmengen in der Modell-UTD

Wir gehen davon aus, dass die Untertagedeponie aus einem mit Salzgrus verfüllten Abbaufeld in Größe von 40·10⁶ m³ sowie aus einem Deponiefeld der Größe 7,8·10⁶·m³ besteht. Die Porosität des Salzgruses betrage 40%, die Porosität der Abfälle 55%. Dann ergibt sich als Abfallmenge 3,5·10⁶ m³. Bei einer mittleren Schüttdichte von 1,75 t/m³ entspricht dies einer Masse von 6,125·10⁶ t. Die von den Abfällen insgesamt freisetzbare Wasserstoffmenge entspricht gemäß Tab. 23 ca. 65·10⁶ m³. Unter der vereinfachten Annahme, dass die Gasfreisetzung konstant über 30 Jahre andauert (für den am langsamsten reagierenden Abfall Nr. 4 aus Tab. 23), ergibt sich ein jährliche Gasfreisetzung im Zeitraum t von:

 $0 \le t \le 30$ Jahre: $Q_{wasserstoff} = 2 \cdot 10^5$ kg/a bzw. 2,2 $\cdot 10^6$ Nm³/a.

Bei der Analyse der Zweiphasenströmung in porösen Medien werden zur Berechnung der Geschwindigkeiten der Gasphase und der Flüssigkeitsphase in TOUGH2 verallgemeinerte Darcy-Gleichungen unter Berücksichtigung des Kapillardrucks und der relativen Permeabilität für die Gasphase und für die Flüssigkeitsphase verwendet. Die relativen Permeabilitäten und der Kapillardruck hängen stark von der Gesteinsart, der Porosität und dem Grad der Sättigung ab und werden häufig als Funktion der Flüssigkeitssättigung dargestellt. Für eine konkrete Analyse sind standortspezifische Daten für die relative Permeabilität und für den Kapillardruck von großer Bedeutung, weil sie einen starken Einfluss auf die Zweiphasenströmung haben. Hier wird für die relative Permeabilität und für den Kapillardruck die häufig verwendete Brooks-Corey-Funktion gemäß JAVERI (2000a) gewählt (Abb. 37):

Abb. 37: Relative Permeabilität und normierter Kapillardruck in Abhängigkeit von der Flüssigkeitssättigung

Die mathematischen Zusammenhänge werden durch folgende Beziehungen beschrieben:

$$S_{F} = V_{F} / V_{Hohlraum}$$
(21)

$$S_{F, eff} = (S_F - S_{Fr} / (1 - S_{Gr} - S_{Fr})$$
(22)

$$k_{F, rel} = (S_{F, eff})^4, \quad k_F = k k_{F, rel}$$
 (23)

$$k_{G, rel} = (1 - S_{F, eff})^2 \cdot (1 - S_{F, eff}^2), \qquad k_G = k k_{G, rel}$$
(24)

$$p_{kap} = p_{kap, min} / (S_{F, eff})^{0.5}$$
 (25)

wobei	
S _{F, eff} :	effektive Flüssigkeitssättigung (zwischen 0 und 1),
S _{Gr} :	residuelle bzw. zurückbleibende Gassättigung (hier: 0,02),
S _{Fr} :	residuelle bzw. zurückbleibende Flüssigkeitssättigung (hier: 0,1)
p _{kap, min} bzw. p _b :	Minimaler Kapillardruck bei einer fast vollständigen Flüssigkeits-
	sättigung.

Die residuelle Flüssigkeitssättigung ist die minimale Sättigung, bis zu welcher das Gas die Flüssigkeit verdrängen kann. Unterhalb dieser Sättigung ist die Flüssigkeit unbeweglich. Die residuelle Gassättigung ist die minimale Gassättigung, bei welcher Gas noch strömen kann. Unterhalb der residuellen Gassättigung ist Gas unbeweglich. Eine plausible Interpretation des minimalen Kapillardrucks besagt, dass nur beim Überschreiten des minimalen Kapillardrucks die Gasphase die Flüssigkeitsphase verdrängen kann. Der "minimale" Kapillardruck p_b hängt u.a. von der geologischen Formation und von den Fluideigenschaften ab. Aus zahlreichen Experimenten hat DAVIES (1991) eine empirische Beziehung zwischen der Permeabilität und dem Kapillardruck p_b (bubbling or air entry pressure) abgeleitet:

 $p_b = 0.56 \cdot k^{-0.346}$,

k : Permeabilität in m²

p_b : "minimaler" Kapillardruck in Pa.

8.3.3 Rechenfälle

Die grundlegenden Merkmale der nachfolgend betrachteten Rechenfälle sind (s.a. Abb. 36 und Tab. 22):

Das Deponiefeld hat ein Volumen von 7,8·10⁶ m³ und sei in zwei Materialgebiete aufgeteilt. Das untere Gebiet mit einem relativ geringen Volumen von 3·10⁴ m³ hat eine Gasquelle und konstante Materialdaten (Materialgebiet 13: Höhe 0,75 m, n = 0,4, k = 1,0· 10⁻¹¹ m²). Das obere Gebiet (Materialgebiet 1: Höhe 2,75 m) enthält keine Gasquelle und ist mit komprimierbarem Salzgrus versetzt. Die Porosität des Salzgrus wird gemäß dem bereits erwähnten Ansatz zur Gesteinskonvergenz ermittelt, wobei

 $\begin{array}{ll} p_{Gebirge}=137 \ bar \ bei \ einer \ Tiefe \ von \ 700 \ m,\\ n_{Ref} &= 0,3; \quad n_{min}=0,005,\\ C_{Ref} &= -0,005 \ pro \ Jahr,\\ m=4. \end{array}$

Diese Aufteilung des Deponiefeldes ist auf den jetzigen Stand der TOUGH2-Erweiterung zurückzuführen. Eine mögliche Porositätsänderung im Deponiefeld infolge der Gesteinskonvergenz und eine Gasquelle können zur Zeit nicht im selben Materialgebiet simuliert werden. Die gewählte Aufteilung des Deponiefeldes hat keinen nennenswerten Einfluss auf die Ergebnisse, da die Materialgebiete 1 und 13 eine relativ hohe Permeabilität haben. Die variable Permeabilität des Salzgruses im Materialgebiet 1 wird gemäß FEIN et al. (1996) bestimmt:

k [m²] = (1,837E-10) n^{3,823}.

- Die Menge des fiktiven Schadstoffs im Deponiefeld beträgt 1·10⁸ kg. Von Anfang an ist der Schadstoff nur in der Flüssigkeitsphase enthalten und damit beweglich.
- Das Abbaufeld hat ein Volumen von 40·10⁶ m² und ist mit komprimierbarem Salzgrus versetzt. Die variable Porosität und Permeabilität des Salzgruses im Abbaufeld werden gemäß den obigen Beziehungen für das Deponiefeld bestimmt.
- Die Verschlüsse sind nicht komprimierbar (Materialgebiet 3: n = 0,1; k = 1·10⁻¹⁵ m²).
- Der Schacht hat einen Querschnitt von 36 m² und ist mit einem nicht komprimierbaren Versatz (Materialgebiet 11: n = 0,4 k = $1 \cdot 10^{-11}$ m²) versetzt.
- Der molekulare Diffusionskoeffizient beträgt 1·10⁻⁹ m²/s für alle Stoffe im gesamten Modellgebiet. Vereinfachend wird die hydrodynamische Dispersion vernachlässigt.
- Anfangsbedingungen:
 - Gesamtes Modellgebiet: p = 1 bar, $S_F = 0,2$,
 - Materialgebiet 1: $X_{F,2}$ derart dass $m_{F,2} = 1.10^8$ kg.
- Randbedingungen:
 - alle Ränder des Modellgebiets ohne den oberen Schachtrand: undurchlässig,
 - oberer Schachtrand: p = 1 bar, $S_F = 1$, nur Salzlauge bzw. $X_{F,1} = 1$.
- Diskretisierung: Gesamtanzahl der Elemente = 110.

Beim obigen vereinfachten zweidimensionalen Modell wird die Auflockerungszone vernachlässigt. Eine solche Annahme ist dann vertretbar, wenn die Permeabilität der Auflockerungszone deutlich geringer als $1 \cdot 10^{-15}$ m² und die der Versatzmaterialien und der Verschlüsse deutlich größer als $1 \cdot 10^{-15}$ m² eingestuft werden können. Bei einer späteren detaillierten Untersuchung sollte die Vernachlässigung der Auflockerungszone unter Berücksichtigung der standortspezifischen hydrogeologischen Daten überprüft werden.

Ausgehend von obigen Modellannahmen werden zuerst acht Rechenfälle definiert, bei denen die Referenz-Konvergenzrate konstant (0,005/a) bleibt und die Gasquelle, die Eigenschaften der Verschlüsse und die anfängliche Flüssigkeitssättigung variiert werden. Ferner wird der Einfluss des relativ großen Abbaufeldes untersucht. Anhand des Vergleichs zwischen den Fällen ohne Gasquelle (Rechenfälle K) und den Fällen mit der oben definierten Gasquelle im Deponiefeld (Rechenfälle KG) kann der Einfluss der Gasbildung auf das Strömungs- und auf das Transportverhalten abgeschätzt werden. Die ersten acht Fälle sind nachfolgend zusammengestellt (Tab. 24):

Rechenfall	Anfangs- sättigung	Verschluss		Abbaufeld
	S _F (t = 0)	Permeabilität, [m ²]	Minimaler Kapillardruck, [Pa]	
K1 bzw. KG1	0,2	1·10 ⁻¹⁵	8,67·10 ⁴	mit
K2 bzw. KG2	0,2	1·10 ⁻¹⁶	1,92·10 ⁵	mit
K3 bzw. KG3	0,2	1·10 ⁻¹⁵	8,67·10 ⁴	ohne
K4 bzw. KG4	0,4	1·10 ⁻¹⁵	8,67·10 ⁴	mit

Tab. 24:	Übersicht über die Rechenfäl	le
1 a. 24.	Obersicht über die nechenhal	IE

Die Gesteinskonvergenz hängt stark von der geologischen Formation bzw. vom Standort ab und ist daher als ein Schlüsselparameter einzustufen. Um die Auswirkungen der Gesteinskonvergenz zu klären, werden ausgehend von den Fällen K1 (ohne Gasquelle) und KG1 (mit Gasquelle) weitere vier Rechenfälle betrachtet, bei denen die Referenz-Konvergenzrate in einer großen Bandbreite variiert wird (Tab. 25):

Tab. 25:	Zusätzliche	Rechenfälle
----------	-------------	-------------

Rechenfall	Referenz-Konvergenzrate, [1/a]
K1 bzw. KG1	0,005
K5 bzw. KG5	0,001
K6 bzw. KG6	0,0001

8.3.4 Ergebnisse

Die Rechnungen zu den oben definierten Rechenfällen wurden mit TOUGH2/EOS7R (PRUESS, 1991, 1995) und mit den eigenen Modellerweiterungen zur Gesteinskonvergenz für die Zweiphasenströmung und zur richtungsabhängigen Diffusion und Dispersion bis zu t = 10^4 Jahre durchgeführt. Dabei betrug der maximale Zeitschritt $4 \cdot 10^8$ s. Zu einer übersichtlichen Darstellung der Ergebnisse werden nachfolgend jeweils maximal sechs Rechenfälle bzw. Ergebnisse in einem Bild wiedergegeben.

In Abb. 38 bis Abb. 40 ist die zeitliche Entwicklung des Druckes, der Porosität und der Flüssigkeitssättigung im Deponiefeld für die Fälle K1 bis K4 dargestellt. Mit den Fällen K1 bis K4 ohne Gasquelle wird zuerst die Zuflussphase, d.h. die Flutung des Deponieund des Abbaufeldes, bei gleichzeitiger Gesteinskonvergenz simuliert. Entsprechend der Randbedingung (p = 1 bar, $S_F = 1$) am oberen Schachtende und der Anfangsbedingung (p = 1 bar, $S_F = 0,2$) im gesamten Modellgebiet dringt die Salzlauge in das Deponiefeld ein, wodurch der Druck und die Flüssigkeitssättigung im Deponiefeld zunehmen. Gleichzeitig nimmt jedoch wegen der Gesteinskonvergenz die Porosität des komprimierbaren Versatzes bzw. das verfügbare Fluidvolumen im Deponie- und im Abbaufeld ab. In den Fällen K1 bis K4 nimmt die Porosität im Deponiefeld vom Anfangswert von 0,65 auf 0,11 bis 0,23 ab.

Während der allmählichen Flutung des Deponiefeldes bleibt der Druck im Deponiefeld bis zu etwa t = 60 Jahre weitgehend konstant beim Anfangswert von 1 bar. Erst danach nimmt der Druck gemäß der zunehmenden Flüssigkeitssättigung im Deponiefeld zu und bleibt nach etwa t = 200 Jahre weitgehend konstant bei einem Niveau, das abhängig vom Rechenfall bis zu 26 bar höher als der langfristig zu erwartende hydrostatische Druck von 89 bar im Deponiefeld liegt. Dies ist auf die relativ schnelle und noch nicht abgeschlossene Gesteinskonvergenz (Referenzwert: 0,005/Jahr) zurückzuführen, durch die das zweiphasige Fluidgemisch aus dem Deponiefeld durch den Verschluss in den Schacht gedrückt wird. Das Erreichen des weitgehend konstanten Drucks im Deponiefeld ab t > 200 Jahre markiert das Ende der Zuflussphase bzw. den Beginn der Ausströmung aus dem Deponiefeld.

Abb. 38: Druck im Deponiefeld für die Fälle K1 bis K4 ohne Gasquelle

Abb. 39: Porosität im Deponiefeld für die Fälle K1 bis K4 ohne Gasquelle

Abb. 40: Flüssigkeitssättigung im Deponiefeld für die Fälle K1 bis K4 ohne Gasquelle

Aus Abb. 38 bis Abb. 40 kann man folgendes entnehmen:

- Erwartungsgemäß führt die geringere Permeabilität der Verschlüsse im Fall K2 zu einem höheren Druckaufbau als im Fall K1. Im Vergleich zum Fall K1 hat der höhere Druck im Fall K2 keinen signifikanten Einfluss auf die Porosität und auf die Flüssigkeitssättigung im Deponiefeld, weil der höhere Druck im Fall K2 erst ab t > 600 Jahre wirksam wird und die Porosität bereits bei t = 200 Jahre derart gefallen ist, dass die hohe Stützwirkung des Versatzes eine weitere Porositätsabnahme erschwert.
- Die Vernachlässigung des deutlich größeren Abbaufeldes hat keinen nennenswerten Einfluss auf die zeitliche Entwicklung des Drucks, der Porosität und der Flüssigkeitssättigung im Deponiefeld (Fälle K1 und K3).
- Im Fall K4 nimmt die Flüssigkeitssättigung im oberen Teil des Deponiefeldes in den ersten 30 Jahren etwas ab, weil wegen des Auftriebs im Deponiefeld die leichte Gasphase vertikal nach oben und die schwere Flüssigkeitsphase nach unten wandert. In den Fällen K1 bis K3 ist diese Abnahme der Flüssigkeitssättigung in der Anfangsphase nicht zu beobachten, weil bei einer relativ niedrigen Flüssigkeitssättigung die Flüssigkeitsphase praktisch unbeweglich ist (Abb. 37). Die höhere Flüs-

sigkeitssättigung (t = 0: $S_F = 0,4$) im Fall K4 führt zu einem schnelleren Anstieg des Drucks und der Flüssigkeitssättigung als im Fall K1 mit $S_F = 0,2$ bei t = 0, weil der kompressible Fluidanteil im Deponiefeld im Fall K4 geringer als im Fall K1 ist. Der höhere Druck im Fall K4 reduziert die Gesteinskonvergenz und führt zu einer etwas höheren Porosität als im Fall K1. Im Fall K4 nimmt die Porosität im Deponiefeld vom Anfangswert von 0,65 auf 0,23 im Vergleich zu 0,11 in den Fällen K1 bis K3.

In Abb. 41f. sind die Massenströme der flüssigen Phase und des Schadstoffes am oberen Schachtende für die Fälle K1 bis K4 ohne Gasquelle wiedergegeben. Abhängig vom Rechenfall endet die Zuflussphase zwischen t = 100 und 300 Jahren. In den Fällen K1 bis K4 wird die Ausströmung bzw. der Schadstoffabfluss aus dem Schacht allein durch die Gesteinskonvergenz im Deponie- und im Abbaufeld bestimmt, die wiederum rückwirkend von dem Druck und von der Porosität beeinflusst werden.

Abb. 41: Flüssigkeitsmassenstrom am oberen Schachtende für die Fälle K1 bis K4 ohne Gasquelle

Abb. 42: Schadstoffabfluss am oberen Schachtende für die Fälle K1 bis K4 ohne Gasquelle

Da in allen betrachteten Rechenfällen die anfängliche Schadstoffmasse im Deponiefeld fest gehalten wird und da in einigen Fällen die anfängliche Flüssigkeitssättigung variiert wird, gilt für den anfänglichen Massenanteil X_{F,2} des Schadstoffes im Deponiefeld:

$$X_{F,2} (t = 0) \sim 1/S_F (t = 0), \quad X_{F,2} = m_{F,2} / m_F$$
 (26)

Während der Zuflussphase nimmt die Flüssigkeitssättigung im Deponiefeld zu und damit der Schadstoffanteil bzw. die Schadstoffkonzentration etwas ab. Am Ende der Zuflussphase bzw. beim Beginn der Abflussphase erreichen die Flüssigkeitssättigung, die Porosität und der Schadstoffanteil die Werte im Deponiefeld, die durch das Strömungsverhalten während der Zuflussphase bestimmt werden und jedoch maßgebend für den späteren Schadstoffabfluss aus dem Deponiefeld sind. Für die Ausströmung Q_F und für den Schadstoffabfluss $Q_{F,2}$ infolge der Gesteinskonvergenz in der Abflussphase gilt (siehe Kapitel 8.2):

$$Q_{F, Por} \sim (dn/dt)S_F$$
 (27)

$$Q_{F, Por, 2} \sim Q_{F, Por} X_{F, 2}$$
(28)

Die oben schematisch dargestellten Beziehungen zeigen, dass der Schadstoffabfluss nicht nur von den Zuständen in der Abflussphase sondern auch von denen in der vorangehenden Zuflussphase abhängt. Aus Abb. 41 und Abb. 42 kann man folgendes entnehmen:

- Die Vernachlässigung des relativ großen Abbaufelds hat keinen nennenswerten Einfluss auf die Ausströmung und auf den Schadstoffabfluss (Fälle K1 und K3).
- Im Fall K4 mit einer höheren anfänglichen Flüssigkeitssättigung im Deponiefeld wird die Lösung bzw. der Schadstoff aus dem Schacht früher als im Fall K1 ausgetragen. Der weitgehend konstante Schadstoffabfluss zwischen 1000 und 10 000 Jahren im Fall K4 ist etwas niedriger als der entsprechende Wert in den Fällen K1 und K3. Dies ist hauptsächlich auf die geringere Schadstoffkonzentration im Fall K4 zurückzuführen.

In den oben diskutierten Rechenfällen K1 bis K4 wurde die Gasquelle vernachlässigt. In Abb. 43 bis Abb. 45 ist die zeitliche Entwicklung des Druckes, der Porosität und der Flüssigkeitssättigung im Deponiefeld für die Fälle KG1 bis KG4 mit einer Gasquelle dargestellt. Mit den Fällen KG1 bis KG4 wird zuerst die Zuflussphase, d.h. die Flutung des Deponie- und des Abbaufeldes, bei gleichzeitiger Gesteinskonvergenz und Gasbildung im Deponiefeld simuliert.

Abb. 43: Druck im Deponiefeld für die Fälle KG1 bis KG4 mit Gasquelle

Abb. 44: Porosität im Deponiefeld für die Fälle KG1 bis KG4 mit Gasquelle

Abb. 45: Flüssigkeitssättigung für die Fälle KG1 bis KG4 mit Gasquelle

Im Gegensatz zu den Fällen K1 bis K4 (Abb. 41) führt die Gasbildung von Anfang an zu einem Druckanstieg im Deponiefeld (Abb. 43). Da die Gasbildung nur bis zu t = 30 Jahre andauert, nimmt der Druck danach etwas langsamer zu. Gegen Ende der Rechnung bei t = 10 000 Jahre erreicht der Druck in den Fällen KG1 bis KG4 etwa die gleichen Werte wie bei den entsprechenden Fällen K1 bis K4 ohne Gasquelle. Der von Anfang an auftretende Druckanstieg infolge der Gasbildung erschwert den Laugenzufluss und verzögert die Gesteinskonvergenz derart, dass die Porosität in den Fällen KG1 bis KG4 etwas langsamer als in den entsprechenden Fällen K1 bis K4 abnimmt. Dies führt in den Fällen KG1 bis KG4 zu einem größeren verfügbaren Fluidvolumen und damit zu einem langsameren Anstieg der Flüssigkeitssättigung im Deponiefeld bzw. zu einer Verlängerung der Zuflussphase im Vergleich zu den Fällen K1 bis K4.

Diese qualitativen Unterschiede sind in Abb. 41ff. und Abb. 43ff. gut erkennbar. Da die Auswirkungen der Parametervariation in der jeweiligen Rechenfallreihe (K1 bis K4 bzw. KG1 bis KG4) etwa gleich sind, gilt das, was oben zu den Fällen K1 bis K4 gesagt wurde, sinngemäß auch für die Fälle KG1 bis KG4.

In Abb. 46 bis Abb. 48 sind die Massenströme der Flüssigkeitsphase, des Schadstoffes und der Gasphase am oberen Schachtende für die Fälle KG1 bis KG4 mit einer Gas-

quelle wiedergegeben. Da der relativ frühe Druckanstieg infolge der Gasbildung die Gesteinskonvergenz verlangsamt, endet in den Fällen KG1 bis KG4 die Zuflussphase zwischen t = 400 und 700 Jahren (Abb. 46) im Vergleich zu zwischen 100 und 300 Jahren in den Fällen K1 bis K4 (Abb. 41). Dies führt in den Fällen KG1 bis KG4 zu einer höheren Porosität, zu einem größeren verfügbaren Flüssigkeitsvolumen und damit zu einer deutlich geringeren Flüssigkeitssättigung beim Beginn der Ausströmung aus dem Deponiefeld als in den Fällen K1 bis K4. Ferner setzt sich der gesamte Flüssigkeitsabfluss aus dem Deponiefeld in den Schacht zusammen aus dem Beitrag infolge der Gesteinskonvergenz und aus dem Beitrag infolge der treibenden Druckdifferenz zwischen dem Deponiefeld und dem Schacht:

$$Q_{F} = Q_{F, Por} + Q_{F, Druck}$$
⁽²⁹⁾

$$Q_{F, Druck} \sim k_{F, rel} (\Delta p)_{F}, \qquad Q_{F, Druck, 2} \sim Q_{F, Druck} X_{F, 2}$$
 (30)

$$k_{F, rel} \sim (S_F)^4 \tag{31}$$

Abb. 46: Flüssigkeitsmassenstrom am oberen Schachtende für die Fälle KG1 bis KG4 mit Gasquelle

Abb. 47: Schadstoffabfluss am oberen Schachtende für die Fälle KG1 bis KG4 mit Gasquelle

Abb. 48: Gasabfluss am oberen Schachtende für die Fälle KG1 bis KG4 mit Gasquelle

Da in den Fällen KG1 bis KG4 die Flüssigkeitssättigung und damit die relative Permeabilität der flüssigen Phase beim Beginn des Abflusses deutlich kleiner als in den Fällen K1 bis K4 ist, ist der Flüssigkeitsabfluss aus dem Deponiefeld in den Fällen KG1 bis KG4 niedriger als in den Fällen K1 bis K4. Folglich wird in den Fällen KG1 bis KG4 der Schadstoff aus dem Schacht deutlich später und teilweise etwas langsamer als in den Fällen K1 bis K4 ausgetragen (Abb. 42 und Abb. 47).

Aus Abb. 48 kann man entnehmen, dass - abhängig vom Rechenfall - der Gasabfluss aus dem Schacht zwischen t = 400 und 700 Jahren beginnt und bis zum Ende der Rechnung gegen $t = 10\ 000$ Jahre praktisch abgeschlossen ist. Sobald das Gas aus dem Schacht abströmt, bleibt der Druck im Deponiefeld etwa konstant, bis der Gasabfluss nennenswert gesunken ist (Abb. 43). Der danach auftretende Druckanstieg wird durch die Gesteinskonvergenz bewirkt.

Insgesamt kann man anhand des Vergleichs der Rechenfälle K1 bis K4 mit den entsprechenden Rechenfällen KG1 bis KG4 folgern: Der relativ frühe Druckanstieg infolge der Gasbildung im Deponiefeld kann die Gesteinskonvergenz derart reduzieren, dass während der Zuflussphase die Flüssigkeitssättigung im Deponiefeld langsamer zunimmt und die Zuflussphase später endet. Dies kann bei einer Gasquelle eine geringere Lösungs- bzw. Schadstoffaustragung aus dem Schacht in der sich anschließenden Abflussphase als in einer Situation ohne Gasquelle bewirken.

In den obigen acht Rechenfällen K1 bis K4 und KG1 bis KG4 wurde die Referenz-Konvergenzrate festgehalten. In Abb. 49 bis Abb. 51 sind der Druck, die Porosität und die Flüssigkeitssättigung im Deponiefeld für die Fälle K1, K5 und K6 ohne Gasquelle dargestellt, bei denen die Referenz-Konvergenzrate zwischen 0,0001 und 0,005/Jahr variiert wird. Aus Abb. 49 bis Abb. 51 kann man entnehmen, dass erwartungsgemäß mit abnehmender Konvergenzrate

- der Druck später ansteigt
- der maximale Druck abnimmt
- die Porosität langsamer abnimmt
- die Flüssigkeitssättigung langsamer zunimmt und
- die Zuflussphase später endet,

da ein größerer Hohlraum während der Zuflussphase verfügbar bleibt.

