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Abstract 

With regard to long term safety analyses, the hazardous material which may be re-

leased from repositories in deep geological formations is thought to pass three zones 

before it can affect men, the near field, the far field and the biosphere. The codes d³f 

and r³t are focused on flow and transport modelling in the far field, i. e. the geosphere. 

Their development started in a period when rock salt was selected as a potential host 

rock for radioactive and chemo-toxic waste. The codes were focussed on modelling 

density-driven flow and nuclide transport in the overburden of a salt dome. For this rea-

son they were restricted to applications in porous media where heat transport could be 

neglected. 

Taking into account crystalline rock or mudstone as alternative possible host media, 

fractures and fracture systems in an otherwise porous medium must now be regarded, 

too. Furthermore, flow and transport have also to be modelled within the host for-

mation. Here, the maximal warming in the surrounding of the casks is not allowed to 

exceed approximately 100 centigrade so that the effect of heat on water density and 

thus on flow and transport cannot be neglected any longer. 

One difficulty in density-driven flow is to predict the stability of a model. Within this pro-

ject, a stability number is derived to decide if a flow regime is in a stable or unstable 

state. 

By the extensions of d³f and r³t presented in this report the codes are now also em-

powered to model heat transport. The thermohaline flow problem is described mathe-

matically, and the three field equations to be solved in d³f are realised for two variants, 

the Boussinesq approximation and the complete equation system. 

Modelling of porous media is complemented with the explicit modelling of fractures. 

Here, fractures are represented by lower dimensional structures. The finite volume dis-

cretisation is adapted accordingly.  

The new option to model free surface flow provides the ability to take into account 

pumping wells and groundwater recharge, too.  
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The evolving equation system was of increased complexity. The solvers within d³f had 

therefore to be improved and optimized. A higher order finite volume method is intro-

duced to improve accuracy. New filtering algebraic multigrid (FAMG) methods are de-

veloped and implemented. Additionally, the UG parallelisation concept is advanced to a 

flexible tool, the parallel communication layer (PCL), that enables d³f and r³t to use 

modern parallel computers effectively. 

Pre and postprocessors are adapted where necessary. 
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1 Introduction 

To assess long-term safety of a repository for radioactive waste or of a subsurface dis-

posal for chemo-toxic waste comprehensive system understanding and well tested and 

powerful numerical tools are required. These tools are used to describe the most rele-

vant processes which play an important role for solute transport through the host rock 

and through the geological formations above, respectively. 

In the period from October 1st, 1994 to August 31st, 1998 under the identification num-

ber 02 C 0254 6 (GSF) and later under the identification number 02 C 0465 0 (GRS) 

and from October 1st, 1998 to December 31st, 2003 under the identification number 02 

E 9148 2 both of the computer codes d³f (distributed density-driven flow) and r³t (radio-

nuclides, reaction, retardation, and transport) were developed /FEI 99/, /FEI 04/. These 

developments were funded by the Federal Ministry of Education and Research (BMBF) 

and by the Federal Ministry of Economics and Technology (BMWi), respectively. By 

means of these two computer codes it became feasible to simulate density driven flow 

and pollutant transport in porous media, including all interactions that are currently rel-

evant for long-term safety assessments. They enable to handle large models with 

complex hydrogeological structures within convenient processing times.  

Both computer codes were successfully applied in various qualification projects and 

applications /BIR 00/, /SCH 04/, /KES 05/, /FEI 08/, /FLU 09/. Currently they are used 

in different projects such as 02 E 10518 (ESTRAL), 02 E 10750 (URSEL), 02 E 10669 

(KOLLORADO) and 02 E 10719 (ISIBEL). 

Right from the planning stage on realistic representation of flow and transport by the 

developed computer code was preferred over a multitude of considered processes 

/FEI 91/. For the sake of efficiency only the minimum requirements – compiled as a 

catalogue – were therefore realised.  

In doing so the explicit modelling of fractures and the modelling of heat transport con-

sciously were set aside. This procedure only demonstrates a kind of approximation of 

the natural relations. In /FEI 91/ it was then found that this catalogue of minimum re-

quirements had to be revised and upgraded as soon as numerics and hardware would 

allow. In the meantime numerics and hardware have been enhanced to the point where 
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these restrictions applied to the development of d³f and r³t need not to be adhered to 

any longer. 

Furthermore it appeared to be desirable not to restrict the computational methods for 

long-term safety assessments of repositories to conventional porous media but to ex-

tend them to salt, clay, and crystalline rock. Hereunto advancing d³f and r³t was neces-

sary. To model the density-driven flow and the associated radionuclide or pollutant 

transport through crystalline rock or mudstone fractures and fracture systems in an 

otherwise porous medium must be taken into account. 

Maximal warming at the top of a salt dome hosting a repository for heat producing 

waste was assessed to amount to about 4 centigrade. The impact of such a tempera-

ture increase on the flow above the salt dome can be neglected as a first approxima-

tion. For repositories in crystalline rock or mudstones, however, flow and transport 

have to be modelled within the host formation. The maximal warming in the surround-

ing of the casks equals approximately 100 centigrade. In that case the influence of heat 

on the flow is too strong to be neglected /WAL 05/. 

Initially, the code d³f was developed to model density-driven flow caused by saliniza-

tion. But in crystalline rocks or mudstones and in the absence of heat producing wastes 

density varyations in the groundwater are not expected. In this case groundwater flow 

can much simpler be described as a potential flow. Including an option to simulate po-

tential flow with d³f leads to a considerable acceleration of such simulations. 

To model near-surface disposal realistically or to consider salt water intrusion prob-

lems, the fresh water lenses of islands, pumping wells or recharge, it is furthermore 

necessary to allow for the modelling of free groundwater surfaces. 

With the above listed enhancements of d³f and r³t the range of application of both com-

puter codes will be considerably enlarged. 
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2 The project 

2.1 State of science and technology 

The development of the computer codes d³f and r³t enabled the simulation of density 

driven flow and pollutant transport in porous media. These codes allow the modelling of 

large complex domains, accounting for all interactions relevant for the present long-

term safety analyses, within acceptable computing times.  

The code development in cooperation with universities involving PhD students assured 

the employment of the most recent numerical methods from the beginning up to now. 

Special attention was paid to an exact modelling of the physical processes and a con-

sistent discretisation of the time dependent, non-linear partial differential equation sys-

tem, /OSW 98/, /JOH 97/, /FRO 97/, /GEI 03/, /KNA 96/, /KNA 98/, /JOH 04/, /JOH 06/, 

/JOH 06a/. 

Both codes use unstructured grids and finite volume discretizations. They are based on 

the software system UG /BAS 94/, a toolbox developed at universities to solve coupled 

systems of partial differential equations. The development of UG started in 1990. Since 

then it is widely used for a large range of application and is permanently extended and 

advanced. UG sets standards in the field of effective solvers up to now. 

As effective solvers of a linear equation system d³f and r³t combine geometric and al-

gebraic multigrid algorithms (amg) with BiCGStab solvers /HAC 85/, /WIT 89/, /WIT 92/, 

/BAS 94/, /BAS 00/, /FEU 03/, /JOH 04/ /JOH 05/, /JOH 05a/, /JOH 07/, /NAE 08/. An 

additional reduction of computing effort was achieved by adaptive grid refinement, con-

trolled by a-posteriori error estimators, see /THI 98/, and a time step control. d³f and r³t 

are completely parallelised and use a sophisticated load balancing to use the pro-

cessing power as effective as possible /BIR 98/, /LAN 05/. They can be run on LINUX 

PCs, workstations, PC clusters and on massively parallel computers. 

Beside d³f and r³t the codes FEFLOW /WAS 10/, MODFLOW /HAR 00/, NAMMU 

/SER 03/ und RockFlow/Open GeoSys /KOH 09/, /WAN 09/ are used for the modelling 

of density driven flow and transport. 

The commercial finite element code FEFLOW is well established in groundwater mod-

elling, especially because it comes with a comfortable graphical user interface and 
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some useful tools such as water balancing. FEFLOW can handle free surface flow, 

fractures, density driven flow and contains an inverse modelling. Recently it was en-

hanced by amg methods and parallelised, too. On the other hand in the case of geo-

metrical complex 3d-models it may be a disadvantage that FEFLOW works with so 

called slices, manually created grid layers, instead of real 3d-meshes. To model salt 

transport, FEFLOW makes use of the Boussinesq approximation, i. e. one part of the 

nonlinearity remains neglected. This strategy simplifies the model, and it is normally 

sufficient for a salt content in the range of seawater concentration. In the range up to 

saturated brine it reduces considerably the reliability of the results, as shown in 

/JOH 03/. 

Many groundwater modellers use the finite difference code MODFLOW. It has a rela-

tively inflexible grid structure. CG-based methods are used as solvers. Thus the code 

can easily be modified and extended. Meanwhile various modules exist for density-

driven flow, transport and other purposes. Nevertheless MODFLOW is not the tool to 

handle complex models with large numbers of nodes. 

The FORTRAN-based finite element code NAMMU is used in the assessment of long-

term safety. It is able to compute density-driven flow including heat transport and nu-

clide transport in porous media. It is not applicable to complex models. 

Open GeoSys/RockFlow is an open source finite element code. Beside density-driven 

flow and transport it is able to model multiphase flow in porous and fractured media, 

and geo-mechanical influences may be regarded. RockFlow works on adaptive grids 

too, and it can be coupled with other codes. CG-based algorithms are used as solvers. 

The computer programs d3f and d³f are based on the simulation system UG /BAS 00/, 

which to this day possesses a unique position among the simulation programs as it is a 

general parallel and adaptive solver for coupled systems of partial differential equa-

tions. The development of UG already started in 1990 and initiated a series of further 

developments, /DEA 03/, /BAS 05/, and various others. None of these other develop-

ments, however, comes up to the level, functionality, implementation range, and scope 

of application of UG. The treatment of realistic models possessing a sufficiently fine 

resolution requires a grid with 108 or more unknowns. These can only be employed 

reasonably when all possibilities to reduce complexity and to increase efficiency are 

used. Examples of this are adaptive multi-grid methods, /BAS 94/, and their parallelisa-

tion. UG sets standards for this. 
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Up to now, the standard methods to discretise differential equations in UG are finite 

volume methods. During the recent years, new formulations for discretisation were de-

veloped. Amongst these are most notably the discontinuous Galerkin methods, 

/ODE 98/. They provide the possibility to handle the order of basis functions flexibly 

and with that to include them into an adaptive concept as well. Such methods have not 

yet been formulated for the density-driven flow and therefore provide for this and for the 

transport problems linked to it an interesting alternative. Preliminary work for develop-

ing fast solvers was already done, /JOH 05/, /JOH 05b/. 

2.2 Overall objective 

Aim of this project is the advancing of the computer programs d3f and r3t (see Tab. 2.1) 

by introducing 

 the explicit consideration of fractures, 

 the simultaneous consideration of the heat transport, 

 the consideration of free water tables (phreatic flow), 

 the option of modelling potential flows, and 

 the adaption of pre- and post-processors to the new tasks. 

In addition to this the scaling behaviour and the stability of the thermohaline flow in 

heterogeneous media are examined to derive criteria for stability.  

Furthermore, new numerical algorithms are developed and applied, e. g. filtering alge-

braic multi-grid methods (FAMG) /WAG 00/, /NAE 08/ and the discontinuous Galerkin 

method. 

By these extensions the codes d3f and r3t are empowered to model three-dimensional 

density-driven flow in case that the density is not only influenced by the dissolution of 

salt but also by heat transport. Additionally, the modelling of porous media is comple-

mented with the explicit modelling of fractures. This modelling of porous/fractured me-

dia is necessary for the long-term safety analysis if the host rocks are mudstone and 

crystalline rocks.  

The possibility to model free surface flow provides the ability to consider pumping wells 

and groundwater recharge.  
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Altogether, within long-term safety analyses of repositories the application field is en-

larged to other host rocks than rock salt. At the same time, it is also extended to geo-

thermic questions. 

Tab. 2.1 Modelling with d3f and r3t, respectively  

(hitherto possible: green; hitherto possible, but ineffective: orange; applied 

extension: white, orange) 

Host formation 
Salt Plastic clay 

Crystalline 
rock 

Mudstone 
Processes/media 

density-driven flow (d) 

potential flow (p) 
d p p p 

fractured (f) 

porous (p) 

f not necessary f f 

p p p p 

free surface + + + + 

heat transport not necessary + + + 

Further development of the codes d³f and r³t was a significant improvement for applica-

tions already covered by previous versions, and also opens up a wide range of new 

applications.  

2.2.1.1 The flow model d³f and the transport model r³t 

The computer codes d3f for flow and r3t for contaminant transport simulations were es-

pecially developed to model three-dimensional large regions with complex geometries 

over long periods of time. The hydrogeology of the modelled area can thereby com-

prise strong heterogeneities and anisotropies. The basic requirements for use were: 

 The porous media are fluid saturated. 

 The aquifer systems are confined. 

 Both the porous media and the fluid are incompressible. 
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The flow model d³f solves the equation system of density-driven flow, and it provides 

the flow field for r³t. The transport code r³t includes all interactions that are currently 

relevant for long-term safety assessments, such as decay, sorption, precipitation, com-

plexation, and colloidal transport /FEI 04/. Both codes - d³f and r³t - were also applied in 

combination to various test cases /FEI 08/. 

The computer codes d³f and r³t offer interactive graphical preprocessors and a post-

processor. The latter is identical for both program packages and is based on the 

GRAPE software /RUM 92/, /GRA 99/. It is designed to analyse and to plot the results 

of the simulations.  

The preprocessors help preparing the input data, which itself consists of two different 

parts: data describing the hydrogeolocical model, and data controlling the numerical 

algorithms. The model data are subsumed in five and seven different files, respectively. 

The controlling of the simulator is managed by script files which can be altered by 

means of an interactive graphical user interface.  

The simulators of d³f and r³t are based on the numerical library UG (“unstructured 

grids”) /BAS 97/. The UG library comprises robust solvers for numerical simulations on 

hierarchical grid structures. These multigrid solvers are used successfully in d³f as well 

as in r³t. All numerical algorithms applied for solving density-driven flow or radionuclide 

transport problems are based on finite volume methods. 

For a detailed description of the state of d³t and r³t at the beginning of this project see 

/FEI 99/ and /FEI 04/. 

2.2.1.2 Scaling of haline and thermohaline flow in heterogeneous media  

The hydraulic properties of different hydrogeological units are typically varying over 

multiple length scales. These heterogeneities cause difficulties in the upscaling of hy-

draulic parameters. On the other hand, in long term safety analysis the consideration of 

large length and time scales is indispensable. 

Up to now stability analyses of haline and thermohaline flow only existed for homoge-

neous media. In this project, stability analysis is combined with a multiscale approach 

to be able to predict the beginning of instabilities and to establish robust stability criteria 

for heterogeneous media. 
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Stable and unstable haline and thermohaline flow has to be scaled by different meth-

ods. Stable flow can be treated using asymptotic scaling methods. Herefore, existing 

results for weakly heterogeneous media are adapted to strongly heterogeneous and 

anisotropic media.  

On unstable flows for the first time modern flexible filter methods are applied. These 

methods allow the scaling of pre-asymptotic processes. Effective scale-dependent pa-

rameters were to be found. 

2.2.1.3 Explicit consideration of fractures 

At the beginning of this project the application of d³f and r³t was restricted to porous 

media. Now, special approaches for the integration of fractures were developed and 

implemented. 

The aperture of a fracture is usually negligible compared with the model scale. On the 

other hand, these structures cause a huge numerical effort if the fracture is geometri-

cally treated as a volume. Therefore, structures of reduced dimension had to be estab-

lished within d³f and r³t. The discretisation had to be adapted. Flow and transport within 

the fractures work independently of the processes within the sourrounding matrix. Inter-

face conditions for the fracture matrix interaction and average methods over the frac-

ture width had to be developed. 

A special finite volume method was developed using so called degenerated elements 

(see chapter 5). Grid generators and refinement algorithms had to be adapted. The 

solvers were improved bei introducing filtering algebraic multigrid (FAMG) methods and 

a new parallelisation concept. 

2.2.1.4 The heat transport 

In the previous version of d³f a system of two equations was solved, the mass balance 

of the fluid-phase and the mass balance of the solute. To integrate heat transport into 

d³f the energy balance of the mixture as a whole had to be introduced as a third equa-

tion. Different thermodynamical concepts were developed, investigated and compared 

with thermohaline flow and thermodiffusion models known from literature. Theoretical 
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and experimental analyses were performed to determine the scope of validity of the 

equations. 

Two variations of the energy equation had to be regarded, the complete equation and 

the Boussinesq approximation. 

The accuracy of the solution was significantly improved by the development of a finite 

volume method of higher order. Formulations for the dependency of the hydraulic pa-

rameters on pressure, temperature and salinity were compiled in a separate report 

/KRO 10/. 

2.2.1.5 Consideration of free groundwater surfaces and potential flow 

In the original concept for d³f and r³t the influence of groundwater recharge or pumping 

wells on the water table was not considered. Now the immensely increased available 

computational power allowed to extent the code capabilities to a free groundwater sur-

face. This could be done in two ways, regarding a moving numerical grid or a moving 

front within a fixed grid. Here, the second possibility was chosen. The moving ground-

water surface is approximated by a level set function. 

To improve the performance for models not involving transport processes a feature 

was created that allows the computing of only potential flow within one step. 

2.2.1.6 Adaptation of pre- and postprocessors 

To be able to visualise and analyse data on fractures and on free surfaces, the post-

processor had to be extendet, too.  

For this purpose new visualisation concepts working on lower dimensional structures 

had to be developed and implemented. Additionally, the robust visualization and analy-

sis of different types of data on implicitely described surfaces had to be realized. 

The existing tool set for the interactive local data extraction, based on parameterized 

cutting tools and integration methods in space and time, had to be extendet considera-

bly. 
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A new graphical user interface was developed. Additionally, the interactive graphical 

tool ProMesh was adopted for geometrical model building and grid generation, espe-

cially for models containing fractures. 
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3 Scaling of haline and thermohaline flow in heterogeneous  
media 

3.1 Introduction 

The migration of leachate at waste repositories, the flow of saline water in coastal 

aquifers and geothermal systems with significant temperature gradients show patterns 

that differ significantly from passive tracers. The flow and solute transport in these 

systems are induced by the spatial variations in fluid density, arising from salinity or 

temperature differences. Such systems are generally referred to as density-driven. 

The differences between density-driven systems and passive tracers arise from the 

coupling between the fluid flow and solute transport processes in the former. Typically, 

the systems can show erratic interactions between regions of the fluid with different 

salinities or temperatures. The interactions cause the breakdown of the sharp interface 

when a denser fluid overlays and displaces a less dense, or when a cooler fluid 

displaces a warmer one. The fingering phenomenon then occurs and the system is 

said to be unstable.  

Instabilities can be explained physically by taking into account the various forces that 

act on density-driven fluids at rest or in motion. They may individually have stabilising 

or destabilising effects to the system. A stable system is in general attained when the 

external forces like inertia, viscous stresses and buoyancy balance and a state of 

minimum energy is reached in which no state of lower energy is accessible. A 

perturbed system would move back to this stable low-energy state. In contrast, the 

system shows unstable behaviour if states of lower energy are accessible and an 

infinitesimal perturbation causes it to evolve to a different state with lower energy. 

Viscosity dissipates the energy of a disturbance and stabilises the system. For this 

reason, any bounded flow is stable if viscosity is large enough. It can also diffuse 

momentum, which can make some flows like parallel shear flow unstable though the 

same are stable in an inviscid fluid. Thermal conductivity and molecular diffusion 

smooth out temperature and concentration gradients respectively and so have 

stabilising effects. Buoyancy forces on the other hand have a destabilising effect if a 

denser liquid lies on top of a less dense one. Boundaries constrain the development of 

instabilities and the closer they are the more stable a system becomes. Boundaries can 
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however result in stronger shear in boundary layers, which can lead to instabilities 

when diffused out by viscosity.  

In general, an unstable configuration results when a denser fluid overlays a less dense 

one as was already mentioned above. However, such a system can still remain stable if 

the mobility (viscosity) term does not favour finger formation or when the velocity, 

normal to the direction of finger development is high such that the instabilities that form 

have no time to grow into fingers; or when mixing smoothes them out. 

In addition to physical instabilities, numerical instabilities may be introduced by 

inappropriate numerical schemes. The corresponding mathematical models often 

provide numerically non-unique solutions, which according to /OLD 95/ and /FRO 01/ 

arise from insufficient grid refinement and extrapolation of the initial conditions if the 

grid is not aligned with the sides of the domain. In mathematical analysis the first step 

is to determine the original state of the system, which is referred to as the basic state. 

In density-driven flows, the basic state depends on the velocity, pressure and solute 

concentration. The numerical solution must satisfy the describing equations as well as 

the applicable boundary conditions. 

Physically, one wishes to know whether the basic state can be observed or not. If it is 

disturbed even so slightly, the perturbation decays away or grows infinitely in 

magnitude. Decaying growth is actually an evolution to another steady-state, which 

thermodynamically means another lower-energy state. 

3.1.1 Previous stability studies 

Early linear stability studies are documented in /CHA 88/ and how some e. g. 

/WOO 62/ studied the stability of vertical miscible displacements in homogeneous 

media and concluded that the interface could be stable or unstable depending on the 

wave numbers. Others like Perrine and Gray /PER 66/ wrongly concluded that 

instabilities could not form in homogeneous media, while subsequent ones like 

/SET 77/ showed that instabilities could form in homogeneous media provided mixing 

effects were sufficiently small. 

More recent investigations through laboratory experiments can be found in e. g. 

/SCH 90/ and numerical simulations and mathematical analysis in e. g. /COS 90/ and 
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/SCH 97 among others. The stability of density-driven flow systems can be found in 

/WOO 62/, /SCH 90/, /SCH 97/, /COS 90/, /KRE 03/, and /HEL 05/. The stability of 

gravity-driven systems has also been studied and is documented in literature. 

3.1.2 The current work 

The homogenization theory ideas introduced in /HEL 05/ were extended to derive the 

stability criterion and develop the expressions for the macrodispersion coefficients.  

3.1.2.1 The homogeneous medium 

For homogeneous media, the small-scale dispersion is the only stabilising mechanism. 

A homogeneous medium was initially considered with the effects of dispersion 

neglected. It was established that systems are stable at the large scales only when 

stable at small scales. 

With dispersion included, it was ascertained that for a given density contrast 

perturbation wavelengths up to a critical value are stable. A mixing zone evolves as a 

result of variable pore size and orientation and the size of the zone controls the 

perturbation wavelengths that grow into fingers.  

The width of the mixing zone increases with the prevailing diffusion/dispersion, in 

accordance with the scale-dependency of dispersion documented in the work of Dagan 

/DAG 88/. In a homogeneous medium, flow is stable at the small scale only when the 

spreading (and therefore the mixing zone) is big enough to prevent the instabilities from 

growing into fingers. Even then instabilities with big enough wavelengths can still 

develop into fingers. The stability of a system is thereby controlled by the perturbation 

wavelength and the width of the mixing zone, also called the transition zone in some 

literature. 

The investigation of dispersive effects was limited to downward flow that is solely 

driven by density effects. The stability of vertical density-driven flow was initially studied 

by Lord Rayleigh and later by Elder, who used the Rayleigh and other dimensionless 

numbers to investigate the onset of convection in a system heated from below. Other 

researchers have used the haline equivalent of the thermal Elder problem with a more 

saline fluid overlaying a less saline one to study convection patterns caused by   
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salinity stratification. A solutal Rayleigh number is defined for the equivalent haline 

problems and the density contrast, domain size, density contrast and diffusion are 

chosen in such a way to make it equal to the original number derived by Elder for the 

thermal problem. Many of the researchers reported differences in fingering patterns 

depending on the level of grid refinement and the density contrast. For sufficiently 

refined grids, /OLD 95/, /DIE 02/ and /FRO 01/ observed comparable finger evolutions. 

To ease comparison with previous research, the stability number initially derived for a 

homogeneous medium without dispersion was reformulated in form of a solutal 

Rayleigh number. Henceforth, Rayleigh number refers to the solutal Rayleigh number 

and the Elder problem refers to the haline equivalent of the classic thermal Elder 

problem. 

The Rayleigh number for the Elder problem is approximately 400. Only molecular 

diffusion is taken into account, which is erroneous considering the 20 % density 

contrast, which causes evident convection patterns. The entire domain height (150 m 

for the Elder problem) is also used in the computation. Alternative formulations for the 

Rayleigh number that take dispersion into account can be found in e. g. /SCH 97/ and 

/DIE 02/. /SCH 97/ further proposed the use of a characteristic length instead of the 

entire domain size. Earlier, Bues and Aachib /BUE 91/ had suggested the use of the 

mixing zone width as the characteristic length.  

The Rayleigh number was computed in this work with the effects of dispersion included 

and the characteristic length taken as the mixing zone width instead of the domain size. 

Significantly smaller density contrasts are also used, which results in Rayleigh numbers 

much smaller than 400 for the Elder problem. 

1. For the Elder problem, /DIE 02/ identified 3 regimes and correspondingly 2 critical 

Rayleigh numbers 

2. The nearly diffusive regime for Rayleigh numbers up to the first critical, 24
1c

Ra  

3. A convective regime with stable numerical solutions for 
2

24 cRaRa , with the 

second critical number 
2cRa in the range 240 – 300 

4. The convective regime with unstable solutions for
2cRaRa . 
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Johannsen in /JOH 02a/ independently showed that the number of fingers evolved from 

one for very small Rayleigh numbers to three (in some solution branches) at Ra > 300, 

with the latter coinciding with the second critical number in /DIE 02/ for the onset of the 

unstable convective regime. 

The study attempted to quantify the critical wavelength and the mixing zone and used 

the transition in the number of fingers and the three regimes to infer system stability. 

3.1.2.2 The heterogeneous medium  

The medium heterogeneity increases the dispersivity against the local value. This is in 

fact a compounded effect of the small-scale dispersion at pore scale and large-scale 

mixing caused by the medium heterogeneity. The effect of the heterogeneity is thus 

similar to dispersive mixing. 

Therefore, the effective dispersivity can be used in the expression for the 

homogeneous medium with dispersion. A new stability number can then be derived in 

terms of the old and the heterogeneous medium properties, namely the heterogeneity 

variance and the correlation length. 

It is hypothesised that high variances and small correlation lengths cause intense 

mixing that smoothes out all instabilities and prevents them from escalating into fingers. 

Low variance and large correlation lengths on the other hand allow instabilities to grow 

into fingers. From the foregoing, big variances and correlation lengths are expected to 

result into a reduction and increase in the number of fingers, respectively. 

3.1.2.3 Large-scale transport behaviour 

Large-scale transport in heterogeneous media was also studied using the 

macrodispersion tensor derived using homogenization theory. The tensor was 

symmetric with zero off-diagonal elements while the leading diagonal elements showed 

scale effects as documented in the works of Dagan, e. g. /DAG 88/. Most literature 

pertaining to macroscopic mixing is limited to passive tracers. An attempt was made to 

reproduce the transport behaviour documented for passive tracers and extended the 

techniques to density-driven systems.  
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Passive tracers were “emulated” by setting the density and viscosity effects to zero. 

Favourable density contrasts were then investigated by arbitrarily choosing positive 

stability numbers and studying the trend in the coefficients. Much as these scenarios 

were not of much interest, the evolution of the coefficients gave useful information: the 

longitudinal and transverse coefficients respectively decreased and increased with 

increasing stability, with the longitudinal coefficient approaching an asymptotic value. 

This means that any stabilising variable like heterogeneity variance was expected to 

produce a reduction and an increase in the longitudinal and transverse coefficients, 

respectively. 

The longitudinal coefficient increased with increased unfavourable density contrast. It 

will be shown later that for moderate unfavourable density contrasts (with 

corresponding negative stability numbers) asymptotic longitudinal coefficients could still 

be obtained. These physically indicated the range of unfavourable density contrasts 

that are stabilised by medium heterogeneity. With further increase in the density 

contrast, coefficients that grow indefinitely with time were obtained. This was consistent 

with the conclusions from previous researchers e. g. /WEL 91/ where unfavourable 

densities gave rise to very large longitudinal mixing coefficients. Additionally, increasing 

the correlation length resulted in increased longitudinal coefficients, hence a reduction 

in system stability, while the heterogeneity variance had the reverse effect. 

3.1.3 The mathematical formulations 

Presented here are the formulations used in the study. The system of equations used 

to describe variable-density systems are the flow, transport and Darcy equations. 

gku

Du

u

p

t

t

X

XX

X

0ˆ

0ˆ

 (3.1)

In the above equations,  is the solute mass fraction, 3mkg  the fluid 

density,  the porosity, 12 smD  the diffusion/dispersion tensor, t̂,X  the 

respective space and time variables, 1smu  the Darcy velocity, 2mk  the intrinsic 
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permeability tensor, sPa  the dynamic viscosity, Pap  the pressure and 
2smg  the gravitational acceleration. Sources and sinks, temperature and sorption 

were neglected. The system is defined on J , where the domain 2R  and the 

time TJ ,0 , with T the end time. 

The hydrodynamic dispersion tensor is implemented according to Scheidegger’s law 

,||||
|||||| Iv

v
vvID mD  (3.2)

where I is the identity matrix, Dm the molecular diffusion coefficient, || and the 

respective longitudinal and transverse dispersion lengths and v the ground water 

velocity. 

To solve the above density-driven system, the dependencies of density on salinity and 

viscosity have to be specified beforehand. Linear state dependencies were used 

where 00 ,  are the density and viscosity of pure water, and ,  are coefficients 

defining the maximum relative density and viscosity, respectively. 

3.1.4 Homogenization theory 

Homogenization theory is an up-scaling method with advantages over spatial 

averaging techniques. The biggest advantage over spatial averaging is that its results 

can undergo the rigorous scrutiny of mathematical proofs. Essentially, two scales are 

assumed: the mesoscale l  at which processes occur and the macroscale L  at which 

processes are observed. The scales are related through the quantity Ll / .  Related 

to the two scales are two dimensionless spatial and temporal variables. The scales are 

assumed to be well-separated making the quantity  approach zero.  

Quantities that show spatial and temporal variations like pressure and mass fraction 

can then be written as series expansions in the parameter . For example the mass 

fraction in the transport equation can be written as: 

10  (3.3)

,10   (3.4) 
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,)(),,,(),(,,, 2
10 Ottt yxxyx  (3.5)

where ),(0 tx  is the large-scale mass fraction. The function ),,,(1 tyx is assumed to 

be periodic in y (of period 1). The spatial and temporal derivative can also be written in 

terms of those variables: 

,11
yxLX  (3.6)

.1
ˆ 22

||

tL
D

t
 (3.7)

When the spatial and temporal derivatives are applied to the 2-scale transport equation 

and the terms with the same powers of  collected, one obtains the following three 

equations: 

1. The compatibility condition 

,0)( 00
||

0
yyy Dv

D
L

 (3.8)

where L is the macroscopic length taken as the domain size in mean flow direction, 

v the total velocity and ||/ DDD  the modified hydrodynamic dispersion 

tensor. The equation is a statement of the independence of macroscopic quantities 

from small scales. 

2. The small-scale equation describes the variation of the solute on the meso scale: 

,0~
10

||
1

||

1
yyxy Dvv

D
L

D
L

 (3.9)

Where vv ~,  are the total and fluctuating velocities, respectively. The small-scale 

equation is also called the cell problem in literature. 
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3. The large-scale equation that contains the homogenized tensor, in this case the 

macrodispersion tensor. 

00
eff

00
||

0
xxx Dv

D
L

t  

(3.10)

The macrodispersion tensor is defined by vDD ~
||

eff DL , where is 

the solution to the cell problem. The small- and large-scale equations can be used 

to derive the stability criterion and the expressions for the macrodispersion 

coefficients, respectively. 

3.2 The Stability Criteria 

3.2.1 Criterion for a homogeneous medium 

This was derived from the small-scale equation on the explicit assumption that the 

velocity fluctuations depended on the fluctuations in the mesoscale mass fraction only. 

,,)(,~
1 qqMqv  (3.11)

where q is the Fourier space variable and )(qM  the contribution of solute to the 

velocity fluctuations. 

With dispersion neglected, the small-scale equation reduced to the form 

011 b with the solution btet 011 . Depending on the sign of b, the 

solution would decay to zero or grow indefinitely. It was referred to as the stability 

number and it is a function of density, viscosity, flow velocity and concentration 

gradients. 

By assuming a divergence-free velocity, modifying the velocity and considering only up 

to linear terms, )(qM  could be evaluated and the stability criterion derived.  

The criterion took the following forms for flow aligned parallel and orthogonal to gravity: 

g
p vv

D
L

00
||

 (3.12)
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12

2

1020
|| a

aGvGv
D
L pg

o  (3.13)

,  are respectively the maximum relative density and viscosity coefficients; 0v  the 

total downward velocity; pv0  the pressure-driven velocity component; gv0  the velocity 

driven velocity component; pg
o vva 0/ ; 21,GG  the respective concentration gradient 

components in the directions orthogonal and parallel to gravity. The flow was stable 

when the stability numbers were positive. 

Extension to dispersive effects 

The inclusion of dispersion focused on how the mixing zone controls the wavelengths 

that can pass into instabilities. To that end, an expression was derived that expressed 

the stability number in terms of the old number and a dispersive contribution 

2
||

2

D
D

pp . 
 

(3.14)

DD ,||  are the longitudinal and transverse dispersion coefficients, respectively, the 

perturbation wavelength and  the characteristic length. The characteristic length was 

initially required to preserve the dimensionless form of the stability number. 

Following the ideas in /KEM 94/, the characteristic length could be expressed in terms 

of the dispersivities. Mathematical fitting eventually led to  

.2

2
1

||
3

pp  (3.15)

In order to determine the range of stable wavelengths, the inflow region was perturbed 

with the following sinus function 

0
0

2
sin1

xx
A  (3.16)
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0A  was set to 0.5 so that the maximum mass fraction was constrained to 1.0 when the 

sinus function attained its maximum value, and 1 was added to avoid unphysical nega-

tive values of the salt when the sinus function was at the minimum value. 4.00x  is 

the left abscissa of the inflow region. 

3.2.2 Stability criterion for a heterogeneous medium 

The extension of the previously derived criterion for a homogeneous medium to include 

heterogeneity effects is presented here. A log-normally distributed permeability field 

with a Gaussian auto-covariance function was used: 

.
2

exp
2

1
2

2

2

j j

j
ff

x
xw  (3.17)

2
f  is the variance and jjx , are the components of the space and correlation length 

in direction j, respectively.  

In the extension of the stability criterion to heterogeneous fields, effective dispersion 

lengths have to be used instead of the local values. This is to account for the increase 

induced by medium heterogeneity.  

The effective values, in the form of the sums )(ffe , with )( and  the 

local dispersivities and their changes due to the heterogeneous medium are substituted 

in the previous stability number. Multiplying out the terms and neglecting the products 

of the changes and expressing the heterogeneous-medium-induced longitudinal 

dispersivity as the product of the variance and correlation length (see /GEL 83/, 

/GEL 93/), the expression below is obtained: 

vv
pp

n
2

31 2
1

||
2

2

2
1

3
||

2

 (3.18)

where n is the number of critical homogeneous medium perturbation wavelengths crit

in a heterogeneous medium critical correlation length crit,v . 
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The above expression comprises of the previous stability number p  and the 

properties of the heterogeneous medium 2  and v . The expression is consistent with 

physical expectations because the system stability increases and decreases with the 

heterogeneity variance and correlation length respectively. Unfavourable density 

contrasts in a homogeneous medium ( 0p ) can be stabilised by inclusion of 

medium heterogeneities. 

3.3 Large-scale mixing 

Large-scale mixing was studied using the macrodispersion tensor that was derived 

from the large-scale transport equation (itself derived via homogenization theory in 

/HEL 05/. The individual tensor elements initially evaluated to functions containing 

diffusion and averaged products of the solution to the small-scale equation and the 

mesoscale velocity fluctuations, with the former expressed as a definite time integral. 

The mesoscale velocity was rewritten with the contribution from the fluctuations in the 

medium heterogeneity explicitly included (see derivations in /MUS 10/): 

)(~)(,)(,~
1 qqLqqMqv k . (3.19)

)(qL  is the contribution of medium heterogeneity to velocity fluctuations and )(~ qk  the 

permeability fluctuations. This was then substituted into the effective dispersion tensor 

in the homogenized equation: 

vDD ~
||

eff

D
L

 (3.20)

The solution to the cell problem was obtained by first assuming the salt mass 

fluctuations to be of the form Gqq ,,1  (see /CIO 99/ for details). This was 

then substituted into the small-scale equation that had been transformed into Fourier 

space and heterogeneities included in the velocity fluctuations to give 

'

||0

' exp~, qqDqvqqq
D
LifLd nn , (3.21)

with )()( ||DLGn . Multiplying out the product and carrying out the averaging 

operation on the tensor elements was essentially the evaluation of integrals in space 
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and time: over the entire space and finite times. By expressing the respective terms as 

Gaussian functions and neglecting diffusion, the integrals could be conveniently 

evaluated with the software MAPLE®: analytically up to the time integrals and then 

completely by numerical techniques. The evaluation gave a symmetric tensor with zero 

off-diagonal elements, while the leading diagonal elements depicted the scale 

dependency mentioned in the preceding paragraphs. The leading-diagonal elements 

evaluated to the following forms: 
 

(3.22)

 

(3.23)

  

As previously mentioned, the stability of the systems could be inferred from the 

temporal evolution of the longitudinal coefficient. Additionally, the stabilising or 

destabilising behaviour of different variables could be studied using the responses in 

the coefficients induced by changes in those variables. 
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3.4 Numerical results 

3.4.1 Results for a homogeneous medium 

The stability number for flow orthogonal to gravity was used. In the following, the 

criterion is tested for the effects of density, viscosity and flow velocity within a 

homogeneous medium without dispersion. The parameters were adopted from 

/SCH 97/. 

3.4.1.1 The Schincariol problem 

The problem in /SCH 97/ was used to test the criterion. Initially an adequate grid and 

time stepping had to be established that ensured numerical solutions free from 

artefacts without having to apply upwind techniques. The procedure outlined in 

/SCH 97/ involved having to gradually reduce the mesh and time steps until a stable 

solution was obtained. Similar Peclet and Courant numbers were used and the results, 

which were comparable to those documented in /SCH 97/ are shown below. 

 

Fig. 3.1  The Schincariol results 

Having obtained the stable numerical solution and an optimum grid refinement, 

physical instabilities were induced by varying the various physical parameters and their 

effects studied by making the relevant changes in the stability criterion. The results are 

presented in the following sections. The grid and time stepping in Fig. 3.1(c) was taken 

as standard on which all simulations were based. 

Density-driven systems are not rotation-free. The rotation of the local velocity vectors 

cause a recirculation cell to emerge at the tip of the plume. Solute is trapped and 

transported inside the cell where it remains at all times. The ‘nose’ therefore does not 

count as a finger and unstable behaviour is when other undulations develop 

additionally.  
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Even then, the decision regarding which configurations were stable remained somehow 

subjective. Fig. 3.2 gives two simulations that were predicted as stable and unstable, 

respectively.  

 

Fig. 3.2 Stable or unstable? 

The differences in the finger patterns are not very pronounced but when allowed to 

evolve for a longer time however, the finger in Fig. 3.3(b) had more replications and 

travelled through a bigger vertical distance. 

It is therefore hypothesised that there exists a horizontal plane that demarcates stable 

from unstable systems. The salt fronts in unstable systems travels beyond that plane. 

3.4.1.2 Effects of density 

The table below gives the stability numbers computed at a viscosity of 
16

0
3 sm1075.2 ,sPa10006.1 pv and various density contrasts. 

Tab. 3.1 The Effect of Density 

Max. Density [kg m-³] 998.70 1000.0 1000.2 1000.4

310  1.5027 1.8032 2.0036 2.2040

310 o  5.8377 2.2813 -0.0898 -2.4606

The Figures below show the simulations at the two extreme densities in the table. 

 

Fig. 3.3 Homogeneous Medium: Density Effects 
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3.4.1.3 Effects of viscosity 

The table below show the effect of increasing viscosity at a density contrast that had 

been predicted as unstable. 

Tab. 3.2  Homogeneous Medium: Viscosity Effects 

Max. Viscosity [10-3 Pa s]  1.006 1.200 1.250

-310  3.992 197.605 247.505

-310 o  -0.09 114.50 144.07

The figure below shows the simulations at the tabulated viscosities. 

 

Fig. 3.4  Homogeneous Medium: Viscosity Effects 

The second finger became less pronounced and the vertical distance was significantly 

reduced. The finger in Fig. 3.4(a) could be the only one that went beyond the 

demarcation plane mentioned previously. 

The criterion was also tested for the effects of velocity. It made reasonable predictions 

at low velocity but failed with increasing flow. The failure was attributed to dispersion 

that was up to that point not included. 

3.4.2 Extension to include dispersion 

The same simulation parameters from /SCH 97/ were used again. A configuration with 

vertically downward flow was used and the maximum density was reduced to 

998.5 kg m-³ to ensure moderate fingering. The two relevant factors in the study of 

dispersion effects are the perturbation wavelength and the mixing zone width. The 
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critical perturbation wavelength was obtained by perturbing the inflow region with sinus 

functions of various wavelengths. 