Diese Auswirkungen gelten auch für die Fälle KG1, KG5 und KG6 mit einer Gasquelle im Deponiefeld (Abb. 52 bis Abb. 54). Speziell in den Fällen K6 und KG6 mit der kleinsten Konvergenzrate von 0,0001/Jahr ist die Gesteinskonvergenz derart langsam, dass innerhalb der Betrachtungszeit von 10 000 Jahren die Zuflussphase nicht abgeschlossen ist und der Druck unterhalb des hydrostatischen Drucks von 89 bar im Deponiefeld bleibt.

Zu einem direkten Vergleich der Auswirkungen der Gasquelle und der Gesteinskonvergenz sind in Abb. 55 bis Abb. 57 die Massenströme der Flüssigkeitsphase, des Schadstoffes und der Gasphase am oberen Schachtende für die Fälle K1, K5 und K6 ohne und für die Fälle KG1, KG5 und KG6 mit Gasquelle im Deponiefeld dargestellt. Wie bei den ersten acht Rechenfällen mit der gleichen Referenz-Konvergenzrate kann man auch bei den Fällen mit einer unterschiedlichen Referenz-Gesteinskonvergenzrate deutlich erkennen, dass der relativ frühe Druckanstieg infolge der Gasbildung die Gesteinskonvergenz derart reduzieren kann, dass letztlich eine geringere Schadstoffmenge bei einer Gasquelle als in einer Situation ohne Gasquelle ausgetragen werden kann (Abb. 55f.). Speziell bei den Fällen K6 und KG6 ist die Gesteinskonvergenz derart langsam, dass die Zuflussphase bis zu 10 000 Jahren nicht abgeschlossen ist.

Abb. 49: Druck im Deponiefeld für die Fälle K1, K5 und K6 ohne Gasquelle

Abb. 50: Porosität im Deponiefeld für die Fälle K1, K5 und K6 ohne Gasquelle

Gas- und Stofftransport in einem vereinfachten Untertagedeponie-Modell

Abb. 51: Flüssigkeitssättigung im Deponiefeld für die Fälle K1, K5 und K6 ohne Gasquelle

Abb. 52: Druck im Deponiefeld für die Fälle KG1, KG5 und KG6 mit Gasquelle

Abb. 53: Porosität im Deponiefeld für die Fälle KG1, KG5 und KG6 mit Gasquelle

Abb. 54: Flüssigkeitssättigung im Deponiefeld für die Fälle KG1, KG5 und KG 6 mit Gasquelle

Zu einem integralen Vergleich der betrachteten Rechenfälle sind in der nachfolgenden Tab. 26 der maximale Druck im Deponiefeld und die ausgetragene Schadstoffmasse aus dem Grubengebäude bzw. aus dem gesamten Modellgebiet in % der ursprünglichen Menge im Deponiefeld bis zu t = 10 000 Jahre zusammengefasst.

Tab. 26:	Maximaler Druck und ausgetragene Schadstoffmasse bei den verschiede-
	nen Rechenfällen

Rechenfall	maximaler Druck im Deponiefeld in bar		ausgetragene Schadstoffmasse aus dem Grubengebäude in % der ursprünglichen Menge bis 10 000 Jahre	
	ohne Gasquelle	mit Gasquelle	ohne Gasquelle	mit Gasquelle
K1; KG1	105,9	104,5	13,06	6,87
K2; KG2	116,5	107,9	1,55	0
K3; KG3	105,6	103,7	12,59	6,05
K4; KG4	114,6	113,3	11,32	8,80
K5; KG5	98,6	95,7	4,58	0,94
K6; KG6	Laugenzufluss in den Schacht nicht beendet			

Der maximale Druck von 117 bar im Deponiefeld tritt im Fall K2 ohne Gasquelle auf und ist um 28 bar bzw. 31 % höher als der langfristig zu erwartende hydrostatische Druck von 89 bar im Deponiefeld. Dagegen ist der maximale Druck von 113 bar im Fall KG4 mit einer Gasquelle etwas geringer als im Fall K2 und ist um 27 % höher als der hydrostatische Druck.

In JAVERI et al. (2001) wurde als eine Arbeitshypothese postuliert, dass die geomechanische Stabilität und Integrität der geologischen Formation gegeben ist, wenn der Druck

 $p \leq p_{\text{Grenze}} = 1,2 \cdot p_{\text{hydrostat}}$

bleibt. Bei Berücksichtigung dieses Kriteriums kann man feststellen, dass in den Fällen K2 und KG2 mit einer Verschluss-Permeabilität von 1·10⁻¹⁶ m² und in den Fällen K4 und KG4 mit einer anfänglichen Flüssigkeitssättigung von 0,4 der Grenzdruck von 106 bar überschritten wird und damit eine Verletzung der Stabilität und der Integrität der geologischen Formation nicht ausgeschlossen werden kann.

Abb. 55: Flüssigkeitsmassenstrom am oberen Schachtende für die Fälle K1, K5, K6, KG1, KG5 und KG6

Abb. 56: Schadstoffabfluss am oberen Schachtende für die Fälle K1, K5, KG1 und KG5

Abb. 57: Gasabfluss am oberen Schachtende für die Fälle KG1 und KG5

Aus der obigen Tab. kann man für die hier betrachteten Modellannahmen folgern, dass mit einer Gasquelle im Deponiefeld ein etwas niedrigerer Druck im Deponiefeld und eine etwas geringere Schadstoffaustragung aus dem Grubengebäude bzw. aus dem Modellgebiet als ohne Gasquelle zu erwarten sind.

Diese Folgerung steht jedoch nicht im Einklang mit den früheren Analysen mit einer geringeren Referenz-Gesteinskonvergenz von $5 \cdot 10^{-5}$ /a (JAVERI, 1996b, 2000c), in denen ein höherer Druck und eine stärkere Schadstoffaustragung bei Berücksichtigung einer Gasquelle berechnet wurden. Vermutlich sind die hier beobachteten Auswirkungen der Gasquelle auf die relativ schnelle Gesteinskonvergenz und auf den relativ großen Hohlraum in der Deponie im Vergleich zur Gasbildung bzw. auf die relativ große Speicherkapazität für die entstehenden Gase in der Deponie zurückzuführen, wobei in diesem Bericht gilt:

$$\frac{\text{gesamte Gasbildung in Nm}^3}{\text{Volumen des Deponiefeldes in m}^3} = \frac{66 \cdot 10^6}{7,8 \cdot 10^6} = 8,5$$
(32)

während in den Analysen zum Gas- und Nuklidtransport (JAVERI, 2000c) gilt:

 $\frac{\text{gesamte Gasbildung in Nm}^3}{\text{Volumen der Einlagerungskammer in m}^3} = \frac{4 \cdot 10^6}{41 \cdot 10^3} = 97,6$

Diese Vermutung sollte durch weitere Analysen überprüft werden.

Zusammenfassend kann man aus den vorliegenden orientierenden zweidimensionalen Analysen zum Gas- und Stofftransport in einem vereinfachten Grubengebäude einer Untertagedeponie im Steinsalz für die hier postulierten Modellannahmen u.a. folgern:

- Ein Deponieverschluss mit einer geringen Permeabilität (k ≤ 1E-16 m²) oder eine hohe anfängliche Flüssigkeitssättigung (S_F ≥ 0,4) beim Beginn der Gasbildung kann einen Druckanstieg bewirken, der die geomechanische Stabilität der geologischen Formation beeinträchtigen kann.
- Der relativ frühe Druckaufbau infolge der Gasbildung kann die Gesteinskonvergenz derart reduzieren, dass letztlich ein etwas niedrigerer maximaler Druck in der Deponie und eine etwas geringere Schadstoffaustragung aus dem Grubengebäude als in einer Situation ohne Gasbildung zu erwarten sind.

8.4 Übersicht über die Ergebnisse

Im Rahmen von Analysen zur Langzeitsicherheit einer Untertagedeponie für chemischtoxische Abfälle in einem Salzstock wird postuliert, dass Salzlauge in das Grubengebäude eindringt. Dabei sind Strömungen in Bereichen des Grubengebäudes u.a. infolge der Gesteinskonvergenz zu erwarten, wodurch chemisch-toxische Substanzen nach Lösung in der Flüssigkeitsphase in einer Untertagedeponie transportiert und umverteilt werden können. Die Strömung bzw. der Schadstofftransport kann auch durch Gasbildung verursacht werden. Die Gase, vorwiegend Wasserstoff, entstehen infolge der chemischen Wechselwirkungen zwischen den Abfällen bzw. Abfallgebinden und der eingeflossenen Salzlauge.

Zur Beschreibung der Transportvorgänge im Grubengebäude im Salinar kann das dreidimensionale Rechenprogramm TOUGH2 für eine poröse Konfiguration verwendet werden. Die bisherigen Untersuchungen zum Gas-, Stoff-, Nuklid- und Wärmetransport bei unterschiedlichen Bedingungen haben gezeigt, dass TOUGH2 mit den eigenen Modellerweiterungen zur Gesteinskonvergenz bei Zweiphasenströmung insgesamt zufrieden stellende Ergebnisse liefert und zur Analyse des Gas- und Schadstofftransports für eine beliebige poröse Konfiguration als geeignet angesehen werden kann.

Nach einer kurzen Beschreibung des Rechenprogramms TOUGH2/EOS7R wurden im Rahmen einer orientierenden Analyse die gemeinsamen Auswirkungen der Gasbildung und der Gesteinskonvergenz auf die Druckentwicklung und auf die Schadstoffaustragung aus einer Untertagedeponie anhand eines vereinfachten zweidimensionalen Modells eines Grubengebäudes im Salzgestein untersucht. Dabei wurden u.a. die Permeabilität des Deponieverschlusses und die Gesteinskonvergenz variiert.

Zusammenfassend kann man aus den vorliegenden orientierenden zweidimensionalen Analysen zum Gas- und Stofftransport in einem vereinfachten Grubengebäude einer Untertagedeponie im Steinsalz für die hier postulierten Modellannahmen u.a. folgern:

- Ein Deponieverschluss mit einer geringen Permeabilität (k ≤ 1E-16 m²) oder eine hohe anfängliche Flüssigkeitssättigung (S_F ≥ 0,4) beim Beginn der Gasbildung kann einen Druckanstieg bewirken, der die geomechanische Stabilität der geologischen Formation beeinträchtigen kann.
- Der relativ frühe Druckaufbau infolge der Gasbildung kann die Gesteinskonvergenz derart reduzieren, dass letztlich ein etwas niedrigerer maximaler Druck in der De-

ponie und eine etwas geringere Schadstoffaustragung aus dem Grubengebäude als in einer Situation ohne Gasbildung zu erwarten sind.

Insgesamt kann man feststellen: Da u.a. eine stark nichtlineare Wechselwirkung zwischen den Schlüsselparametern - Gesteinskonvergenz und Druckaufbau infolge der Gasbildung - existiert, sind die integralen Auswirkungen auf die Druckentwicklung und auf die Schadstoffaustragung ohne detaillierte Analysen schwer abzuschätzen. Da die geometrische Modellierung des Grubengebäudes die Zweiphasenströmung und den Schadstofftransport erheblich beeinflussen kann, sollten ihre Auswirkungen später unter Berücksichtigung der standortspezifischen Daten ausführlich untersucht werden.

9 Zusammenfassung und Ausblick

Die Arbeitsergebnisse zeigen in Übereinstimmung mit früheren Untersuchungen, dass eine Vielzahl chemisch-toxischer Abfälle beim Kontakt mit wässrigen Lösungen oder mit Luftfeuchtigkeit Gase freisetzen, die aufgrund ihrer Toxizität und Menge für Belange der Betriebssicherheit wie auch der Langzeitsicherheit zu berücksichtigen sind. Im Mittelpunkt des vorgestellten Vorhabens steht die bislang fehlende systematische Untersuchung der Gasbildung bei solchen Abfallarten, die zur Untertagedeponierung empfohlen oder als Versatzmaterial zugelassen sind. Hierzu wurden neue experimentelle Methoden zur Bestimmung der maximalen Gasfreisetzung und der zeitlichen Entwicklung der Gasfreisetzung unter realitätsnahen Bedingungen entwickelt und auf eine Reihe UTD-relevanter Abfälle angewandt. Mit Hilfe dieser Methoden ist es möglich, stark gasentwickelnde Abfälle mit verhältnismäßig geringem Aufwand zu identifizieren und zu charakterisieren. Für den Einsatz in der Routineanalytik ist noch eine weitere Beschleunigung der Umsetzungsprozesse notwendig. Eine Weiterentwicklung der Methoden ist daher anzustreben.

Die beobachteten und quantifizierten Reaktionsgase sind vor allem Wasserstoff, Methan, Kohlendioxid und Schwefelwasserstoff, wobei Wasserstoff die weitaus höchsten Bildungsmengen aufweist. Falls die Anfangsatmosphäre Luftsauerstoff enthält, wird dieser meist zügig verbraucht. Eine besonders hohe Gasfreisetzung weisen Abfälle aus der Metallurgie und der Metallverarbeitung sowie Müllverbrennungsrückstände und Batterien auf. Sie kann Werte über 10 m³ je t Abfall mit einem Maximalwert von 42 m³/t erreichen. Eine vorherige Konditionierung von Flugaschen mit wässrigen Lösungen senkt die Gasfreisetzung deutlich, jedoch niemals vollständig. Stark gasbildende Abfälle enthalten, nachgewiesen oder vermutet, hohe Anteile metallischen Aluminiums oder Eisen. Aluminiumhaltige Abfälle setzen neben Wasserstoff häufig auch Methan oder Ammoniak frei.

Die Untersuchungen zeigen, dass wasserstoff- und methanbildende Prozesse regelmäßig auch ohne direkten Wasserkontakt ablaufen, wenn auch meist erheblich langsamer als bei direktem Lösungskontakt. Im Falle eines eisenhaltigen Schleifschlammes wurde gegenüber den Versuchen mit direktem Lösungskontakt keine Verminderung der hohen Gasbildungsgeschwindigkeit festgestellt. Es bedarf also nicht erst eines hydrologischen Störfalls, um gasbildende Reaktionen in Einlagerungskammern in Gang zu setzen, der Wasservorrat des Restgasraums und der Abfälle kann bereits ausreichen. In einer Anzahl von Technikumsversuchen wurden die thermischen Effekte von Abfall-Lösungsreaktionen überprüft. Es ließ sich zeigen, dass stark gasentwickelnde Abfälle zu signifikanten Temperaturerhöhungen des Reaktionssystems beitragen. Der stärkste gemessene Temperatursprung betrug etwa 20 ℃ innerhalb einer Minute unmittelbar beim ersten Eindringen der Lösungsfront in den Abfall (ein Filterstaub aus der Müllverbrennung). Länger andauernde Temperaturerhöhungen überschritten in keinem Fall 10 ℃, in den meisten Fällen variierten sie um 2-4 ℃.

Die entstandene Wärme wird im gut wärmeleitenden System Abfall/Lösungsgemisch/ freie Lösung zügig an die Laborumgebung abgeführt, so dass ein bis zwei Tage zur Wiederherstellung des thermischen Ausgleichs Abfall/Labor ausreichen. Es ist davon auszugehen, dass in größeren Systemen mit wesentlich niedrigerem Oberflächen/Feststoffverhältnis, z.B. in einer gefluteten Abfallkammer höhere Temperaturen zu erwarten sind, da die für die Wärmeableitung notwendigen Wegstrecken beträchtlich wachsen. Solche Systeme lassen sich im Technikumsmaßstab nicht wiedergeben. Aufgrund einfacher thermodynamischer Rechnung ließ sich zeigen, dass in ausgedehnten Abfallkörpern selbst bei moderaten Metallgehalten um 1 Gew% mit stark erhöhten Temperaturen zu rechnen ist. Werte über 100 °C sind nicht auszuschließen, zumal sie in Schlacken-Monodeponien auch schon beobachtet wurden. Zur Klärung der unter UTD-Bedingungen maximal zu erwartenden Temperaturen wären Wärmeausbreitungsrechungen unter Anwendung realer Kammergeometrien sehr hilfreich.

Modellierungen mit dem Programm TOUGH2 haben gezeigt, dass sich die Bildung von Gasen aus Abfällen unter ungünstigen Umständen negativ auf die Integrität von Untertagedeponien im Salz auswirken kann. Insbesondere bei Annahme eines Deponieverschlusses mit geringer Permeabilität oder einer hohen anfänglichen Flüssigkeitssättigung beim Beginn der Gasbildung kann ein Druckanstieg resultieren, der die geotechnische (Verschlussbauwerke) und geologische (Wirtsgestein) Barriere in ihrer Funktionstüchtigkeit beeinträchtigen kann. Aufgrund der komplexen nichtlinearen Wechselwirkungen zwischen Druckaufbau und Gebirgskonvergenz sind verlässliche Aussagen zum Schadstoffaustrag ohne detaillierte Standortdaten und Analysen derzeit nicht möglich.

Die Versuchsergebnisse haben Relevanz sowohl für die Betriebssicherheit als auch die Langzeitsicherheit von untertägigen Entsorgungseinrichtungen. Wie die kürzlich aufgetretenen Störfälle in den Entsorgungsbergwerken Stocamine (Elsaß, Frankreich) und Teutschenthal (Sachsen-Anhalt) gezeigt haben, beschränken sich gasbildende und brandfördernde Prozesse nicht nur auf Laboruntersuchungen. Im Sinne der Betriebswie auch der Langzeitsicherheit ist daher zu fordern, dass die Gasbildung und das Selbstentzündungspotential von Abfällen in Zukunft verstärkt zu berücksichtigen ist. Insbesondere ist zu diskutieren, ob Abfälle mit hohem Anteil an fein verteilten Metallpartikeln weiterhin ohne spezifische Konditionierung zur Entsorgung/Verwertung zugelassen werden sollten. Eine striktere Formulierung oder Auslegung der Deponie- sowie der Bergversatzverordnung halten wir für erwägenswert.

- AMIN, M. und LEPOM, P. (1995): Stoffgruppenanalyse zur Charakterisierung des biologisch abbaubaren Anteils der organischen Substanz in Müllproben, Müll und Abfall 4/95, 242-250.
- BRASSER, T. (1991): Die untertägige Ablagerung von Abfällen im Salzgestein, GSF-Bericht 6/91.
- BRASSER, Th.; BAHADIR M. und SCHRAMM K. W. (1998) Erprobung und Anpassung ökotoxikologischer Methoden zur Bewertung UTD-relevanter Abfall-Eluate. Abschlussbericht zum Forschungsvorhaben mit dem Förderkennzeichen 02 C 0284/ 02 C 0415, GRS-A-2592.
- BRUSH, L. H. (1995): Systems Prioritization Method Iteration 2, Baseline Position Paper: Gas Generation in the Waste Isolation Pilot Plant, Sandia National Laboratories, March 17, 1995.
- BUNDESMINISTERIUM FÜR UMWELT, NATURSCHUTZ UND REAKTORSICHERHEIT (2002a): Verordnung über Deponien und Langzeitlager vom 24. Juli 2002 (Deponieverordnung). BGBI I 2002, 2807.
- BUNDESMINISTERIUM FÜR UMWELT, NATURSCHUTZ UND REAKTORSICHERHEIT (2002b): Verordnung über den Versatz von Abfällen unter Tage und zur Änderung von Vorschriften zum Abfallverzeichnis vom 24. Juli 2002 (Bergversatzverordnung). BGBI I 2002, 2833.
- CHANDLER, A. J.; EIGHMY, T. T.; HARTLÉN, J.; HJELMAR, O.; KOSSON, D. S.; SAWELL S.
 E.; VAN DER SLOOT, H. A. und VEHLOW, J. (1997): Municipal solid waste invinerator residues. Studies in Environmental Science 67. Elsevier, Amsterdam.
- DAVIES, P. (1991): Evaluation of the role of threshold pressure in controlling flow of Waste Generated Gas into Bedded Salt at the Waste Isolation Pilot Plant. Sandia-Report SAND90-3246 (June 1991).
- FEIN, E.; MÜLLER-LYDA, I. und STORCK, R. (1996): Ableitung einer Permeabilitäts-Porositätsbeziehung für Salzgrus und Dammbaumaterialien. GRS-Bericht 132.

- FÖRSTNER, U. und HIRSCHMANN, G. (1997): Langfristiges Deponieverhalten von Müllverbrennungsschlacken. Abschlussbericht zum Forschungsvorhaben mit dem Förderkennzeichen 1460799A.
- HASSETT, D. J. und EYLANDS, K. E. (1997): Heat of hydration of fly ash as a predictive tool, Fuel (76/8), 807-809.
- HERBERT, H.-J. und MÖNIG, J. (1996): Exemplarische Untersuchungen von Wechselwirkungsreaktionen UTD-relevanter chemisch-toxischer Abfälle mit hochsalinaren Lösungen, *GRS-Bericht* 126, 184 S.
- HJELMAR, O. (1993): Stofudvaskning fra flyveaske fra affaldsforbrændingsanlæg. Rapport til Miljøstyrelsen. VKI, Hørsholm, Dänemarl. (Zitiert in: Chandler et al. 1997).
- HUSAIN, A. und KRASZNAI, J. P (1994): Compaction of radioactive incinerator ash: gas generation effects. Waste Managem. 14, 521-530.
- JAKOBI, H. W. (1999): Herkunft und Verbleib von Sonderabfall. Müll und Abfall, Lieferung 7/99 1-31.
- JAROŠ, M. und HUBER, H. (1997): Emissionsverhalten von HMV-Schlacke nach forcierter Alterung. WASTE REPORTS No 6.
- JAVERI, V. (1996b): Orientierende Analysen zum Gas- und Stofftransport in einem Endlager im Salinar. In: GRS-PTE-Workshop: Gase im Endlager (Mai 96) GRS-129.
- JAVERI, V. (1996c): Orientierende Analysen zum Gas- und Nuklidtransport in einem Endlager im Salinar GRS-A-2389.
- JAVERI, V. (2000a): Analysen zum Gas- und Nuklidtransport bei variabler Laugendichte in einem zweidimensionalen Grubengebäude eines Endlagers im Salinar GRS-A-2792.
- JAVERI, V. (2000b): Analysis of nuclide transport including non linear adsorption on brine fraction in a two dimensional heterogeneous porous medium Proceedings of Int. Conf. on Radioactive Waste Disposal, Berlin, 459-464.

- JAVERI, V. (2000c): Scoping analysis of combined gas and nuclide transport including variable brine fraction and rock convergence in a two dimensional repository. Proceedings of Int. Conf. on Radioactive Waste Disposal, Berlin, 465-470.
- JAVERI, V. und Baltes, B. (2001): Analysen zum Gas- und Stofftransport in der Geosphäre eines vereinfachten Endlagersystems GRS-A-2904 (Juni 2001) Internet: http://www.akend.de/aktuell/pinnwand/pdf/analysen.pdf
- JOCKWER, N.; HERTES, U. und SPRENGER, H. (1997): Gaserzeugung und –freisetzung in Abfällen und deren Ausbreitung im umgebenden Gebirge (Abschlussbericht zum Vorhaben mit dem Förderkennzeichen 02C 0163 6/ 02C 0445 3). GRS-A-2539.
- KLEIN, R. (2002): Wasser,- Stoff- und Energiebilanz von Deponien aus Müllverbrennungsschlacken, Dissertation, München.
- KLINGER, C. (1994): Mobilisationsverhalten von anorganischen Schadstoffen in der Umgebung von untertägigen Versatzbereichen am Beispiel von Reststoffen aus Müllverbrennungsanlagen im Steinkohlengebirge des Ruhrkarbons. DMT-Forschungsberichte 24, 170 S.
- KREIS, P. (1991): Hydrogen Evolution from Corrosion of Iron and Steel in Low/Intermediate Level Waste Repositories, Nagra, Technical Report 91-21, 29 S.
- LÄNDERAUSSCHUSS BERGBAU (LAB) (1996): Anforderungen an die stoffliche Verwertung von mineralischen Abfällen als Versatz unter Tage – Technische Regeln für den Einsatz von bergbaufremden Abfällen als Versatz (Stand 22. Oktober 1996).
- LASER, M. (1991): Gas production by reaction of water or alkaline solutions with LAW ashes, in: Cecile L. und Kertesz C.: Treatment and conditioning of radioactive incinerator ashes, Elsevier, 1991, 29-34.
- LIDE, D. R. (1991) Handbook of chemistry and physics, CRC Press, Boca Raton.