The critical wavelength was when the third finger started developing m100.2 3
crit

was obtained. 

By using physical considerations to constrain the range of values that the exponents of 

dispersivities could take, the expression for the characteristic length was tested and 

fitted. This was done by utilising the change in sign of the stability number at the onset 

of convection. To that end, the stability number could be written as  

mm

pp

2
||  (3.24)

The change in stability was accomplished by using the critical wavelength and varying 

m for various  || and fixed  and then varying the transverse while fixing the 

longitudinal dispersivity. 

The figures below show the ranges of m corresponding to stable and unstable 

configurations obtained by varying the longitudinal and transverse dispersivities 

respectively. The blue and red portions of the curves correspond to the stable and 

unstable configurations respectively. 

 

Fig. 3.5  Fitting the mixing zone width 
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By overlapping the two regions, the value of m could be approximated as 1.5. The 

figure below shows simulations at the longitudinal dispersivities at which stability 

transition occurred. Simulations with the transverse dispersivity also showed the 

transition from two to one finger. 

 

Fig. 3.6  The fitted longitudinal dispersivities 

Taking a wavelength slightly bigger that that at which the shift was observed as crit , 

the derived stability criterion was used to study the effects of density and dispersivity as 

given in the following.  

3.4.2.1 Density effects 

The following section is the test of the derived criterion for the effects of density. In the 

table are the stability numbers computed at various densities with and without 

dispersion effects. 

Tab. 3.3  Dispersion extension: density 

Max density [kg m-³] 998.25 998.30 998.35 998.40 998.50

p  3.881 0.769 -0.571 -1.317 -2.121

p  4.026 0.091 -0.426 -1.172 -1.976

The following figures are simulations at different density contrasts to show the onset of 

stable convection. 
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Fig. 3.7  Density effects: onset of convection 

The growth of the second finger (the onset of convection) in the simulations was 

reasonably predicted by the change in the sign of the stability number from the 

criterion. The following figures are simulations at higher density contrasts to show the 

transition into the unstable convective regime i. e. the growth of the third finger. 

 

Fig. 3.8  Density effects: onset of unstable convection 

The change from the stable to the unstable convective regime was indicated by the 

growth of the third finger in simulations and further reduction in the stability numbers. 

Although the range over which the transition occurred could not be pinpointed, it is 

envisaged that it was over a specific range of stability numbers.  

3.4.2.2 Dispersivity effects 

In the following, the results of investigations regarding the longitudinal and transverse 

dispersivities, both of which were found to be stabilising, are presented. By choosing a 

density very close to the onset of convection, a transition from two to one finger was 

achieved by increasing either dispersivity. Now higher density contrasts are 

investigated. 
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3.4.2.2.1 The longitudinal dispersivity 

The table below gives the stability numbers computed at the reference parameters and 

various longitudinal dispersion lengths. 

Tab. 3.4  Dispersion extension: longitudinal dispersivity 

m10 3
||  1.5 7.5 10.0 

p  -1.976 -1.761 -1.153 

The stabilising effect is manifested through the increase of the stability number down 

the table. The simulations at the tabulated dispersivities capture the stabilisation 

through a reduction in the number of fingers as shown in the figures below. 

 

Fig. 3.9  Effects of longitudinal dispersivity 

The transition from three to two fingers occurred over the range 

.761.1976.1 *
p  

3.4.2.2.2 The transverse dispersivity 

The stability numbers computed at various transverse dispersivities are given in the 

table below.  

Tab. 3.5  Effects of transverse dispersivity 

|| [10
-4

 m] 1.0 10.0 30.0 

p  -1.976 -0.734 -0.111 
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The increase of the stability numbers again signify stabilisation, which is matched by a 

reduction in the number of fingers in the simulations below. 

 

Fig. 3.10 The transverse dispersivity effects 

Both dispersivities caused an increase in the stability numbers and correspondingly a 

reduction in the number of fingers from three to two. The effect of the longitudinal 

dispersivity however seemed to be more than that of the transverse dispersivity, as the 

exponents in the proposed expression predicted.  

It is plausible that if the dispersivities were sufficiently large, the regime could become 

nearly diffusive with a single finger. However, due to the limitations of the selected 

domain size, the dispersivities could not be increased enough to obtain that scenario. 

3.4.3 Stability studies in a heterogeneous medium 

This part of the stability studies will be presented into two: the extension of the 

previously derives stability criterion to medium heterogeneity effects and the analysis of 

the evolution of the macrodispersion coefficients to study large-scale transport 

behaviour.  

3.4.3.1 The stability criterion for a heterogeneous medium 

The effects of varying the density, dispersivities, variance and correlation length on 

stability can then be realised in the criterion as well as the evolution of fingers in 

numerical simulations. First a reference set of simulation parameters was obtained 

against which changes in all variables could be based. 
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The correlation length plays the role played by perturbation wavelengths in 

homogeneous media, namely controlling the instabilities that grow into fingers. If the 

correlation length is gradually increased, a cut off value is obtained where fingering is 

observed in the system. The figures below show the simulations at 
2243

||
3

max m30.0 ,m101 ,m105.1 ,mkg5.998  and various 

correlation lengths. 

 

Fig. 3.11  The critical correlation length 

The correlation length at which the third finger appeared was taken as the approximate 

critical value. The table below additionally shows the stability numbers computed at the 

various correlation lengths. 

Tab. 3.6  The effect of the correlation length 

m)10( 3
v  5.0 7.5 10.0 20.0 

p  -1.529 -1.859 -1.975 -2.083 

In the following, the general stabilising behaviour of medium heterogeneity will be 

shown by achieving a reduction in the number of fingers to two at a density contrast 

that produced three fingers in a homogeneous medium. This was achieved through an 

appropriate choice of the heterogeneity variance. Afterwards, the critical correlation 

length ( m105.7 3
v ) was stabilised by increasing the dispersivities and variance.  

3.4.3.2 Density effects 

Tab. 3.7 contains the computed stability numbers (at 22 m6.0 ) and the 

corresponding simulations at the various density contrasts. 
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Tab. 3.7  The stabilising effect of heterogeneities 

Max. density [kg m-3] 998.4 998.5 998.6 998.7

p  -0.893 -1.699 -2.125 -2.397

The increase in the new stability numbers against the old ones reflects the stabilisation 

induced by the medium heterogeneity. The figure below shows the simulations at some 

selected density contrasts. 

 

Fig. 3.12  The stabilised range of densities 

The onset of the unstable convective regime occurred at a density of 998.6 instead of 

998.5 that was for a homogeneous medium. That was due to mixing induced by the 

heterogeneities. Mixing reduces the spectrum of perturbations with long-enough 

wavelengths to grow into fingers i. e. it smoothes out the instabilities and a bigger 

density contrast is required to restore the spectrum wavelengths to values capable of 

finger formation. 

3.4.3.3 Effects of the heterogeneity variance 2  

Increasing the heterogeneity variance means including more heterogeneity values in 

the distribution, which increases more heterogeneous, increases mixing and so 

stabilises. An increase in variance is therefore expected to increase the stability 

number and reduce the number of fingers in numerical simulations. The table below 

shows the stability numbers computed at various variances, in which the expected 

trend is shown. 
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Tab. 3.8  Effect of variance 

Variance 2 [m²] 0.400 0.600 0.650

p  -2.200 -2.125 -2.108

Below are simulations at various variances. The stabilising behaviour of the heteroge-

neity variance reduces the number of fingers from three to two and the two fingers are 

shorted at a higher variance. 

 

Fig. 3.13  Stabilising effect of variance 

3.4.3.4 The longitudinal dispersivity 

The effect of the longitudinal dispersivity was also investigated. The stabilising effect is 

shown by the increasing stability numbers down the table.  

Tab. 3.9  Effect of longitudinal dispersivity 

m10 3
||  1.5 7.5 10

p  

-1.77 -1.58 -1.21

The evolution of fingers at various longitudinal dispersivities is shown in the figure be-

low.  
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Fig. 3.14  Effect of longitudinal dispersivity 

The stabilising effects of variance and longitudinal dispersivity and the destabilising 

effects of correlation length and density that are shown in the simulations could be cap-

tured by the stability criterion. The transition from two to three fingers does not occur at 

a specific stability number but from the considered variables, the transition occurred 

between -1.744 and -1.774. 

3.4.3.5 Medium anisotropy 

The figure below shows the effect of increasing the anisotropy of the medium. It was 

defined as the ratio of the horizontal to the vertical correlation length. By this definition, 

increasing the anisotropy could be achieved by either increasing the horizontal correla-

tion length or reducing the vertical correlation length. In either case, transport in the 

horizontal direction is boosted at the expense of the vertical direction, which stabilises 

the system. No stability numbers could be computed for this because medium anisot-

ropy is not included in the stability criterion. 

 

Fig. 3.15  Effect of the medium anisotropy 
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3.4.4 The macrodispersion coefficients 

The large-scale transport behaviour was studied by using the macrodispersion tensor 

in the large-scale transport equation derived via homogenization theory. The derivation 

of the tensor resulted in a symmetric tensor with zero off-diagonal elements. The 

longitudinal and transverse coefficients respectively read: 

The temporal evolution of the leading-diagonal coefficients in the tensor was then 

studied and how the evolution is affected by modifications in the density contrast, 

heterogeneity variance, correlation length and medium anisotropy. By setting the 

density and viscosity effects to zero 0p , passive tracers could be emulated. 

The evolution of the coefficients for such tracers for various arbitrarily-chosen 

anisotropy ratios can be found in Dagan (1988). Dagan defined the anisotropy ratio as 

vh /  and considered flow orthogonal to gravity. He obtained longitudinal (horizontal) 

coefficients that were not affected by changes in anisotropy and died off at large times 

and transverse (vertical) coefficients that approached asymptotes at large times and 

reduced with increasing medium anisotropy. 

The longitudinal coefficient reduced with increasing anisotropy and approached an 

asymptote while the transverse hardly changed and grew to zero at large times. This 

behaviour is consistent with the results in /DAG 88/. 

 

Fig. 3.16  Passive tracers 

The effects of density and viscosity were then introduced. One would be interested to 

know how the coefficients respond to changes in the stability of the system. To achieve 

this, arbitrarily chosen positive stability numbers were used to compute the coefficients 

and their evolution over time noted. 
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3.4.4.1 Favourable density contrasts 

The longitudinal coefficient reduced with increasing stability numbers while the 

transverse coefficient increased with increasing stability.  

 

Fig. 3.17  Favourable density contrasts 

This can be explained by examining the factors that increase systems stability e. g. a 

reduction in the density contrast, which reduces the gravity effects. One could also look 

at an increase in medium heterogeneity as the cause of increased stability. 

Heterogeneous mixing promotes solute transport in the transverse direction thus the 

increased coefficient. 

3.4.4.2 Unfavourable density contrasts 

The behaviour depicted in the foregoing indicates that variables that stabilise the 

system should eventually lead to respective reductions and increases in the 

longitudinal and transverse coefficients. Conversely, destabilising variables should 

cause respectively increase and reduction in the transverse and longitudinal 

coefficients. 

3.4.4.2.1 Density effects 

The effect of density was studied by selecting density contrasts that resulted into 

negative stability numbers. Using these in the expressions, the evolutions of the 

coefficients could be studied.  
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Fig. 3.18  Unstable density contrasts 

It was noted that stability numbers close to zero produced asymptotic longitudinal 

coefficients. The asymptotic behaviour was however lost as the density contrasts 

increased, eventually becoming unbounded. The bounded coefficients signify the range 

of density contrasts that are unstable in a homogeneous medium but can be stabilised 

by medium heterogeneity. The unbounded coefficients indicate density contrasts that 

cause very intense fingering, which cannot be stabilised by heterogeneities. The 

prevailing wavelengths are very long and cannot be damped by heterogeneous mixing. 

The transverse coefficient on the other hand reduces with increasing density contrasts. 

It is possible that it approaches an asymptote after long times but this could not be fully 

investigated. 

3.4.4.2.2 Correlation length 

Varying the correlation length has the effect of changing the medium heterogeneity in 

an inversely. In these studies the vertical correlation length was increased, which 

effectively reduced the heterogeneity in the vertical direction. The reduced 

heterogeneity boosted transport in that direction and resulted in increased longitudinal 

coefficients. This in turn indicates a reduction in the system stability. 
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Fig. 3.19  Effect of the correlation length 

3.4.4.2.3 Heterogeneity variance 

The heterogeneity variance has the opposite effect to the correlation length, namely 

increasing the medium heterogeneity. The increased mixing results in increasing 

transverse coefficients, thus the stabilising behaviour.  

 

Fig. 3.20  Effect of the heterogeneity variance 

3.4.4.2.4 Medium anisotropy 

The anisotropy was defined as the ratio of the horizontal to vertical correlation lengths. 

Increasing would require either increasing the horizontal or reducing the vertical 

correlation lengths. Either way, transport in the horizontal direction is boosted at the 

expense of the vertical direction. This leads to increasing and decreasing transverse 

and longitudinal coefficients respectively. 
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Fig. 3.21  Effect of medium anisotropy 

3.4.4.2.5 Dispersivities 

In the derivation of the formulas for the dispersion coefficients, infinite Peclet numbers 

were assumed. This resulted in the term containing the dispersivities going to zero. The 

assumption could not be relaxed to study finite Peclet numbers because of computer 

resource limitations. 

3.5 Discussion and summary 

A stability criterion was successively derived for density-driven systems via 

homogenization theory without the Oberbeck-Boussinesq assumption. For systems 

aligned orthogonal to gravity a stability number that was a function of density and 

viscosity contrasts, flow velocity and concentration gradients could predict the onset of 

fingering. The criterion however performed poorly with increasing flow velocity, a fact 

attributed to missing dispersion effects. 

As a result of omitting the Oberbeck-Boussinesq approximation, timely stability 

predictions could be achieved. The studies in which the approximation had been 

invoked (see /MUS 09/ for comparison) predicted stability transition at much higher 

density contrasts.  

The criterion was extended to include dispersion and was subsequently tested on an 

Elder-type vertical system. The change in sign of the stability number (expressed in 

form of a Rayleigh number) then indicated the onset of stable convection. With 

increasing density contrast, the system transited into the unstable convective regime, 
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which was indicated by further reduction in the stability number and the appearance of 

three fingers in numerical simulations. 

The stability number is expressed as a function of the perturbation wavelength and the 

mixing zone width. The mixing zone width was derived and fitted according to physical 

considerations while perturbations with different wavelengths were obtained by 

imposing a sinus function as a boundary condition at the salt inflow region. 

The stability regimes could be inferred from the number of fingers present: stable 

diffusive, stable convective and unstable convective for one, two or three fingers 

respectively. Stabilising variables like dispersivity and viscosity caused a reduction in 

the number of fingers e. g. from three to two. This meant that the usual notion of 

unconditional instability of vertical Elder-type was probably due to neglecting the 

stabilising dispersion effects while computing the Rayleigh number, and considering 

very high density contrasts at that. 

The perturbation of the inflow region caused asymmetry in the concentration front. Fig. 

3.22 shows simulations with identical parameters but with a constant and perturbed 

boundary condition. Asymmetric behaviour in perturbed boundary conditions was also 

reported by /MAR 81/. 

 

Fig. 3.22  Asymmetry caused by perturbing inflow region 

The criterion was extended to heterogeneous media and an expression that predicted 

stabilising and destabilising effects of variance and correlation length respectively, was 

derived. By selecting appropriate variance and correlation lengths, the growth of the 

third finger could be shown to occur at a higher density contrast than in the 

homogeneous medium. This indicated the general stabilising effects of medium 

heterogeneity. 
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Below is a summary of the dispersive homogeneous and heterogeneous stability 

studies. 

 

Fig. 3.23  Summary of homogeneous and heterogeneous media 

The figure shows the appearance of three fingers at a bigger density contrast than in 

homogeneous media. This is caused by mixing, which damps out certain instabilities 

and reduces the quantity of instabilities with wavelengths long enough to grow into 

fingers. 

From the figure, the demarcation of the stability regimes by the stability number can be 

stated into a stability criterion as follows: 

1. A nearly diffusive regime 0p , 

2. A convective regime with stable solutions 0125.2 p ,  

3. A convective regime with unstable solutions 125.2372.2 p . 

The homogeneous and heterogeneous studies could not be compared directly. That is 

because of the difference in the way the perturbations are induced: via a sinus function 

in the homogeneous medium and by the heterogeneities in the heterogeneous 

medium. The fluctuations of the sinus function also reduce the total amount of salt that 

comes into the domain. Even with these discrepancies, a critical correlation length was 

obtained that is of the order of the critical wavelength. 

Medium anisotropy was not included in the expression for the stability number. 

However, the stabilising effect was shown in the evolution of the longitudinal coefficient. 

The range of unstable density contrasts that resulted into asymptotic longitudinal 

coefficients can be used to estimate the density contrasts stabilised by heterogeneities. 

The studies addressed the central question regarding when medium heterogeneities 

stabilised: when the variance and correlation length are big and small respectively. 
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Mixing is then very intense that the instabilities that form are smoothed out. On the 

other hand when the variance is small and the correlation length large, mixing is not 

very effective and some instabilities grow into fingers.  
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4 Thermohaline-driven flow and thermodiffusion in porous 
media 

The purpose of this contribution was to investigate some aspects of thermodiffusion in 

the context of thermohaline-driven flow in porous media of hydrogeological interest. 

The reasons for undertaking this study were: (a) to determine the circumstances in 

which thermodiffusion is visible, and those in which it is not, in benchmark problems for 

variable density flow; (b) to deepen the understanding of some thermodynamic aspects 

related to transport processes in porous media; and, above all, (c) to acquire expertise 

for the development of the software d³f and r³t. The results presented in this part of the 

report have been firstly discussed in /GRI 11/. 

In order to achieve the goals, some thermodynamic concepts related to transport pro-

cesses in porous media were reviewed, and this approach was compared with some 

models of thermohaline-driven flow and thermodiffusion found in the literature. Five test 

cases were considered, in which the role of thermodiffusion becomes increasingly visi-

ble. 

Before entering the technical aspects of the study, an overview is provided of the type 

of problems that is investigated. 

A leading topic in hydrogeology and environmental science is the investigation of salini-

ty- and thermohaline-driven flow in porous media of hydrological relevance. The porous 

medium and the fluid are usually identified with a soil and groundwater, respectively. 

The name given to these two types of flow depends on the causes that have either 

brought the fluid out of mechanic equilibrium or altered its dynamic state. Salinity-

driven flow is due to the non-uniform change of the mass density of the fluid conse-

quent to mixing together water and brine (the latter is a mixture of water and various 

salts). Exposing the fluid to thermal gradients or mixing together flows at different tem-

peratures triggers temperature-driven flow. Thermohaline-driven flow is the combined 

effect of the just mentioned types of flow. In all these cases, in order to observe flow, it 

is necessary that the alteration of the density of the fluid favours motion. Within the 

context sketched above, some of the most typically studied problems are seawater 

intrusion into coastal aquifers, upconing of hypersaline water from deep aquifers, flow 

around salt domes or sedimentary rocks, and contamination of aquifers caused by 

waste. Some of the reasons for undertaking these studies are the management of 
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freshwater supplies (especially in arid or urbanized zones) and the solution of forecast 

and remediation problems (for example, in the neighbourhood of nuclear waste reposi-

tories). 

Thermodiffusion is the coupling between mass and heat diffusion, which occurs in a 

multi-constituent system that is brought out of thermodynamic equilibrium. This phe-

nomenon can be mathematically modelled by studying the expression of dissipation for 

the system under investigation, and determining generalized forms of both Fick’s and 

Fourier’s laws /DEG 69/. If the validity of Onsager’s relations is accepted, these gener-

alized laws feature, beyond the coefficients of mass and heat diffusion, two other phe-

nomenological coefficients, referred to as cross coefficients /BEA 72/, which link the 

diffusive mass flux with the temperature gradient (Soret effect), and the heat flux with 

the concentration gradient (Dufour effect), respectively. Since Onsager’s relations 

should be symmetric, the coefficients that describe the Soret and Dufour effects are 

related to each other. 

Although there are several papers in which salinity- and temperature-driven flow are 

investigated simultaneously /BAL 88/, /DIE 02/, /GRA 07/, /OLD 98, 99, 00/, there are 

cases in which they are addressed separately in order to highlight some peculiar as-

pects of each of the two problems (cf., for example, /JOH 02/ and /HOL 01/). Density- 

and temperature-driven flow treated together, and the generalized forms of Fick's and 

Fourier's Laws that include the Soret and Dufour effects are considered. For the pur-

poses of this project, Hybrid Mixture Theory (cf., for example, /BEN 00/ and the refer-

ences therein) is used for the extension of the main results of the theory of thermodiffu-

sion /DEG 69/, /LAN 84/ to porous media, and the study of dissipation is performed. 

The idea of drawing the attention of researchers on thermodiffusion in the context of 

porous media of hydrogeological relevance is not new. Indeed, it can be found in the 

books /BEA 72/, /BEA 79/, /BEA 90/, where the authors, through the exploitation of the 

Onsager's relations, provide the mathematical expressions for the Soret and Dufour 

coefficients, i. e. the phenomenological quantities associated to the Soret and Dufour 

effect, respectively. There are also other publications in this field that account for ther-

modiffusion. For example, /HAS 86/ shall be cited here, where a generalization of 

Fick's law including thermal effects is obtained through a Coleman-Noll analysis of the 

dissipation inequality, /PAR 88/, where the instability of thermohaline flow with thermal 

diffusion and horizontal gradients is studied, /BEN 01/ and /COS 02/, where some 

measurement experiments of the Soret coefficient are given together with thermal and 



 

49 
 

solutal convection. These effects are, however, neglected in many applications. There 

are three major reasons for leaving the Soret and Dufour effects out of many practical 

problems related to porous media: firstly, the Soret and Dufour effects are often actual-

ly negligible in comparison with other phenomena; secondly, they noticeably compli-

cate the equations to solve; thirdly, the mathematical expressions of the Soret and 

Dufour coefficients are based on the assumption that the Onsager's relations hold true 

also in the case of systems, or physical situations, in which no experimental feedback 

is available. This last point has led some authors to undertake investigations towards 

the validation of the Onsager's relations from both the theoretical and experimental 

point of view. For example, /ING 73/, and  /ROW 80/ studied the Dufour effect in mix-

tures of non-electrolyte liquids, and related it to a thermodynamic quantity, named heat 

of transport, which measures the amount of heat transported by the concentration gra-

dient of the solute in a given mixture. Rowley and Horne /ROW 80/ provided also an 

experimental validation of their theoretical model in order to support the definition of the 

heat of transport for the systems under investigation. On the other hand, Sugisaki 

/SUG 75/, Petit et al. /PET 86/, and Sanyal and Mukjerjee /SAN 88/ determined the 

Soret coefficient experimentally for electrolyte solutions, and determined the heat of 

transport by employing the theory of /AGA 63/. 

More recently, the interest in the determination of the range of validity of the Onsager's 

relations, and the study of the Soret and Dufour effects has also turned to completely 

different problems, such as, for example, the modelling of solar ponds /CEL 05, 06/, 

and the physics of premelting solids /REM 01/. The feature that all the above cited pub-

lications have in common is that, quite independently on whether one deals with a non-

electrolytic or an electrolytic solution, a premelting solid or a porous medium, the math-

ematical description of the diverse underlying physics is unavoidably the same, for it is 

built on the same formal treatment of irreversible thermodynamics. For this reason, in 

the formulation of density- and temperature-driven flow in a porous medium, the Soret 

and Dufour effects are not neglected a priori. Rather, both effects are included, and 

then the cases are tested, in which they are actually negligible, and those in which they 

become visible. 

Technical note: for designing a numerical simulator it is useful to know the dependen-

cies of the parameters on the primary variables temperature, pressure and salinity in 

order to select an appropriate underlying solution scheme. In a separate report the 

mathematical formulations for the fluid parameters as well as complementary infor-

mation about the properties of rocks are compiled from the literature /KRO 10/. This 
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report shows that pressure has only little or no influence on the fluid properties so that 

variations in the pressure can safely be neglected in a numerical model. 

4.1 Description of the mathematical model 

A porous medium is macroscopically described by a biphasic mixture consisting of a 

fluid- and a solid-phase. The former is a two-constituent fluid experiencing single-phase 

flow, and the latter is a porous solid, which may be identified with the rocky matrix of a 

soil. In the following, the fluid- and the solid-phase are denoted by  and , respec-

tively, and the saturation condition is assumed to apply at all times and all points in 

space, i. e. , where  is the volume fraction of phase , and . 

Whereas in the presence of transfer processes between the fluid- and the solid-phase, 

each phase  should be regarded as a mixture on its own, which comprises the same 

number of constituents as the other one /BEN 00/, in the absence of such processes it 

is possible to assume that  and  are a multi- and single-constituent system, re-

spectively. Here, the solid-phase is considered as a single-constituent medium, and the 

fluid-phase is assumed to comprise two constituents, i. e. water and a solute (for ex-

ample, brine or salt). Water and solute are referred to as  and , respectively. 

Let  denote the mass density of the solid-phase, and let the mass density of the fluid-

phase be defined as . This definition is customary in the context of Mix-

ture Theory (e. g., /BEN 00/, /HAS 86/). The composition of the fluid-phase is described 

through the mass fraction of its constituents, which are defined by , with 

, and are linearly dependent through the constraint . 

4.1.1 Balance laws 

The general form of balance laws for the solid-phase and the constituent  is given by 

  (4.1) 

  (4.2) 

 



 

51 
 

Here, , , , and  represent the velocity, flux, net production (or decay), and 

source (or sink) associated with the given field , referred to the constituent  of the 

fluid-phase. Physical quantities with index “r” have the same physical meaning as those 

labelled with index “a”, but are referred to the solid-phase. Since equations (4.1) and 

(4.2) are compact ways of writing balance of mass, momentum, energy, and entropy, 

the quantities  and  may represent either a scalar or a vector. In the case of bal-

ance of momentum,  and  are identified with  and , respectively, quantities 

, ,  and  are vector fields, fluxes  and  are second-rank tensors, and 

the products  and  on the LHS of equations (4.1) and (4.2) are understood as 

the dyadic products  and , respectively. Balance laws 

for the solid-phase and the generic constituent  of the fluid-phase are obtained by 

substituting the quantities in Tab. 4.1 and Tab. 4.2 into equations (4.1) and (4.2). In 

Tab. 4.1,  is the internal energy density;  is the Cauchy stress tensor;  is the 

heat flux vector;  is absolute temperature;  is the entropy density;  is the gravity 

acceleration vector; and , , and  are sources (or sinks) of momentum, energy, 

and entropy due to exchange interactions occurring between the solid- and the fluid-

phase. The physical quantities in Tab. 4.2 have the same physical meaning as above, 

but refer to the constituents of the fluid-phase. 

Tab. 4.1 Thermodynamics quantities and related fluxes to substitute in eq. (4.1) 

Quantity     

Mass 1 0 0 0 

Momentum     

Energy     

Entropy     
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Tab. 4.2 Thermodynamics quantities and related fluxes to substitute in eq. (4.2) 

Quantity     

Mass 1 0 0 0 

Momentum     

Energy     

Entropy     

By performing the mass average of each source (or sink) listed in Tab. 4.2 (terms de-

noted by ), it is possible to define overall sources (or sinks) of momentum, energy, 

and entropy associated with the fluid-phase as a whole (/BEN 00/, /HAS 86/), i. e. 

  (4.3) 

  (4.4) 

  (4.5) 

The requirement that the mixture is closed implies that the source (or sink) terms 

, and  are related to their solid-phase counterparts through the following con-

straints: 

  (4.6) 

  (4.7) 

  (4.8) 

where  and  are the mass density and velocity of the 

fluid-phase as a whole. Equations (4.6) - (4.8) define the fluid-solid interface as an ideal 

interface, i. e. a surface without thermodynamic properties /BEN 00/. 
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4.1.2 Dissipation inequality 

It is convenient to write the dissipation inequality in a form similar to that proposed in 

/BEN 00/ and /HAS 86/. Yet, in order to focus the attention on the main aspects of the 

problem, a less general framework is adopted here, based on the following hypothe-

ses: 

 Absence of irradiative sources of energy in both the solid- and the fluid-phase con-

stituents; 

 Absence of mass-exchange phenomena between phases; 

 Macroscopically inviscid fluid-phase; 

 The solid-phase is rigid and at rest; 

 The fluid-phase volume fraction is a given constant; 

 The mass density of the solid-phase is a given constant. 

By introducing the Helmholtz free energy densities  and  

(with ), it is possible to write the following expressions of entropy productions: 

  (4.9) 

  (4.10) 

In order to obtain an expression for the entropy production of the mixture as a whole, 

the fluid-phase Helmholtz free energy density  is introduced, and the 

relative velocity of the constituent  with respect to the mass average velocity , i. e. 

, with . Furthermore, the following quantities are defined: 

  (4.11) 

  (4.12) 

  (4.13) 
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which represent the fluid-phase entropy density, Cauchy stress tensor, and energy flux, 

respectively. These definitions, and the notation introduced so far, enable to express 

the entropy production of the mixture as a whole, , i. e. 

 (4.14)

where  is the heat flux vector of the mixture as a whole. 

4.1.3 Constitutive framework 

The unknowns featuring in the dissipation inequality (4.14) can be split into a set of free 

unknowns, , and a set of dependent unknowns, . In the following is set: 

  (4.15) 

  (4.16) 

In equation (4.15), the mass fraction and relative velocity of water, denoted by  and 

, respectively, do not feature because they are related to the quantities  and  

through the constraints  and . 

In several publications dealing with the Theory of Mixtures, a more general framework 

is presented, in which the mass density of the fluid-phase, , is treated as an inde-

pendent variable (/HAS 86/, /BEN 00/, /HAS 88/, /WIL 03/, /BEN 07/). This is done be-

cause neither constraints (such as incompressibility) not state laws are imposed on this 

field variable. Here, however,  is considered as a dependent constitutive variable 

because, in consistency with what is usually done in modelling salinity- and tempera-
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ture-driven flow, it is expressed through a function of the solute mass fraction, , and 

temperature, , i. e. 

  (4.17) 

Moreover, the solid-phase mass density, is regarded as a constant and is therefore 

excluded from the lists of both free and independent variables. 

Another remark is about multi-temperature models (cf., for example, /RUG 07/). Here, it 

is assumed that all constituents in the fluid-phase, i. e.  and , and all phases are in 

local thermal equilibrium. This means that, at each point of the mixture, they all share 

the same value of temperature, even in the case in which temperature is nonuniform 

over a given length-scale. 

In this model, the set of independent constitutive variables (ICVs) is obtained through 

the union of  and a set of variables comprising the gradients of solute mass frac-

tion and temperature, while the set of dependent constitutive variables (DCVs) is identi-

fied with , i. e. 

   (4.18) 

Furthermore, it is assumed that the fluid-phase Helmholtz free energy density, , is a 

constitutive function of both  and , while the solid-phase Helmholtz free energy 

density, , depends on temperature only, i. e. 

  (4.19) 

The study of the dissipation inequality is carried out by using Liu’s Theorem /LIU 72/. In 

Liu’s Theorem, each balance law is viewed as a constraint to append to the overall 

entropy production, and it is proven that the exploitation of the dissipation principle can 

be equivalently based on equation (4.14) or on a modified form of it, which is obtained 

by premultiplying each balance law by a Lagrange multiplier, adding together the con-

sequent expressions, and summing the final result to . 
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Here, fort the sake of conciseness, only mass balance laws are considered, and the 

constraint on relative velocities of the constituents of the fluid-phase. The latter is taken 

into account as in /BEN 00/, i. e. 

  (4.20) 

where  is a second-order tensor of Lagrange multipliers. By taking explicitly into ac-

count the incompressibility of the solid-phase, and the constitutive law expressing  

(cf. equation (4.17)), also the following constraint is considered, which is obtained by 

manipulation of the mass balance laws, i. e. 

  (4.21) 

where is referred to the Lagrange multiplier p as to the pressure of the mixture. By add-

ing the constraints  and  to the RHS of equation (4.14), a modified expression of 

the entropy production is found, i. e. 

  (4.22) 

For the problem under consideration, the study of the dissipation inequality written in 

equation (4.22) is performed according to the Coleman-Noll procedure and in /BEN 00/, 

/GRI 09a/, /GRI 09b/, /GRI 10/. The results are: 

Lagrange multipliers 

  (4.23) 

  (4.24) 

Entropies and Cauchy stress tensors 

 , (4.25) 

  (4.26) 
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  (4.27) 

In equations (4.23) - (4.27),  is identified with the relative chemical potential of con-

stituent , i. e. , where  and  are the chemical potentials of the 

solute, and water, respectively,  is the Helmholtz free energy density of water,  

and  are the entropy densities of the fluid- and the solid-phase, respectively,  is the 

Cauchy stress tensor of the solute, and  is the Cauchy stress tensor of the fluid-

phase. In order for equation (4.26) to be consistent with the result (4.27), it is neces-

sary that . By using equation (4.24), this condition can be applied to 

show that the absolute chemical potentials  (  are given by 

  (4.28) 

where  is said to be the partial pressure of the fluid-phase constituent . Further-

more, the Cauchy stress tensor of constituent  is given by , and the par-

tial pressure satisfy . 

Notice that the only additional free unknown, which contributes to the set  is the 

pressure p. Indeed, this Lagrange multiplier must be determined by solving the mass 

balance equation of the fluid-phase as a whole. Finally, it shall be remarked that both 

the solute relative chemical potential  (cf. equation (4.23)) and the fluid-phase 

entropy density  (cf. equation (4.25a)) consist of two parts. The first part on the RHS 

of equations (4.23) and (4.25a) is related to the unconstrained Helmholtz free energy 

density, , and is said to be constitutive. The second terms are contribu-

tions due to the relation  and feature the Lagrange multiplier p. 

The results (4.23) - (4.27), the constraint , and the further assumption of 

smallness of both solute relative velocity and fluid-phase velocity (i. e. , and 

) yield the following form of the residual dissipation inequality: 

  (4.29) 

where  is the dissipative part of the momentum exchange between the fluid- and the 

solid-phase,  is the specific discharge /BEA 72/, and  is the 

diffusive mass flux of the solute. 
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4.2 Thermodiffusion 

In order to focus attention on thermodiffusion, it is assumed here that the specific dis-

charge  is coupled neither to the diffusive mass flux  nor to the thermal flux . If it 

is also assumed that the considered porous medium is isotropic, then, after dividing 

(4.29) by , the Onsager’s relations can be written as 

  (4.30) 

  (4.31) 

  (4.32) 

where K is the porous medium permeability,  denotes the fluid-phase dynamic vis-

cosity,  and  are the phenomenological coefficients of pure mass and thermal 

diffusion, respectively, and  and  are the Onsager’s cross coefficients, which 

couple the fluxes  and , and give rise to Soret and Dufour effects. The form of the 

fluxes  and  is given by /DEG 69/ and is used, for example, by Ingle and Horne 

/ING 73/, Rowley and Horne /ROW 80/, Sugisaki /SUG 75/, Petit et al. /PET 86/, 

Sanyal and Mukherjee /SAN 88/, Agar /AGA 63/, and Rauch /RAU 06/. There is also an 

alternative formulation of the Onsager’s relation describing thermodiffusion (cf., for ex-

ample, /LAN 84/). However, equations (4.31) and (4.32) are more suitable for these 

purposes, because they explicitly feature the fluxes  and , that are measurable by 

experiments. 

In the isothermal case, Bader and Kooi /BAD 05/ provided a theoretical framework in 

which  and  are coupled with each other through Onsager’s reciprocal coefficients. 

Here, however, here it is preferred to leave  decoupled from  and  for the sake of 

simplicity. 

In order to write Onsager’s relations (4.30) - (4.32) in a form in which the coefficients 

, , , and  are substituted by directly measureable quantities, the relative 

chemical potential of the solute, , has to be determined as a function of the state 

variables p, , and . For this purpose, a constitutive model has to be formulated. 
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4.2.1 Constitutive model 

Since the mass densities of the fluid- and solid-phase are assumed to be independent 

on pressure, and equivalent formulation of the constitutive theory can be obtained by 

introducing the Gibbs free energy densities instead of the Helmholtz free energy densi-

ties prescribed in equation (4.19), i. e. 

  (4.33) 

  (4.34) 

If the thermal capacity of the solid-phase, , is a constant, the solid-phase free energy 

density reads 

  (4.35) 

where  is a constant reference temperature. For the fluid-phase, the determination of 

the Gibbs free energy density must be consistent with the following thermodynamic 

results: 

  (4.36) 

  (4.37) 

where both the relative chemical potential  and entropy density  are identified with 

functions of the state variables. 

Following /OLD 98/, the fluid-phase mass density is prescribed to be given by 

  (4.38) 

where  and  are the 

mass densities of pure water and pure solute as functions of temperature,  and   

are constant densities corresponding to the reference temperature , and  and  

are the thermal expansion coefficients of water and solute in a neighbourhood of . 
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Under the assumption that the heat capacity of the fluid-phase, , is constant, it is re-

quired that the chemical potentials of the solute and water,  and , are given by the 

following functions of state variables: 

  (4.39) 

  (4.40) 

If the solute under investigation is a salt, which in water dissociated into two ions (for 

example, NaCl), then the chemical potentials  and  are 

  (4.41) 

  (4.42) 

where  and  are the molar masses of the solute and water, respectively, and R 

( ) is the gas constant. It shall be remarked that, although salt dissoci-

ates in water, its diffusion and transport can still be studied as if no dissociation took 

place, as long as no electric field is applied to the mixture (/HAS 86/, /CEL 05/, 

/CEL 06/, /GAJ 03/). It is also to notice that, since the definitions (4.41) and (4.42) do 

not take into account any activity coefficient, the chemical potentials  and 

 model an ideal solution /DEN 68/. 

By virtue of (4.39) and (4.40), the relative chemical potential  becomes 

  (4.43) 

where . The construction of the differential form 

(4.36) - (4.37), and the enforcement of the integrability condition imply that the entropy 

density is given by 

  (4.44) 



 

61 
 

where the notation  has been used. Results (4.38), (4.43) and (4.44) yield 

the following Gibbs free energy density 

  (4.45) 

with 

  (4.46) 

It must be remarked that both pairs of chemical potentials,  and , and  and , 

satisfy the main result of Gibbs’ thermodynamics, i. e. their mass average equals the 

Gibbs free energy density: 

  (4.47) 

  (4.48) 

Looking at the explicit forms of the relative chemical potential, , and entropy, , it is 

to be noticed that each of these quantities can be written as the sum of two functions: 

one of them depends only on the independent constitutive variables  and , and is 

said to be constitutive; the other one contains the Lagrange multiplier p as well as the 

independent constitutive variables, and is thus said to be constrained, for it represents 
the contribution of the constraint  to both  and . The constrained 

parts of  and  produce no dissipation. On the other hand, only the constitutive 

parts of  and  play a role in the determination of the material coefficients featuring 

in the Onsager’s relations. 

4.2.2 Phenomenological coefficients 

After substituting the expression of the relative chemical potential (4.43) into Onsager’s 

relations (4.31) and (4.32), and explicitly computing the gradient of , one finds 

  (4.49) 

  (4.50) 
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Here, D and Q are the diffusivity coefficient and the heat of transport, i. e. 

  (4.51) 

the term A is given by 

  (4.52) 

where  and S are the relative specific enthalpy and the Soret coefficient, i. e. 

   (4.53) 

 is the baro-diffusion factor /LAN 84/ 

   (4.54) 

and  is the constrained part of the relative chemical potential (second term on the 

RHS of equation (4.43)). The last equality follows from the fact that only the con-

strained part of the relative chemical potential, , can depend on pressure. By com-

puting the derivative , it can be seen that the baro-diffusion factor, , van-

ishes identically when  or . Furthermore, because of the symmetry of On-

sager’s coefficients, it follows that . This requirement also implies that the 

heat of transport, Q, and the Soret coefficient, S, are related to each other through 

   (4.55) 

The factor  in equations (4.53) and (4.55) ensures that the Soret effect van-

ishes in the limit cases  or . 

In conclusion, the fluxes  and  given in equations (4.49) and (4.50) are completely 

determined by the quantities D, , S, Q, , and . Among those, the coefficients 

D, , and S (or Q) must be determined experimentally, while the remaining ones are 

determined by means of the constitutive model, and the symmetry of Onsager’s rela-

tions (cf. equation (4.55)). In the case of isotropic porous media, the diffusivity coeffi-

cient, D, is defined as , where  is the coefficient of molecular diffusivity, and 
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 is a nondimensional scalar quantity called tortuosity. More generally, also in isotropic 

porous media, the diffusivity coefficient is replaced by the diffusion-dispersion tensor, 

, which takes into account the effect of fluid velocity on the trajectories of the solute 

particles. In the case of porous media which are transversely isotropic with respect to 

the flow, this tensor, introduced by Scheidegger, reads /BEA 72/ 

   (4.56) 

where  and  are said to be the longitudinal and transversal velocity correlation 

lengths, respectively. Sometimes, together with the introduction of , the correction 

to Fick’s law due to Forchhmeimer is used (cf., for example, /DIE 02/). Here, however, 

only the diffusivity coefficient D, and the “standard” form of Fick’s law are considered 

for the sake of simplicity. 