- MAGEL, G; HEUSS-ASSBICHLER, S. und FEHR, K. (2001): Abiotic H2 Generating Reactions in a MSWI Monofill. In: SARDINIA 2001 / Eighth International Waste Management and Landfill Symposium, S. Margherita di Pula 2001, 489-498.
- MARTENS, P. N.; ASEMANN, V., KOCH, H. und MARX H. (1997): Gegenüberstellung und vergleichende Bewertung unterschiedlicher Konzepte zur untertägigen Deponierung chemisch/toxischer Abfälle (Abschlussbericht zum Forschungsvorhaben mit dem Förderkennzeichen 02 C 0183 2).
- MIZUTANI, S.; SAKAI, S. I. und TAKATSUKI, H. (2000): Investigation of hydrogen generation from minicipal solid waste incineration fly ash, J. Mater. Cycles Waste Manag. 2, 16-23.
- MUCHNA, C. (1996): System- und Prozessoptimierung in der Entsorgungslogistik am Beispiel von Reststoffen aus Abfallverbrennungsanlagen. In: Lukas G., Dutz E. und Wehberg G. (1996) Prozessmanagement in der Entsorgung. Huss Verlag, München, S. 138-162.
- MÜLLER, W.; MORLOCK, G. und GRONEMEYER, C. (1992): Produktion und Verbleib von Gasen im Grubengebäude eines salinaren Endlagers (Abschlussbericht zum Forschungsvorhaben mit dem Förderkennzeichen KWA 5901 6). GSF-BERICHT 3/92.
- MÜLLER-LYDA, I. (1997): Erzeugung und Verbleib von Gasen in einem Endlager für radioaktive Abfälle. GRS-Bericht 129.
- MUSSELMAN, C.N.; STRAUB, W.A.; BIDWELL, J.N.; CARPENTER, J.E. und PRESHER, J.R. (2000): Gas Generation aat a Municipal Waste Combustor Ash Monofill- Franklin, New Hampshire. In: Sustainable construction: use of incinerator ash : Proceedings of the international symposium organised by the Concrete Technology Unit, University of Dundee and held at the University of Dundee, UK on 20 - 21 March 2000 / ed. by Ravindra K. Dhir, 97-109.
- OBERSTE-PADTBERG, T. und SCHWEDEN, L. (1999): Zur Freisetzung von Wasserstoff aus Mörteln mit MVA-Reststoffen. Wasser, Luft, Boden 34, 61-62.
- OECD (2001): Gas generation and migration in radioactive waste disposal: safety relevant issues Workshop proceedings, Reims, 26-28 June 2000. 182 S.

- PFEIFFER, W.; DROBNIK, S. und KRAEMER, R. (1991): Characterization and treatment of ashes form KFK incinerators, from: Cecile L. und Kertesz C.: Treatment and conditioning of radioactive incinerator ashes, Elsevier, 1991, 35-44.
- Projektträger des BMWi und BMBF für Entsorgung (PTE) (1999): Aufkommen UTDzugeordneter Abfallschlüssel 1990 und 1993. Internet: http://www.fzk.de/pte/abfutd.html (01.10.1998).
- PRUESS, K. (1987): TOUGH User's Guide Lawrence Berkeley Laboratory, University of California, Berkeley, California, USA, LBL-20700.
- PRUESS, K. (1991): TOUGH2 A general purpose numerical simulator for multiphase fluid and heat flow Lawrence Berkeley Laboratory, University of California, Berkeley, California, USA, LBL-29400.
- PRUESS, K. et al. (1995): EOS7R: Radionuclide Transport for TOUGH2 Lawrence Berkeley Laboratory, University of California, Berkeley, California, USA, LBL-34868 (Nov. 1995).
- RODWELL, W. R. (2000): Research into gas generation and migration in radioactive waste repository systems (PROGRESS project) Final report EUR 19133 EN. Office for Official Publictaions of the European Communities, Luxembourg, 337 S.
- SCHNEIDER, L. und HERZOG, C. (2000): Einschätzung der Gasentwicklung und deren Auswirkung auf die Endlagerung mittel- und hochaktiver Abfälle in Salzformationen, Stoller Ing. Tech. Ber. 02/00, 44 S.
- SCHON, T. und HEIDENDAEL, M. (1998): Wasserstoffbildung durch Metallkorrosion, Ber. Forschungszentr. Jülich 3495, 68 S.
- SMAILOS, E. et al.: Evaluation of materials for high level waste packagings in rock salt repository Seminar on Structural Mechanics and Material Properties in Radioactive Waste Repository Technology, Zürich, Schweiz (Aug. 1993), 1-14.
- STATISTISCHES BUNDESAMT (Hrsg.) (1997): Abfallbeseitigung im Produzierenden Gewerbe und in Krankenhäusern 1993. Umwelt, Fachserie 19, Reihe 1.2.

- STATISTISCHES BUNDESAMT (2004): Umwelt. Abfallentsorgung 2002. Fachserie 19/ Reihe 1.
- UMWELTBUNDESAMT (2004): Umweltdaten Deutschland online, Internet: http://www.env-it.de/umweltdaten (15.01.2005).
- WILKE, F. L.; DARTSCH, B. und REPMANN F. (1998): Untersuchung des langfristigen Gefährdungspotentials anorganischer Rückstände bei deren Integration in Schicht- und Sedimentgesteinen. Abschlussbericht zum Forschungsvorhaben mit dem Förderkennzeichen 02 C 0385.

Abbildungsverzeichnis

Abb. 1:	Versuchsflaschen mit Druckmessköpfen zur Bestimmung der	
	Gasfreisetzung aus Abfällen	10
Abb. 2:	Thermoschränke zur Temperierung der Gasmessflaschen auf 25	
	bzw. 35 ± 1 ℃	11
Abb. 3:	Messstand mit sechs Rühreinheiten	14
Abb. 4:	Reaktionsgefäß für Technikumsversuche zur Gasfreisetzung aus	
	chemisch-toxischen Abfällen	17
Abb. 5:	Vorbereitungen für einen Technikumsversuch I:	19
Abb. 6:	Vorbereitungen für einen Technikumsversuch II:	20
Abb. 7:	Messstand für Technikumsversuche: Oben und unten rechts:	
	abfallgefüllte Fässer, mittig: Gasregelstation, links:	
	Gasdurchflussmessung, mitte unten: Notebook zur	
	Messwertaufnahme	21
Abb. 8:	Flächenausgleichsverfahren zur Bestimmung der	
	Temperaturdifferenz ΔT	28
Abb. 9:	Druckverlauf bei drei parallelen GasMax-Versuchen. Hier besonders	
	zu beachten: der Drucksprung (etwa 95 hPa) innerhalb der ersten	
	Messperiode (1,87 h)	42
Abb. 10:	Häufigkeitsverteilung der bei den GasMax-Versuchen beobachteten	
	Gasfreisetzung [m³/t]	44
Abb. 11:	Nach Abfallarten gruppierte Übersicht der beobachteten	
	Gasfreisetzung bei Anwendung der Methode "GasMax". Die	
	Fehlerbalken zeigen die experimentelle Spannweiten bei	
	Parallelversuchen an	44
Abb. 12:	Vergleich der freigesetzten Mengen an Methan, Kohlendioxid und	
	Wasserstoff beim Versuch GasMax	46
Abb. 13:	Nach Abfallarten gruppierte Übersicht der freigesetzten CO2-Mengen	
	beim Versuch GasMax	46
Abb. 14:	Nach Abfallarten gruppierte Übersicht der freigesetzten CH₄-Mengen	
	beim Versuch GasMax	47
Abb. 15:	Gasentwicklung der MVA-Schlacke CA548 im GasMax-Versuch mit	
	Luft (unten) und mit N2 als Ausgangsatmosphäre (oben)	48

Abb. 16:	Gasbilanz der Umsetzung der Müllverbrennungsschlacke CA548 mit	
	IP21 im GasMax-Versuch (ohne Wasserdampf-Partialdrücke) 4	8
Abb. 17:	Gasfreisetzung und -verbrauch bei der Umsetzung der	
	Müllverbrennungsschlacke CA548 mit IP21 im GasMax-Versuch4	9
Abb. 18:	Wasserstoffbildung bei unbehandelten und konditionierten	
	Filterstäuben5	2
Abb. 19:	Abhängigkeit der Gasfreisetzung von der Korngröße. Untersuchte	
	Abfälle: Müllverbrennungsschlacken CA548 und CA527 im GasMax-	
	Versuch	9
Abb. 20:	Einfluss bioaktiver Substanzen auf die Gesamt-Gasbildung und die	
	Methanbildung ausgewählter Abfallproben (GasMax-Versuch)	1
Abb. 21:	Strahlmittelrückstand CA551: Vergleich der zeitlichen	
	Druckentwicklung bei vier unterschiedlichen Versuchsmethoden6	3
Abb. 22:	Vergleich der Gasfreisetzung bei unterschiedlichen	
	Untersuchungsmethoden6	3
Abb. 23:	Vergleich der CO ₂ -Freisetzung bei unterschiedlichen	
	Untersuchungsmethoden6	4
Abb. 24:	Gasfreisetzung beim Abfall CA548: Reaktion mit IP21-Lösung im	
	GasMax-Versuch (obere drei Kurven) und im UTDnah-Versuch	
	(untere drei Kurven) während der ersten vier Tage6	5
Abb. 25:	Gasfreisetzung beim Filterstaub CA540: Reaktion mit Gipshutlösung	
	im UTDnah-Versuch6	6
Abb. 26:	Gasfreisetzung beim Abfall CA548: Reaktion mit IP21-Lösung im	
	GasMax- und im UTDnah-Versuch innerhalb von 28 Tagen	6
Abb. 27:	Gasfreisetzung beim Gasreinigungsrückstand aus der Al-Metallurgie	
	CA557: Reaktion mit IP21-Lösung. Die zwischenzeitliche Schätzung	
	war wegen eines Fehlers bei der Datenerfassung notwendig6	7
Abb. 28:	Zeitliche Gasentwicklung beim Kontakt des Abfalls aus der	
	Aluminiummetallurgie CA 557mit Gipshutlösung (2 Parallelversuche) 6	7
Abb. 29:	Zeitabhängige Freisetzung einzelner Gasarten bei der Reaktion von	
	CA557 mit IP21-Lösung (GasMax-Versuch). Die Gasmenge bei	
	Sauerstoff (unten links) beschreibt die im Reaktionsgefäß verbliebene	
	Gasmenge6	9
Abb. 30:	Langfristige Gasfreisetzung beim Ansatz CA557/IP21-Lösung	
	(UTDnah)7	2

Abb. 31:	Vergleich der Wasserstoffentwicklung bei direktem (UTDnah, IP21)	
	und indirektem Wasserkontakt (Luftfeuchte über IP21)	75
Abb. 32:	Wasserstoffbildung bei Einwirkung von Luftfeuchte bzw. Lösung	
	(IP21) auf den ölhaltigen Schleifschlamm CA553	75
Abb. 33:	Temperaturentwicklung beim Ansatz TV20: MVA-Filterstaub mit	
	Asse-Lösung (CA606/Asse-Lösung)	83
Abb. 34:	Beobachtete zeitliche Entwicklung der Temperaturdifferenz	
	(Abfallkörper – umgebende Lösung) und	
	Wasserstoffbildungsgeschwindigkeit beim Technikumsversuch TV20	
	(MVA-Filterstaub CA606/Asse-Lösung)	85
Abb. 35:	Beobachtete zeitliche Entwicklung der Temperaturdifferenz	
	(Abfallkörper – umgebende Lösung) und	
	Wasserstoffbildungsgeschwindigkeit beim Technikumsversuch TV9	
	(Gasreinigungsabfälle aus der Al-Metallurgie CA609/Gipshutlösung)	86
Abb. 36:	Zweidimensionales Modell zum Gas und Schadstofftransport in einer	
	Untertagedeponie	94
Abb. 37:	Relative Permeabilität und normierter Kapillardruck in Abhängigkeit	
	von der Flüssigkeitssättigung	98
Abb. 38:	Druck im Deponiefeld für die Fälle K1 bis K4 ohne Gasquelle 1	03
Abb. 39:	Porosität im Deponiefeld für die Fälle K1 bis K4 ohne Gasquelle 1	03
Abb. 40:	Flüssigkeitssättigung im Deponiefeld für die Fälle K1 bis K4 ohne	
	Gasquelle1	04
Abb. 41:	Flüssigkeitsmassenstrom am oberen Schachtende für die Fälle K1	
	bis K4 ohne Gasquelle1	05
Abb. 42:	Schadstoffabfluss am oberen Schachtende für die Fälle K1 bis K4	
	ohne Gasquelle 1	06
Abb. 43:	Druck im Deponiefeld für die Fälle KG1 bis KG4 mit Gasquelle 1	08
Abb. 44:	Porosität im Deponiefeld für die Fälle KG1 bis KG4 mit Gasquelle 1	08
Abb. 45:	Flüssigkeitssättigung für die Fälle KG1 bis KG4 mit Gasquelle 1	09
Abb. 46:	Flüssigkeitsmassenstrom am oberen Schachtende für die Fälle KG1	
	bis KG4 mit Gasquelle 1	10
Abb. 47:	Schadstoffabfluss am oberen Schachtende für die Fälle KG1 bis KG4	
	mit Gasquelle1	11
Abb. 48:	Gasabfluss am oberen Schachtende für die Fälle KG1 bis KG4 mit	
	Gasquelle 1	11
Abb. 49:	Druck im Deponiefeld für die Fälle K1, K5 und K6 ohne Gasquelle 1	13

Abb. 50:	Porosität im Deponiefeld für die Fälle K1, K5 und K6 ohne Gasquelle 114
Abb. 51:	Flüssigkeitssättigung im Deponiefeld für die Fälle K1, K5 und K6
	ohne Gasquelle
Abb. 52:	Druck im Deponiefeld für die Fälle KG1, KG5 und KG6 mit Gasquelle 115
Abb. 53:	Porosität im Deponiefeld für die Fälle KG1, KG5 und KG6 mit
	Gasquelle
Abb. 54:	Flüssigkeitssättigung im Deponiefeld für die Fälle KG1, KG5 und KG
	6 mit Gasquelle
Abb. 55:	Flüssigkeitsmassenstrom am oberen Schachtende für die Fälle K1,
	K5, K6, KG1, KG5 und KG6 118
Abb. 56:	Schadstoffabfluss am oberen Schachtende für die Fälle K1, K5, KG1
	und KG5 118
Abb. 57:	Gasabfluss am oberen Schachtende für die Fälle KG1 und KG5 119
Abb. 58:	Langfristige Druckentwicklung bei der Reaktion der Abfälle CA305
	und CA405 mit IP21-Lösung199
Abb. 59:	Langfristige Druckentwicklung bei der Reaktion der Abfälle CA508
	und CA520 mit IP21-Lösung 200
Abb. 60:	Langfristige Druckentwicklung bei der Reaktion der Abfälle CA527
	und CA538 mit IP21-Lösung 201
Abb. 61:	Langfristige Druckentwicklung bei der Reaktion der Abfälle CA539
	und CA548 mit IP21-Lösung bzw. Gipshutlösung 202
Abb. 62:	Langfristige Druckentwicklung bei der Reaktion der Abfälle CA553
	und CA554 mit IP21-Lösung203
Abb. 63:	Langfristige Druckentwicklung bei der Reaktion des Abfalls CA557
	mit IP21-Lösung 204
Abb. 64:	Wasserstoffentwicklung bei den Technikumsversuchen TV1 und TV2.
	Linien: H ₂ -Konzentration, Punkte: kumulierte H ₂ -Menge
Abb. 65:	Wasserstoffentwicklung bei den Technikumsversuchen TV3 und TV4.
	Linien: H ₂ -Konzentration, Punkte: kumulierte H ₂ -Menge
Abb. 66:	Wasserstoffentwicklung bei den Technikumsversuchen TV5 und TV6.
	Linien: H ₂ -Konzentration, Punkte: kumulierte H ₂ -Menge
Abb. 67:	Wasserstoffentwicklung bei den Technikumsversuchen TV7 und TV8.
	Linien: H ₂ -Konzentration, Punkte: kumulierte H ₂ -Menge
Abb. 68:	Wasserstoffentwicklung bei den Technikumsversuchen TV9 und
	TV10. Linien: H ₂ -Konzentration, Punkte: kumulierte H ₂ -Menge

Abb. 69:	Wasserstoffentwicklung bei den Technikumsversuchen TV11 und
	TV12. Linien: H ₂ -Konzentration, Punkte: kumulierte H ₂ -Menge
Abb. 70:	Wasserstoffentwicklung bei den Technikumsversuchen TV13 und
	TV14. Linien: H ₂ -Konzentration, Punkte: kumulierte H ₂ -Menge
Abb. 71:	Wasserstoffentwicklung bei den Technikumsversuchen TV15 und
	TV16. Linien: H_2 -Konzentration, Punkte: kumulierte H_2 -Menge 212
Abb. 72:	Wasserstoffentwicklung bei den Technikumsversuchen TV17 und
	TV18. Linien: H_2 -Konzentration, Punkte: kumulierte H_2 -Menge 213
Abb. 73:	Wasserstoffentwicklung bei den Technikumsversuchen TV19 und
	TV20. Linien: H_2 -Konzentration, Punkte: kumulierte H_2 -Menge 214
Abb. 74:	Wasserstoffentwicklung beim Technikumsversuch TV21. Linien: H_2 -
	Konzentration, Punkte: kumulierte H ₂ -Menge
Abb. 75:	Temperaturentwicklung im Abfall und umgebender Salzlösung
	während der ersten zehn Versuchstage: Ansätze TV1, TV2, TV3216
Abb. 76:	Temperaturentwicklung im Abfall und umgebender Salzlösung
	während der ersten zehn Versuchstage: Ansätze TV4, TV5, TV6 217
Abb. 77:	Temperaturentwicklung im Abfall und umgebender Salzlösung
	während der ersten zehn Versuchstage: Ansätze TV7, TV8, TV9
Abb. 78:	Temperaturentwicklung im Abfall und umgebender Salzlösung
	während der ersten zehn Versuchstage: Ansätze TV10, TV11, TV12 219
Abb. 79:	Temperaturentwicklung im Abfall und umgebender Salzlösung
	während der ersten zehn Versuchstage: Ansätze TV13, TV14, TV15 220
Abb. 80:	Temperaturentwicklung im Abfall und umgebender Salzlösung
	während der ersten zehn Versuchstage: Ansätze TV16, TV17, TV18 221
Abb. 81:	Temperaturentwicklung im Abfall und umgebender Salzlösung
	während der ersten zehn Versuchstage: Ansätze TV19, TV20, TV21 222

Tabellenverzeichnis

Tab. 1:	Verteilung der UTD-relevanten Abfälle nach Abfallaufkommen auf der	
	Basis der Abfallstatistik für das Jahr 1993)*	33
Tab. 2:	Besonders überwachungsbedürftige Abfälle, die 2002 in	
	Untertagedeponien entsorgt wurden (STATISTISCHES BUNDESAMT,	
	2004)	35
Tab. 3:	Übersicht über die untersuchten Abfälle I	37
Tab. 4:	Übersicht über die untersuchten Abfälle II	38
Tab. 5:	Zusammensetzung der verwendeten wässrigen Lösungen	40
Tab. 6:	Beim Versuch GasMax besonders stark gaserzeugende Abfälle	43
Tab. 7:	Gasfreisetzung bei Filterstäuben und Flugaschen aus der	
	Müllverbrennung	50
Tab. 8:	Vergleich der Wasserstoffentwicklung von Filterstäuben vor und nach	
	der Konditionierung (GasMax-Versuch)	51
Tab. 9:	Gasfreisetzung von Schlacken und Kesselaschen aus der	
	Müllverbrennung	53
Tab. 10:	Gasfreisetzung bei Flugaschen aus der Kohlefeuerung	54
Tab. 11:	Gasfreisetzung bei Flugaschen aus der Metallurgie und	
	Metallverarbeitung	55
Tab. 12:	Gasfreisetzung von sonstigen Abfallarten	57
Tab. 13:	Gasfreisetzung im GasMax-Versuch bei verschiedenen Abfall-/	
	Lösungsverhältnissen. Untersuchte Abfälle:	
	Müllverbrennungsschlacken CA548 und CA527	58
Tab. 14:	Abhängigkeit der Gasfreisetzung von der Korngröße	
	(GasMax-Versuch)	59
Tab. 15:	Einfluss bioaktiver Substanzen auf die Gasfreisetzung ausgewählter	
	Abfallproben	61
Tab. 16:	Langfristige Gasfreisetzung bei ausgewählten Abfallproben	71
Tab. 17:	Gasentwicklung bei den abgeschlossenen Langzeitversuchen	72
Tab. 18:	Vergleich der Wasserstoffentwicklung bei direktem (UTDnah, IP21)	
	und indirektem Wasserkontakt (Luftfeuchte über IP21)	74
Tab. 19:	Mögliche anorganisch gasbildende Prozesse	77
Tab. 20:	Erzeugte Wasserstoffmengen in den Technikumsversuchen	82
Tab. 21:	Ermittelte Wärmekapazitäten von Abfall-/Lösungsgemischen sowie	
----------	---	
	die mindestens bei der Reaktion erzeugte Wärmemengen	
Tab. 22:	Verzeichnis der häufig verwendeten Materialdaten95	
Tab. 23:	Abgelagerte Abfallmengen in der Modell-UTD97	
Tab. 24:	Übersicht über die Rechenfälle 101	
Tab. 25:	Zusätzliche Rechenfälle101	
Tab. 26:	Maximaler Druck und ausgetragene Schadstoffmasse bei den	
	verschiedenen Rechenfällen116	
Tab. 27:	Chemische Zusammensetzung der Abfälle gemäß RFA [mg/kg] I 145	
Tab. 28:	Chemische Zusammensetzung der Abfälle gemäß RFA [mg/kg] II 146	
Tab. 29:	Chemische Zusammensetzung der Abfälle gemäß RFA [mg/kg] III 147	
Tab. 30:	Chemische Zusammensetzung der Abfälle gemäß RFA [mg/kg] IV 148	
Tab. 31:	Chemische Zusammensetzung der Abfälle gemäß RFA [mg/kg] V 149	
Tab. 32:	Chemische Zusammensetzung der Abfälle gemäß RFA [mg/kg] VI 150	
Tab. 33:	Chemische Zusammensetzung der Abfälle gemäß RFA [mg/kg] VII 151	
Tab. 34:	Chemische Zusammensetzung der Abfälle (nassanalytisch) [mg/kg] I 152	
Tab. 35:	Chemische Zusammensetzung der Abfälle (nassanalytisch) [mg/kg] II 153	
Tab. 36:	Chemische Zusammensetzung der Abfälle (nassanalytisch) [mg/kg]	
	III	
Tab. 37:	Chemische Zusammensetzung der Abfälle (nassanalytisch) [mg/kg]	
	IV155	
Tab. 38:	Chemische Zusammensetzung der Abfälle (nassanalytisch) [mg/kg] V 156	
Tab. 39:	Chemische Zusammensetzung der Abfälle (nassanalytisch) [mg/kg]	
	VI	
Tab. 40:	Chemische Zusammensetzung der Abfälle (nassanalytisch) [mg/kg]	
	VII	
Tab. 41:	Chemische Zusammensetzung der Abfälle (nassanalytisch) [mg/kg]	
	VIII	
Tab. 42:	Chemische Zusammensetzung der Abfälle (nassanalytisch) [mg/kg]	
	IX160	
Tab. 43:	In den Abfällen und festen Reaktionsprodukten gefundene	
	Mineralphasen I161	
Tab. 44:	In den Abfällen und festen Reaktionsprodukten gefundene	
	Mineralphasen II162	
Tab. 45:	In den Abfällen und festen Reaktionsprodukten gefundene	
	Mineralphasen III	

Tab. 46:	In den Abfällen und festen Reaktionsprodukten gefundene	
	Mineralphasen IV	164
Tab. 47:	In den Abfällen und festen Reaktionsprodukten gefundene	
	Mineralphasen V	165
Tab. 48:	In den Abfällen und festen Reaktionsprodukten gefundene	
	Mineralphasen VI	166
Tab. 49:	In den Abfällen und festen Reaktionsprodukten gefundene	
	Mineralphasen VII	167
Tab. 50:	In den Abfällen und festen Reaktionsprodukten gefundene	
	Mineralphasen VIII	168
Tab. 51:	In den Abfällen und festen Reaktionsprodukten gefundene	
	Mineralphasen IX	169
Tab. 52:	In den Abfällen und festen Reaktionsprodukten gefundene	
	Mineralphasen X	170
Tab. 53:	Lösungskonzentration der Eluate I	171
Tab. 54:	Lösungskonzentration der Eluate II	172
Tab. 55:	Lösungskonzentration der Eluate III	173
Tab. 56:	Lösungskonzentration der Eluate IV	174
Tab. 57:	Lösungskonzentration der Eluate V	175
Tab. 58:	Lösungskonzentration der Eluate VI	176
Tab. 59:	Lösungskonzentration der Eluate VII	177
Tab. 60:	Lösungskonzentration der Eluate VIII	178
Tab. 61:	Lösungskonzentration der Eluate IX	179
Tab. 62:	Lösungskonzentration der Eluate X	180
Tab. 63:	Lösungskonzentration der Eluate XI	181
Tab. 64:	Lösungskonzentration der Eluate XII	182
Tab. 65:	Lösungskonzentration der Eluate XIII	183
Tab. 66:	Lösungskonzentration der Eluate XIV	
Tab. 67:	Lösungskonzentration der Eluate XV	185
Tab. 68:	Lösungskonzentration der Eluate XVI	186
Tab. 69:	Lösungskonzentration der Eluate XVII	187
Tab. 70:	Lösungskonzentration der Eluate XVIII	188
Tab. 71:	Lösungskonzentration der Eluate XIX	189
Tab. 72:	Lösungskonzentration der Eluate XX	190
Tab. 73:	Lösungskonzentration der Eluate XXI	191
Tab. 74:	Beobachtete Gasentwicklung bei GasMax-Versuchen I	192

Tab. 75:	Beobachtete Gasentwicklung bei GasMax-Versuchen II	. 193
Tab. 76:	Gasfreisetzung im UTDnah-Versuch mit Gipshutlösung	. 194
Tab. 77:	Gasfreisetzung im UTDnah-Versuch mit Steinkohlenwasser	. 195
Tab. 78:	Gasfreisetzung im UTDnah-Versuch mit IP21-Lösung	. 196
Tab. 79:	Technikumsversuche: Eingesetzte Abfall- und Lösungsmassen und	
	die daraus berechneten Volumina	. 197