Following /OLD 99/, it was assumed here that  is constant. However, it should be 

noticed that, since  represents the coefficient of thermal conductivity of the mixture 

as a whole, it has to be defined through some averaged of the thermal conductivities of 

the solid- and the fluid-phase (the latter including all of its constants). For example, 

Holstad /HOL 01/ defines  as , where  is the thermal con-

ductivity of rock, and  is an effective thermal conductivity of the fluid-phase. Whereas 

it is licit to assume that  is constant within a certain temperature range, the thermal 

conductivity of the fluid-phase depends also on composition, i. e. the amount of solute 

and solvent. Moreover, if the dynamic regime of the fluid is such that also thermal dis-

persion effects have to be considered, Diersch and Kolditz /DIE 02/ consider the ex-

pression , where  is some function of 

the solute mass fraction, and  is given in equation (4.56). Finally, the experimental 

values of the Soret coefficient are taken from /CEL 05/. 

4.3 Field equations 

Under the hypotheses outlined in section 1.2, and the assumption of very small fluid-

phase velocity and solute relative velocity, the problem of salinity- and temperature-

driven flow is entirely described by the following set of field equations 

  (4.57) 
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  (4.58) 

  (4.59) 

which represent the balance of mass of the fluid-phase, the balance of mass of the 

solute, and the balance of energy of the mixture as a whole, respectively. In equations 

(4.57) - (4.59), the free unknowns are pressure, p, mass fraction, , and temperature, 

. Indeed, the mass density  is given in equation (4.38), the entropies  and  are 

deducible from the constitutive model, and the specific discharge, , and the fluxes  

and , are specified in equations (4.30), (4.49) and (4.50). The problem is therefore 

closed. 

4.3.1 The Boussinesq-Oberbeck approximation 

Equations (4.57) - (4.59) are coupled and highly nonlinear. A considerable simplifica-

tion can be obtained by framing the problem under investigation as a free convection 

problem, in which a fluid out of mechanical equilibrium features internal currents tend-

ing to mix the fluid and bring it to a constant temperature and constant solute mass 

fraction /LAN 84/. In this respect, the Boussinesq-Oberbeck approximation is adopted. 

This approximation consists of replacing the mass density of the fluid-phase by a con-

stant value (i. e. ) in all terms of equations (4.57) - (4.59) expect for the buoyan-

cy contribution, , to Darcy’s law. If this is done, the field equations become 

  (4.60) 

  (4.61) 

  (4.62) 

where  is the effective thermal capacity of the mixture, 

and  and  are the heat and mass fluxes computed within the Boussinesq-

Oberbeck approximation, i. e. 

  (4.63) 

  (4.64) 
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It should be noticed that the baro-diffusion coefficient, , and the relative specific en-

thalpy, , are negligibly small with respect to the other quantities, and vanish identi-

cally is the fluid compressibility is neglected or, equivalently, if the relative chemical 

potential, , is approximated by its constitutive part . For the same reason, if 

, the heat of transport Q can be set equal to  (cf. equation (4.55)). 

4.3.2 The Dufour effect 

A further simplification concerns the elimination of the Dufour effect in the heat flux . 

This is possible because of the material properties (cf. Tab. 4.3), and the magnitude of 

the temperature and composition gradients used here. Therefore, the heat flux in equa-

tion (4.64) can be approximated by 

  (4.65) 

In order to see that,  is computed explicitly for the case of sodium-chloride (whose 

molar mass is ). By using equation (4.55) and the definition of , 

one obtains 

  (4.66) 

where the last term is the heat of transport of a very diluted solution. 

Let be assumed porosity , reference mass density , and diffu-

sion coefficient . For the physical range of temperature and mass 

fraction gradients, it can be shown that the coefficient giving rise to the Dufour effect in 

(4.64) is negligible with respect to that of pure thermal diffusion. Therefore, for the 

physical situations to be modelled here, the Dufour effect will be neglected in the com-

putation of the heat flux. In conclusion, the mass flux given in equation (4.63) and the 

heat flux in equation (4.65) will be used for numerical simulations. 

4.4 Results and discussion 

All numerical examples performed here were carried out by using the software package 

d³f. This is a finite volume simulator for density-driven flow /FEI 99/. The software d³f is 

built on the toolbox UG, which provides functionality for unstructured grids, adaptive 
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local grid refinement, robust multigrid methods for fast solution of systems of linear 

equations, and parallelization of all these algorithms on MIMD-style (Multiple-

Instruction-Multiple-Data) machines. 

Simulations were carried out by applying the consistent velocity approximation put for-

ward by Knabner and Frolkovi  /KNA 96/. 

4.4.1 Elder problem 

The Elder problem /ELD 67/ is an often encountered benchmark problem in hydrogeol-

ogy. It illustrates a free convection phenomenon, in which fluid-flow originates as a 

consequence of the variability of the fluid-phase mass density in response to composi-

tion and/or temperature inhomogeneities. Although in its original formulation, it aimed 

to account for thermal convection only, the Elder problem was transformed into a solute 

convection problem by Diersch /DIE 81/, and Voss and Souza /VOS 87/. More infor-

mation can be read in /DIE 05/. 

Here, for numerical simulation the scheme reported in Fig. 4.1 is considered, in which a 

2D-Elder problem is shown. A domain of length 600 m and depth 150 m represents a 

portion of a porous medium initially filled with a fluid at rest, but exposed to a tempera-

ture gradient (see Fig. 4.2a). The resulting system is assumed to be isotropic with re-

spect to permeability, K, and tortuosity, . A portion of the top boundary of the domain 

is in contact with a brine reservoir at a prescribed mass fraction. The brine intrudes the 

domain mainly because of gravity. As soon as the fluid receives the brine, a motion 

occurs. Since, at this stage, the motion is actually density-driven, it cannot be a poten-

tial flow and, consequently, vortices appear (see Fig. 4.2b). The brine, in turn, is mainly 

convected by the fluid, although it is also subject to diffusion. For this reason, here the 

Elder example is referred to as to a convection-dominated problem. 

Since the temperature at the upper boundary of the domain (including the temperature 

of the brine in the reservoir) is lower than that in the domain, the intruding brine tends 

to cool the system down (blue regions in Fig. 4.2b). In the upper part of the domain, the 

temperature distribution tends to “follow” the brine, but the time-scale associated with 

temperature variations is larger than that characterizing the motion of the brine. Look-

ing at equation (4.62), this can be understood by introducing the retardation factor 

/OLD 99/ 
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  (4.67) 

which can be defined by dividing the thermal convection term by the effective thermal 

capacity of the mixture. Physically, it describes the fact that the rock is able to store 

thermal energy whereas it is not able to store the brine. Oldenburg and Pruess /OLD 

99/ have shown that the retardation factor is , this meaning that the thermal 

front moves at approximately 1/7 the velocity of the brine front. 

 

 

 

Fig. 4.1 Scheme of an Elder problem 

The evolution of temperature, however, contributes to change the mass-density of the 

fluid, this resulting into a salinity- and temperature-driven flow. In this example, equa-

tion (4.38) is linearized, and used the following expression for the mass density of the 

fluid-phase 

  (4.68) 

with . It should be remarked that, since the Soret effect represents only 

a small contribution to the diffusive flux , it turns out to be completely negligible in a 

convection-dominated problem like the one studied in this example. 
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 a) 

 b) 

Fig. 4.2 Thermohaline Elder problem:   

a) Initial configuration   

b) evolution of brine mass fraction and temperature 

4.4.2 Evolution of a solute parcel 

This example was taken as a benchmark problem from Oldenburg and Pruess /OLD 

99/ and consists of two test cases, in each of which the evolution of a parcel of solute is 

studied. The differences between the results in /OLD 99/ and those reported here are 

due to the better refinement of the grid used in the numerical computations. 

The experiments are prepared by inserting, for each case, a square-shaped parcel of 

fluid at a specified temperature, , and solute mass fraction, , in a domain of length 

2500 m and depth 2500 m. The domain represents a 2D reservoir consisting of an iso-
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tropic porous medium saturated by an initially homogeneous fluid (i. e. ) at uni-

form temperature ( ), whose mass density is  (see Fig. 

4.3). The experimental set-up is designed so to expect negative buoyancy in the first 

case and positive buoyancy in the second case. 

The left and right boundaries of the domain are assumed to be adiabatic (i. e. 

), and impermeable for both fluid-phase as a whole and brine (i. e.  and 

), while the upper and lower boundaries are kept at constant temperature, 

, and mass fraction . Furthermore, no-flow conditions are assumed 

at the upper and lower boundaries (i. e. ), and the pressure, p, is set equal 

to atmospheric pressure only at the upper corners of the domain. 

In the first case, the parcel is characterized by the following data: , 

, and . Since , and initial negative buoyancy is ob-

served, i. e. the motion of the parcel is initially directed downwards. Fig. 4.4 and Fig. 

4.5 show the distribution of mass fraction, temperature, and mass density at two differ-

ent times. Each picture is symmetric with respect to the vertical symmetry axis, which 

ideally cuts the domain into a left and right region. Because of the thermal retardation 

facto defined in equation (4.67), the solute is transported downward faster than heat 

(cf. Fig. 4.4 and Fig. 4.5). The distribution of the solute mass fraction (denoted by C in 

the figure) features eighth symmetric “fingers” (cf. Fig. 4.5a), which are generated by 

negative buoyancy, and are accelerated by density-driven flow. The leading phenome-

non is thus convection. The picture showing the distribution of mass density is very 

similar (cf. Fig. 4.5c). The fingers are due to the brine distribution, while the upper part 

of the picture reflects the density configuration in response to both temperature and 

solute distributions. Because of the delay with which temperature evolves in time, there 

is separation of the brine plume from the thermal plume /OLD 99/. In other words, it is 

possible to observe a “splitting” of the original parcel in two parcels. The first one, 

which describes the evolution of the brine, moves downward because of negative 

buoyancy, while the second one, which describes the evolution of temperature, tends 

to move upward because of thermal buoyancy (see Fig. 4.5b). For simulations, the 

mass density given in equation (4.38) was used. The parameters were extrapolated 

from the data provided by Oldenburg and Pruess /OLD 99/. 

In the second case, the parcel is characterized by the following data: , 

, and . Since , an initial positive buoyancy is ob-
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served, i. e. the motion of the parcel is initially directed upward (Fig. 4.6). This initial 

upward motion occurs in the middle of the parcel. Fig. 4.7 and Fig. 4.8 show the distri-

bution of mass fraction, temperature, and mass density at two different times. Also in 

this case, the pictures are symmetric with respect to the vertical axis passing through 

the centre of the domain. The transport of brine occurs over a time-scale faster than 

that of heat because of the thermal retardation factor (cf. Fig. 4.7 and Fig. 4.8). The 

distribution of the brine mass fraction features two symmetric fingers in the lower part 

of the parcel, and a “fountain-like” motion in the upper part of the parcel and on its left 

and right sides. 

 

Fig. 4.3 Initial configuration of negative buoyancy:   

a) mass fraction; b) temperature; c) fluid density 

 

Fig. 4.4  Evolution of the parcel after 10 yrs. 

 

Fig. 4.5  Evolution of the parcel after 20 yrs:   

a) mass fraction; b) temperature; c) density 
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This is due to the vortices that accompany the upward motion of the brine, and persist 

in the interior of the parcel. This behaviour, and the delayed evolution of temperature 

are responsible for forming a marked lid in the density plot (see Fig. 4.8c), which shows 

a strong contrast between the inner region of the parcel (where the density is lower) 

and its boundary (where the density is higher). A mathematical explanation of this re-

sult can be obtained by showing that the curl of the specific discharge , is non-

zero because of the gradients of temperature and mass fraction.  

 

Fig. 4.6 Initial configuration of the parcel for positive buoyancy:   

a) mass fraction; b) temperature; c) fluid density 

 

Fig. 4.7 Evolution of the parcel after 10 yrs:   

a) mass fraction; b) temperature; c) fluid density 

 

Fig. 4.8  Evolution of the parcel after 20 yrs:   

a) mass fraction; b) temperature; c) fluid density 
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Also in these two cases, the Soret effect is negligible because it represents only a 

small contribution to diffusion in a convection-dominated problem. 

4.4.3 Mixing problem 

This benchmark problem was taken from /OLD 00/, and consists of studying the evolu-

tion of the mixing zone formed between two layers of solution at different temperature 

and with different mass fraction (see Fig. 4.9). The main difference between /OLD 00/ 

and this approach is that the Soret effect is considered in the diffusive flux . It should 

be remarked that, since the lower layer is heavier than the upper one, the problem un-

der investigation is expected to be diffusion-dominated 

 

Fig. 4.9 Initial configuration of the mixing problem 

 

Fig. 4.10 Distribution of mass fraction and temperature after t = 150 yrs. The diffusion 

of heat (right) is faster 

In Fig. 4.10, the distribution of mass fraction and temperature are shown at time 

t = 150 yrs. Note that the time-scale of thermal diffusion is smaller than that associated 

with the brine. This is due to the contrast between the diffusivity coefficient, 



 

73 
 

, and the thermal diffusivity  (cf. Tab. 

4.3). 

A qualitative estimate of the role of thermodiffusion is shown in Fig. 4.11, which was 

obtained by considering the Soret effect in the numerical calculations. 

 

Fig. 4.11 Mass fraction vs. depth (t = 150 yrs) 

In Fig. 4.11, the profile of brine mass fraction is shown as a function of height. Compu-

tations were performed in two cases: the Soret effect was disregarded in the first case 

(red curve in Fig. 4.11), and considered in the second case (black curve in Fig. 4.11). 

The Soret coefficient in equation (4.63) was taken equal to . This value 

was extrapolated from the values given in /CEL 05/. The difference in the profiles of 

mass fraction obtained with and without the Soret effect is barely visible. However, a 

closer inspection reveals that the mixing zone in the second case is slightly wider than 

that in the first case. 

4.4.4 Soret cell 

A Soret cell can be thought of as a cubic device containing a binary fluid mixture initial-

ly of uniform composition (i. e. uniform solute mass fraction), enclosed between two 

horizontal plates at different temperatures. In the case of thermodiffusion in porous 

media, a similar problem was studied in /BEN 01/. In order to minimize the convection 

currents in the mixture, and ease the attainment of the steady state (i. e. the state in 

which the concentration and temperature gradients balance each other), the upper 

plate is kept at a temperature higher than the lower one /TYR 56/. Here, this “experi-

mental” set-up is slightly modified by letting the Soret cell be occupied by a porous me-

0,85 

0,855 

0,86 

0,865 

0,87 

0,875 

0,88 

0,885 

0,89 

0,895 

0,9 

-1450 -1400 -1350 -1300 -1250 

mass fraction (omega) vs. depth (y) 

With Soret effect Without Soret effect 



 

74 
 

dium of constant porosity and saturated by a fluid-phase made of water and brine. Fur-

thermore, the physical dimension of the Soret cell is big enough to enclose a porous 

medium oh hydrogeological interest. Also in this case, the problem under investigation 

is diffusion-dominated. 

For the sake of simplicity, the case of a 2D Soret cell is considered. Initially, the interior 

of the domain possesses a uniform mass fraction , and uniform tempera-

ture . The upper and lower plates are kept at temperature  

and , respectively, and no solute flux is assumed, i. e. , and 

. For the given range of temperature, the Soret coefficient was set equal to 

. On the other hand, the lateral boundaries are assumed to be imper-

meable (i. e. , and ), and adiabatic ( ). Furthermore, 

mass fraction is kept constant to its initial value at the middle points of the lateral 

boundaries. By these initial and boundary conditions (see Fig. 4.12) the problem is ac-

tually one-dimensional. 

 

Fig. 4.12 Soret cell. Initial and boundary conditions used in simulations 

Although the performed simulations provide results for pressure, p, temperature, , 

and mass fraction, , here for brevity only the profile of mass fraction is shown (see 

Fig. 4.13). The result is a “snapshot” in time towards the steady state solution. From 

the upper boundary of the Soret cell, the mass fraction increases until a local maximum 

is reached. For symmetry reasons, the mass fraction decreases from the lower bound-

ary until a local minimum is reached, and then increases towards the middle of the cell. 

This behaviour depends on the interaction between the mass fraction and the thermod-

iffusion of the solute. Indeed, although thermal diffusion is faster than the thermodiffu-

sion of the solute, time is required in order to “build” up the temperature gradient com-

patible with boundary conditions, and characterizing the steady state of the system. 
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Therefore, the temperature distribution remains close to its initial value near the centre 

of the cell, while two gradients are generated in a neighbourhood of the upper and low-

er plates. These gradients, and the form of the diffusion flux , are responsible for 

moving the solute downward. Consequently, on its way to the steady state, the profile 

of the solute mass fraction features two symmetric “bumps”, which tend to disappear as 

soon as temperature reaches the steady-state solution. At the steady state, if the spe-

cific discharge, , is neglected, the profile of mass fraction can be computed analyti-

cally. In consistence with the boundary conditions, one finds 

  (4.3) 

where ,  is the depth of the domain, and .  

 

Fig. 4.13 Numerically computed profile of mass fraction in a Soret cell 

 

Fig. 4.14 Analytically computed profile of mass fraction in a Soret cell 

The plot of the stationary solution, shown in Fig. 4.14, resembles a straight line be-

cause the coefficient is much smaller than unity. This shows that, in this set-up, the 
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coefficient  produces a maximum deviation from the initial solute concentration 

of 3 %, and it is thus observable. 

The results obtained in the sections above should be regarded as qualitative. Indeed, 

the scarcity of published experimental data in the context of thermodiffusion and varia-

ble-density flow has forced that values to the Soret coefficient used in these simula-

tions are given, which may not be realistic. 

Tab. 4.3 Parameters used for the numerical simulations 

Quantity Units Value 

Porosity,   0.10 

Permeability, I  5.0·10-12 

Viscosity,   1.0·10-4 

Molecular diffusivity (including porosity), D,   1.0·10-8 

Longitudinal dispersion length,   0.00 

Transversal dispersion length,   0.00 

Thermal conductivity,   1.8 

Tortuosity,   1.0 

Heat capacity of rock,   1000 

Heat capacity of the fluid-phase,   4184 

Mass density of rock,   2650 

Gravity acceleration,   9.81 

Reference density of pure water,   800 

Reference density of pure brine,   1000 

Thermal expansion coefficient of water,   1.45·10-3 
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Quantity Units Value 

Thermal expansion coefficient of brine,   8.13·10-4 

Reference temperature for water,   523.15 

Reference temperature for brine,   563.15 

4.5 Three-dimensional simulation of the thermohaline-driven buoyancy of a 

brine parcel 

A three-dimensional numerical simulation of the thermohaline-driven buoyancy of a 

brine parcel immersed in an initially homogeneous porous medium of hydrogeological 

interest is provided here. The purpose is to improve the understanding of the thermo-

haline flow through the 3D visualization of the evolving patterns generated by the dis-

tribution of brine, temperature and fluid density in the porous medium. A possible phys-

ical interpretation of the results is proposed, which are obtained within the approxima-

tions usually employed in the context of salinity- and temperature-driven flow. 

Our purpose is to study the solutal and thermal buoyancy of brine in the presence of 

strong thermal gradients. In order to do that, the same numerical experiment as in 

/OLD 99/ is re-proposed. However, three-dimensional numerical simulations on very 

fine grids are provided. The experiment consists of placing a relative small brine parcel 

in an idealized porous medium saturated by a fluid, which is assumed to be homoge-

neous and in thermo-mechanic equilibrium prior to the insertion of the parcel. The brine 

parcel is actually a mixture of brine and pure water with specified brine mass fraction. 

The strong thermal gradients are generated by requiring that the parcel temperature is 

greater than that of the surrounding system (homogeneous fluid and porous medium). 

Following /OLD 99/, two different experimental set-ups were prepared which, depend-

ing on the initial temperature and brine mass fraction of the brine parcel, yield either 

negative buoyancy or positive buoyancy. The 3D visualization of the evolving patterns 

generated by the distribution of brine, temperature, and fluid density in the region of 

observation are obtained by solving the mass balance equations of the brine and the 

fluid-phase as a whole, and the energy balance equation of the whole system (fluid-

phase and porous medium). The numerical simulations were performed by using an 
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enhanced version of the software package d³f, extended to include temperature in ad-

dition to pressure and brine mass fraction. 

4.5.1 Mathematical model 

In the case of single-phase flow, the fundamental kinematic entities associated with the 

fluid-phase are given by the specific discharge, , and the brine diffusive mass flux . 