Verzeichnis der häufig verwendeten Symbole

- d molekularer Diffusionskoeffizient [m²/sec]
- h spezifische Enthalpie [J/kg]
- k Permeabilität [m²]
- m Masse [kg] bzw. Spannungsexponent
- n Porosität
- p Druck [N/m²] bzw. [Pa]
- t Zeit [sec]
- u Darcy-Geschwindigkeit [m/sec]
- x horizontale Koordinate [m]
- z vertikale Koordinate [m]
- C Konvergenzrate [1/sec]
- E Enthalpie [J]
- H Höhe [m]
- L Länge [m]
- Q Volumen-, Massen- bzw. Wärmestrom [m³/sec, kg/sec bzw. W]
- S Sättigung
- T Temperatur [grad]
- V Volumen [m³]
- X Massenanteil
- α Dispersionslänge [m]
- λ Zerfallskonstante [1/sec]
- μ Dynamische Zähigkeit [kg/(m · sec)] bzw. [Pa · sec]
- ρ Dichte [kg/m³]

Indizes

- F Flüssigkeitsgemisch bzw. Flüssigkeitsphase
- G Gasgemisch bzw. Gasphase
- 1 Komponente 1 (Wasser oder Salzlauge)
- 2 Komponente 2 (Tracer oder Schadstoff oder Salzlauge)
- 3 Mutternuklid
- 4 Tochternuklid
- 5 Gaskomponente (Luft oder Wasserstoff)

11 Anhang - Tabellen

11.1 Tabellen zu Kapitel 5

Tab. 27: Chemische Zusammensetzung der Abfälle gemäß RFA [mg/kg]	۱ [mg/kg] ۱
--	-------------

Abfall (CA)	30	157	301	302	304	305	306	403
Na	154315	<22257	305663	119446	38579	11129	<2968	206990
Mg	<1809	18090	<6030	6633	11457	7839	<1206	<6030
Al	<2647	68809	4234	10586	30170	11115	1059	<1059
Si	18696	176210	28979	53284	75251	18696	16826	68708
Р	<873	1746	3491	29675	2182	9601	<436	17020
S	97722	28035	77697	94518	34043	15620	65682	30038
К	53963	4151	47321	132002	24076	6642	12453	162719
Ca	8576	217269	9291	57891	225131	162952	334480	35020
Ti	8393	13789	6595	6595	5396	19184	23381	19184
Mn	<775	775	<775	775	7745	10843	7745	<775
Fe	6295	31473	7693	30074	13988	191636	36369	48958
CI				35000	125000	14000	9000	23000
GV	49000	4000	19000	27000	105000	262000		23000
LOI							203000	
Sb	910	7	2420	380	200	25	2	270
As	140	100	120	176	30	9	5	180
Ва	2900	1200	2980	6000	1150	7170	220	7600
Bi	<30	3	190	350	14	84	8	1720
Pb	19000	48	10900	11000	2900	363	20	9600
Br	940	2	8900	2400	650	57	9	6640
Cd	165	<2	49	1100	140	2	<2	43
Cr	300	118	450	1200	264	885	2020	1350
Co	320	<17	26	<40	<10	<5	<50	<40
Cu	11650	104	1330	2800	437	92	20	5100
Мо	240	6	148	277	9	5	5	350
Ni	500	20	83	3400	39	360	47	2400
Hg	<1	<2	40	30	40	<2	<1	<17
Rb	24	23	78	120	58	4	2	96
Se	<7	4	62	9	10	<1	1	8
Ag	30	<1	136	167	17	<1	<1	180
Sr	100	2050	82	213	266	151	200	240
TI	<15	<2	9	11	<2	<2	3	10
V	<15	100	<12	60	<15	1300	500	93
W	<2	8	<30	<50	<14	<2	1120	<30
Zn	190000	142	28350	3500	6800	4900	174	28200
Sn	1340	12	1500	2000	780	43	1310	2310
Zr	70	345	56	225	81	1280	167	274

Abfall (CA)	404	405	500	504	506	508	509	514
Na	<5074	<2968	548000	56384	103124	247795	47482	130574
Mg	19899	18090	3015	512550	8442	5427	4824	13266
Al	42873	101096	2647	<529	5293	17467	146087	9527
Si	174340	160786	1870	7011	10283	16359	137416	47675
Р	<436	698	<436	<436	6546	5237	3055	3928
S	13217	16020	39249	401	42854	110538	18824	110538
К	2491	6642	830	3321	126190	37359	7472	78869
Ca	275874	202975	715	1429	78617	45026	51458	35735
Ti	5396	16187	<600	<560	4796	20983	14388	600
Mn	775	775	<775	775	1549	<775	1549	<775
Fe	19583	27976	1399	699	20982	19583	96517	51056
CI		1000	304000	<1000	98000	40000	16000	13000
GV			31000	56000	304000	25000	2000	32000
LOI	47000	25000						
Sb	2	8	1	3	260	350	85	730
As	12	125	2	<0,1	24	116	25	<100
Ва	480	1240	18	43	1800	7000	7600	8500
Bi	3	3	2	50	20	370	28	750
Pb	28	70	7	270	2200	9600	900	36700
Br	8	5	370	8	335	955	140	6000
Cd	<2	<2	<2	2	46	120	2	1150
Cr	47	134	23	27	1000	2460	1900	200
Co	<12	<15	<2	<5	<12	70	<60	360
Cu	27	98	13	182	419	7680	2930	6100
Мо	<2	2	40	21	39	515	146	620
Ni	18	27	183	41	78	1200	590	370
Hg	<2	<2	0<100	<1	100	40	15	5<500
Rb	13	33	7	12	215	68	14	120
Se	5	7	1	<1	12	16	5	<10
Ag	<1	<1	1	2	107	900	47	44
Sr	1200	2060	15	7	160	260	340	230
TI	<2	<2	2	<2	2	<6	<2	30
V	<14	160	38	<15	<10	450	550	58
W	<3	11	250	<4	<20	<50	<35	<40
Zn	57	38	1020	1630	14170	38000	23500	72500
Sn	10	17	2	10	1000	4000	230	1150
Zr	280	325	3	15	164	252	425	476

Tab. 28: Chemische Zusammensetzung der Abfälle gemäß RFA [mg/kg] II

Abfall (CA)	515	519	520	521	523	524	525	526
Na	<2226	<1484	<7419	<14838	348693	28192	<742	7419
Mg	<4221	4824	12663	12060	4824	7419	<603	1206
AI	5293	1588	58223	119093	8998	113270	2647	7940
Si	15892	467	125263	186960	4207	84599	15424	14022
Р	7419	4364	6110	3928	2618	1309	2182	121319
S	146583	2804	1602	<401	52866	10013	8411	55670
К	4151	<830	4981	9962	41510	3321	<830	1660
Ca	278733	715	105061	67897	50744	60750	12865	221557
Ti	2998	3597	49759	13189	<600	4197	<600	<600
Mn	<775	<775	3098	775	<775	3098	3873	<775
Fe	13289	<699	139181	116800	1399	197231	563716	4196
CI	13000	4000	1000	1000	10000	10000	3000	19000
GV	88000	949000		25000		45000	86000	163000
LOI			127000		225000			
Sb	155	6	6	3	12	100	390	2
As	42	1	9	6	6	4000	10400	1
Ва	60	4050	2470	4700	15	2700	22	520
Bi	500	<2	<2	<2	<2	<2	<20	1
Pb	4250	8	930	1600	12	1100	1790	57
Br	690	3	3	<10	260	400	2	<1
Cd	950	<2	<2	<2	<2	<2	114	<2
Cr	165	77	317	300	110	31000	190	7820
Co	30	4	<40	<50	<1	<180	<100	<6
Cu	5020	6	105	164	34	26800	1090	7230
Мо	160	<1	10	<100	257	600	30	<2
Ni	310	6	77	125	108	14600	100	9530
Hg	240	<1	<2	<1	<1	<1	<2	<1
Rb	15	<1	24	<40	6	13	<3	5
Se	11	<1	1	<1	<1	<1	<0,4	<1
Ag	30	<1	<1	<1	<1	40	12	<1
Sr	80	154	1870	3600	25	130	56	153
ТІ	<2	<2	<2	2	2	3	<10	<2
V	24	<6	137	120	<15	120	50	<10
W	<170	<7	<9	550	530	<60	<10	<16
Zn	31500	4700	2470	4000	450	11700	4120	126
Sn	1200	4	33	17	15	2000	460	8
Zr	90	4	285	1	2	400	3	12

Tab. 29: Chemische Zusammensetzung der Abfälle gemäß RFA [mg/kg] III

Abfall (CA)	527	528	529	531	533	534	535	536
Na	2819	39321	56384	2868	6677	8161	<7419	123897
Mg	9648	12060	6633	3015	21708	9648	<6030	9045
AI	89452	31758	11645	<529	51871	177845	<5293	18526
Si	179014	155644	33185	7946	185090	180416	<4674	36457
Р	1309	2182	1309	58914	41894	6982	<4364	1746
S	14018	44834	41652	58473	12416	7610	148185	33242
К	8302	16604	22415	830	20755	4981	<8302	17434
Ca	121499	122214	210837	2859	136508	55747	299459	187966
Ti	10192	13189	4197	5396	5396	8993	5995	5396
Mn	10069	1549	<775	<775	6196	<775	7745	<775
Fe	70639	97217	24479	2098	59449	19583	6994	17485
CI	3000	11000	146000		1000	1000	10000	198000
GV	22000	11000	176000	650000	5000	83000	30000	69000
LOI								
Sb	100	480	400	20	23	10	<2	750
As	23	40	66	8	24	16	<2	50
Ва	4380	5000	820	27700	1120	2630	12	2340
Bi	<2	8	23	<2	15	6	1	36
Pb	1330	11000	6900	7	263	160	5	4000
Br	14	74	2000	1	27	20	15	1400
Cd	<1	110	170	<1	5	4	<2	210
Cr	650	906	192	32	230	165	4	11660
Со	<60	<100	<20	<2	3	34	<2	147
Cu	4660	2640	1720	38	740	93	3	1000
Мо	48	78	25	<1	16	<2	<1	25
Ni	190	470	91	3	91	80	3	162
Hg	<2	<1	15<30	<2	<2	<2	<1	16
Rb	23	43	47	9	60	28	2	63
Se	2	<1	20	<1	5	5	12	13
Ag	1	2	15	<1	23	<1	<1	47
Sr	335	450	166	540	850	3080	260	180
ТІ	2	<2	<4	<2	<2	2	<2	2
V	20	44	<10	160	40	130	<5	<20
W	20	<2	<30	<2	<2	<4	<2	<20
Zn	4700	31400	24300	18	2400	276	23	9200
Sn	415	513	710	10	108	22	<1	670
Zr	453	350	52	8	170	456	5	84

Tab. 30: Chemische Zusammensetzung der Abfälle gemäß RFA [mg/kg] IV

Abfall (CA)	537	538	539	540	541	543	544	545
Na	58610	92738	99415	67513	77900	248537	2968	22257
Mg	9045	18090	15678	12663	15075	4824	1206	30150
AI	19584	32817	28582	41285	48166	529	1059	107977
Si	60762	76654	79458	78991	92078	1870	2337	176677
Р	8728	5673	5673	4364	4800	873	<436	873
S	46859	51665	48060	52866	4406	401	154994	1602
К	21585	60605	59774	58944	68907	50642	<830	44831
Ca	202975	147943	163666	189396	220842	715	290168	43597
Ti	7194	8993	11391	14988	17386	<5995	<600	4197
Mn	1549	775	<775	775	775	<775	<775	<775
Fe	22381	18184	15387	11890	13988	6295	1399	58750
CI	101000	93000	63000	54000	25000	430000	<1000	24000
GV	109000	27000	45000	37000	56000	158000		
LOI								100000
Sb	470	800	850	880	880	<2	82	6
As	90	89	58	36	25	<2	5	14
Ва	2100	1910	1700	1700	1700	6	204	530
Bi	36	20	14	8	8	1	4	2
Pb	2900	6680	1700	8810	8200	9	95	380
Br	2000	1800	1000	290	262	650	27	10
Cd	120	430	320	250	250	<1	<1	<2
Cr	4200	650	750	650	600	25	18	500
Co	55	<2	5	13	10	<2	<3	<20
Cu	1360	1300	5650	5210	5200	3	13	500
Мо	38	42	30	28	29	<1	<1	16
Ni	120	100	105	117	125	3	3	70
Hg	10	7	<3	20	20	<1	<1	50
Rb	134	126	120	100	110	110	1	116
Se	13	10	14	12	13	1	10	<4
Ag	28	29	50	44	45	<1	<1	<1
Sr	310	280	300	300	290	5	27	620
TI	<2	<4	<5	<4	2	3	<2	<2
V	25	<15	<20	<20	<15	<2	<5	53
W	<14	<2	<30	<2	<2	8	1	<5
Zn	22470	22760	20170	16440	16100	21	50	315
Sn	500	1220	1200	930	925	<1	182	180
Zr	170	120	160	167	170	<2	4	190

Tab. 31: Chemische Zusammensetzung der Abfälle gemäß RFA [mg/kg] V

Abfall (CA)	546	547	548	549	550	551	552	553
Na	14838	31902	11870	45998	24483	163960	7419	<742
Mg	<2412	13266	14472	15075	13266	21105	12060	<603
AI	7410	68809	35463	37051	32287	<529	134972	5293
Si	447302	165927	123394	121524	48142	240711	60295	4674
Р	<436	4800	3055	24438	<436	<436	436	<436
S	<401	8811	9612	12816	4005	801	<401	1202
К	<830	14944	7472	4981	3321	1660	9132	4151
Ca	<715	87193	163666	127931	357350	65038	124358	1429
Ti	<600	31174	18585	8393	<5995	600	75537	<600
Mn	<775	1545	1545	5422	<775	<775	109979	10069
Fe	1399	65744	73437	4896	2098	9792	44762	642049
CI	1000	5000	9000	1000	44000	1000	1000	1000
GV								
LOI	5000	100000	188000	218000	212000	102000	67000	0
Sb	<2	385	146	20	7	4	2	11
As	1	19	17	6	12	<3	14	63
Ва	60	11500	7210	15470	140	390	1130	33
Bi	<2	20	2	<2	7	<2	5	<2
Pb	4	1160	3200	106	3880	460	28	<2
Br	<1	183	70	12	34	3	<1	<1
Cd	<2	6	13	8	7	<2	<2	<2
Cr	7	1550	5070	690	17	56	380	8030
Со	<1	117	106	<2	<4	<9	<30	<2
Cu	28	4130	7150	44	330	5440	260	1620
Мо	<1	148	42	4	<2	267	16	302
Ni	3	600	385	185	8	11	76	1070
Hg	<1	<1	<2	<2	<3	<1	<2	<2
Rb	<1	35	20	2070	<1	4	13	<1
Se	<1	4	<1	<1	18	<1	<1	<1
Ag	<1	107	12	<1	<1	1	<1	1
Sr	7	410	428	570	140	100	117	20
TI	<2	<2	<2	30	<2	<1	<2	<2
V	<15	53	40	290	<4	<3	<70	60
W	<1	114	123	<2	<5	<15	32	<2
Zn	7	4350	2740	41780	910	10400	94	150
Sn	<1	230	310	23	8	180	16	56
Zr	44	586	310	1450	10	70	930	7

Tab. 32: Chemische Zusammensetzung der Abfälle gemäß RFA [mg/kg] VI

Abfall (CA)	555	556	557
Na	<742	<742	163218
Mg	6633	110952	12663
Al	25406	<3705	52930
Si	294462	3272	14022
Р	436	<436	436
S	401	16421	10814
К	11623	830	83020
Ca	14294	5003	135793
Ti	1799	2398	1799
Mn	1549	1549	1549
Fe	73437	334313	6994
CI	1000	5000	200000
GV			
LOI	100000	125000	80000
Sb	110	270	42
As	50	127000	11
Ва	460	24	550
Bi	<2	300	426
Pb	11350	1280	1130
Br	7	1000	400
Cd	57	1800	30
Cr	1660	45	250
Со	<60	<11	<2
Cu	16630	3310	2410
Мо	27	16	16
Ni	607	650	110
Hg	<1	5000	20
Rb	37	38	22
Se	<1	500	50
Ag	9	8	1
Sr	20	20	160
TI	<2	110	2
V	55	55	<15
W	<2	<2	<2
Zn	34410	2540	2310
Sn	1890	640	100
Zr	5	5	27

Tab. 33: Chemische Zusammensetzung der Abfälle gemäß RFA [mg/kg] VII

Abfall (CA)	30	96	157	203	301	302	303	304	305
AI	3348	3251	60770	37529	4362	13665	32956	32896	3348
As		1919	98	15					
В	144	482	61	112					144
Ва	31	19	1147	55					31
Be		n.b.							
Bi		46							
Ca	5950	4100	140610	211605	6410	52651	58808	253425	5950
Cd	196	104	20	145	61	969	88	165	196
CI	135900		50		n.b.		n.b.	n.b.	135900
Со	674	n.b.	22	15					674
Cr	334	7	111	74	456	883	3878	329	334
Cu	13590	13	90	432	1224	2576	778	436	13590
Fe	7565	264	29910	21738	9163	31520	40236	12505	7565
Hg		1	20	25					
К	41775	20533	2400	17887					41775
Li	63	0							63
Mg	7800	1575	12850	11762					7800
Mn	124	17	917	812	166	751	244	447	124
Na	91750	248926	1383	11015					91750
Ni	450	n.b.	41	40	217	2834	90	97	450
Pb	23740	33306	20	2169	10572	8605	3925	3309	23740
S	100800	192806	25950	31642	263511	243957	10916	124266	100800
SO4	302000	577685	77741	94793	789426	243957	32703	372277	302000
Si	7120	903							7120
Sr	139	14	1900	347					139
Ti	5865	16	10780	3301					5865
Zn	202600	2167	256	5274	29024	31813	6257	8273	202600
KW-unlösl.									
NH4									
NO ₃									
NO ₂									
TIC			n.b.						
тос			3104						
Summe (mit SO4)	851158	895347	344301	419144	851081	390225	179963	684158	318941

 Tab. 34:
 Chemische Zusammensetzung der Abfälle (nassanalytisch) [mg/kg] I¹⁶

¹⁶ Leere Felder bedeuten: nicht analysiert; n.b.: nicht bestimmbar

Abfall (CA)	306	400	403	404	500	501	502	503
AI	4625	103327	17888	44328	2821	1042		
As					n.b.	n.b.	n.b.	n.b.
В		455			499	392	n.b.	n.b.
Ва		1224						
Be								
Bi								
Ca	314887	154746	26593	215116	4247	2276	49668	691
Cd	n.b.	n.b.			n.b.	16	n.b.	n.b.
CI		496			443810	303	1454	112
Со		63			2086	2352	43	26
Cr	2427	851			679	732	n.b.	n.b.
Cu	n.b.	114			n.b.	n.b.	n.b.	n.b.
Fe	35730	42965			1878	1225	10480	169906
Hg								
К		8752	124249	2592	5488	3181	5448	n.b.
Li		367	55	52				
Mg		13337	5288	19574	3226	1808	n.b.	n.b.
Mn	6932	1112			833	885	n.b.	1858
Na		1976	74579	2659	371933	n.b.	30923	279040
Ni	13	673			1388	1726	578	n.b.
Pb	381	269			6	n.b.	40	151
S	225759	17593	89176	37377	35929	222774	n.b.	1397
SO4	676329	52691	267216	111990	107621	667391	n.b.	4186
Si		178816						
Sr		1951						
Ti		3586			680	728	n.b.	n.b.
Zn	69	281			2599	1484	n.b.	n.b.
KW-unlösl.							55230	n.b.
NH4								
NO ₃								45892
NO ₂								29402
TIC		547			9760	230	1766	66300
TOC		3740			7120	627	1453	5959
Summe	1041204	570006	515969	206210	066674	696200	157090	602525
(IIII 304)	1041394	512000	010000	010060	3000/4	000399	10/002	000020

Tab. 35: Chemische Zusammensetzung der Abfälle (nassanalytisch) [mg/kg] II

Abfall (CA)	504	506	508	509	511	512	514	515	516
AI	10919	10100	38330	32321		175			
As	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	1120	n.b.	n.b.
В	31795	1499	797	305	123	18	1542	460	72
Ва				2411					
Be									
Bi				n.b.					
Ca	983	96033	43975	23218	2290	72	24908	133900	343
Cd	26	94	176	n.b.	n.b.	n.b.	1208	574	n.b.
CI	322	103890	43780	6034	23472		2866	1163	n.b.
Со	2581	2770	2730	72	n.b.	14	605	85	n.b.
Cr	626	2057	3313	1052	n.b.	52	1248	138	n.b.
Cu	121	290	8924	2038	n.b.	14175	6549	3457	17
Fe	11489	19973	29857	41278	622	133283	57983	9317	306
Hg				n.b.	n.b.		n.b.	n.b.	n.b.
К	n.b.	123516	36117	n.b.	n.b.	43178	52969	2816	504
Li									
Mg	498068	12301	11342	4205	326	n.b.	16303	3419	132
Mn	1144	3770	1610	1365	n.b.	242046	689	340	43
Na	87648	65636	165779	10822	462	2197	73333	6649	318
Ni	1940	1270	3542	439	n.b.	2785	514	716	34
Pb	210	2119	10389	684	n.b.	n.b.	25927	5959	358
S	3164	36129	95912	3229		2754	100392	74474	123
SO4	9477	108235	287398	9678	n.b.	8250	300840	223167	369
Si									
Sr									
Ті	975	5096	18432	2930	99	8	13098	1523	1948
Zn	3441	21300	58422	5359	102	184924	88291	22370	34
KW-unlösl.					n.b.		2689	n.b.	n.b.
NH4					n.b.				
NO ₃									
NO ₂									
TIC	15840	3876	1470	130	104	n.a.	67	n.b.	141
TOC	617	227600	7711	6777	84450	n.a.	3243	2796	236600
Summe	070000	01110	774000	4 - 4 - 4	1100.10	001177	070004	44.00.40	044040
(mit SO4)	678223	811425	774093	151117	112049	6311/7	673304	418848	241218

Tab. 36: Chemische Zusammensetzung der Abfälle (nassanalytisch) [mg/kg] III

Abfall (CA)	518	519	520	521	523	524	525	526	527
Al				254144					
As	n.b.	1921	n.b.						
В	563	n.b.	279	93775	9003	291	175	75	1019
Ва									
Be									
Bi									
Ca	400	1143	90905	59355	38283	43764	3233		91633
Cd	n.b.	n.b.	19	n.b.	n.b.	n.b.	34	n.b.	16
CI	173	n.b.	160	105	53740	5850	1450	1590	114
Co	14	n.b.	346	720	31	78	4	n.b.	142
Cr	n.b.	205	2868	n.b.	n.b.	7353	93	6997	493
Cu	49	n.b.	3115	n.b.	50	9822	242	4030	6927
Fe	1591	307	148701	20645	1264	152262	143618	2874	141352
Hg	n.b.	n.b.	n.b.		n.b.	n.b.	n.b.	n.b.	n.b.
К	1746	n.b.	5753	n.b.	28104	1209	222	1843	6734
Li									
Mg	n.b.	n.b.	12666	12807	1880	4101	n.b.	1058	9574
Mn	73	96	1687	923	75	1020	559	95	1008
Na	1564	637	23686	29540	277547	4031	1871	4508	30579
Ni	193	n.b.	n.b.	n.b.	88	5592	26	3448	300
Pb	n.b.	n.b.	n.b.	143	n.b.	872	789	290	1006
S	408	87973	799	6641	88274	5221	1927	43396	8471
SO4	1222	263593	2394	19890	264528	15646	5771	130009	25390
Si									
Sr									
Ti	840	434870	17507	10431	28	959	17	34	5377
Zn	147	5834	5056	1431	352	8805	941	77	5927
KW-unlösl.	79119	768	1155		472	485	n.b.	946	2233
NH4									
NO ₃									
NO ₂									
TIC	n.b.	129	589	292	42170	942	n.b.	2821	3072
TOC	2004	181800	33930	18380	0	8113	3817	6909	11960
Summe (mit SO4)	10577	890536	349661	522580	717145	270710	162863	166657	342622

 Tab. 37:
 Chemische Zusammensetzung der Abfälle (nassanalytisch) [mg/kg] IV

Abfall (CA)	528	529	531	532	533	534	535	536	537
AI						170898		133728	112794
As	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	110
В	1137	1154	n.b.	172	6673	1438	513	89277	33096
Ва									
Be									
Bi									
Ca	112609	177520	3435	454	115536	59961	322720	212283	143167
Cd	107	381	n.b.	n.b.	123	72	90	270	157
CI	619	33343	30	64797	37	273	171	210580	93250
Со	241	54	n.b.	n.b.	123	730	90	495	570
Cr	913	490	43	n.b.	234	925	n.b.	13949	4270
Cu	3620	2439	47	n.b.	756	n.b.	n.b.	995	445
Fe	111808	29632	1760	401	65255	143262	862	21026	23648
Hg	n.b.	n.b.	n.b.	n.b.	n.b.		n.b.		
К	12347	21594	1334	777	17715	13432	1136	24335	23399
Li									
Mg	14395	6802	261	176	20000	20449	2567	9038	10938
Mn	1489	627	57	61	5682	2361	80	3023	2217
Na	20051	24482	787	1469	11148	9668	1640	103251	73452
Ni	700	168	21	n.b.	n.b.	n.b.	n.b.	373	n.b.
Pb	9016	14959	358	n.b.	n.b.	2074	n.b.	4634	2655
S	34045	42071	98934	155	11213	n.b.	156054	29986	19929
SO4	101968	126049	296375	466	33603	0	467414	89841	59715
Si									
Sr									
Ti	10787	3011	123	37	4090	11195	110	8019	5986
Zn	37653	44837	40	25	2571	11871	60	16113	8772
KW-unlösl.	2310	3951	3056	n.b.	n.b.		n.b.		
NH4		81	0						
NO ₃									
NO ₂									
TIC	2066	616	n.b.	83	1601	6499	13910	6248	2192
TOC	1833	70350	1275	2868	1375	92950	n.b.	209	2286
Summe (mit SO4)	443359	558590	305946	71784	286522	548060	811361	947690	603119

Tab. 38: Chemische Zusammensetzung der Abfälle (nassanalytisch) [mg/kg] V

Abfall (CA)	538	539	540	541	542	543	544	545	546
AI	87243	35403							
As	n.b.								
В	1145	n.b.	3669	6732	n.b.	36	414	0	n.b.
Ва									
Be									
Bi									
Ca	170147	137580	165176	134852	143844	502	172907	42405	780
Cd	465	522	383	253	n.b.		27	n.b.	n.b.
CI	102930	87300	6535	5012	15316	57944	180	3189	n.b.
Со	560	556	138	84	15	28	n.b.	n.b.	n.b.
Cr	898	n.b.	543	343	n.b.	n.b.	n.b.	n.b.	n.b.
Cu	1170	1056	5037	4335	252	n.b.	9	n.b.	n.b.
Fe	17618	17823	12812	10658	1948	77	1880	18526	1359
Hg			n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	
К	65090	58935	42268	33013	548	43460	437	8614	n.b.
Li									
Mg	20261	17215	13222	10675	1612	547	68	17676	n.b.
Mn	1964	1577	714	549	n.b.	24	18	226	n.b.
Na	61778	44429	38195	34135	9690	306582	2405	13617	495
Ni	761	n.b.	181	158	n.b.	n.b.	n.b.	n.b.	n.b.
Pb	6961	7790	9644	7089	1160	n.b.	90	n.b.	n.b.
S	40685	38113	51981	36194		1061	119847	23192	
SO4	121909	114170	155767	108439	336140	3179	359136	69494	n.b.
Si									
Sr									
Ті	11117	9377	11746	9266	n.b.	n.b.	116	172	n.b.
Zn	25498	25114	18435	13333	5546	24	45	n.b.	n.b.
KW-unlösl.			n.b.	n.b.	n.b.	n.b.	n.b.		
NH4						8			
NO ₃									
NO ₂									
TIC	7630	1885	6329	4276	635	15	n.b.	31	170
тос	852	2621	1909	1620	1059	619	618	11850	4672
Summe (mit SO4)	705996	563354	492703	384821	517766	413044	538348	185800	7476

Tab. 39: Chemische Zusammensetzung der Abfälle (nassanalytisch) [mg/kg] VI

Abfall (CA)	547	548	549	550	551	552	553	554	555
AI									
As		n.b.						n.b.	n.b.
В	701	523	129	89	102	380	n.b.	91	186
Ва									
Be									
Bi									
Ca	42984	130227	48341	163790	3328	103917	633	3579	11502
Cd	n.b.	n.b.	n.b.						
CI	242	4550	3159	5899	12	3	2	70	485
Со	n.b.	57	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	15
Cr	434	417	386	n.b.	n.b.	n.b.	4197	n.b.	29
Cu	5166	905	n.b.	180	6005	219	1114	n.b.	20318
Fe	36477	48705	2889	750	91241	25426	450452	17805	52993
Hg		n.b.						n.b.	n.b.
К	3787	1883	779	2277	n.b.	6694	974	3984	2804
Li									
Mg	5721	12545	5225	5623	907	13894	n.b.	1988	4583
Mn	561	224	2380	196	389	102166	5331	87	1034
Na	10352	6435	2036	3062	6438	8145	838	394	1170
Ni	626	64	n.b.	n.b.	n.b.	n.b.	743	n.b.	735
Pb	991	1133	n.b.	2865	599	n.b.	n.b.	250	12368
S	6722	5420						335	2204
SO4	20137	16239	46168	4172	n.b.	n.b.	n.b.	1005	6603
Si									
Sr									
Ті	8767	3190	n.b.	n.b.	n.b.	5135	n.b.	242	428
Zn	2524	708	18306	621	21898	n.b.	n.b.	28	36393
KW-unlösl.		n.b.							
NH4									
NO ₃									
NO ₂									
TIC	3390	8783	2825	22260	149	12	296	532	5221
TOC	32720	7071	12540	23740	29870	1713	38440	1444	13520
Summe (mit SO4)	175582	243658	145162	235525	160938	267704	503021	31500	170388

Tab. 40: Chemische Zusammensetzung der Abfälle (nassanalytisch) [mg/kg] VII

Abfall (CA)	556	557	558	600	601	602	603	604	605
AI				1704	5669	41534	30096	45880	20371
As	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
В	163	455	37	9	292	824	430	10	459
Ва									
Be									
Bi									
Ca	3123	102355	272	855	61529	39397	105545	146035	221659
Cd	1370	n.b.	n.b.	0	10	117	0	27	156
CI	5940	254738	584250	n.b.	248	71967	1291	10639	86643
Со	65	n.b.	n.b.	52	0	179	18	22	63
Cr	n.b.	n.b.	n.b.	623	123	3105	402	567	1041
Cu	2233	2815	n.b.	1021	786	7870	1896	696	1951
Fe	286506	8881	519	725741	4368	22092	71205	26344	13024
Hg	n.b.	n.b.	n.b.	1	1	1	1	1	1
К	400	58459	28242	676	2097	37044	9799	13337	14771
Li									
Mg	5629	12257	67	926	24626	10171	13021	11470	7636
Mn	843	1507	8	4456	370	628	1163	1293	859
Na	32219	108270	191209	1194	97586	149293	12753	12128	31951
Ni	529	111	n.b.	500	241	1380	287	290	420
Pb	1647	2010	n.b.	0	177	5423	1546	687	5896
S	10835	16032	473	556	1102	85034	8403	14439	58107
SO4	32461	48023	1418	1665	3302	254803	25182	43259	174146
Si									
Sr									
Ti	1703	732	n.b.	741	644	23894	9761	18569	6049
Zn	1826	3198	43	370	322	27305	5351	4874	10556
KW-unlösl.				100	100	100	100	100	100
NH4									
NO ₃									
NO ₂									
TIC	363	929	1295	n.b.	n.b.	3033	2857	6308	4960
тос	797	17780	394300	47260	2665	13250	11010	1228	4926
Summe								- /	
(mit SO4)	377816	622521	1201658	787795	205058	713309	303612	343664	607537

Tab. 41: Chemische Zusammensetzung der Abfälle (nassanalytisch) [mg/kg] VIII

Abfall (CA)	606	607	608	609	610	611
AI	21222	61058	22903	57992	36992	12980
As	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
В	335	375	639	415	738	541
Ва						
Be						
Bi						
Ca	263167	76301	156379	290927	101536	65519
Cd	256	0	45	13	0	118
CI	212021	27871	14796	86160	2889	41634
Со	139	518	1604	154	2238	953
Cr	3575	647	2037	280	2879	1295
Cu	1744	599	1734	1016	1578	102826
Fe	13041	173786	57609	2867	91238	27958
Hg	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
К	20063	13825	31665	8536	3117	44581
Li						
Mg	7925	14971	10672	23282	17733	8389
Mn	814	1721	1377	615	1418	773
Na	30462	17427	48296	10251	35005	111700
Ni	271	291	1413	290	623	3411
Pb	7261	236	4920	1281	0	10728
S	32670	1524	12147	4626	11012	89040
SO4	97919	4567	36394	13861	32990	266777
Si						
Sr						
Ti	8540	4712	13537	772	22177	27781
Zn	14489	741	24255	7944	3300	53720
KW-unlösl.	100	100	100	100	100	100
NH4				4290		
NO ₃						
NO ₂						
TIC	7144	2306	307	22390	1304	n.b.
тос	2966	1318	444	25540	151000	421
Summe	710055	400070	401000	550070	E0075 4	700100
(mit SO4)	/13355	403272	431029	2288/6	508754	782103

Tab. 42: Chemische Zusammensetzung der Abfälle (nassanalytisch) [mg/kg] IX

Abfall Nr. Art	unbehandelter Abfall	UTDnah: IP21	UTDnah: Gipshut- Lösung	UTDnah: Steinkohlen- grubenwas- ser	GasMax
CA30 Filterstäube aus Sonder- abfallver- brennungs- anlagen	Zinkblödit Dansit				Halit Koenenit ? CaH ₂ P ₂ O ₇ ? (oder ein ande res Phosphat ?)
CA157 Filterstäube	Quarz Anhydrit CaO Periklas	Gips Bassanit Anhydrit Quarz Carnallit	Anhydrit Quarz Halit Ca-Al-Oxid- Chlorid	Quarz Halit Ca-Al-Oxid- Chlorid	Quarz Anhydrit Carnallit Bassanit
CA203 Stäube aus der Verbren- nung	Sylvin Halit Calcit Calciumchlorid- Hydroxid Anhydrit Quarz	Anhydrit Bassanit Calcit Quarz Halit Sylvin Carnallit			Anhydrit Calcit Quarz Halit Sylvin Carnallit
CA301 Reaktionspro- dukte aus Ab- gasreinigung von Sonder- müllverbren- nung					Kainit Halit Carnallit Quarz ?
CA302 Filterstäube aus Sonder- abfallver- brennungs- anlagen	Aphthitalit Thenardit Halit				Carnallit Halit Kainit
CA305 Schlämme aus industrieller Abwasser- reinigung	Dolomit Rutil C Quarz	Calcit Bischofit Carnallit Rutil Quarz (wenig)	Halit Calcit Rutil Quarz (we- nig)	Calcit Rutil Halit (wenig) Quarz (wenig)	Carnallit Halit

Tab. 43: In den Abfällen und festen Reaktionsprodukten gefundene Mineralphasen I

Tab. 44:In den Abfällen und festen Reaktionsprodukten gefundeneMineralphasen II

Abfall Nr. Art	unbehandelter Abfall	UTDnah: IP21	UTDnah: Gipshut- Lösung	UTDnah: Steinkohlen- grubenwas-	GasMax
CA400/05 Braunkohlen- flugasche	Quarz Anhydrit Gehlenit CaO Hämatit Periklas Anorthit ?	Anhydrit Quarz Gehlenit Bischofit Bassanit Hämatit Anorthit ?	Quarz Anhydrit Halit Gehlenit Hämatit Ca-Al- Hydroxid- Chlorid Anorthit ?	ser Quarz Gehlenit Halit Hämatit Anorthit ?	Quarz Bischofit Anhydrit Carnallit Hämatit ? Halit (wenig) (Wdhlg) Koenenit ? (Wdhlg)
CA501 feste Salze, ammoniumhal- tig (Ammonium- sulfat)	Mascagnit Ammonium- phosphat- Hydrat ?				Boussingaultit Ammoniumch- lorid Quarz ? ??
CA502 Cyanidhaltige Abfälle (verbrauchte Härtesalze)	Mullit (A,B,C) Nephelin (A) Korund (A) Gehlenit (B) Anorthit © Magnetit (D) Hämatit (D) Halit (D) Sylvin (D)				Mullit Nephelin Korund Carnallit Bischofit Albit (Ca) Gehlenit ?
CA503 Verbrauchte Härtesalze, nitrat- /nitrithaltig	Thermonatrit Trona Natriumnitrit Natriumphos- phat ?	Halit Nesquehonit Northrupit ? Zinkit ??	Halit Magnetit Zinkit ??	Natrit Halit (wenig) Magnetit ? ??	Halit Carnallit Magnetit
CA506 Flugasche (Krem.)	Aphthitalit Halit Sylvin	Aphthitalit Halit Sylvin Carnallit Hydroxylapatit Cesanit ?	Aphthitalit Halit Sylvin Hydroxylapatit	Aphthitalit Halit Sylvin Hydroxylapatit Calcit ?	Halit Carnallit Bischofit

Tab. 45:	In den Abfällen und festen Reaktionsprodukten gefundene
	Mineralphasen III

Abfall Nr. Art	unbehandelter Abfall	UTDnah: IP21	UTDnah: Gipshut-	UTDnah: Steinkohlen-	GasMax
	Abran		Lösung	grubenwas-	
CA508 E-Filterstaub	Dansit Thenardit Halit Periklas Quarz Korund ?	Hexahydrit Carnallit Halit Quarz Korund ?	Thenardit Glauberit Halit Quarz Periklas ? Korund ?	Glauberit Thenardit Halit Quarz Korund Periklas ?	Quarz Halit Bischofit Kainit Carnallit (Wdhlg)
CA509 SAV- Schlacke	Halit Quarz Korund Anorthit Hercynit ??	Halit Quarz Korund Anorthit ? Hercynit ??	Halit Quarz Korund Anorthit ? Hercynit ??	Halit Quarz Korund Anorthit ? Hercynit ??	Bischofit Quarz Korund Carnallit (Wdhlg) Albit (Wdhlg) Halit (wenig) (Wdhlg)
CA511 Ammonium- haltige Salze	NH ₄ Cl				Ammonium- carnallit
CA514 E-Filterstaub	Blodite Aphthitalit Dansit				Carnallit Kainit Arcanit/ Halit
CA519 Verbrauchter Strahlsand	Baryt Rutil Sphalerit amorphe Pha- se				Bischofit Carnallit Halit
CA520 VA-Schlacke	Quarz Magnesioferrit (oder Magnetit)				Bischofit Carnallit Quarz Magnetit Halit (wenig)
CA521 Strahlsand	Quarz Calcit Rutil Maghemit ? amorphe Pha- se				Bischofit Carnallit Quarz Halit (wenig)
CA523 Rauchgas- reinigungs- rückstand	Aphthitalit Halit Portlandit				Halit Sylvin (wenig) Bassanit Carnallit Syngenit ??

Tab. 46:In den Abfällen und festen Reaktionsprodukten gefundeneMineralphasen IV

Abfall Nr.		UTDnah:	UTDnah: Ginabut	UTDnah: Stoinkohlon	GasMax
АП	Abraii	IP21	Lösung	grubenwas- ser	
CA527 Rost- und Kesselaschen und - schlacken	Quarz Ettringit Anorthit Magnetit Diopsit	Gips Bassanit Quarz Magnetit Calcit	Halit Quarz Calcit Magnetit Diopsit	Quarz Calcit Halit (wenig) Magnetit Diopsit	Quarz Bassanit Carnallit Bischofit Halit (wenig) Anhydrit (we- nig) Magnetit ?
CA528 Flugasche	Quarz Anhydrit Magnetit Hämatit Graphit Diopsit ??	Anhydrit Bassanit Quarz Halit (wenig) Nyererit Carnallit ? ??	Anhydrit Gips Quarz Halit Magnetit	Gips Anhydrit Quarz Halit (wenig) Magnetit	Anhydrit Quarz Bischofit Carnallit Halit Magnetit Hämatit ??
CA529 Feste Abfälle aus der Gasreinigung	Quarz Halit Bassanit ?				Halit Carnallit Bischofit Bassanit Anhydrit Tachyhydrit ?
CA532 Ammonium- chlorid	NH₄CI				Ammonium- carnallit NH₄CI Halit (wenig)
CA533 Klärschlamm- asche	Quarz CaO Hämatit Anhydrit Ca-Fe-Mg-Na- (Hydrogen)- Phosphat				Quarz Bischofit Anhydrit Gips Hämatit
CA534 Steinkohlen- flugasche	Mullit Quarz CaO Periklas Hämatit ? Korund ?	Mullit Quarz Bassanit Bischofit Halit Carnallit	Mullit Quarz Halit Anhydrit Hämatit ? Calcit ?	Mullit Quarz Halit Hämatit ? Calcit ?	Mullit Quarz Anhydrit Bischofit Halit Carnallit

Tab. 47:In den Abfällen und festen Reaktionsprodukten gefundeneMineralphasen V

Abfall Nr. Art	unbehandelter Abfall	UTDnah: IP21	UTDnah: Gipshut- Lösung	UTDnah: Steinkoh- lengruben- wasser	GasMax
CA536 Filterstaub trocken	Halit Sylvin Portlandit Anhydrit CaO CaClOH	Halit Carnallit Bassanit Anhydrit	Halit Gips Portlandit Anhydrit	Halit Gips Portlandit Anhydrit Quarz Calcit	Halit Anhydrit Bassanit Carnallit Mg ₂ CI(OH) ₃ ·4H ₂ O
CA537 Filterstaub konditioniert	Halit Gips Quarz Magnesit Anhydrit Calcit Ca-Al-B-Oxid- Hydroxid	Gips Halit Quarz Bassanit Anhydrit	Halit Gips Quarz Anhydrit Calcit	Halit Quarz Anhydrit Calcit ??	Halit Bischofit Anhydrit Bassanit Gips Carnallit Quarz
CA538 Filterstaub trocken	Anhydrit Quarz Halit Sylvin Calcit Periklas ??	Gips Anhydrit Halit Carnallit Halit Quarz Sylvin	Halit Anhydrit Gips Quarz Calcit Quarz Periklas Sylvin	Gips Anhydrit Halit Sylvin Quarz Calcit Periklas	Halit Bischofit Carnallit Anhydrit Gips Quarz Calcit Sylvin
CA539 Filterstaub konditioniert	Halit Sylvin Quarz Anhydrit Calcit ??	Gips Anhydrit Quarz Halit Sylvin Carnallit Bischofit	Gips Anhydrit Halit Sylvin Quarz Calcit Periklas	Gips Anhydrit Halit Sylvin Quarz Calcit Periklas	Gips Bischofit Halit Anhydrit Carnallit Bassanit Quarz
CA540 Filterstaub trocken	Anhydrit Quarz Calcit Sylvin Halit Pyrit ? Hämatit ? CaO ?	Gips Anhydrit Bassanit Halit Carnallit Sylvin Quarz	Gips Halit Quarz Calcit ??	Anhydrit Gips Halit Sylvin Quarz Calcit	Halit Sylvin Carnallit Gips Anhydrit Quarz

Tab. 48:In den Abfällen und festen Reaktionsprodukten gefundeneMineralphasen VI

Abfall Nr. Art	unbehandelter Abfall	UTDnah: IP21	UTDnah: Gipshut- Lösung	UTDnah: Steinkoh- lengruben- wasser	GasMax
CA541 Filterstaub konditioniert	Anhydrit Gips Halit Quarz Sylvin Calcit ?	Gips Bassanit Halit Quarz Calcit	Gips Halit Quarz Calcit	Gips Halit Quarz Calcit ??	Quarz Carnallit Bischofit Gips/ Anhydrit Melanterit Halit (wenig) Bassanit (we- nig)
CA542 Filterkuchen	Gips Bassanit Halit (wenig)				Anhydrit Carnallit
CA543 Feste Abfälle aus der Gas- reinigung (NaCl)	Halit Sylvin NH₄Cl				Halit Ammonium- carnallit Bischofit
CA544 Feste Abfälle aus der Gas- reinigung (Gips)	Gips				Anhydrit Carnallit Halit (wenig)
CA545 Hg-haltige Abfälle (Elektrolyse- rückstände)	Halit Quarz Dolomit (Fe) ? Muskovit ??				Quarz/Ankerit Illit (Muscovit ?) Halit (wenig) Anhydrit Clinochrysotil Mg-Chamosit
CA546 Gießereialtsand	Quarz				Quarz Bischofit Carnallit
CA547 SAV-Schlacke	Quarz Diopsid Albit (Ca)				Bischofit Quarz Na ₂ SO ₄
CA548 MVA- Schlacke	Ettringit Calcit Quarz Magnetit ?	Calcit Quarz Halit Magnetit ? Gips Bassanit (wenig)	Calcit Quarz Magnetit ? Halit	Calcit Quarz Halit Magnetit ?	Bischofit Bassanit Quarz Gips Halit (wenig) Carnallit (Wdhlg)

Tab. 49:In den Abfällen und festen Reaktionsprodukten gefundeneMineralphasen VII

Abfall Nr. Art	unbehandelter Abfall	UTDnah: IP21	UTDnah: Gipshut- Lösung	UTDnah: Steinkohlen- grubenwas- ser	GasMax
CA549 Abwasser- schlamm	Ettringit Quarz Calcit Thenardit ?	Gips Bischofit Quarz Calcit Halit (wenig) ??	Halit Gips Quarz Calcit ??	Halit Quarz Calcit Gips ??	Bischofit Carnallit Halit
CA550 feste Abfälle aus der Gas- reinigung	Portlandit Ca-Chlorid- Hydroxid Halit (wenig)				Gips Carnallit Bischofit Halit (wenig) Sylvin Bassanit Brucit Quarz (wenig) Ca-Chlorid- Hydroxid Mg-Chlorid- Hydroxid ??
CA551 Glas-Strahl- mittelreste	Zink Zinkit Quarz (wenig) amorphe Pha- se	Zinkit Zink Quarz (wenig) Halit (sehr wenig) amorphe Phase	Zinkit Zink (wenig) Halit (wenig) amorphe Phase	Zinkit Zink Halit (wenig) Quarz (wenig) amorphe Phase	Bischofit Carnallit Halit ??
CA552 Stahl-Strahl- mittelreste	Fluorit Korund Rutil Periklas Hausmannit Bixbyit	Fluorit Korund Rutil Periklas Hausmannit Bixbyit Quarz (wenig)	Fluorit Korund Rutil Periklas Hausmannit Quarz (wenig) Halit (wenig)	Fluorit Korund Rutil Periklas Hausmannit Quarz (wenig) Halit (sehr wenig)	Bischofit Carnallit Korund Rutil Fluorit Halit (sehr wenig)
CA553 Schleifschlamm	Eisen (2 Modifikatio- nen) Korund ?	Eisen (2 Modifikati- onen) Magnesioferrit	Eisen (2 Modifikati- onen) Magnesioferrit	Eisen (2 Modifikati- onen) Magnesioferrit	Akaganeit Korund Eisenchlorid- Hydroxid Magnesioferrit Eisen

Tab. 50:In den Abfällen und festen Reaktionsprodukten gefundeneMineralphasen VIII

Abfall Nr.	unbehandelter	UTDnah:	UTDnah:	UTDnah:	GasMax
Art	Abfall	IP21	Gipshut- Lösung	Steinkoh- lengruben-	
CA554 Hg-haltiger Bauschutt und Boden	Quarz Kaolinit Orthoklas Muskovit	Quarz Bischofit Carnallit Muskovit Kaolinit Orthoklas	Quarz Muskovit Kaolinit Orthoklas Halit (wenig)	Quarz Muskovit Kaolinit Orthoklas Halit (wenig)	Quarz Kaolinit Orthoklas
CA555 Abfall aus der trockenen Gasreinigung	Quarz Hämatit ??				Quarz Hämatit
CA556 Abfall aus der nassen Gasrei- nigung (Fe-As- Schlamm)	amorph				amorph Halit Uklonovit
CA557 feste Abfälle aus der Gas- reinigung (Al- Metallurgie)	Halit Sylvin Al ??	Halit Carnallit Bassanit Gips	Halit Sylvin Ca-Al-Oxid- Chlorid	Halit Sylvin Ca-Al-Oxid- Chlorid Bassanit	Halit Carnallit Bassanit Anhydrit
CA558 Salzrückstände aus der Glyzerin- Destillation					Halit
CA600 Schleifschlamm	Eisen (2 Modifikatio- nen) Korund				Eisen (2 Modifikati- onen) Korund Eisenchlorid- Hydroxid Hydrocalumit
CA601 Glas-Strahl- mittelreste	amorph				amorph Halit (wenig) Quarz (wenig) ??
CA602 E-Filterstaub	Halit Dansit Thenardit Na ₂ SO ₄ Korund Quarz (wenig)				Halit Kainit Magnesit Arcanit

Tab. 51:In den Abfällen und festen Reaktionsprodukten gefundeneMineralphasen IX

Abfall Nr. Art	unbehandelter Abfall	UTDnah: IP21	UTDnah: Gipshut- Lösung	UTDnah: Steinkoh- lengruben- wasser	GasMax
CA603 Rost- und Kesselaschen und -schlacken	Quarz Ettringit Magnetit Calcit				Bassanit Quarz Gips (wenig)
CA604 Flugasche	Quarz Kalk Anhydrit Calcit				Quarz Anhydrit Bassanit Calcit
CA605 MVA Filter- staub konditioniert	Halit Sylvin Gips Anhydrit Quarz (wenig)				Gips Bassanit Anhydrit Quarz
CA606 MVA Filter- staub pur	Calciumchlorid- Hydroxid Anhydrit Halit Calcit				Halit Carnallit Anhydrit Magnesium- chlorid- Hydroxid
CA607 MVA Schlacke entschrottet	Quarz Mullit Bleioxid Pb ₂ O ₃ Gehlenit Halit (wenig) Magnetit				Anhydrit Gips Quarz Diopsid
CA608 Kesselasche SAV	Anhydrit Hydroxylfluoro- apatit ??	Anhydrit Carnallit Bassanit Halit			Anhydrit Carnallit Halit Polyhalit
CA609 Feste Abfälle aus der Gas- reinigung (Al- Metallurgie)	Portlandit Calciumchlorid- Hydroxid Halit (wenig) Sylvin Periklas Al	Gips Bassanit Halit (wenig) Magnesium- chlorid- hydroxid Halit (wenig) Al	Halit Portlandit Ca-Al- Hydroxid- Chlorid Al		Gips Bassanit Carnallit Magnesium- chlorid- hydroxid Halit (wenig)

Tab. 52:In den Abfällen und festen Reaktionsprodukten gefundeneMineralphasen X

Abfall Nr. Art	unbehandelter Abfall	UTDnah: IP21	UTDnah: Gipshut- Lösung	UTDnah: Steinkohlen- grubenwas- ser	GasMax
CA610 Schlacke (SAV)	Quarz Calcit CaO	Gips Quarz Carnallit			Bassanit Carnallit Gips Quarz
CA611 E-Filterstaub (SAV)	Dansit Mullit KNO ₂ ??	Halit Hexahydrit Kainit Anhydrit			Halit Mullit KNO ₂ ??