The former vector field describes the filtration velocity of the fluid-phase as a whole, 

while the mass flux  accounts for the motion of the brine relative to the centre of 

mass of the fluid-phase. If the dissipative interaction forces between the fluid and the 

solid-phase are assumed to be of genuine mechanical nature (i. e. they are independ-

ent on the macroscopic thermal gradient), and the hypotheses of negligible inertial 

forces (laminar motion), macroscopically inviscid fluid-phase (absence of Brinkmann’s 

correction), and small fluid-phase velocity (absence of Forchheimer’s correction) are 

imposed, the momentum balance law of the fluid-phase allows for expressing the spe-

cific discharge, , by means of Darcy’s law, i. e. 

  (4.69) 

where K is the permeability tensor of the porous medium,  is the fluid-phase dynamic 

viscosity, p is pressure, and  is the fluid-phase mass density. Although the viscosity  

is a function of temperature and the composition of the fluid-phase, it will be considered 

constant in the following. A reasoning analogous to that leading to equation (4.69) 

yields to express the brine diffusive mass flux, , through Fick’s law, i. e. 

  (4.70) 

where  is the brine mass fraction, and D is the diffusion-dispersion tensor. The tensor 

D is taken as the sum of a diffusive and a dispersive contribution. The Scheidegger’s 

form of the dispersive contribution is commonly used, and the tensor D is written as 

  (4.71) 

where  is the brine scalar molecular diffusivity,  is the tortuosity tensor, and  is 

the Scheidegger’s mechanical dispersion tensor. In the definition of , the quantities 

 and  are the transversal and longitudinal dispersion lengths, respectively, and   
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denotes the identity tensor. Accepting all approximations introduced so far, the problem 

of thermohaline flow requires to consider the following three equations: the balance of 

mass of the fluid-phase as a whole, the balance of mass of the brine, and the energy 

balance law for the mixture as a whole. These three scalar equations read 

  (4.72) 

  (4.73) 

  (4.74) 

where  is porosity,  and  are the heat capacities per unit mass of the fluid- and 

solid-phase, respectively,  is the constant density of the solid-phase, and  is the 

heat flux of the mixture as a whole. If the validity of Fourier’s law of heat transfer is as-

sumed, then  is expressed by 

  (4.75) 

where  is the hydrodynamic thermo-dispersion tensor of the mixture as a whole. Fol-

lowing /DIE 02/, the positive-definite tensor  can be written as 

  (4.76) 

where  and  represent the conductive and mechanical part of the thermo-

dispersion tensor, respectively. Since the tensor  represents the thermal conductivity 

of the whole mixture, it has to enclose the thermal conduction properties of both the 

fluid- and the solid-phase. For this reason, the tensor  is expressed as the mean 

value of the thermal conductivities of the two phases. Bear /BEA 72/ defined the tensor 

 as the weighted sum of the thermal conductivities of the fluid- and the solid-phase, 

the weights being given by the volumetric mass fractions of the phases, i. e. 

  (4.77) 

However, other definitions are also used (cf., for example, /HOL 01/). 

The saturation constraint, and the hypotheses of incompressible and rigid solid-phase 

imply that the volume fraction of the fluid-phase is constant in time and equal to the 

porosity . A further simplifying assumption is that  is also constant in space. Equa-



 

80 
 

tions (4.69) - (4.77) make up a system of simplified field equations to be solved. The 

closure of this system of equations is obtained by prescribing either pressure or the 

fluid-phase mass density as a constitutive function of the other state variables. In order 

to model thermohaline flow, the fluid-phase mass density, , is chosen as a constitutive 

function of temperature, , and brine mass fraction, , i. e. . This choice 

implies that the free unknowns in equations (4.72) - (4.74) are given by pressure, p, 

mass fraction, , and temperature, . Furthremore, pressure has to be understood as 

a Lagrange multiplier, and the heat capacities  and  are defined at constant pres-

sure. 

4.5.2 Description of the problem and specific assumptions 

4.5.2.1 Preparation oft he experiment: Initial and boundary conditions 

A fixed cubic region, , is considered, filled with a porous medium of uniform porosity, 

, and saturated by a fluid (see Fig. 4.15). Let L be the length of the edge of the cube, 

and imagine to place in the centre of the region  a cubic “brine parcel”, , which oc-

cupies the volume , and has its faces parallel to the faces of the outer cube 

. The brine parcel, , consists of a very concentrated mixture of brine and water 

characterized by uniform brine mass fraction, , and uniform initial temperature . 

The partial domain  is filled with pure water (i. e. ), and is assumed to 

be in thermal equilibrium with the porous medium at temperature . It is required 

that the initial condition  be satisfied. Consistently with the description given so 

far, the initial conditions of the prepared numerical experiments are: 

  (4.78) 

  (4.79) 

It should be remarked that, because of the constitutive assumption specifying the fluid-

phase mass density, the time derivative of the pressure does not feature in equations 

(4.72) - (4.74). Therefore, no initial condition is required for determining the unknown 

field p. The initial conditions (4.78) and (4.79) reflect the 3D-generalization of the 

benchmark problem formulated by Oldenburg and Pruess /OLD 99/. 
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Fig. 4.15 Computation domain and parcel “immersed” in it 

The four lateral faces of the outer cube are assumed to be impermeable and adiabatic. 

This implies that the following boundary conditions apply: 

  (4.80) 

  (4.81) 

where  is the i-th face of the lateral boundary  of the outer cube . 

The upper and lower faces of the outer cube, identified by the planes  and , 

respectively, are equipped with the Dirichlet boundary conditions written below: 

  (4.82) 

  (4.83) 

  (4.84) 

where is the set of all vertices of the upper face . 

Following /OLD 99/, two different physical situations are considered associated with 

initial positive and negative buoyancy, respectively. In the first case, the initial mass 

fraction and temperature of the parcel are set equal to  and ; 

accordingly, the fluid-phase mass density in the parcel is . In the 

case of negative buoyancy, the initial values  and  are chosen, 

which amount to an initial fluid-phase mass density . In both cases, 

the initial temperature of the subdomain  is chosen to be , correspond-

ing to a mass density of . The numerical values of the parameters 

Q

P

2500 m

500 m
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used here are summarized in Tab. 4.4, and are taken from /OLD 99/. It should be re-

marked, however, that the boundary condition (4.84) is different from that chosen in 

/OLD 99/. This is due to a small difference in the formulation of the problem. Indeed, 

similarly to Elder’s problem, pressure is prescribed to satisfy Neumann conditions al-

most everywhere on the boundary surfaces (i. e. on ), and to satisfy Dirichlet 

conditions on the set of upper vertices denoted by . The reason for such a choice of 

boundary conditions is that, while here a flow region with impermeable boundary is 

considered, Oldenburg and Pruess /OLD 99/ impose a hydrostatic pressure distribution 

in a domain in which only the lateral walls are impervious. Furthermore, since only the 

pressure gradient features in the governing equations and no dependence on the pres-

sure itself is accounted for, the quantity p can be defined up to an arbitrary additive 

constant, such that  for all . 

4.5.2.2 Specific assumptions 

In order to simplify the problem at hand, the following further hypotheses are employed: 

(a) permeability, K, tortuosity, , and thermal conductivity, , are spherical and homo-

geneous tensors; (b) the role of mechanical dispersion is neglected; (c) the assumption 

of volume additivity is enforced for the fluid-phase constituents. 

The hypotheses (a) and (b) allow for rewriting Darcy’s, Fick’s and Fourier’s laws as: 

  (4.85) 

  (4.86) 

  (4.87) 

where , ,  are given scalar constants. The hypothesis (c) leads to the following 

definition of the fluid-phase mass density: 

  (4.88) 

By introducing two uniform reference temperatures,  and , and letting ,  

and ,  denote the reference mass densities and constant thermal expansion coef-

ficients of water and brine, respectively, the functions  and  can be ex-
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pressed as  and , re-

spectively. 

A further reduction of the complexity of the computation is gained by solving equations 

(4.72) - (4.74) within the Boussinesq-Oberbeck approximation /DIE 05/, /JOH 02/. This 

approximation consists of maintaining the compressibility of the fluid-phase only in the 

buoyancy term  featuring in Darcy’s law, while replacing the mass density  with a 

constant reference value anywhere else it appears. Although the Boussinesq-Oberbeck 

approximation may be quite useful in several cases, it is not used here. 

4.5.3 Numerical simulations 

The governing equations (4.72) - (4.74) constitute a set of three scalar, coupled and 

non-linear partial differential equations in the three unknowns p, , and . This set of 

equations is solved in the flow region  numerically by employing the “vertex centred” 

Finite Volume Method, because it carries the conversation properties of the continuous 

equations over their discretized form. For the sake of conciseness the method is ex-

posed in the two-dimensional case, although the flow region, , and the results shown 

here are three-dimensional. The procedure reported below is based on the paper by 

Frolkovic /FRO 96/ and was extended here in order to include temperature. 

It shall be assumed that a conforming grid covers the flow region, and that the ele-

ments of this grid are quadrilaterals. In order to perform the “vertex centred” finite vol-

ume scheme, a dual grid is constructed by connecting the barycentre of each element 

with the midpoints of the element edges (cf. Fig. 4.16). By following this procedure, the 

generic vertex  of the grid is associated with a finite volume , which represents a 

control volume of the dual grid. The index  ranges from 1 to M, where M is the number 

of grid nodes. 

Equations (4.72) - (4.74) share a similar structure. Indeed, each of them can be written 

in the form 

  (4.89) 

where  and  are two “auxiliary” functions denoting a generalized “storage” 

term and flux, respectively, while , , and  define the following collections of fields: 
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, , and . Equation (4.89) is integrated over the gener-

ic finite volume , and Gauss’ Theorem is applied. This yields 

  (4.90) 

 

Fig. 4.16 Exemplified two-dimensional grid and dual mesh 

Let now  denote the time-dependent value of  at the node , and the 

piecewise constant interpolations  

  (4.91) 

are introduced, where  is the characteristic function of the finite volume  

(i. e.  for  and zero elsewhere). Equations (4.91) allows for computing 

the volume integral in equation (4.89) within the following approximation 

  (4.92) 

where  denotes the total derivative with respect to time, and  is the measure of the 

finite volume . 

In order to compute the surface integral in equation (4.90), the bilinear trial functions 

 are considered, each of which is required to satisfy the conditions 

, and expand  and  as 

     (4.93) 

The evaluation of  and  on the boundary  of the finite volume  is done by select-

ing a set of integration points, here denoted by . A given element of  is labeled by 

, where the index j refers to the j-th mesh node sharing an edge with , and the in-
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dex  enumerates the -th portion of  emanating from the j-th edge. This portion of 

 is denoted by . It follows that  can be expressed as . 

The computation of  and  at a given integration point  leads to the following re-

sults: 

    (4.94) 

The quantities  and  are calculated by using the following approximation of the 

interpolations defined in equation (4.93): 

      (4.95) 

     (4.96) 

where the index k ranges through all nodes neighbouring , at the element which con-

tains the integration point . By virtue of the definitions introduced so far, the surface 

integral in equation (4.89) can be written as 

     (4.97) 

where  is the unit vector normal to the boundary . The application of the results 

(4.90) and (4.97) to the governing equations (4.72) - (4.74) leads to the following sys-

tem of non-linear ordinary differential equations, which can be solved by any of the 

known techniques (an implicit backward Euler scheme was used in the examples): 

     (4.98) 

     (4.99) 

     (4.100) 

where  is the effective thermal capacity of the mixture, and the 

vector quantities , , and  are given by 

     (4.101) 

     (4.102) 
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     (4.103) 

With respect to the finite volume , the products  and  

represent the quantity of brine and energy, respectively, that are carried by the flow 

through the convective term . Since the calculation of these products is influenced 

by all nodal values of the unknown fields but disregards the direction of the flow, non-

physical oscillations of the numerical solution may arise. In order to circumvent this 

difficulty, some upwind scheme is usually applied, an example being full upwinding 

using the following conventions: 

Tab. 4.4  Initial and boundary values of the variables featuring in the model 

Quantity Subdomain Symbol Units Value 

Side of the domain -   2500 

Side of the initial parcel -   500 

Initial mass fraction Subdomain     0.00 

Initial temperature Subdomain    473.15 

Pressure    0.00 

Initial fluid-phase mass 

density 

Subdomain    875.00 

Initial positive buoyancy 

Initial mass fraction Parcel    0.47 

Initial temperature Parcel    573.15 

Initial fluid-phase mass 

density 

Parcel    831.00 

Initial negative buoyancy 

Initial mass fraction    0.55 
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Quantity Subdomain Symbol Units Value 

Initial temperature    523.15 

Initial fluid-phase mass 

density  

   919.00 

     (4.104) 

     (4.105) 

Our simulations were performed on an in-house parallel computer on 64 processor 

cores. Grid resolution was  million elements. 

4.5.4 Discussion and outlook 

In the following discussion, the retardation factor 

    (4.106) 

Is used, i. e. the quotient of the effective thermal capacity of the mixture and the ther-

mal convection term /OLD 99/. Physically, it describes the fact that the solid is able to 

store thermal energy but not brine. With the parameters chosen for these simulations, 

one gets , which means that the thermal front moves at approximately 1/7th the 

velocity of the brine front. 

Two cases were considered: one in which the initial parcel is subject to negative buoy-

ancy (cf. Fig. 4.17) and one in which it is subject to positive buoyancy (cf. Fig. 4.18). 

Each of these two figures shows (from left to right) brine mass fraction, temperature, 

and density, with the initial values depicted in the first row, the evolution after 10 years 

in the second row, and the final result after 20 years in the third row. In these pictures, 

the values of these quantities are shown as a colour plot on the surface of the compu-

tation domain with the front cuboid (from the top to bottom, front quarter of the 

top/bottom face) removed. 
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In the case of negative buoyancy, brine is transported downward faster than heat be-

cause of the retardation factor. The distribution of the brine mass fraction features sev-

eral “fingers”, which are generated by the interplay of down- and upswelling of fluid 

motions. Heat, on the other hand, is (as it is delayed) mainly confined to the initial par-

cel. When the brine starts to leave the initial parcel, fluid density in the parcel becomes 

smaller and eventually this now low-brine heat parcel begins to show even positive 

buoyancy. Thus a separation of brine and heat from the initial parcel is observed: brine 

moving downward and heat slowly upward. Since the formation of brine “fingers” oc-

curs mainly at the sides of the initial parcel, there is a “cylindrical” zone in the middle of 

the parcel that contains less brine than at the beginning, but has still preserved (al-

most) its initial temperature. In this zone, a small “fountain”-like motion is observed: 

brine, which is moved upward by temperature, enters colder regions where it again 

leads to higher fluid density, and is consequently convected downward. 

 a) 

 b) 

 c) 

Fig. 4.17 Evolution of the parcel in the case of negative buoyancy:   

a) initial configuration; b) parcel after 10 yrs; c) parcel after 20 yrs 
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In the case of positive buoyancy, again due to the retardation factor, brine is transport-

ed upward faster than heat. Above the initial parcel, brine is cooled down, leading to 

higher density of the fluid. The induced flow moves brine downward along the sides of 

the parcel. This is comparable to what was described as the “fountain”-like motion 

above, but is now the main phenomenon. Despite positive buoyancy of the initial par-

cel, brine leaves this parcel and moves downward in this roundabout way. Since the 

heat is again confined mostly to the initial parcel because of retardation, fluid density in 

this zone is decreasing, which even intensifies its positive buoyancy. However, the 

separation of heat from the initial parcel is hindered by a density “lid”, which is built up 

by the cold brine (highest density) flowing around the parcel (hot, low-brine, relatively 

low density). 

 a) 

 b) 

 c) 

Fig. 4.18 Evolution of the parcel in the case of positive buoyancy:   

a) initial configuration; b) parcel after 10 yrs; c) parcel after 20 yrs 

It may be noted that the central “fountain”-like motion in the case of negative buoyancy 

also produces such a density “lid”, although it is less marked. 
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To highlight the three-dimensional nature of the processes simulated, also isosurfaces 

of the brine mass fraction for  are shown. This value seems to be a good indi-

cator for the location of the brine front. Fig. 4.19 shows the case of negative buoyancy 

at the beginning, after 7, 13, and 20 years (left to right, top to bottom). Fig. 4.20 shows 

the case of positive buoyancy in the same arrangement. 

In /GRI 10b/ it is showed that, in the two-dimensional case, corresponding conditions 

lead to the formation of several “fingers” in the brine pattern. It is admitted that, in anal-

ogy with Elder’s problem, the generation of “fingers” is triggered out by the combination 

of downswelling and upswelling fluid motions, and if those motions are detected by 

refining the mesh levels /FRO 01/, then the results of computations do depend on the 

grid refinement. In forthcoming works a physical interpretation of the formation of “fin-

gers” based on considerations about the stability of the flow will be given, in order to 

understand whether the number of generated “fingers” tends to increase indefinitely at 

increasing grid refinement. The question is whether one gets an increasingly precise 

description of the flow or whether one runs into unphysical results. 

   

   

Fig. 4.19 Isosurfaces of brine mass fraction  in case of negative buoyancy 
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Fig. 4.20 Isosurfaces of brine mass fraction  in case of positive buoyancy
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5 Density-driven flow in fractured media 

5.1 Introduction 

The study of fractured porous media is an important and challenging problem in hydro-

geology. One of the difficulties is that mathematical models have to account for hetero-

geneity introduced by fractures in hydrogeological media. Heterogeneity may strongly 

influence the physical processes taking place in these media. The goal of this part of 

the project was to extend the packages d3f and r3t with the possibility to perform the 

computations with the geometries containing thin fractures filled with porous medium. 

The thickness of the fractures, which is usually negligible in comparison with the size of 

the whole domain, and the complicated geometry of fracture networks reduce essen-

tially the efficiency of numerical methods. In order to overcome these difficulties, frac-

tures are considered as objects of reduced dimensionality (surfaces in three dimen-

sions), and the field equations are averaged along the fracture width (cf., for example, 

/ANG 09/, BAS 00/, /BAS 99/, /MAR 06/, /SOR 01/). This consideration is also motivat-

ed by the geological data that usually do not contain enough geometrical information 

for the exact representation of the fractures as thin layers. 

From a descriptive point of view, a fracture is a portion  of a region of observation, 

 (where  or ), characterized by a shape such that one of its geomet-

ric dimensions is much smaller than the other ones /BEA 93/. In , there can be either 

isolated fractures or networks of fractures. Fracture networks usually provide a re-

sistance to the motion of groundwater lower than that of unfractured rock, and may 

thus lead to the movement of a comparatively large amount of water and the substanc-

es dissolved in it. A quantification of flow and transport in fractured rocks was under-

taken by Neumann /NEU 05/. Because of its influence on the environment (e. g., pollu-

tion of aquifers), and its connection with industrial problems (e. g., modelling of frac-

tured reservoirs 0/), the flow in fractured porous media has received particular attention 

/MUR 79/, /MAR 06/, /SHI 98/, /GRA 05a/, GRA 09/, /SHA 09/. Mathematical and nu-

merical models have been developed in order to predict fluid flow and contaminant 

transport in highly heterogeneous domains, the heterogeneity being given by the ab-

rupt change of permeability when passing from the fracture to the surrounding domain, 

and vice versa.  
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Together with heterogeneity, the spatial distribution of the fractures in a given network 

may also influence other flow properties. For example, even though the permeability of 

the medium embedding the fractures is isotropic, the effective permeability of the 

equivalent system, made of the network and the embedding medium, may be aniso-

tropic. 

The evaluation of the effective flow properties of heterogeneous media is based upon 

upscaling methods such as, for example, volume-averaging /BRE 62/, /HAS 86/, 

/WHI 99/, asymptotic expansions /BEN 78/, stochastic modelling, and coarse graining 

and Renormalization Group Theory /ATT 02/. In the context of volume-averaging, the 

method known as average-along-the-vertical /BEA 79/ is applied to thin flow regions. 

The description of flow and transport provided by this method is based on averaging 

the equations defined in the flow region along its width. Here, the thin flow region is 

represented by a fracture. 

Among the modelling approaches for fractured porous media two approaches may be 

classified: the near-field and far-field. The first one considers a relatively small domain 

with a small number of well-defined fractures whose location and shape is known. The 

second approach is based on the concept of overlapping continua /BEA 93/, which are 

identified by the fluid in the fractures and the fluid in the embedding medium. If the re-

gion of investigation is large with respect to the size of the fractures but not big enough 

to allow for the introduction of the overlapping continua, then the near field approach is 

used. The model presented belongs to this case. It is assumed that the fractures are 

filled by a porous medium whose permeability is bigger than the permeability of the 

medium enclosing them. The fractures and the embedding medium preserve their iden-

tity, and their mutual interaction is studied by means of interface balance laws. There-

fore, in the resulting picture, the overall medium is heterogeneous with respect to per-

meability, and the more permeable medium is inside the fractures.  