Ca-Nr.	30	157	157	157	157	203	203	301	302
Lauge	IP21- Gas- Max	IP21- Gas- Max	IP21	Gishut- Lösung	Tiefen- wasser	IP21	IP21- Gas- Max	IP21- Gas- Max	IP21- Gas- Max
AI	n.b.	38,64	48,97	4,369	3,869	55,25	42,01	n.b.	n.b.
В	45,99	27,12	29,01	43,3	2,025	0,1	0,1	411,6	291,2
Bi	0,906	0,046	n.b.	n.b.	4,498	132	13,1	n.b.	0,034
Ca	41,87	8740	14303	451,3	464,2	103263	29967	70,71	88,05
Cd	47,83	n.b.	2,314	2,557	n.b.	23,24	8,39	19,41	338,2
CI	277467	274070	283799	793266	80936	335863	298409	232054	249626
Со	n.b.	n.b.	n.b.	n.b.		0,46	0,001	5,333	4,953
Cr	4,197	0,64	n.b.	0,6233	n.b.	0,015	0,015	1,26	1,157
Cu	13,71	n.b.	n.b.	n.b.	n.b.	2,347	2,247	282,9	270,5
Fe	n.b.	n.b.	n.b.	n.b.	n.b.	0,05	0,05	n.b.	n.b.
Hg	n.b.	n.b.	n.b.	n.b.	0,1587	0,002	0,002	3,677	n.b.
К	27170	19260	19340	n.b.	962	9976	17887	21970	31010
Mg	80310	84513	78983	621	n.b.	47130	73540	83240	78707
Mn	5,303	4,213	n.b.	n.b.	n.b.	6,787	39,69	17,35	20,24
Мо	n.b.	n.b.	n.b.	4,132	0,6757	0,72	0,03	n.b.	n.b.
Na	19487	9783	9779	126000	54893	4436	8402	19247	19677
Ni	n.b.	n.b.	n.b.	n.b.	n.b.	2,71	1,293	7,985	269
Pb	1803	n.b.	n.b.	n.b.	n.b.	131,9	13,86	n.b.	n.b.
S	20277	319,5	232,4	5084	653,7	1	1	25587	15533
SO4	60753	957,4	696,3	15234	1959	2,996	2,996	76663	46541
Sb	1,554	n.b.	0,15	n.b.	n.b.			26,23	1,012
Si					49,76	0,4	0,4		
Sn	0,3267	n.b.	0,25	0,1767	n.b.	0,02	0,02	n.b.	0,3267
Ti	1,185	n.b.	n.b.	n.b.	n.b.	380	101,6	n.b.	n.b.
TI	16,33	0,02	0,03	0,02	n.b.			0,49	5,33
Zn	61027	2,13	1,727	1,469	2,805	469,1	724,4	8749	7895
рН	6,06	6,81	6,9	11,09	11,46	6,07	5,66	4,5	4,84
pHCI	2,69	3,1	3,17	5,33	5,75	2,61	2,39	1,86	2,04
Dichte	1,3486	1,2717	1,2721	1,2089	1,0847	1,3528	1,296	1,3159	1,3016

Tab. 53: Lösungskonzentration der Eluate I

Ca-Nr.	305	305	305	305	305	405	405	405	405
Lauge	IP21- Gas- max	IP21-LZ	IP21	Gishut- Lösung	Tiefen- wasser	IP21- Gas- max	IP21- Gas- max	Gishut- Lösung	IP21
AI	n.b.	8,197	9,363	n.b.	n.b.	n.b.	4,065	1,092	n.b.
В	19,9	20,61	30,04	33,81	40,7	19,93	38,88	43,21	15,62
Bi	n.b.	n.b.	1,373	2,063	n.b.		0,272		
Ca	350,3	894,3	1511	2116	2168	13270	8414	518,8	1344
Cd	2,435	n.b.	n.b.	n.b.	3,779	n.b.	n.b.	n.b.	0,531
CI	217841	162698	147060	111329	48831	288064	274372	189262	276903
Со	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	0,1147	0,054	n.b.
Cr	1,633	3,302				n.b.	n.b.	n.b.	n.b.
Cu	n.b.	n.b.	n.b.	n.b.	0,615	0,13	n.b.	0,178	n.b.
Fe	n.b.	1,83	n.b.	n.b.	n.b.	n.b.	0,43	0,2177	n.b.
Hg	n.b.	n.b.	6,3	1,33	n.b.		0,2883		
К	15483	11497	9869	1182	1460	21907	16360	n.b.	20993
Mg	75720	52483	44837	969,7	1252	79933	77630	n.b.	83933
Mn	116,1	58,67	44,01	13,57	9,873	48,67	21,18	n.b.	4,962
Мо	n.b.	n.b.	n.b.	n.b.	n.b.	0,512	0,1223	2,071	n.b.
Na	8290	6760	8570	69570	25420	10453	9906	128167	9773
Ni	4,673	4,973	12,47	10,86	6,442	n.b.	0,3913	n.b.	n.b.
Pb	n.b.	0,6517	n.b.	1,46	0,057	n.b.	n.b.	n.b.	n.b.
S	6444	5082	3360	1714	889,7	n.b.	287,8	3877	635,9
SO4	19307	15227	10066	5135	2666	n.b.	862,3	11616	1905
Sb	n.b.	0,248				n.b.	n.b.	n.b.	0,043
Si		15,64	12,42	8,017	8,813		8,42		
Sn	0,3833	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	0,1073	n.b.
Ti	n.b.	10,64	4,13	7,043	1,609	32,08	11,34	n.b.	1,156
TI	0,04					n.b.		0,128	n.b.
Zn	44,21	8,473	40,87	n.b.	n.b.	0,919	2,21	n.b.	0,871
рН	6,02	6,27	6,97	7,59	7,6	5,67	5,87	10,77	6,71
pHCI	2,72	2,92	3,24	3,63	3,85	2,4	2,51	5,15	2,95
Dichte	1,2413	1,1847	1,1603	1,1211	1,0548	1,2835	1,2672	1,2062	1,2722

Tab. 54: Lösungskonzentration der Eluate II

Ca- Nr.	405	405	501	502	503	503	503	503	506
Lauge	Tiefen- wasser	IP21-LZ	IP21- Gas- max	IP21- Gas- max	IP21- Gas- max	IP21	Gishut- Lösung	Tiefen- wasser	IP21- Gas- max
AI	8,378	51,59	4,057	4,033	4,003	n.b.	n.b.	n.b.	0,302
В	1,605	16,49	8,02	14,05	8,37	9,797	19,59	38,14	10,38
Bi		n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	
Ca	2357	25847	166,1	173,2	72,31	n.b.	n.b.	n.b.	186,4
Cd	0,381	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	0,3373	0,851
CI	81839	273257	259266	270127	204187	172351	103238	70212	278903
Co	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
Cr	n.b.	n.b.	n.b.	n.b.	n.b.				12,37
Cu	n.b.	n.b.	0,507	0,162	n.b	n.b.	n.b.	0,1933	n.b.
Fe	n.b.	3,12	2,937	2,33	2,47	n.b.	n.b.	4,76	n.b.
Hg		n.b.	n.b	n.b.	n.b.	n.b.	n.b.	n.b.	
К	562,7	18297	11007	17793	21583	14207	n.b.	387,1	24903
Mg	n.b.	71290	66393	91827	59863	5763	n.b.	n.b.	87683
Mn	n.b.	n.b.	n.b	n.b.	n.b.	n.b.	n.b.	n.b.	2,093
Мо	1,619	n.b.	n.b.	2,425	n.b.	0,5607	1,951	2,404	1,331
Na	49297	9518	10673	9474	42633	121893	181553	181333	11267
Ni	n.b.	2,067	2,07	1,437	1,68	0,6507	n.b.	n.b.	n.b.
Pb	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	0,3887	0,3973	60,23
S	2300	267	8324	6735	10285	7537	1960	1385	4154
SO4	6891	800	24939	20179	30815	22581	5872	4149	12446
Sb	0,142	n.b	n.b.	n.b.	n.b.				5,368
Si		14,93	17,07	18,01	19,67	n.b.	136,6	227	
Sn	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
Ti	1,544	72,71	n.b.	n.b.	n.b.	2,109	n.b.	n.b.	n.b.
TI	0,012								n.b.
Zn	n.b.	4,103	55,54	6,387	2,47	n.b.	n.b.	n.b.	n.b.
рН	11,13	6,87	5,17	5,37	6,45	7,65	12,95	13,1	6,61
pHCI	5,17	3,03	2,21	2,27	2,92	3,57	6,24	6,4	2,4
Dichte	1,0869	1,2758	1,2396	1,2841	1,2533	1,235	1,3349	1,3319	1,2832

Tab. 55: Lösungskonzentration der Eluate III

Ca- Nr.	506	506	506	508	508	508	508	508	508
Lauge	IP21	Gishut- Lösung	Tiefen- wasser	IP21- Gas- max	IP21- Gas- max	IP21-LZ	IP21	Gishut- Lösung	Tiefen- wasser
AI	0,995	n.b.	1,174	0,38	4,292	n.b.	n.b.	n.b.	1,947
В	15,71	6,808	4,447	28,74	158,2	75,45	81,66	66,75	50,8
Bi					29,26	n.b.	n.b.		
Ca	132,9	1486	2669	n.b.	24,9	156,4	n.b.	62,96	187,5
Cd	0,509	n.b.	0,397	0,61	0,143	n.b.	19,38	43,85	42,34
CI	274598	194307	100181	231047	228724	214497	214957	177694	99959
Co	n.b.	n.b.	n.b.	0,109	0,43	n.b.	n.b.	0,07	n.b.
Cr	1,315	6,713	12	n.b.	2,884	n.b.		n.b.	n.b.
Cu	n.b.	n.b.	n.b.	n.b.	56,15	n.b.	65,5	7,682	26,61
Fe	0,1193	0,1313	n.b.	2,445	117	n.b.	n.b.	n.b.	n.b.
Hg					0,4093	n.b.	n.b.		
К	21967	2846	5186	18547	17413	21183	21133	16543	14800
Mg	91240	n.b.	901,3	85657	84820	73980	75237	745,5	1429
Mn	n.b.	n.b.	n.b.	11,31	12,14	n.b.	7,545	n.b.	n.b.
Мо	n.b.	0,434	1,037	5,081	1,869	n.b.	0,1427	n.b.	0,659
Na	10220	122000	57137	17360	17410	25930	28550	125300	109067
Ni	n.b.	n.b.	n.b.	n.b.	2,175	n.b.	2,52	0,155	n.b.
Pb	2,076	n.b.	n.b.	1,746	23,8	n.b.	998,2	50,6	10,25
S	8514	1846	1197	28490	29300	28443	32750	20500	44037
SO4	25509	5532	3587	85362	87789	85222	98126	61422	131943
Sb	n.b.	n.b.	1,132	1,055	1,99			n.b.	0,719
Si					17,92	12,19	15,27		
Sn	n.b.	0,1113	n.b.	n.b.	0,2427	n.b.	n.b.	0,11	n.b.
Ti	n.b.	0,8243	3,812	3,784	7,376	n.b.	9,876	49,85	40,23
TI	n.b.	n.b.	0,03	0,191				0,796	0,398
Zn	1269	n.b.	n.b.	24,84	3156	4308	3275		11,52
рН	6,9	10,66	9,14	5,68	5,69	6,026	6,29	7,74	7,76
pHCI	3,01	5,1	2,87	2,4	2,42	2,74	2,75	3,6	3,69
Dichte	1,2912	1,2043	1,1103	1,3133	1,3096	1,3064	1,3163	1,2526	1,2482

Tab. 56: Lösungskonzentration der Eluate IV

Ca-Nr.	508	508	508	509	509	509	509	509	509
Lauge	IP21 mit NO3	IP21 mit PO4	IP21 mit Algizid	IP21- Gas- max	IP21- Gas- max-1	IP21- Gas- max-3	IP21	Gishut- Lösung	Tiefen- wasser
AI	9,07	0,2	0,2	0,8357	n.b.	n.b.	n.b.	n.b.	2,528
В	87,69	108,1	98,77	32,25	18,9	32,98	12,45	9,26	11,11
Bi	10,12	0,015	70,79	20,42					
Ca	0,05	88,93	103,8	164,3	109,8	83,19	229,7	1002	1693
Cd	0,003	0,003	0,003	n.b.	1,539	1,089	1,283	n.b.	n.b.
CI	223560	226454	231743	255988	256538	265522	200452	150443	67066
Со	0,001	0,001	0,001	0,08067	0,3993	0,366	0,2513	0,06	n.b.
Cr				n.b.	0,647	0,386	0,403	n.b.	n.b.
Cu	11,81	0,02	12,38	31,85	1,394	1,106	2,981	3,351	0,995
Fe	36,54	53,69	48,9	56,71	n.b.	n.b.	n.b.	n.b.	n.b.
Hg	0,03	0,03	0,03	0,129					
К	19353	17333	16233	15553	17517	18220	16230	2540	2201
Mg	86060	86687	85297	80443	80153	82867	59570	n.b.	558,5
Mn	12,7	0,01	12,75	20,09	37,33	31,78	21,41	n.b.	n.b.
Мо	1,16	0,05	0,05	1,607	0,228	0,384	2,747	1,336	0,883
Na	18093	17563	17487	12100	11083	11497	15903	102433	40080
Ni	0,3167	0,03	0,03	0,08467	0,435	0,464	0,518	n.b.	n.b.
Pb	9,71	0,01	62,48	19,28	222	100,4	17,91	0,2993	n.b.
S	30283	29287	26907	6446	6002	6564	8504	3447	2591
SO4	90735	87749	80618	19314	17984	19667	25481	10327	7762
Sb				1,63	0,102	0,163	0,215	n.b.	0,22
Si	19,5	12,44	0,3	14,61					
Sn	0,03	0,03	0,03	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
Ti	15,25	0,02	10,1	0,5608	n.b.	n.b.	1,265	1,171	1,598
TI					n.b.	n.b.	n.b.	0,131	0,021
Zn	2981	3112	3035	1719	1387	1704	1598	3,186	n.b.
рН	5,77	5,68	5,6	5,77	5,25	5,84	6,41	8,01	7,89
pHCI	2,44	2,40	2,40	2,47	2,22	2,49	2,88	3,78	3,88
Dichte	1,3163	1,3159	1,307	1,2675	1,274	1,274	1,2297	1,1676	1,0793

Tab. 57: Lösungskonzentration der Eluate V

Ca-Nr.	511	511	512	514	519	520	520	521	522
Lauge	IP21- Gas- max o	IP21- Gas- max u	IP21- Gas- max	IP21- Gas- max	IP21- Gas- max	IP21- Gas- max	IP21-LZ	IP21- Gas- max	IP21- Gas- max
ΔΙ	16.35	22 27	5.307	n h	6.033	nb	6 903	n h	n h
B	90.81	135.7	31 12	67.5	42 59	15.31	19.84	49.21	44 49
Bi	n h	4 205		4307	1 018	11.4	n h	0.79	0.93
Ca	57 16	74 93	99.22	65.07	95.09	234.4	245.4	135.5	30.76
Cd	n.b.	0.9463	n.b.	130.5	n.b.	0.08233	<u> </u>	n.b.	n.b.
CI	241,5	251797	266864	127825	255880	335930	250789	259702	260472
Co	0,1247	0,1923	n.b.	0,8857	0,1483	0,711	0,308	0,2377	0,1603
Cr	n.b.	2,92	n.b.	n.b.	3,303	n.b.	n.b.	2,087	n.b.
Cu	n.b.	2,173	1,426	218,8	2,493	2,561	2,463	23,2	n.b.
Fe	2,06	1,317	2,893	4,947	n.b.	43,52	4,883	18,37	n.b.
Hg	0,6	0,6277	n.b.	0,335	0,03333	n.b.	n.b.	0,5923	0,918
К	n.b.	12667	21997	21873	17117	35210	15693	32920	17563
Mg	291,8	65507	87980	80303	81967	175233	85250	170133	85247
Mn	n.b.	n.b.	n.b.	5,188	n.b.	9,993	n.b.	74,4	n.b.
Мо	n.b.	0,7713	n.b.	0,575	n.b.	4,046	3,216	0,21	0,158
Na	375,9	10937	9529	18730	7863	19307	9415	17143	8630
Ni	n.b.	n.b.	1,647	n.b.	n.b.	0,87	4,44	n.b.	2,79
Pb	n.b.	n.b.	n.b.	n.b.	n.b.	12,53	21,3	164,2	3134
S			8186				5682	15277	7650
SO4	313,7	26818	24528	70201	23214	36124	17025	45772	22921
Sb	n.b.	0,01767	n.b.	2,377	0,116	0,6537	0,4877	0,087	0,077
Si	62193	368,1	41,63	160,7	69,1	63,7	79,18	3,033	4,873
Sn	n.b.	n.b.	n.b.	0,1273	n.b.	n.b.	n.b.	n.b.	n.b.
Ti	n.b.	1,078	n.b.	1,139	0,912	0,3873	n.b.	5,47	2,033
TI	n.b.	n.b.		2,769	n.b.	n.b.			
Zn	5,057	107,6	109,4	13280	138	103,6	147,2	1491	0,76
рН	3,76	5,87	6,89	5,9	5,81	5,29	6,09	4,83	6,78
pHCI	1,15	2,49	3,06	2,55	2,52	2,27	2,66	1,95	2,92
Dichte	0,8878	1,2429	1,2872	1,3233	1,2836	1,2798	1,263	1,2844	1,2889

Tab. 58: Lösungskonzentration der Eluate VI
Ca- Nr.	523	527	527	527	527	527	527	527	527
Lauge	IP21- Gas- max	IP21- Gas- max	IP21-LZ	IP21	Gishut- Lösung	Tiefen- wasser	IP21 Fest:Ls g=1:5	IP21 Fest:Ls g=1:10	IP21 KG <= 2mm
AI	21,37	12,55	Versuch	21,61	10,82	20,75	n.b.	n.b.	n.b.
В	2712	86,12	läuft	29,97	14,48	9,773	6,53	5,397	17,57
Bi	0,011	5,007	noch	n.b.	n.b.	n.b.	19,65	20,45	14
Ca	163	301,1		4521	1735	4492	94,35	144	328,6
Cd	n.b.	n.b.		n.b.	n.b.	1,27	n.b.	n.b.	1,027
CI	193619	267500		232557	168545	70173	260807	259468	258395
Со	0,501	0,17		n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
Cr	n.b.	n.b.		n.b.	n.b.	n.b.			
Cu	5,32	9,279		4,091	n.b.	n.b.	15,38	0,94	8,683
Fe	0,1433	290,3		1,22	1,04	1,067	5,37	n.b.	145,8
Hg	1,403	n.b.		n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
К	25340	18540		16730	630,4	923,1	16727	17400	17097
Mg	57670	84873		70677	n.b.	5,087	81647	84433	79000
Mn	0,78	25,05		n.b.	n.b.	n.b.	9,707	38,25	35,31
Мо	77,7	0,108		0,551	2,526	2,119	n.b.	n.b.	n.b.
Na	43853	10197		9588	111400	165000	8929	9100	9507
Ni	n.b.	n.b.		1,087	0,9233	0,8367	n.b.	n.b.	n.b.
Pb	1,873	n.b.		116,2	n.b.	0,9203	14,13	14,83	20,48
S	26930			402,3	1501	1152	5836	6140	2271
SO4	80688	25682		1205	4496	3453	17487	18397	6805
Sb	2,49	0,2153		1,058	n.b.	n.b.			
Si	30,49	34,28		36,98	11,02	10,41	6,877	6,97	14,98
Sn	n.b.	n.b.		n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
Ti	13,62	1,579		9,148	n.b.	14,43	n.b.	n.b.	n.b.
TI		n.b.							
Zn	17,35	381,6		75,42	0,3	0,32	59,91	31,12	340,2
рН	6,9	4,91		6,44	9,75	9,65	5,77	5,83	5,43
pHCI	3,10	2,08		2,85	4,58	4,75	2,55	2,55	2,34
Dichte	1,2897	1,2725		1,2408	1,1842	1,0742	1,279	1,2801	1,2666

 Tab. 59:
 Lösungskonzentration der Eluate VII

Ca- Nr.	527	528	528	528	528	529	532	533	534
Lauge	IP21 KG <= 355μm	IP21- Gas- max	IP21	Gishut- Lösung	Tiefen- wasser	IP21- Gas- max	IP21- Gas- max	IP21- Gas- max	IP21- Gas- max
AI	n.b.	13,04	n.b.	31,47	n.b.	n.b.	11,18	15,38	n.b.
В	11,01	118,1	15,78	34,99	31,54	100,3	128,4	111,6	11,7
Bi	138,6	13,04	n.b.	n.b.	n.b.	4950	0,46	0,898	
Ca	448,4	474,9	141,7	272,5	532,5	44357	72,34	313,4	756,8
Cd	0,6733	10,88	33,11	n.b.	0,2553	80,78	n.b.	0,07333	1,961
CI	259349	280396	267236	190227	90042	323406	259786	284125	280970
Co	n.b.	0,511	n.b.	n.b.	n.b.	0,345	0,107	0,2293	n.b.
Cr		10,8				n.b.	n.b.	1,735	0,192
Cu	1,56	43,34	45,31	n.b.	0,499	120,7	0,45	0,5613	0,221
Fe	13,83	19,51	n.b.	n.b.	n.b.	83,09	n.b.	1,323	n.b.
Hg	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	
К	17477	18550	26260	16573	15940	9912	13210	19160	21293
Mg	80667	83833	80787	n.b.	n.b.	80930	64213	87957	86373
Mn	37,46	22,54	14,13	n.b.	n.b.	36,94	n.b.	16,53	9,625
Мо	n.b.	1,97	1,676	3,609	6,68	1,138	0,2443	2,176	0,945
Na	9648	13677	13487	123200	68030	7043	11163	10180	10190
Ni	n.b.	10,09	n.b.	n.b.	n.b.	n.b.	n.b.	2,418	n.b.
Pb	138,2	124,9	229,8	3,902	1,081	n.b.	n.b.	n.b.	n.b.
S	2106		6573	9107	13753				1181
SO4	6310	6546	19694	27285	41208	1432	28311	11280	3537
Sb		1,519				8,307	n.b.	0,5523	n.b.
Si	9,643	79,71	19,63	n.b.	11,86	424,8	44,59	34,26	
Sn	n.b.	0,01933	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
Ti	24,75	0,3273	0,5947	3,853	n.b.	38,6	1,328	0,4417	n.b.
TI		n.b.				5,935	n.b.	n.b.	n.b.
Zn	328,6	2485	3057	38,38	n.b.	6519	37,67	23,02	4,693
рН	5,94	5,8	6,58	10,64	10,74	5,05	5,27	5,68	5,8
pHCl	2,62	2,51	2,90	5,12	5,23	2,01	2,21	2,42	2,50
Dichte	1,2664	1,2746	1,2828	1,1404	1,1404	1,3191	1,2393	1,2779	1,2764

Tab. 60: Lösungskonzentration der Eluate VIII

Ca- Nr.	534	534	534	536	536	536	536	536	537
Lauge	IP21	Gishut- Lösung	Tiefen- wasser	IP21- Gas- max	IP21- Gas- max	IP21	Gishut- Lösung	Tiefen- wasser	IP21- Gas- max
AI	n.b.	8,956	4,873	n.b.	59,6	n.b.	n.b.	45,64	2,496
В	12,84	20,57	1,639	3,227	12,26	5,035	4,136	1,997	25,08
Bi					n.b.			n.b.	
Ca	1466	1217	3022	41373	45357	63320	16037	21660	17290
Cd	1,54	n.b.	n.b.	3,039	4,441	10,99	n.b.	n.b.	19,32
CI	280921	193922	81408	296026	294266	303938	203092	173726	276147
Co	0,098	0,061	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
Cr	0,515	n.b.	0,276	n.b.	n.b.	n.b.	3,278	n.b.	n.b.
Cu	n.b.	0,244	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
Fe	n.b.	0,2827	n.b.	n.b.	1,327	n.b.	0,197	n.b.	n.b.
Hg					n.b.			n.b.	
К	20963	362,3	659,2	26477	25137	24650	10124	10960	23623
Mg	85287	n.b.	n.b.	64507	61930	50400	n.b.	n.b.	70300
Mn	0,61	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
Мо	0,811	1,729	1,397	n.b.	n.b.	0,282	0,948	n.b.	n.b.
Na	9939	126267	47007	9838	9646	9408	103833	88673	14587
Ni	n.b.	n.b.	n.b.	n.b.	0,7633	n.b.	3,421	n.b.	n.b.
Pb	0,2777	0,5753	n.b.	9,099	92,82	37,95	n.b.	n.b.	480,8
S	1013	1737	2959	n.b.	160,1	n.b.	n.b.	186,8	n.b.
SO4	3034	5205	8867	n.b.	479,8	n.b.	n.b.	559,8	n.b.
Sb	n.b.	n.b.	0,094	10,84	21,2	9,264	n.b.	n.b.	1,03
Si					26,44			50,23	
Sn	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
Ti	1,72	n.b.	4,608	107,3	116	183,7	46,83	n.b.	40,89
TI	n.b.	0,134	0,014	n.b.		n.b.	n.b.	n.b.	n.b.
Zn	2,126	n.b.	n.b.	2,56	21,5	12,64	n.b.	4,724	220,5
рН	6,58	10,32	10,42	6,78	6,7	6,71	11,14	11,3	6,1
pHCI	2,87	4,88	5,17	2,97	2,94	2,93	5,37	5,45	2,60
Dichte	1,2731	1,2029	1,0856	1,3003	1,3009	1,3122	1,2123	1,1864	1,2748

 Tab. 61:
 Lösungskonzentration der Eluate IX

Ca-Nr.	537	537	537	537	538	538	538	538	538
Lauge	IP21- Gas- max	IP21	Gishut- Lösung	Tiefen- wasser	IP21- Gas- max	IP21- Gas- max	IP21	Gishut- Lösung	Tiefen- wasser
Al	41,51	5,541	n.b.	0,325	46,61	43,47	35,17	4,424	10,77
В	9,7	30,69	2,699	2,79	12,5	23,62	6,253	10,91	3,372
Bi	n.b.				1,146	n.b.	0,214	n.b.	n.b.
Ca	17243	26947	5338	9688	12047	8722	8032	717,4	3787
Cd	27,7	24,72	n.b.	n.b.	169,2	93,77	68,45	3,262	1,66
CI	275496	269964	197175	111441	288016	288157	281134	199799	129405
Co	n.b.	n.b.	n.b.	0,054	n.b.	n.b.	n.b.	n.b.	n.b.
Cr	n.b.	n.b.	4,464	3,982	9,297	2,393	3,817	3,67	n.b.
Cu	4,449	n.b.	n.b.	5,219	5,836	n.b.	n.b.	n.b.	n.b.
Fe	1,153	n.b.	0,133	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
Hg	n.b.				n.b.	n.b.	n.b.	n.b.	n.b.
К	20840	24783	5260	5842	24280	18967	24837	25957	28763
Mg	67813	63267	n.b.	n.b.	80923	65123	82260	700,3	n.b.
Mn	n.b.	n.b.	n.b.	1,975	10,64	147,3	1,969	n.b.	n.b.
Мо	n.b.	n.b.	1,031	n.b.	4,676	n.b.	n.b.	7,273	n.b.
Na	16263	16453	116467	56343	11330	8886	12610	81767	75377
Ni	n.b.	n.b.	3,444	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
Pb	519,2	173,7	n.b.	n.b.	3166	n.b.	49,67	n.b.	n.b.
S	134,5	n.b.	217,5	404,3	200,6	n.b.	213,3	3581	1541
SO4	403	n.b.	651,8	1211	601	n.b.	639,2	10728	4618
Sb	2,593	3,205	n.b.	n.b.	12,36	5,735	22,55	0,414	n.b.
Si	22,68								57,88
Sn	n.b.	n.b.	n.b.	n.b.	0,3933	0,4533	0,3433	n.b.	n.b.
Ti	63,99	61,76	9,499	25,14	n.b.	n.b.	n.b.	n.b.	n.b.
TI		n.b.	n.b.	n.b.	6,54	0,16	0,22	0,076	n.b.
Zn	244,4	78,53	n.b.	n.b.	3809	3484	1522	1,751	3,077
рН	5,97	6,27	10,1	10,28	5,88	5,78	6,47	10,52	10,32
pHCI	2,58	2,75	4,81	4,99	2,52	2,43	2,82	5,02	4,96
Dichte	1,2731	1,2725	1,2047	1,1214	1,2868	1,2835	1,2772	1,219	1,1449

Tab. 62: Lösungskonzentration der Eluate X

Ca-Nr.	538	539	539	539	539	539	539	539	540
Lauge	IP21- LZ	IP21- Gas- max	IP21- Gas- max	IP21	Gishut- Lösung	Gishut- Lö- sung- LZ	Tiefen- wasser	IP21-LZ	IP21- Gas- max
AI	53,36	3,618	13,29	5,317	4,3	n.b.	4,713	50,53	22,96
В	9,44	8,988	21,71	9,623	12,26	8,42	4,993	10,93	121,4
Bi	n.b.	0,339	0,188	0,297	n.b.	1,733	n.b.	0,5863	15,54
Ca	30793	513,1	2019	806,2	550,8	498,9	2962	23187	8016
Cd	197,5	137,1	169,6	135,2	5,404	2,857	0,3643	130,9	28,85
CI	277911	269884	269536	264459	197312	199556	103380	247043	294603
Co	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	0,377
Cr	5,09	3,11	0,7767	5,53	1,373		n.b.	n.b.	4,011
Cu	95,39	0,7843	9,91	n.b.	n.b.	n.b.	n.b.	6,715	43,3
Fe	1,63	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	2,743	19,99
Hg	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	0,3323	n.b.
К	27593	27983	27167	29220	17877	29983	20180	43837	18993
Mg	59360	81027	77153	75210	590,5	n.b.	n.b.	39120	80510
Mn	n.b.	2,16	20,84	n.b.	n.b.	n.b.	n.b.	n.b.	21,05
Мо	3,738	n.b.	n.b.	n.b.	7,083	9,187	n.b.	0,7583	1,486
Na	13963	16753	15253	17813	119000	114273	62667	35690	11633
Ni	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	1,99	5,889
Pb	227,1	1068	671,9	1130	n.b.	1,993	n.b.	3206	13,27
S	n.b.	2428	744,3	1574	4453	5085	2455	273,5	
SO4	n.b.	7275	2230	4717	13342	15236	7356	819,4	617
Sb	28,79	13,66	5,486	20,38	1,339		n.b.	8,088	2,662
Si	15					3,97	45,4	24,86	61,19
Sn	n.b.	0,46	0,4333	n.b.	0,51	n.b.	n.b.	n.b.	n.b.
Ti	208	n.b.	n.b.	n.b.	n.b.	1,097	n.b.	74,82	9,404
TI		1,54	1,14	2,93	0,05		n.b.		n.b.
Zn	2289	1173	1084	630,7	n.b.	n.b.	2,882	853,5	2833
рН	6,44	6,47	6,12	6,57	10,27	10,49	10,51	5,57	5,41
pHCl	2,78	2,79	2,67	2,91	4,87	4,96	5,13	2,91	2,27
Dichte	1,2874	1,2731	1,2718	1,2662	1,2171	1,2281	1,1205	1,2618	1,2803

Tab. 63: Lösungskonzentration der Eluate XI

Ca-	540	540	540	541	541	541	541	542	543
Lauge	IP21	Gishut- Lösung	Tiefen- wasser	IP21- Gas- max	IP21	Gishut- Lösung	Tiefen- wasser	IP21- Gas- max	IP21- Gas- max
AI	49,34	n.b.	n.b.	16,17	42,15	n.b.	n.b.	36,7	4,612
В	15,87	10,43	8,917	142,1	7,317	12,56	14,77	124,3	77,61
Bi	765,5	6,916	0,657	69,73	3785	2,51	0,06667	n.b.	3,206
Ca	29477	535,1	873,8	3220	24827	394,7	1102	232,4	148,9
Cd	134,4	2,15	4,714	15,94	5218	0,8233	0,4873	19,38	0,1007
CI	279144	202265	165022	274559	247861	194657	116098	252419	269289
Co	0,1433	n.b.	n.b.	2,087	0,05986	n.b.	n.b.	n.b.	0,2597
Cr				n.b.				n.b.	3,95
Cu	8,93	n.b.	0,2607	11,98	0,3667	n.b.	0,1007	25,01	4,23
Fe	n.b.	n.b.	n.b.	11,54	n.b.	n.b.	n.b.	4,087	12,2
Hg	0,13	n.b.	n.b.	n.b.	0,17	n.b.	n.b.	1,205	n.b.
К	27433	41507	43470	26257	40393	29950	31360	16697	20885
Mg	62247	n.b.	n.b.	75330	40990	n.b.	n.b.	84623	78100
Mn	n.b.	n.b.	n.b.	20,01	n.b.	n.b.	0,1173	n.b.	1,069
Мо	0,8	5,223	6,172	0,9653	0,4067	2,057	3,093	n.b.	1,367
Na	14530	113473	85850	16957	32460	116057	60793	10853	15240
Ni	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	2,46	3,761
Pb	743,2	7,46	2,627	109,5	4118	2,937	0,2853	213,5	n.b.
S	n.b.	4376	3446		n.b.	6587	3768	5630	
SO4	n.b.	13112	10325	1399	n.b.	19737	11290	16870	27012
Sb				3,247				15,96	0,1677
Si	90,72	8,167	7,88	55,03	14,5	7,887	10,54	946,4	107,5
Sn	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	0,04333
Ti	79,41	1,74	n.b.	3,341	63,53	1,593	n.b.	n.b.	1,78
TI				n.b.					n.b.
Zn	2880	n.b.	n.b.	594,3	189,3	n.b.	n.b.	744,1	35,42
рН	6,38	10,21	10,3	5,71	6,68	10,56	10,58	6,3	1,5
pHCI	2,77	4,75	4,82	2,44	2,96	5,02	5,04	2,73	0,21
Dichte	1,2852	1,2289	1,1881	1,2684	1,2618	1,2259	1,1387	1,2681	1,2738

Tab. 64: Lösungskonzentration der Eluate XII

Ca- Nr.	544	545	546	546	547	548	548	548	548
Lauge	IP21- Gas- max	IP21- Gas- max	IP21- Gas- max A	IP21- Gas- max B	IP21- Gas- max	IP21- Gas- max 1x filt- riert	IP21- Gas- max 2x filt- riert	IP21- Gas- max original	IP21- Gas- max
AI	62,81	4,463	2,658	3,176	26,74	n.b.	n.b.	n.b.	3,375
В	150,7	35,54	41,97	67,74	147,4	13,86	15,86	15,44	47,13
Bi	n.b.	n.b	1,54	n.b.	82,42				11,84
Ca	229,4	152,1	53,57	9,167	191,5	6895	7397	6686	6844
Cd	n.b.	n.b.	n.b.	n.b.	0,507	0,727	0,711	0,98	n.b.
CI	250709	262541	265516	265597	252975	251483	266916	241997	259864
Со	n.b.	n.b.	0,106	136,5	0,308	0,183	0,1977	0,1663	0,15
Cr	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	0,654	n.b.	n.b.
Cu	0,5193	0,357	0,7687	0,8433	4,37	1,314	1,458	1,441	3,882
Fe	4,13	2,837	22,25	74,96	52,97	12,75	59,2	146,1	330,4
Hg	n.b.	2,083	0,058	0,04167	0,032				0,084
К	16160	16707	14293	14557	14710	19183	20410	18640	17420
Mg	86953	89053	85247	86530	79873	72643	311550	72100	73273
Mn	n.b.	n.b.	n.b.	n.b.	22,95	58,8	57,36	55,43	64,94
Мо	n.b.	n.b.	0,7443	0,5347	2,377	0,309	0,261	0,277	0,1037
Na	8791	11833	9607	9432	9535	9694	10197	8889	10077
Ni	2,6	1,857	n.b.	n.b.	0,6	n.b.	0,345	0,095	0,5723
Pb	12,06	n.b.	0,908	n.b.	98,93	42,95	45,32	42,59	11,84
S	6388	8196	7916	7856	6178	421,9	n.b.	n.b.	315,7
SO4	19139	24556	23719	23538	18511	1264	n.b.	n.b.	945,9
Sb	2,594	n.b.	n.b.	n.b.	1,457	0,158	n.b.	0,154	0,063
Si	1286	22,03	4,797	3,487	20,35				12,84
Sn	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
Ti	n.b.	n.b.	0,6572	0,6265	0,8887	16,58	18,81	16,8	8,379
TI						n.b.	n.b.	n.b.	
Zn	33,05	7,76	4,097	16,08	201,9	146	1062	179,8	166,6
рН	3,95	5,58	4,44	4,65	5,56			5,204	5,48
pHCl	1,63	2,38	1,66	1,87	2,39			2,20	2,32
Dichte	1,2656	1,2805	1,2819	1,2815	1,265			1,2613	1,2556

Tab. 65: Lösungskonzentration der Eluate XIII

Ca-Nr.	548	548	548	548	548	548	548	548	548
Lauge	IP21	IP21	IP21	Gishut- Lösung	Gishut- Lösung	Gishut- Lösung	Tiefen- wasser	Tiefen- wasser	Tiefen- wasser
AI	n.b.	52,82	51,4	16,88	8,247	n.b.	0,662	14,78	n.b.
В	13,3	13,68	17,69	9,487	16,02	8,167	5,257	8,757	5,313
Bi		n.b.	105,4		n.b.	7,133		n.b.	0,026
Ca	34610	32917	43963	467,7	629,8	608,2	2352	2591	2299
Cd	0,832	n.b.	14,61	n.b.	n.b.	0,5633	0,346	n.b.	0,05967
CI	207188	207672	193035	144440	157676	145220	63218	63978	61256
Co	0,2153	n.b.	0,12	0,052	n.b.	0,1167	n.b.	n.b.	n.b.
Cr	n.b.	n.b.		n.b.	n.b.		n.b.	n.b.	
Cu	4,757	5,148	2,713	0,751	n.b.	n.b.	n.b.	n.b.	0,25
Fe	n.b.	1,4	n.b.	n.b.	1,16	n.b.	n.b.	0,8267	n.b.
Hg		n.b.	n.b.		n.b.	n.b.		n.b.	n.b.
К	15923	15580	15033	1205	1040	1404	1336	1268	1798
Mg	37597	45570	28490	n.b.	n.b.	n.b.	n.b.	3,543	n.b.
Mn	0,407	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	0,1023
Мо	0,502	n.b.	0,4867	2,367	5,304	0,7833	1,333	4,36	2,416
Na	9499	9829	10203	93807	101667	92120	34500	38190	36710
Ni	0,676	0,9133	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	0,05367
Pb	23,93	79,65	97,32	0,306	1,114	7,867	0,6373	2,007	0,1203
S	188,5	136,4	n.b.	618,8	693,1	n.b.	61,87	64,01	80,71
SO4	564,8	408,8	n.b.	1854	2077	n.b.	185,4	191,8	241,8
Sb	0,964	2,095		n.b.	0,3277		0,172	0,2687	
Si		16,76	11,94		14,6	10,48		9,523	11,55
Sn	n.b.	n.b.	n.b.	0,08533	n.b.	n.b.	n.b.	n.b.	n.b.
Ti	97,84	121,3	139,8	n.b.	n.b.	n.b.	0,8673	11,27	2,046
TI	n.b.			0,131			0,028		
Zn	2,235	1,663	n.b.	n.b.	0,2067	n.b.	n.b.	0,2367	n.b.
рН	6,85	6,6	6,86	11,34	10,88	10,89	11,13	10,96	10,87
pHCI	3,18	2,97	3,11	5,49	5,25	5,30	5,61	5,51	5,33
Dichte	1,2184	1,2242	1,2085	1,1568	1,166	1,1537	1,067	1,0694	1,066

Tab. 66: Lösungskonzentration der Eluate XIV

Ca-Nr.	548	548	548	548	549	549	549	549	550
Lauge	IP21 Fest:L sg=1:5	IP21 Fest:Ls g=1:10	IP21 KG <= 2mm	IP21 KG <= 355μm	IP21- Gas- max	IP21	Gishut- Lösung	Tiefen- wasser	IP21- Gas- max
Al	n.b.	n.b.	15,34	15,62	6,223	10,34	n.b.	n.b.	2,08
В	16,41	14,64	19,52	15,22	21,81	10,37	6,79	9,527	48,37
Bi	55,98	31,33	41,85	n.b.	n.b.	n.b.	n.b.	0,01633	296,7
Ca	1094	171,7	6254	8180	392,9	1601	1973	2337	77203
Cd	n.b.	n.b.	4,017	n.b.	n.b.	0,8633	n.b.	n.b.	1,421
CI	260209	258662	251860	256795	238061	133257	96942	39315	272416
Со	n.b.	n.b.	n.b.	n.b.	n.b.	0,03	0,02	n.b.	0,6493
Cr					n.b.				n.b.
Cu	0,9333	0,4467	12,13	n.b.	30,08	n.b.	n.b.	n.b.	0,2303
Fe	125,4	220	184,8	14,99	2,597	n.b.	n.b.	n.b.	0,15
Hg	0,7133	0,4133	n.b.	n.b.	n.b.	6,237	2,283	n.b.	0,035
К	17520	17503	17267	17350	14057	8970	n.b.	443,3	21760
Mg	79067	82337	73243	72943	75833	41750	n.b.	511,7	13217
Mn	50,14	27,77	42,5	n.b.	n.b.	8,06	n.b.	0,9397	n.b.
Мо	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	0,128	0,9407
Na	9519	9266	9799	10002	7510	5275	61610	23043	12180
Ni	n.b.	n.b.	n.b.	n.b.	2,063	n.b.	n.b.	0,1903	2,466
Pb	60,06	32,89	45,03	n.b.	n.b.	n.b.	n.b.	0,07767	n.b.
S	866,8	4018	n.b.	n.b.	5211	3089	2283	1300	144,4
SO4	2597	12038	n.b.	n.b.	15612	9255	6839	3894	432,7
Sb					n.b.				0,266
Si	11,31	8,837	10,43	6,867	27,75	8,023	6,003	7,86	2,96
Sn	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
Ti	1,727	n.b.	31,07	n.b.	n.b.	4,647	5,523	3,651	138,2
ТΙ									
Zn	111,1	80,64	161,4	135,7	1636	78,51		n.b.	n.b.
рН	5,28	4,9	5,38	5,81	6,21	6,68	7,7	7,8	6,73
pHCI	2,32	2,07	2,27	2,56	2,77	3,09	3,56	3,78	2,95
Dichte	1,2612	1,2738	1,2562	1,2606	1,2413	1,1488	1,1103	1,0466	1,3005

Tab. 67: Lösungskonzentration der Eluate XV

Ca- Nr.	550	550	550	550	551	551	551	551	552
Lauge	IP21- Gas- max	IP21 mit NO3	IP21 mit PO4	IP21 mit Algizid	IP21- Gas- max	IP21	Gishut- Lösung	Tiefen- wasser	IP21- Gas- max
AI	87,01	48,72	54,75	52,65	2,566	n.b.	n.b.	n.b.	36,89
В	23,17	6,09	9,167	4,773	45,42	n.b.	n.b.	9,91	202,5
Bi	n.b.	258,5	0,276	285,2	80,95	n.b.	n.b.	n.b.	0,006
Ca	122403	105450	107850	108733	113,7	n.b.	645,3	1706	149,8
Cd	n.b.	0,003	0,003	0,003	0,061	n.b.	n.b.	n.b.	n.b.
CI	266048	266837	260479	270667	295028	262078	186956	75681	272507
Со	0,4743	0,3687	0,001	0,3307	0,06567	n.b.	n.b.	n.b.	25,32
Cr	n.b.				n.b.				n.b.
Cu	n.b.	1,107	0,02	0,7433	116,5	469,4	7,456	6,024	0,2073
Fe	1,123	0,04	0,04	0,04	59,94	n.b.	n.b.	n.b.	3,763
Hg	n.b.	0,03	0,03	0,03	0,02933	n.b.	n.b.	n.b.	n.b.
К	21310	21330	21480	21587	17727	18663	n.b.	440,3	16167
Mg	6279	15697	13793	13323	83083	81653	n.b.	n.b.	85100
Mn	n.b.	1,833	0,01	1,163	5,273	2,288	n.b.	n.b.	5338
Мо	n.b.	0,05	0,05	0,05	2,56	0,9373	4,594	4,552	0,292
Na	11863	11867	11927	12020	11107	10617	123067	48847	8720
Ni	0,73	2,39	0,03	2,073	0,1043	n.b.	n.b.	n.b.	n.b.
Pb	240,1	222,3	0,23	247,9	100	5,033	2,398	0,1587	0,553
S	80,07	1	1	1	7130	7893	842,9	94,28	6589
SO4	239,9	2,996	2,996	2,996	21364	23648	2525	282,5	19741
Sb	0,0503 3				n.b.				0,07
Si	42,12	0,3	0,3	0,3	7,307	n.b.	n.b.	15,62	416
Sn	n.b.	0,03	0,03	0,03	n.b.	n.b.	n.b.	n.b.	n.b.
Ti	220,5	323,4	0,02	307,2	0,442	1,129	0,7143	n.b.	1,374
TI									
Zn	0,2733	2,027	4,337	1,667	9443	10573	170,1	n.b.	5,57
рН	7,72	7,66	7,67	7,53	5,77	n.a.	n.a.	n.a.	5,73
pHCI	3,50	3,43	3,45	3,38	2,46	2,89	4,03	4,04	2,44
Dichte	1,3092	1,3041	1,3026	1,3043	1,2897	1,2939	1,2006	1,0811	1,2881

Tab. 68: Lösungskonzentration der Eluate XVI

Ca-Nr.	552	552	552	553	553	553	553	553	553
Lauge	IP21	Gishut- Lösung	Tiefen- wasser	IP21- Gas- max	IP21-LZ	IP21	Gishut- Lösung	Tiefen- wasser	IP21 mit NO3
AI	8,25	n.b.	n.b.	3,49		1,347	2,5	4,857	0,2
В	13,06	n.b.	4,33	15,14		10,23	16,3	15,18	7,94
Bi	n.b.	n.b.	n.b.	n.b.		n.b.	n.b.	n.b.	0,015
Ca	n.b.	966,9	1199	142,5		119	90,66	657,6	182
Cd	n.b.	n.b.	n.b.	n.b.		n.b.	n.b.	n.b.	0,003
CI	271791	191064	78406	226285		138882	101439	37797	223525
Со	n.b.	n.b.	n.b.	n.b.		n.b.	n.b.	n.b.	0,001
Cr				n.b.		n.b.	n.b.	n.b.	
Cu	1,52	n.b.	0,173	n.b		n.b.	n.b.	n.b.	0,02
Fe	n.b.	n.b.	n.b.	51,06		186,2	1,477	2,43	41,04
Hg	n.b.	n.b.	n.b.	n.b.		n.b	n.b.	n.b.	0,03
К	19993	n.b.	1058	17853		10987	917,3	933,6	16917
Mg	90730	n.b.	483,8	77667		48200	n.b.	355,5	75533
Mn	996,3	3,064	11,66	n.b.		141,6	n.b.	n.b.	15,26
Мо	n.b.	n.b.	0,988	n.b.		n.b.	n.b.	n.b.	0,05
Na	10529	122787	52023	8474		5166	66760	22830	8412
Ni	n.b.	n.b.	0,1923	1,65		0,9	n.b.	0,7967	0,03
Pb	n.b.	n.b.	n.b.	n.b.		n.b.	0,924	1,256	0,01
S	8200	1032	89,41	7721		4527	667,5	38,14	7308
SO4	24569	3092	267,9	23135		13563	2000	114,3	21895
Sb				n.b.		n.b.	0,228	0,2297	
Si	133,8	n.b.	7,433	17,41		7,383	13,24	15,42	0,3
Sn	n.b.	n.b.	n.b.	n.b.		n.b.	n.b.	n.b.	0,03
Ti	1,321	1,425	n.b.	n.b.		n.b.	n.b.	n.b.	0,02
TI									
Zn	10,51	n.b.	n.b.	2,927		n.b.	n.b.	n.b.	1,54
рН	n.a.	n.a.	n.a.	5,84		5,79	8,97	7,85	5,92
pHCI	2,78	3,10	3,28	2,60		2,69	4,37	3,98	2,56
Dichte	1,2915	1,2003	1,0825	1,2495		1,1665	1,1116	1,0408	1,2503

Tab. 69: Lösungskonzentration der Eluate XVII

Ca- Nr.	553	553	554	554	554	554	554	555	556
Lauge	IP21 mit PO4	IP21 mit Algizid	IP21- Gas- max	IP21- LZ	IP21	Gis- hut- Lö- sunq	Tiefen- was- ser	IP21- Gas- max	IP21- Gas- max
AI	0,2	0,2	2,652	3,677	3,283	n.b.	n.b.	n.b.	4,891
В	13,3	5,077	129,5	5,87	n.b.	n.b.	n.b.	24,91	9,703
Bi	0,015	0,015	n.b.	n.b.	n.b.	n.b.	n.b.	0,683	0,022
Ca	190,2	124,1	232,3	327,8	378,5	2565	3090	160,7	650,1
Cd	0,003	0,003	n.b.	n.b.	n.b.	n.b.	n.b.	22,81	549,9
CI	222608	226733	277952	216612	215148	153683	63464	271184	258064
Со	0,001	0,001	213,2	n.b.	n.b.	n.b.	n.b.	n.b.	2,609
Cr			0,9267	6,035				4,933	2,337
Cu	0,02	0,02	1,535	n.b.	n.b.	n.b.	n.b.	310,9	195,1
Fe	45,47	45	545,3	1,22	n.b.	n.b.	n.b.	n.b.	n.b.
Hg	0,03	0,03	n.b.	86,88	80,52	46,06	n.b.	n.b.	5,517
К	16907	16433	16847	13137	13177	n.b.	261,1	17043	16180
Mg	73683	74240	90747	71897	71540	n.b.	904,3	88717	80240
Mn	0,01	12,22	20,58	10,23	12,33	2,333	1,829	21,85	65,37
Мо	0,05	0,05	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
Na	8388	7979	9134	7328	7770	97877	37287	9378	13130
Ni	0,03	0,03	3,112	n.b.	n.b.	n.b.	0,09	n.b.	8,193
Pb	0,01	0,01	n.b.	2,559	n.b.	n.b.	0,09267	2063	134,6
S	7175	6897	7727	4982	5527	1271	109,7	7007	2003
SO4	21497	20666	23151	14928	16560	3808	328,6	20993	6002
Sb			n.b.	0,2463				1,69	n.b.
Si	0,3	0,3		7,12	n.b.	n.b.	3,733		
Sn	0,03	0,03	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
Ti	0,02	0,02	n.b.	7,332	n.b.	7,703	5,029	n.b.	n.b.
TI			0,04					4,79	1,98
Zn	2,613	3,31	11,89	1,883	n.b.	n.b.	n.b.	7494	272,4
рН	5,91	5,88	4,12	6,22	6,61	7,25	7,49	5,77	5,17
pHCI	2,56	2,58	1,58	2,80	2,93	3,37	3,72	2,45	2,12
Dichte	1,2482	1,2508	1,2847	1,2319	1,2308	1,1647	1,0681	1,2859	1,2554