Here, a fracture has the following two properties: (a) its thickness is much smaller than 

the smallest characteristic length scale of the embedding medium, and (b) it is filled by 

a porous medium whose porosity and permeability differ from those of the embedding 

medium. The fractures are thus distinguishable from the medium. For a given fracture, 

it is assumed that , where  and  are the permeabilities of the fractures 

and medium, respectively. The fractures and the embedding medium are considered at 

the same scale of observation. Since density-driven flow is modeled, it is necessary to 

describe flow and transport in the whole region of observation. In order to do that, the 
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same equations are used both in the fracture and in the embedding medium. Flow in 

the fracture is such that Darcy's law is still applicable. In order to account for the geo-

metric properties of the fracture, Bear's procedure /BEA 79/ is adopted and the equa-

tions of density-driven flow are averaged over the fracture width. After averaging, the 

fractures remain distinguishable from the embedding medium but are regarded as ob-

jects of reduced dimensionality. 

The equations obtained within the -dimensional model are similar to the equa-

tions determined by Cermelli et al. /CER 05/, in the study of transport relations for sur-

face integrals defined over evolving surfaces. In /CER 05/, the authors elaborate two-

dimensional transport models, in which the effect of curvature is accounted for. 

Our model is a set of partial differential equations in two different dimensionalities: 

 and . Furthermore, it contains the interface conditions describing the flows be-

tween the fractures and the embedding medium, i. e. coupling the PDEs of different 

dimensionalities. For the numerical solution of this system of equations, a special finite 

volume discretization is developed and implemented, as well as special methods for 

the preparation of the computation grid. 

Note that the main difficulties arising in the averaging technique in development of the 

model, as well in the implementation of the numerical methods, relate to those terms in 

the PDEs that describe the spatial, geometrically non-local phenomena. Thus, the 

package d3f is more suitable for the demonstration of this technique. In fact, the model 

lying in its base describes two non-local phenomena: the density-driven movement of 

the fluid and the transport of the salt. The model in the package r3t contains more equa-

tions. But its main geometrically non-local phenomenon is the transport of different 

species which is from the point of view of the derivation of the model similar to that in 

d3f. For this, in the present report, the main attention is paid to the description of the 

extension of d3f. 

The model was numerically verified. To this end, simulations with two different repre-

sentations of a fracture were performed. In the first one, the fractures have the same 

geometric dimension as the embedding bulk medium and are thus said to be -

dimensional, with  in 2D and  in 3D. In the second representation, the frac-

tures are considered as -dimensional manifolds, and the averaged model is 

used. The first approach is well-established, more general, but computationally more 
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expensive and practically applicable only for very simple geometries of the domain and 

the fractures. The second approach, instead, requires some working hypotheses but is 

computationally essentially cheaper. It could be shown that the results obtained by the 

two methods are in good agreement with each other for sufficiently small fracture 

widths. 

In the context of the flow simulations in fractured porous media, the following methodo-

logical and computational results are presented: 

1. The derivation of the equations modelling flow and transport in the fractures that 

are independent on the equations used in the embedding medium. The un-

known functions in the fractures are not assumed to be equal to the unknown 

functions in the embedding medium. 

2. The use of the concept of “excess mass” in the formulation of the -

dimensional representation of fractures. 

3. The development of numerical schemes for solving the equations of density-

driven flow as formulated in the -dimensional model. 

4. The verification of the proposed -dimensional model through numerical 

experiments conducted by using the -dimensional formulation. 

The concept of “excess mass”, used in the model of the density-driven flow in the frac-

tures, was used in /HAS 90/ for modelling interfaces, and in the works by Murdoch and 

Soliman /MUR 99/ and Murdoch /MUR 05/, where it was indicated as one of the most 

important aspects of modelling transport on lower-dimensional domains embedded in 

three-dimensional regions. Excess quantities are defined only for extensive quantities, 

and should be taken into account when the real, three-dimensional interface between 

two regions is replaced with an equivalent domain of lower dimensionality. This should 

be done, for example, in order not to “gain” an unphysical mass after ideally “shrinking” 

the fracture to its mean plane  (see /MUR 05/ for details).  

5.2 Model of the density-driven flow in fractured porous media 

The model was developed for the density-driven flow in fractured porous media using 

Hybrid Mixture Theory /BEN 00/, where a porous medium is macroscopically modelled 

as a mixture of solids and fluids, that co-exist in a given region of space  (  

or ). In many hydrogeological applications, it is assumed that the mixture consists 
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of a single solid-phase, for example the porous rocky matrix of a soil, and either a mul-

ti-phase or a single-phase fluid. The fluid-phase comprises constituents which undergo 

physico-chemical processes such as advection, diffusion, chemical reactions, and ex-

change with the solid-phase. 

Here, the model is restricted to the case in which a two-constituent fluid experiences 

single-phase flow through the porous matrix of the solid-phase. The two constituents of 

the fluid-phase are assumed to be water and brine, the latter being a chemical com-

pound consisting of salts and water. In the presence of exchange processes between 

the fluid- and the solid-phase, each of these phases should be regarded as a mixture in 

which each phase is composed of the same constituents /BEN 00/. In the absence of 

such an assumption it is possible to assume that the fluid- and the solid-phase are a 

two- and single-constituent system, respectively. 

Under the hypothesis  that the whole mixture is subject to the saturation condition, the 

porosity  coincides with the volume fraction of the fluid-phase. The volume fraction of 

the solid-phase is thus given by . 

5.2.1 Governing equations 

Here, a fracture  is a region occupied by a porous medium whose permeability is big-

ger than the permeability of the medium  in which it is embedded. It is assumed that 

the same flow and transport processes occur both in the fracture and in embedding 

medium. The regions  and  interact through exchange processes. To be consistent 

with the macroscopic continuum description, the partial differential equations governing 

density-driven flow are obtained by means of the balance laws of mass, momentum, 

and energy, and the Second Principle of Thermodynamics. These laws have to be writ-

ten for each constituent of the fluid-phase (i. e. water and brine), and for the solid-

phase. However, suitable hypotheses allow for a considerable reduction of the number 

of equations to be solved. It is assumed that the fracture and the surrounding porous 

medium satisfy the following requirements: 

1. they are subject to a uniform temperature field; 

2. pore-scale mass exchange processes between the fluid- and the solid-phase 

are absent everywhere in ; 

3. the solid-phase is undeformable and at rest; 
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4. inertial terms are negligible in the balance laws of momentum; and 

5. the porosities of the medium and the fracture are constant but, in general, dif-

ferent from each other. 

In order to model the interaction between  and , it is necessary to provide a de-

scription of the interface separating the fracture from the embedding medium. For sim-

plicity, it is assumed that this interface is ideal. This means that mass and momentum 

are transferred from the fractures to the medium (and vice versa) without undergoing 

further processes at the interfaces. The detailed treatment of the interface exchange 

processes is presented in section 5.2.6. 

According to these simplifying hypotheses, the problem of fluid flow and brine transport 

in a fractured porous medium is macroscopically governed by the laws of mass bal-

ance of the brine and the fluid-phase as a whole. These equations must be written for 

both the porous medium and the fracture. By renaming the mass fraction of the brine 

by , these equations read 

  (5.1) 

  (5.2) 

The index  specifies whether a physical quantity is defined in the fracture, , 

or in the surrounding porous medium, . The quantities , , and  are 

the fluid-phase volume fraction (porosity), mass density, and specific discharge, while 

and  are the mass fraction and mass flux of the brine, respectively. In the right-

hand side,  denotes the power of the source/sink,  is the mass fraction of the 

brine in the source (for a sink, ), . 

Under the assumption of negligible inertial terms, the momentum balance laws of the 

brine and the fluid-phase as a whole enable to express  and  in terms of the quan-

tities , ,  (already present in (5.1 - 5.2)), and the pressure, . 

If the validity of Darcy's and Fick's laws is assumed for the problem at hand, then  

and  are given by 

 , (5.3) 

 , (5.4) 
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where , , , and  are the permeability tensor, fluid viscosity, gravity acceleration 

vector, and diffusion-dispersion tensor, respectively. Equations (5.3) - (5.4) can be ob-

tained through the exploitation of the dissipation inequality for both  and  /BEA 93/, 

/BEN 00/, /GRO 54/. 

Requiring the validity of Darcy's law in the fracture may be a strong assumption. In-

deed, since the fluid is expected to flow faster in the fracture than in the surrounding 

medium, the Forchheimer's correction term /DIE 05/ may become necessary for a more 

precise description of the flow in the fracture. The assumption of Fick-type diffusion 

may be questionable too, when big values of brine mass fraction are involved. Here, 

the choices of modelling are motivated by simplicity only. 

In order to close the system (5.3) - (5.4), it further is assumed that the mass density of 

the fluid-phase, , is a given constitutive function of the brine mass fraction , i. e. 

. In particular, following Oldenburg and Pruess /OLD 98/,  is prescribed 

by 

 , (5.5) 

where the mass densities of “pure water”, , and “pure brine”, , are given con-

stants. Note that (5.5) holds true under the hypothesis of additivity of volumes, which 

means that the volume of a sample of mixture, made by water and the brine, equals the 

sum of the volume of water and the volume of brine present in the sample. Since the 

mass density  varies in response to the mass fraction, the resulting non-

potential flow /BEA 72/ is said to be density-driven. The pressure, , is therefore the 

Lagrange multiplier associated to the constraint  . More details about the 

derivation of the constitutive relation (5.5) are given in /OLD 98/. It should only be re-

mark that (5.5) is consistent with the definition given in Mixture Theory  

(see, for example, Hassanizadeh /HAS 86/ and Bennethum et al. /BEN 00/), where  

and  are the apparent densities of water and brine in the fluid-phase. These quanti-

ties are sometimes referred to as “concentrations”. The intrinsic, or “pure”, densities of 

water and brine are related to  and  through , with . The 

composition of the fluid-phase is measured by the mass fractions of its constituents. By 

definition , and . 
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5.2.2 A change of variables 

Our purpose is to average (5.1) - (5.4) in order to study density-driven flow in a thin 

fracture. However, the form of these equations makes the averaging procedure very 

cumbersome because of the many products of fluctuations and the non-linearity of 

(5.5). 

In order to overcome this problem, a change of variables is proposed which reduces 

the number of fluctuations featuring in the averaged form of (5.1) - (5.4). In these equa-

tions, the set of free unknowns, given by mass fraction and pressure, is 

. 

Our approach consists of replacing the brine mass fraction, , with the apparent mass 

density of the brine,  (hereafter called concentration). For ease of notation, the latter 

quantity will be denoted by  from here on (i. e.  ), so that the trans-

formed set of unknowns reads . 

By using the definitions of brine concentration, , and mass fraction, , it 

can be shown that (5.5) can be equivalently reformulated as 

 . (5.6) 

When  attains its maximum possible value (i. e. ), the fluid-phase mass densi-

ty equals the mass density of “pure brine”. The constitutive law (5.6) was used in the 

paper by Henry /HEN 64a/. Other relations can be found, for example, in Holzbecher 

/HOL 98/. 

Equation (5.6) was obtained without linearizing any constitutive law of the form 

. Furthermore, since  and  are fixed parameters here, (5.6) does 

not introduce any new coefficient to be determined experimentally. The change of vari-

ables, however, is useful as long as thermal phenomena are neglected. Indeed, if the 

thermal expansion were taken into account, the concentration would no longer be an 

appropriate free unknown because it would depend on temperature. 

A constitutive law similar to (5.6) was given in /BEA 72/ as a hint for solving problems 

analogous to ours. In /BEA 72/, however, the proposed law is , where  

and  are coefficients to be determined experimentally. 
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With respect to the variables , and after denoting 

 , (5.7) 

the quantities  and  in (5.3) and (5.4) transform into 

 , (5.8) 

 , (5.9) 

Finally, the governing equations take on the form 

 , (5.10) 

 , (5.11) 

with . Equation (5.10) is obtained under the assumption of constant porosity 

by substituting (5.6) into the RHS of (5.1), multiplying (5.2) by , and substracting the 

resulting expression from (5.1). In the right-hand side of (5.11),  denotes the inflow 

concentration of the brine in the source. For a sink, . 

When a fracture is considered as a -dimensional object, the system (5.10) - (5.11) 

and quantities (5.6) - (5.9) have the same form both in the fracture, , and in the sur-

rounding porous medium, . When the fracture is treated as an equivalent 

-dimensional object, (5.9) - (5.11) will be averaged. 

It should be remarked that the Boussinesq-Oberbeck approximation is retrieved by 

setting  in (5.10). 

From now on, the fluid viscosity, , is assumed to be independent on concentration, 

and the permeability tensor, , is assumed to be constant and isotropic, i. e. 

, both in the fracture and the surrounding porous medium. Since the dependency of 

fluid viscosity on the brine concentration is not negligible in general, the hypothesis of 

constant fluid viscosity is employed here just to simplify calculations. On the other 

hand, the hypothesis of isotropic permeability can be physically motivated by assuming 

that the internal structure of the porous media filling the fractures and the embedding 
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medium does not induce preferential flow directions. An example of a porous medium 

with anisotropic permeability is given by the presence of sediments which, when de-

posited, lead to a higher permeability in one direction /BEA 79/. 

In general, the tensor  [ ] describes diffusion and mechanical dispersion, i. e. 

 . (5.12) 

The diffusion tensor, , accounts for tortuosity, and is therefore defined by 

, where  is the scalar molecular diffusivity, and  is the tortuosity tensor. In the 

following, only the case of isotropic tortuosity (i. e. ) is considered. Further-

more, by postulating isotropic dispersivity, the tensor of mechanical dispersion, , is 

transversely isotropic, and admits the expression given by Scheidegger /SCH 74/, i. e. 

 , (5.13) 

where  and  are the transversal and longitudinal dispersivity lengths, respectively, 

and the symmetry axis which generates the transverse isotropy is given by the direc-

tion of flow, , or, equivalently, by the second-order symmetric tensor  

/BEA 90/. 

Because of the different properties of the subregions  and , the permeability, , 

tortuosity, , and the dispersivities  and  feature the index . With re-

spect to the global region of observation , these physical quantities are regarded as 

piecewise constant. 

5.2.3 Geometric model of a single fracture 

For modelling purposes, a fracture  is considered as a shell-shaped -dimensional 

domain, in which one of the  geometric dimensions, the width, is much smaller than 

the other two. Since the fracture is embedded in  and surrounded by , 

the boundary of the subregion  coincides with the inner boundary of . This common 

boundary is referred to as . Because of the shell-type geometry, the fracture is de-

limited by the two surfaces,  and , and possesses a band-shaped lateral 

boundary, denoted by . Accordingly, the boundary of the fracture is 

. 
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In this derivation, the case is regarded in which the surfaces  and  are parallel 

planes. Moreover, by denoting by  and  a global and a local 

right-handed coordinate frame, respectively,  and  are required to have the 

same projection onto the -plane, and to be described by the following two equa-

tions 

 ,    , (5.14) 

see Fig. 5.1. The width of the fracture is defined by the distance between  and : 

 . (5.15) 

The fracture mean plane is denoted by , and is assumed to be identified by the equa-

tion  (this implies: , and ). 

For consistency with the upscaling procedure adopted in Hybrid Mixture Theory, the 

distance  has to satisfy the inequalities , with  and  being the pore-scale 

and macro-scale characteristic lengths in , respectively. 

 

Fig. 5.1  Scheme of a planar d-dimensional fracture in the averaging process 

5.2.4 Average along the thickness 

The theory shown can be extended to more complicated fracture geometries. Further-

more, although the average is treated here along the thickness in the case of a single 

fracture, the computations done here are also applied to fractures with piecewise flat 

delimiting surfaces, and fracture networks. Example of intersections between two frac-

tures, which may be of interest for investigating fracture networks, are presented in Fig. 
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5.6 and Fig. 5.7 below. An approach similar to ours has been recently adopted by An-

got et al. /ANG 09/. 

It is averaged (5.8) - (5.11), with , for a fracture having the shape described in 

section 5.2.3 (see Fig. 5.4). 

The average is performed along the thickness of the fracture according to the averag-

ing method introduced in /BEA 72/, /BEA 77/, /BEA 79/, /BEA 90/. For a given field  

(either a scalar, a vector, or a tensor field), this averaging technique is based on the 

definition of the operator 

 . (5.16) 

The following notation is used for the averaged values of the concentration and pres-

sure in the fracture: 

  , and . (5.17) 

It should be remarked that the definition (5.16) is less general than the one used in 

/BEA 77/. 

If  and  are a scalar and a vector field, respectively, then one obtains 

  (5.18) 

where  and  are the fluctuations of the fields  and . The fol-

lowing results hold also true: 

 , (5.19) 

  (5.20) 

In (5.20),  is the projection of  onto the -

plane, which is spanned by the unit vectors  and  of the -canonical basis 

,  is the surface divergence operator defined on this plane, and 

 is the projection operator. The unit vectors  and  are antipar-
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allel, normal to the surfaces  and , respectively, and are directed in both cases 

from the fracture, , into the surrounding medium, . The quantities  and  are 

the restrictions of the vector field  onto the surfaces  and , respectively. 

Equation (5.20) becomes 

  (5.21) 

with , . In the following, the local reference frame 

 is chosen such that , and 

 ,     . (5.22) 

When the parameter  is very small, the second term on the right-hand side of (5.21) 

can be regarded as the approximation of the normal derivative of . 

5.2.5 Averaged equations – Further simplifying assumptions 

The constitutive law (5.6) defines the fluid-phase mass density as an affine function of 

the brine concentration. Since the mass densities of “pure water” and “pure brine”,  

and , are given constants in the formulation used here, the average of the function 

 reads 

 . (5.23) 

For ease of notation, two “auxiliary” vector fields are introduced: 

 ,     . (5.24) 

By virtue of (5.24), the governing equations (5.10)  (5.11) become 

 , (5.25) 

 . (5.26) 
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By applying the average operator (5.16) to (5.10) - (5.11) (or, equivalently, to 

(5.25) - (5.26)), and using (5.18) - (5.20), the averaged form of the governing equations 

is: 

 , (5.27) 

 . (5.28) 

The averaged vector fields in (5.27) - (5.28) may be written as 

 , (5.29) 

 , (5.30) 

 , (5.31) 

where the projection operator  has been applied to the vectors  and  in order to 

obtain  and , respectively. 

The use of (5.31) renders the equations to be solved very difficult. In order to overcome 

this difficulty, the dispersion part of the diffusion-dispersion tensor from the original 

model is neglected here. Moreover, by assuming that  and  are given constants, 

and linearizing the ratio , the tangential component of the diffusive 

mass flux is rewritten as 

 , (5.32) 

where . In order to compute the average of the diffusive mass flux (5.32), it 

is further assumed that the term  is negligible, and one gets the approximated 

averaged expression 

 . (5.33) 

The last quantity to be examined is the advective term , which gives rise to me-

chanical macrodispersion (cf. /BEA 79/, /BEA 90/ for details). In the case of flow of a 
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single fluid phase in an aquifer, Bear and Bachmat /BEA 90/ assume that the macro-

dispersion associated with the total mass flux can be neglected, and thus write 

 , (5.34) 

this meaning that  is small in comparison with . However, by using the 

constitutive expression (5.6), and substituting it into (5.34), it should be noticed that 

(5.34) implies 

 . (5.35) 

The mathematical assumption of neglecting fluctuations amounts to neglect dispersion 

in the averaged form of the brine mass balance law. Note however that the neglected 

terms in (5.35) model mainly the part of the dispersion in the normal direction to the 

fracture. The tangential dispersion in (5.31) was neglected for the sake of the mathe-

matically rigorous derivation. To compensate this simplification, the dispersion, ne-

glected in (5.35), is included into the definition of , replacing (5.33) by 

 , (5.36) 

where , 

 . (5.37) 

Note that  is a -tensor. 

The averaged source/sink term in (5.28) has to be approximated, too. For this purpose 

is set 

 . (5.38) 

Note that for the sources,  and  are known, so that (5.38) can be considered as a 

redefinition of . For sinks, (5.38) becomes an exact equality if  is constant 

along the fracture width. 

The simplified form of the averaged governing equations in the fracture is thus given by 
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 , (5.39) 

 , (5.40) 

where  does not depend on the unknown functions and is considered to be 

given,  and  are defined in (5.29) and (5.36) - (5.37), respectively, whereas  

and  (with ) are approximations of the fluxes  and  in (5.27) - (5.28). 

The quantities  and  are defined in section 5.2.6, where interface balance laws 

are discussed. Equations (5.39) - (5.40) amount to say that averaged quantities are 

considered constant throughout the fracture thickness. This property follows from the 

definition of the averaging operator (5.16), and is the goal of the procedure. Within this 

approach, a given fracture is regarded as a “shell”, i. e. an object whose balance laws 

are written with respect to the tangent space to its mean surface. 