Tab. 70: Lösungskonzentration der Eluate XVIII

Ca- Nr.	557	557	557	557	558	600	601	602	603
Lauge	IP21- Gas- max	IP 21	Gishut- Lösung	Tiefen- wasser	IP21- Gas- max	IP21- Gas- max	IP21- Gas- max	IP21- Gas- max	IP21- Gas- max
AI	42,51	3,786	15,49	n.b.	n.b.	0,2	0,2	0,2	0,2
В	35,23	38,52	45,72	5,572	10,57	5,83	11,99	69,77	4,09
Bi	n.b.	18,29	0,258	1,172	0,018	0,2167	29,08	8,497	32,33
Ca	10056	16913	2408	4672	88,84	218,9	129,1	23,88	215,8
Cd	2,605	0,0934	0,1873	0,1507	n.b.	0,03	1,423	0,03	0,03
CI	294575	290730	210187	202629	233279	245753	267333	232940	263717
Со	n.b.	0,1717	0,06967	n.b.	n.b.	0,001	0,001	0,001	0,001
Cr	9,577	n.b.	n.b.	n.b.	9,137	1,303	1,357	0,8933	1,087
Cu	0,7957	2,222	2,253	1,248	n.b.	0,4	22,99	6,253	0,9333
Fe	114,4	n.b.	n.b.	n.b.	n.b.	78,68	14,34	30	36,37
Hg	n.b.	0,04867	0,03	0,099	n.b.	0,002	0,002	0,002	0,002
К	22753	22777	36697	35190	20330	18277	19467	18123	19303
Mg	81350	74370	n.b.	2,167	77817	80973	87530	85540	86037
Mn	188,7	3,931	n.b.	n.b.	n.b.	13,32	7,613	10,15	24,39
Мо	n.b.	0,7767	2,309	0,09367	n.b.	1,06	1,18	0,03	0,03
Na	10370	10510	107700	103167	10177	8860	10387	18480	9718
Ni	n.b.	1,113	0,4993	0,3053	n.b.	0,6467	0,2533	0,002	0,2733
Pb	n.b.	16,33	n.b.	n.b.	n.b.	0,2967	29,24	8,987	32,19
S	273,9	2053	202,7	47,72	7137	7578	7774	24470	5082
SO4	820,6	6150	607,4	143	21383	22705	23293	73317	15227
Sb	n.b.	1,732	0,051	n.b.	n.b.				
Si		179,2	2,267	2		0,4	0,4	0,4	0,4
Sn	n.b.	n.b.	n.b.	n.b.	n.b.	0,02	0,02	0,02	0,02
Ti	n.b.	22,9	2,13	6,048	n.b.	0,012	0,012	8,393	0,012
TI	0,09				0,03				
Zn	153,2	6,743	5,613	1,22	2,233	15,11	1609	1509	144,8
рН	4,1	6,33	9,66	9,72	6,97	6,15	5,83	5,59	5,76
pHCI	1,46	2,74	4,47	4,53	3,05	2,49	2,52	2,42	2,47
Dichte	1,284	1,2828	1,2174	1,2101	1,2929	1,2713	1,2886	1,3047	1,2743

Tab. 71: Lösungskonzentration der Eluate XIX

Ca- Nr.	604	605	606	607	608	608	609	609	609
Lauge	IP21- Gas- max	IP21- Gas- max	IP21- Gas- max	IP21- Gas- max	IP21	IP21- Gas- max	IP21- Gas- max	IP21	Gishut- Lösung
AI	27,61	35,73	48,86	0,2	9,22	32,72	59,02	51,63	13,21
В	2,487	5,46	3,25	0,1	168,5	175,6	11,52	8,867	n.b.
Bi	4,203	794,5	172,8	14,49	n.b.	n.b.	n.b.	n.b.	n.b.
Ca	10263	17653	57953	197,2	68,56	264,1	57153	100890	9649
Cd	0,03	18,88	28,54	0,03	10,32	4,49	n.b.	1,677	n.b.
CI	281470	273567	307007	270917	228049	269336	275587	283184	193050
Co	0,001	0,001	0,2933	0,001	n.b.	n.b.	n.b.	n.b.	n.b.
Cr	0,62	0,015	0,015	0,015	1,045	1,695	2,21	n.b.	n.b.
Cu	0,2433	0,91	1,393	3,703	196,1	180,3	1,553	1,987	n.b.
Fe	0,05	0,05	0,05	0,05	3,537	8,007	4,083	4,733	n.b.
Hg	0,002	0,002	0,002	0,002	n.b.	n.b.	n.b.	n.b.	n.b.
К	22733	22170	19300	20513	21253	18417	24147	27453	7834
Mg	79800	69680	61163	88410	81337	83037	43860	18273	n.b.
Mn	16,12	3,76	8,2	4,013	2,9	9,453	n.b.	n.b.	n.b.
Мо	0,03	1,57	0,7567	0,03	1,16	9,85	n.b.	n.b.	n.b.
Na	11430	15667	7834	9815	20187	13520	12827	14183	112797
Ni	0,8433	1,32	1,93	0,3867	n.b.	n.b.	2,07	3,53	n.b.
Pb	4,473	847,7	174,5	15,04	141,3	131,7	7,908	6,825	2,41
S	1	1	1	6708	23860	3252	n.b.	n.b.	n.b.
SO4	2,996	2,996	2,996	20099	71489	9743	n.b.	n.b.	n.b.
Sb									
Si	0,4	0,4	0,4	0,4	178,7	792	14,17	9,027	n.b.
Sn	0,02	0,02	0,02	0,02	2,153	3,09	n.b.	n.b.	n.b.
Ti	37,39	68,55	232,2	0,012	9,187	n.b.	196	344,7	n.b.
TI									
Zn	3,717	9,767	51,55	9,787	1505	1194	3,86	2,527	n.b.
рН	6,72	6,85	6,54	6,8	6,77	5,99	7,19	7,79	11,47
pHCI	2,95	3,04	2,85	2,99	2,97	2,53	3,16	3,45	n.b.
Dichte	1,2779	1,2743	1,316	1,2855	1,304	1,2773	1,2964	1,3149	1,2077

Tab. 72: Lösungskonzentration der Eluate XX

Ca-Nr.	a-Nr. 610 611		610	611
Lauge	IP21- Gas- max	IP21- Gas- max	IP21	IP21
Al	8,71	n.b.	25,32	n.b.
В	31,35	60,39 8,80		92,54
Bi	n.b.	n.b.	n.b.	n.b.
Ca	900,7	116,6	11297	51,63
Cd	n.b.	21,74	n.b.	20,57
CI	259034	253895	206874	207096
Со	n.b.	n.b.	n.b.	n.b.
Cr	1,38	1,97	n.b.	n.b.
Cu	n.b.	1485	1,157	2213
Fe	117,5	4,15	4,353	3,847
Hg	n.b.	n.b.	n.b.	n.b.
К	20063	23840	20523	16413
Mg	80043	86773	55817	71693
Mn	14,36	4,814	1,087	6,257
Мо	n.b.	4,243	n.b.	5,277
Na	10653	16447	9597	25790
Ni	n.b.	n.b.	n.b.	n.b.
Pb	n.b.	160,2	n.b.	58,22
S	1099	20507	2162	28183
SO4	3292	61442	6477	84443
Sb				
Si	27,02	41,79	14,06	47,55
Sn	n.b.	3,043	n.b.	n.b.
Ti	n.b.	8,547	37,68	12,14
ТΙ				
Zn	2,217	5040	3,453	9006
рН	5,15	5,6	7,57	6,3
pHCI	2,10	2,33	3,45	2,72
Dichte	1,2593	1,3157	1,2091	1,3428

Tab. 73: Lösungskonzentration der Eluate XXI

11.2 Tabellen zu Kapitel 6

Ca-Nr.	Gasfreisetzung	H ₂	CO ₂	CH₄	H₂S
			[m ³ /t]		
CA030	0,09	0,005	0,0011	0,0004	n.b.
CA157)*	-0,41	0,001	0,0007	n.b.	0,0075
CA203	0,35	0,501	0,0623	0,0020	0,0001
CA301	0,14	0,010	0,0156	0,0006	n.b.
CA302	0,16	0,034	0,0149	0,0010	n.b.
CA305	1,41	0,000	1,8959	0,0003	0,0012
CA405	-0,04	0,009	0,0263	n.b.	0,0099
CA501	0,31	0,043	0,0108	0,0003	n.b.
CA502	0,65	0,004	0,5458	0,0003	n.b.
CA503	2,91	0,001	2,1315	0,0003	n.b.
CA506	0,52	0,008	0,0304	0,0008	n.b.
CA508	2,29	2,006	0,5228	0,0823	n.b.
CA509 Luft	-0,24	1,078	0,2091	0,0042	n.b.
CA509	0,25	0,134	0,1032	0,0034	n.b.
CA511	0,17	0,004	0,0068	0,0003	n.b.
CA512	12,01	11,448	0,0455	0,0009	n.b.
CA514	0,07	0,065	0,0081	0,0014	n.b.
CA519	0,21	0,004	0,1755	0,0003	n.b.
CA520	0,53	0,303	0,3400	0,0036	n.b.
CA521	0,66	0,499	0,1762	0,0003	n.b.
CA522	0,08	0,153	0,0026	0,0010	n.b.
CA523	-0,11	0,000	0,1179	0,0003	n.b.
CA527) ⁺⁺	4,25	2,205	0,7155	0,0009	n.b.
CA528	2,32	2,531	0,1253	0,0086	n.b.
CA529	-0,05	0,526	0,0160	0,0074	n.b.
CA532	-0,02	0,000	0,0584	0,0003	n.b.
CA533	0,16	0,044	0,2698	0,0003	n.b.
CA534	0,01	0,005	0,0767	0,0003	n.b.
CA536	0,06	0,501	0,0014	0,0040	n.b.
CA537	0,73	0,251	0,0916	0,0003	n.b.
CA538	0,92	1,747	0,0469	0,0107	n.b.
CA539	-0,35	0,259	0,0611	0,0004	n.b.

Tab. 74: Beobachtete Gasentwicklung bei GasMax-Versuchen I

)* Das Wasser wurde vom Abfall vollständig aufgesaugt

)+ Gasfreisetzung noch nicht beendet

)++ Gasfreisetzungsgeschwindigkeit nimmt noch zu

Ca-Nr.	Gasfreisetzung (Druckmessung)	H ₂	CO ₂	CH₄	H₂S
			[m ³ /t]		
CA540	2,94	2,811	0,0792	0,0230	n.b.
CA541	1,25	1,390	0,1367	0,0024	n.b.
CA542	0,13	0,000	0,0723	0,0003	n.b.
CA543	0,22	0,002	0,0076	0,0003	n.b.
CA544	0,01	0,000	0,0122	n.b.	n.b.
CA545	0,52	0,002	0,3377	0,0003	n.b.
CA546	1,02	1,134	0,0232	0,0009	n.b.
CA547	0,60	0,367	0,2254	0,0026	0,0001
CA548	12,2	13,031	0,563	0,0052	n.b.
CA549	1,21	0,004	0,7351	0,0003	n.b.
CA550	4,60	4,621	0,0016	0,2021	0,0001
CA551	11,00	10,843	0,0564	0,0076	0,0001
CA552	4,61	4,618	0,0031	0,0383	n.b.
CA553	20,81	18,300	0,0425	0,0679	n.b.
CA554	2,70	2,524	0,2120	0,0010	n.b.
CA555	0,49	0,051	0,4473	0,0008	n.b.
CA556	0,25	0,002	0,0419	0,0003	n.b.
CA557	28,55	27,402	0,6687	0,2547	0,0029
CA557	10,25	6,512	0,5094	0,2550	n.b.
CA558	0,55	0,001	0,0035	0,0003	n.b.
CA600	6,65	5,256	0,0056	0,0037	0,0001
CA601	0,00	0,052	0,0469	0,0003	0,0001
CA602	4,08	3,304	0,7333	0,0604	0,0001
CA603	0,82	0,468	0,2704	0,0006	0,0001
CA604	0,02	0,066	0,0014	0,0054	0,0001
CA605	0,18	0,268	0,0016	0,0003	0,0001
CA606	0,30	0,765	0,0005	0,0021	0,0001
CA607	0,16	0,009	0,0028	0,0003	0,0001
CA608	0,08	0,130	0,0347	0,0047	0,0001
CA609	11,20	10,858	0,0012	0,1657	n.b.
CA610	0,65	0,454	0,0273	0,0017	0,0001
CA611	0,26	0,048	0,0063	0,0007	0,0001

Tab. 75: Beobachtete Gasentwicklung bei GasMax-Versuchen II

Ca-Nr.	Lösung	Gasfreiset- zung (Druck- messung)	H ₂	CO ₂	CH₄		
		[m [*]		³ /t]			
CA157	Gips	-0,12	< 0,0003	< 0,0004	n.b.		
CA305	Gips	0,33	n.b.	0,3312	n.b.		
CA405	Gips	-0,28	< 0,0001	< 0,0004	< 0,0003		
CA503	Gips	-0,02	0,0007	0,0008	< 0,0003		
CA506	Gips	-0,18	0,003	< 0,0010	< 0,0008		
CA508	Gips	0,17	0,228	0,0206	0,0045		
CA509	Gips	-0,08	0,004	0,0008	0,0003		
CA527	Gips	0,05	0,010	0,0039	< 0,0003		
CA528	Gips	1,54	1,551	< 0,0005	0,0090		
CA534	Gips	0,07	0,045	< 0,0004	0,0004		
CA536	Gips	0,38	0,405	0,0039	0,0030		
CA537	Gips	0,06	0,064	< 0,0004	< 0,0003		
CA538	Gips	2,25	2,436	< 0,0005	0,0111		
CA539	Gips	0,53	0,469	< 0,0004	< 0,0003		
CA540	Gips	3,51	3,794	< 0,0005	0,0293		
CA541	Gips	0,05	0,015	< 0,0004	< 0,0003		
CA548	Gips	0,06	0,044	< 0,0005	< 0,0003		
CA549	Gips	0,09	< 0,0003	0,0045	< 0,0003		
CA551	Gips	9,04	10,606	< 0,0006	0,0037		
CA552	Gips	0,17	0,173	< 0,0005	0,0005		
CA553	Gips	-0,05	0,056	0,0013	0,0005		
CA554	Gips	0,12	n.b.	0,0244	< 0,0003		
CA557	Gips	16,65	19,12	0,2950	0,2950		
CA609	Gips	22,36	> 20,225	0,0121	0,1626		

Tab. 76: Gasfreisetzung im UTDnah-Versuch mit Gipshutlösung

Ca-Nr.	Lösung	Gasfreiset- zung (Druck- messung)	H ₂	CO ₂	CH₄		
			[m	³ /t]			
CA157	TW	-0,09	< 0,0003	< 0,0004	n.b.		
CA305	TW	0,29	n.b.	0,3565	n.b.		
CA405	TW	-0,31	< 0,0001	< 0,0004	< 0,0003		
CA503	TW	-0,06	0,0007	0,0005	n.b.		
CA506	TW	-0,34	0,006	< 0,0010	< 0,0008		
CA508	TW	0,11	0,226	0,0189	0,0060		
CA509	TW	-0,11	0,008	0,0017	0,0007		
CA527	TW	0,11	0,010	0,0009	0,0003		
CA528	TW	1,07	1,078	< 0,0005	0,0085		
CA534	TW	-0,07	0,010	< 0,0004	< 0,0003		
CA536	TW	0,88	1,020	< 0,0004	0,0053		
CA537	TW	0,16	0,216	< 0,0004	0,0004		
CA538	TW	1,12	1,350	< 0,0004	0,0106		
CA539	TW	0,58	0,651	< 0,0004	< 0,0003		
CA540	TW	2,32	2,496	< 0,0005	0,0279		
CA541	TW	0,18	0,115	< 0,0005	< 0,0004		
CA548	TW	0,05	0,044	< 0,0006	< 0,0003		
CA548	TW+Luft	0,01	0,044	< 0,0002	< 0,0006		
CA549	TW	0,17	n.b.	0,0042	n.b.		
CA551	TW	9,70	10,836	< 0,0006	0,0039		
CA552	TW	0,92	1,018	< 0,0005	0,0029		
CA553	TW	0,11	0,129	< 0,0006	0,0009		
CA554	TW	0,10	n.b.	0,0327	< 0,0003		
CA557	ТW	15,97	20,007	< 0,0007	0,2820		

 Tab. 77:
 Gasfreisetzung im UTDnah-Versuch mit Steinkohlenwasser

Ca-Nr.	Lösung	Gasfreiset- zung (Druck- messung)	H ₂	CO ₂	CH₄		
			[m	/t]			
CA157	IP21	0,25	< 0,0003	0,0006	n.b.		
CA203	IP21	0,22	0,394	0,0005	0,0007		
CA305	IP21	0,56	n.b.	0,5571	n.b.		
CA405	IP21	-0,15	< 0,0001	0,0007	< 0,0003		
CA503	IP21	0,13	0,0023	0,0066	< 0,0003		
CA506	IP21	0,04	0,001	< 0,0011	< 0,0008		
CA508	IP21	0,53	0,215	0,1164	0,0031		
CA509	IP21	-0,02	0,016	0,0257	< 0,0002		
CA512	IP21+Luft	4,76	9,631	0,0467	< 0,0003		
CA527	IP21	0,22	0,130	0,0376	< 0,0003		
CA528	IP21	0,72	0,822	0,0096	0,0028		
CA534	IP21	0,03	n.b.	0,0009	n.b.		
CA536	IP21	0,46	0,705	< 0,0004	0,0021		
CA537	IP21	0,28	0,226	0,0085	< 0,0003		
CA538	IP21	0,29	0,373	0,0026	0,0019		
CA539	IP21	0,26	0,143	0,0038	< 0,0003		
CA540	IP21	0,60	0,954	0,0022	0,0095		
CA548	IP21	0,21	0,214	0,0041	< 0,0003		
CA548	IP21+Luft	0,21	0,264	0,0004	0,0003		
CA549	IP21	0,14	n.b.	0,1241	< 0,0003		
CA551	IP21	5,66	5,766	0,0008	0,0023		
CA552	IP21	0,05	0,075	< 0,0004	0,0005		
CA553	IP21	0,73	0,709	0,0151	0,0025		
CA554	IP21	0,17	n.b.	0,0720	< 0,0003		
CA557	IP21	1,68	1,679	0,0109	0,0867		
CA608	IP21	0,09	0,065	0,0012	0,0007		
CA609	IP21	1,45	1,440	0,0016	0,1000		
CA610	IP21	0,02	0,063	n.b.	< 0,0004		
CA611	IP21	0,02	0,019	0,0006	< 0,0004		

Tab. 78: Gasfreisetzung im UTDnah-Versuch mit IP21-Lösung

Ver-	Ca-	Lösung	Abfallmas-	Abfallvo-	Lösungs-	Lösungsvo-
such	Nr.		se	lumen	masse	lumen
			[kg]	[1]	[kg]	[1]
10	512	Asse-Lösung	15,00	nicht ermittelt	25,05	19,15
15	512	Asse-Lösung	15,00	nicht ermittelt	22,43	18,66
19	551	Asse-Lösung	3,21	3,07	10,69	8,17
5	552	Asse-Lösung	7,92	4,47	12,97	9,91
3	557	Asse-Lösung	6,97	19,16	15,95	12,19
2	600	Asse-Lösung	14,38	12,84	29,23	22,34
7	600	Asse-Lösung	14,18	12,65	30,65	23,42
11	600	Gipshut	14,27	12,73	28,98	24,12
1	602	Asse-Lösung	6,97	13,99	29,03	22,19
8	602	Asse-Lösung	7,37	14,79	31,38	23,98
17	602	Gipshut	7,71	15,47	27,59	22,96
12	603	Asse-Lösung	16,00	12,94	32,26	24,65
14	603	Gipshut	16,52	33,14	28,62	23,81
21	605	Asse-Lösung	12,00	14,90	30,03	22,95
20	606	Asse-Lösung	7,70	14,29	30,22	23,10
4	609	Asse-Lösung	4,27	16,67	30,95	23,65
6	609	Asse-Lösung	4,29	16,73	30,43	23,26
9	609	Gipshut	4,71	18,38	27,03	22,49
16	609	Gipshut	4,65	18,14	26,93	22,42
13	610	Asse-Lösung	13,00	12,91	31,59	24,14
18	610	Gipshut	12,50	12,42	28,58	23,79

Tab. 79:Technikumsversuche: Eingesetzte Abfall- und Lösungsmassen und die
daraus berechneten Volumina

12 Anhang - Abbildungen

12.1 Bilder zu Kapitel 6: Langzeitversuche (LZ)

Abb. 58: Langfristige Druckentwicklung bei der Reaktion der Abfälle CA305 und CA405 mit IP21-Lösung

Abb. 59: Langfristige Druckentwicklung bei der Reaktion der Abfälle CA508 und CA520 mit IP21-Lösung

Abb. 60: Langfristige Druckentwicklung bei der Reaktion der Abfälle CA527 und CA538 mit IP21-Lösung

Abb. 61: Langfristige Druckentwicklung bei der Reaktion der Abfälle CA539 und CA548 mit IP21-Lösung bzw. Gipshutlösung

Abb. 62: Langfristige Druckentwicklung bei der Reaktion der Abfälle CA553 und CA554 mit IP21-Lösung

Abb. 63: Langfristige Druckentwicklung bei der Reaktion des Abfalls CA557 mit IP21-Lösung

Abb. 64: Wasserstoffentwicklung bei den Technikumsversuchen TV1 und TV2. Linien: H₂-Konzentration, Punkte: kumulierte H₂-Menge.

Abb. 65: Wasserstoffentwicklung bei den Technikumsversuchen TV3 und TV4. Linien: H₂-Konzentration, Punkte: kumulierte H₂-Menge.

Abb. 66: Wasserstoffentwicklung bei den Technikumsversuchen TV5 und TV6. Linien: H₂-Konzentration, Punkte: kumulierte H₂-Menge.

Abb. 67: Wasserstoffentwicklung bei den Technikumsversuchen TV7 und TV8. Linien: H₂-Konzentration, Punkte: kumulierte H₂-Menge.

Abb. 68: Wasserstoffentwicklung bei den Technikumsversuchen TV9 und TV10. Linien: H₂-Konzentration, Punkte: kumulierte H₂-Menge.

Abb. 69: Wasserstoffentwicklung bei den Technikumsversuchen TV11 und TV12. Linien: H₂-Konzentration, Punkte: kumulierte H₂-Menge.

Abb. 70: Wasserstoffentwicklung bei den Technikumsversuchen TV13 und TV14. Linien: H₂-Konzentration, Punkte: kumulierte H₂-Menge.

Abb. 71: Wasserstoffentwicklung bei den Technikumsversuchen TV15 und TV16. Linien: H₂-Konzentration, Punkte: kumulierte H₂-Menge.

Abb. 72: Wasserstoffentwicklung bei den Technikumsversuchen TV17 und TV18. Linien: H₂-Konzentration, Punkte: kumulierte H₂-Menge.

Abb. 73: Wasserstoffentwicklung bei den Technikumsversuchen TV19 und TV20. Linien: H₂-Konzentration, Punkte: kumulierte H₂-Menge.

Abb. 74: Wasserstoffentwicklung beim Technikumsversuch TV21. Linien: H₂-Konzentration, Punkte: kumulierte H₂-Menge.

Abb. 75: Temperaturentwicklung im Abfall und umgebender Salzlösung während der ersten zehn Versuchstage: Ansätze TV1, TV2, TV3

Abb. 76: Temperaturentwicklung im Abfall und umgebender Salzlösung während der ersten zehn Versuchstage: Ansätze TV4, TV5, TV6

Abb. 77: Temperaturentwicklung im Abfall und umgebender Salzlösung während der ersten zehn Versuchstage: Ansätze TV7, TV8, TV9

Abb. 78: Temperaturentwicklung im Abfall und umgebender Salzlösung während der ersten zehn Versuchstage: Ansätze TV10, TV11, TV12

Abb. 79: Temperaturentwicklung im Abfall und umgebender Salzlösung während der ersten zehn Versuchstage: Ansätze TV13, TV14, TV15

Abb. 80: Temperaturentwicklung im Abfall und umgebender Salzlösung während der ersten zehn Versuchstage: Ansätze TV16, TV17, TV18

Abb. 81: Temperaturentwicklung im Abfall und umgebender Salzlösung während der ersten zehn Versuchstage: Ansätze TV19, TV20, TV21

Gesellschaft für Anlagenund Reaktorsicherheit (GRS) mbH

Schwertnergasse 1 50667 Köln Telefon +49 221 2068-0 Telefax +49 221 2068-888

Forschungsinstitute **85748 Garching b. München** Telefon +49 89 32004-0 Telefax +49 89 32004-300

Kurfürstendamm 200 **10719 Berlin** Telefon +49 30 88589-0 Telefax +49 30 88589-111

Theodor-Heuss-Straße 4 **38122 Braunschweig** Telefon +49 531 8012-0 Telefax +49 531 8012-200

www.grs.de