(5.39) - (5.40) describe density-driven flow and brine diffusion by means of the aver-

aged quantities  and , which are defined on the mean plane of the fracture, , 

that means they provide an -dimensional representation of the phenomena tak-

ing place in the fracture. Equations (5.39) - (5.40) in the unknowns  and  are thus 

defined on  (not in ), and have to be coupled to the set of equations for the concen-

tration and the pressure defined in , not in . These new unknowns are 

denoted by  and . They approximate the original unknown func-

tions  and  defined in the smaller domain . For  and 

, equations to (5.10) - (5.11) are formulated analogously: 

 , (5.41) 

 , (5.42) 

where 

 , (5.43) 

 . (5.44) 

Equations (5.41) - (5.44) are defined in  (not only in ). Boundary conditions at the 

fracture-medium interface have to be prescribed. 
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Equations (5.39) - (5.40), obtained by adopting Bear's method 0, are similar to those 

determined by Hassanizadeh and Gray /HAS 89a/, which are based on the averaging 

procedure put forward by Gray /GRA 82/, /GRA 83/. In /HAS 89a/, the authors mod-

elled transport across zones with “reduced dynamics”, and formulated conditions link-

ing the dynamic processes among different flow regions. Their resulting equations rep-

resented vertically averaged balance laws of physical quantities defined in a nonsim-
ple interface (e. g., a fracture) between two domains. The constitutive prescriptions as 

well as Darcy and Fick's laws were assigned to the macroscopic quantities featuring in 

the averaged equations. 

5.2.6 Balance laws at the fracture-medium interface 

The conditions at the fracture-medium interface express the continuity of mass and 

momentum for both the brine and the overall fluid-phase across the fracture boundary 

. The boundary  is modelled as a simple interface, i. e. an inter-

face that satisfies the following requirements: 

1. it is a narrow zone whose thickness is of the order of the REV length scale; 

2. it does not constitute an actual barrier between the two adjacent media; 

3. the two adjacent media are in direct thermodynamic contact. 

The unit vector normal to  and tangent to the -plane will be denoted by . 

Firstly, the case of the full-dimensional (i. e. -dimensiona) fracture is considered. The 

mass balance at the fracture-medium interfaces is given by the continuity of the normal 

components of the mass fluxes of both the fluid-phase as a whole and the brine. When 

referred to  and , the explicit form of these conditions reads 

 , (5.45) 

 . (5.46) 

For the band-shaped lateral boundary, , one obtains 

 , (5.47) 
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 . (5.48) 

The balance of momentum, under the hypotheses of macroscopically inviscid fluid and 

negligible advective contributions, implies that both  and  are continuous across 

 and  /HAS 89/, i. e. 

 ,     and     ,     on  and . (5.49) 

The balance laws (5.45) - (5.49) for modelling the interaction between the fracture, , 

and the surrounding porous medium, , hold when  is regarded as a -dimensional 

object. Since the concentration of the brine is continuous across the interfaces, and the 

fluid-phase mass density is continuous too, the discontinuity of the normal derivatives 

of pressure and concentration is due to the abrupt changes of permeability and diffusiv-

ity when passing from the fracture to the embedding medium, and vice versa. 

Consider now the -dimensional representation of the fracture. In (5.27) and 

(5.28), the mass fluxes normal to the surfaces  and  are combined in the auxil-

iary quantities  and , where . Equations (5.45) and (5.46) imply that 

each of these quantities is conserved when crossing the fracture-medium interface, i. e. 

      and          with . (5.50) 

When the fracture is considered as a -dimensional object,  and  “ideally” 

lie one upon the other, and coincide with the mean surface . Thus, the band-shaped 

boundary, , collapses to a closed line, i. e. the contour of , which is denoted by 

. Although the equivalent fracture is now represented by , the sums 

 , (5.51) 

 , (5.52) 

which are computed on the two sides of , do not vanish in general, for they represent 

the “jump” of physical quantities that are processed in the fracture and exchanged with 

the surrounding medium at the two sides of . In other words, the surface  has to be 

treated as a discontinuity surface. This situation is modeled by assigning to each point 

of  three values of concentration, , and three values of pressure, 
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, where  and  are approximations of  and  introduced in 

section 5.2.5. Then, the normal derivatives of pressure and concentration featuring in 

(5.45) and (5.46) are approximated in the following way: 

 ,     and     ,     . (5.53) 

Furthermore, since (5.51) - (5.52) require only the evaluation of the Darcy's specific 

discharge and Fick's diffusive flux at the two sides of , the following approximations 

for numerical computations are used: 

  , (5.54) 

 , (5.55) 

where . The term  on the right-hand side of (5.54) requires 

some explanations. 

Whereas the jumps (5.51) and (5.52) can be physically meaningful at the inner points 

of the surface , they may produce unphysical artifacts at . In fact, these artifacts af-

fect the pressure distribution across the fracture, and the evaluation of the Darcy's spe-

cific discharge. The origin of this problem is the approximation of the buoyancy term 

 featuring in Darcy's law. In order to see that, the following consideration was 

made. A horizontal fracture (i. e. ) is considered, placed at the height  of an ab-

solute coordinate frame, and . Because of averaging, the concentration 

 is replaced by its averaged value, , which, by its own definition, is constant along 

the -axis of the fracture. Consequently, the mass density of the fluid-phase is constant 

along the -axis too. This means that, in the hydrostatic case, the pressure drop across 

the surface  is . This result, however, disagrees with the pressure distribution 

in the medium. Indeed, at the height , the pressure in the medium has a determined 

value and there is no jump. This disagreement generates parasite flows, whose veloci-

ty is proportional to . It should be underlined that the reason of the disagreement is the 

shrinking of the -dimensional fracture to a surface (or a line in 2D), after which the 

physically correct pressure drop between the sides of the fracture becomes a disconti-

nuity at the surface . 
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In order to reduce the parasite flows, the pressure field is corrected, and the buoyancy 

term normal to  in the approximated expression of Darcy's law (5.54). A physical ex-

planation for this correction might be based on the concept of excess mass put forward 

by Murdoch /MUR 99/, MUR 05/. When the fracture is regarded as a -dimensional 

object, pressure and brine concentration are defined both in  and in  and are con-

tinuous across the fracture-medium interface. However, for a -dimensional frac-

ture, pressure and brine concentration in the medium are prolonged over the wider 

region , while the fracture reduces to the surface . The correction 

consists of compensating for the pressure prolonged over  by accounting for the 

mass that is “removed” from the fracture and “given” to the surrounding medium. For 

example, for the half-region above , the reasoning here leads to the definition of the 

excess mass density: 

 . (5.56) 

Use of (5.56) in the definition of Darcy's law, and approximating the normal derivative 

of the pressure as in (5.53) lead to (5.54). The concept of excess mass density is used 

in order to reformulate the normal component of Darcy's velocity at the fracture-

medium interface of a -dimensional fracture. For example, for , it is written 

 . (5.57) 

The approximated normal velocity  in (5.54) is obtained by expanding the normal 

derivative of the pressure as explained in the first equality from (5.53). 

An alternative explanation may be based on mimicking the consistent-velocity approx-

imation. In order to illustrate the procedure leading to (5.54), a horizontal fracture is 

considered, and the pseudo-potential is defined by 

 , (5.58) 

where  identifies the mean plane of the fracture. The component  of  can be 

rewritten as 

 . (5.59) 
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The value  is approximated by the following finite difference 

  (5.60) 

By approximating the brine concentration in the fracture by its boundary value, 

i. e. , and using the fact that pressure is continuous across the surface 

, (5.60) may rewritten as 

 . (5.61) 

It should be remarked that, at this stage, the fracture is regarded as very thin, but has 

not yet degenerated to a surface. 

When the fracture “shrinks” to an equivalent surface, the pressure  is actually com-

puted at . In order to see that, the hydrostatic pressure distribution  in the 

whole medium (i. e. in ). is considered. In the region above the fracture, one 

obtains (in global coordinates): 

 . (5.62) 

where  is the value of  at which the fracture mean plane is located. It should be re-

marked that the function  is defined on the interval , where  is the 

height of the global domain. 

When the fracture “shrinks” to a surface, the pressure in the medium above the fracture 

is actually defined on the wider interval . In order to account for that, the ex-

tension of  to the interval  is defined in the following way 

 . (5.63) 

In “shrinking” the fracture to its mean plane, the quantity  is are actually computed 

on the plane . Since  is small, the calculation of  is approximated as 

follows: 

 . (5.64) 
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Requiring (5.64) to be valid also in the dynamic case means that the pressure differ-
ence  does not lead to a fluid motion. This leads to the condition 

 . (5.65) 

By substituting result (5.65) into (5.61), one obtains (in global coordinates) 

 . (5.66) 

This equation was found by considering the half of the fracture above the mean plane 

. By extending this treatment also to the half of the fracture below the mean 

plane, and making the identifications , , and  

, the approximated normal velocity is obtained as 

 . (5.67) 

Equation (5.54) is found by generalizing these results to the case of an oblique frac-

ture. 

By (5.54) - (5.58), the fluxes to be introduced in (5.39) - (5.40) are thus defined by 

   (5.68) 

   (5.69) 

and the continuity conditions at the fracture-medium interface read 

 ,     and     ,     with . (5.70) 

The dependence of the quantities  and  on their full list or arguments has been 

written explicitly. It should be noted that, in the first term on the right-hand side of 
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(5.69), the variable  has been introduced. This is done in order to use the upwind 

method for the computation of . When this mass flux is “leaving” the fracture, 

i. e. , the variable  is set equal to the averaged concentration in the fracture, 

i. e. . In the other case, i. e. ,  is set /BEA 90/. 

In the case of permeable boundary , the interface conditions (5.47) - (5.48) have to be 

written in averaged form. This noticeably complicates the treatment of the problem. 

This difficulty is circumvented by requiring that the band-shaped lateral boundary of the 

fracture is impervious /ANG 09/. Accordingly, (5.47) - (5.48) are substituted with the 

following interface conditions valid on : 

 ,     , (5.71) 

 ,     . (5.72) 

In this case, the brine concentration does not need to be continuous on . 

In summary, the density-driven flow in a domain filled with porous medium with the 

-dimensional fractures is modeled by equations (5.41) - (5.42) in  and 

(5.39) - (5.40) on the surfaces  (the fracture network). The interface conditions are 

described by (5.70) - (5.72). 

5.3 Model of contaminant transport in fractured porous medium 

The model used in the program package r3t consists only of the transport equations of 

the general form 

  (5.73) 

where the index  distinguishes between the surrounding bulk medium and the 

fracture,  denote the unknown concentrations for contaminant ,  

describes effects like the porosity of medium, the density of fluid and/or retardation 

factor,  describes the solubility (precipitation),  is the transport velocity,  the 

diffusion and dispersion tensors, and  represents the sources or sinks, in partic-
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ular due to the reactions and the radioactive decay. For every  and  the term  

may depend on  for all , and the set of all these concentrations is denoted by . 

For the development of the model for the fractures represented as low-dimensional 

manifolds for (5.73) is followed the same approach as for the transport equation (5.11) 

in the model of the density-driven flow, see section 5.2 for details. To do this, it is as-

sumed that the model coefficients like the porosity, retardation factors, precipitation 

coefficients etc. are piecewise constant in . The rigorous mathematical derivation 

supposes also some special conditions on the diffusion and the dispersion tensors, but 

in the implementation, a more general form is considered. The application of this ap-

proach yields three sets of equations. Equations for the surrounding medium 

  

  (5.74) 

equations for the fracture  

  (5.75) 

and the interface conditions 

      with , (5.76) 

on . In (5.75) - (5.76), 

 ,     . (5.77) 

In (5.74) - (5.77), the analogous notation as in section 5.2. is used. In particular, 

 and  denotes the concentration on one side of the fracture.  denotes 

the transport velocity along the fracture, and the normal velocities of the fluid at the 

sides of the fracture are denoted by . For , the  is set equal to the aver-

aged concentration in the fracture, i. e. , whereas for ,  is 

set. The -tensor  describes the diffusion and the dispersion in the 

plane of the fracture. In (5.75), the following approximation is implicitly used 
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 , (5.78) 

where  denotes the set of  for all . 

For the numerical solution, system (5.74) - (5.77) must be closed by the specification of 

the boundary and initial conditions. On the edges of the fractures, the no-flux boundary 

conditions are imposed, as for the case of density-driven flow (see section 5.2.6). 

5.4 Finite-volume discretization and numerical solvers 

This section is devoted to the numerical methods for the solution of the models pre-

sented in sections 5.2 and 5.3. As both the models have similar properties from the 

point of view of the extension to the fractured medium whereas discretizations of the 

model of the density-driven flow require some additional constructions, the description 

of the numerical methods is confined on the model from section 5.2. A large part of 

changes extending d3f and r3t to the fractured media has been made in the UG library, 

so that both the programs refer to the same modules. This concerns the management 

of the grid, the placement of degrees of freedom and the basics of the finite-volume 

discretization. Application-specific parts of r3t are implemented similarly to those in d3f. 

The main feature of the models from sections 5.2 and 5.3 is the presence of the partial 

differential equations on the domains of different dimensionalities. For example, in the 

model of the density-driven flow, the coupled systems (5.39) - (5.40) and (5.41) - (5.42) 

have dimensionalities  and , as well as separate unknown functions defined in 

the same domain. This feature is important for the discretization. Below a vertex-

centered finite volume discretization of (5.39) - (5.40) and (5.41) - (5.42) is presented. 

The finite-volume method, also known as the control volume /KAR 95/ or finite volume 

element methods /CAI 90/, is very popular in the numerical solution of PDEs. Applica-

tion of this method to (5.1) - (5.2) in domains without fractures was presented in 

/FRO 98a/. A similar method is used for both (5.39) - (5.40) and (5.41) - (5.42). The 

essential difference of the presented method from the one described in /FRO 98a/ is 

that the -dimensional fractures embedded in the -dimensional domain have 

their own degrees of freedom. Furthermore, the proposed method allows to resolve the 

jumps of the -dimensional part of the solution at the fractures. 
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5.5 Discretization grids and degrees of freedom 

The following notation is used. The time interval is covered by a grid  with 

; . It is assumed that  is polygonal, and the 

 -dimensional network of fractures  is piecewise planar. The domain  is 

covered by a conformal triangulation  that consists of triangles and quadrilaterals if 

 and tetrahedra, prisms and hexahedra if . It is supposed that for every ele-

ment ,  is either empty or consists only of corners, whole sides and whole 

edges of . Thus,  is covered by the -dimensional triangulation 

. To simplify the notation, it is assumed that every  has at 

most one side on  and at most one on . Similarly,  may not have more than 

one side on . The generalization is straightforward. 

Denote by  the set of all grid points, i. e. corners of the elements of . Let 

. For the approximation of the discontinuities on , grid functions are considered 

that may have several values at every . To define them properly, a special enu-

meration of the grid points is introduced so that several indices correspond to the same 

. Degrees of freedom are uniquely assigned to these indices and not directly to geo-

metric positions. 

To this end, for every , consider a ball , 

where  is the minimum distance between  and those sides and edges of 

elements  which do not contain . Fractures  cut these balls into disjoint open 

subsets (cf. Fig. 5.2). Denote these subsets of  for all  by , …, , where 

 is the total number of them. The closure of every  contains only one , 

and this point is denoted by . Under this enumeration, there may be  for 

. For simple straight fractures, points  have two different indices, and the 

intersection points of the fractures have even more ones. For  or , 

 does not split , that means  cuts  into one part. For , denote 

. These are indices of corners of  regarding the 

orientation of  with respect to the fractures. 
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Fig. 5.2  Enumeration of the grid nodes in a piece of a grid with N=100.  

The thick lines denote the fractures 

To represent the numerical solution of (5.41) - (5.42), for time  and index  

the degrees of freedom  and  are introduced. For each ,  and  in 

the solution of (5.41) - (5.42) are continuous in . In the numerical solution,  and 

 approximate the limits 

 ,     . (5.79) 

Piecewise linear functions  are defined by the linear interpolation of the 

values  and  for  in every . These functions may be discontinuous 

only at . 

In the fractures, grid functions  and  are introduced approximating  and  at 

time  independently on  and . Let . Additionally to the enumeration 

above, indices  are assigned to all the points from , so that 

. Then  are continuous piecewise linear functions with 

nodal values  and  at . For , let . 

Furthermore, let , if , and  otherwise. Then  is 

the set of all the indices of neighbouring grid points of . For , , 

whereas for , . Besides this, for , let 

 and, for , let . Sets  repre-

sent the relations between the “fracture DOF (degree of freedom) indices” and the “bulk 

medium DOF indices” of points . Note that for , . 

B1

B2 B3

B4

B5 B6

B7

x1

x2=x101

x3=x4=x102

x5=x6=
x7=x103
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5.5.1 The finite-volume discretization 

With each , , a computation cell (“control volume”) is associated by con-

structing a conformal dual mesh of finite volumes . The choice are the so-called 

barycenter based control volumes.  is defined as a union of  for all  such that 

. To get , the element  is cut by the segments of the straight lines, connecting 

the barycenter of this element with the centers of its sides (for ), or by the seg-

ments of the plains spanning the barycenter of the element, the centers of the edges 

and the barycenters of the sides (for ). Then  is the part of  containing . The 

segments are denoted by , i. e.  for . Besides, 

 is defined with  and . Then 

 . (5.80) 

By  the unit normal vector to  is denoted pointing out of , i. e. . For 

 (i. e. when  lies on a fracture), normals  and  are constant on . One 

of them is , the other one . 

Control volumes  are used in the discretization of (5.41)  (5.42). For every , 

, if  does not lie on the Dirichlet boundary, (5.41)  (5.42) are integrated over . After 

the application of the divergence theorem, one gets: 

 ,  (5.81) 

 , (5.82) 

where the summation runs over all , such that , and . In 

this work, for the approximation of the time derivative the backward Euler scheme is 

used: 

 . (5.83) 

The summands in (5.81) – (5.82) corresponding to the indices  depend only 

on  and . For them, the approximation from /FRO 98a/ is used. In particular, the 

so-called consistent velocity is used for , cf. /FRO 98/, /FRO 96a/, and an 

upwind method is applied for the discretization of the convection term . Consider 

the summand with . It requires a special treatment. Let  be such an element that 
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 and . Let  be such that . (5.70) is used and the follow-

ing approximations: 

 , (5.84) 

 . (5.85) 

These approximations are algebraic functions of , ,  and . 

For the discretization of (5.39) - (5.40), -dimensional computation cells are con-

structed in : With every  the -dimensional control volume is associated 

 . (5.86) 

At the intersections of the fractures,  may lie in several intersecting planes. For 

, boundary segments  of  are introduced analogously to : For , 

. Besides this,  is the intersection of  with the edge of the 

fracture. For every ,  is the unit normal vector that lies in the plane of  and points 

out of . Note that  are barycenter based control volumes, too. Integration of      

(5.39) - (5.40) over  yields: 

  (5.87) 

  (5.88) 

where the summation runs over all , such that , and . For 

the approximation of the time derivative in (5.88), the backward Euler scheme is used, 

too: 

 . (5.89) 

As  are segments of straight lines (for ) or points (for ), the integrals are 

discretized over them in (5.87) - (5.88) using the method from /FRO 98a/ formulated in 

 dimensions for  and . For , the consistent velocity from /FRO 96a/ is 
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used. For the convection term in (5.88), a -dimensional version of the upwind 

method for the discretization of (5.82) is applied. 

To approximate the integrals of  and  (cf. (5.68) - (5.69)) in (5.87) - (5.88), the 

fact is used that  (cf. (5.86)) where  are disjoint planar 

sets: 

 , (5.90) 

 . (5.91) 

The contribution of (5.90) - (5.91) to (5.87) - (5.88) is exactly the same as the contribu-

tion of the terms (5.84) - (5.85) to (5.81) - (5.82) so that the entire discretization is con-

servative w.r.t. the mass of the total fluid phase and mass of the salt. 

Conditions (5.71) - (5.72) at  are natural boundary conditions for the finite-volume 

discretization. They introduce no additional terms in (5.81) - (5.82) and (5.87) - (5.88). 

Further boundary conditions should be used for  and  at . 

Using the introduced approximations of the integrals in (5.81) - (5.82) for all  and in 

(5.87) - (5.88) for all , one obtains a sparse system of  nonlinear algebraic 

equations. The solution of this system approximate the analytical solution of the model 

derived in section 5.2. 

Technically, the assembling of this nonlinear system can be implemented as a cycle 

over only the elements of . When assembling the contribution of, say, triangle 

 in Fig. 5.2, not only the local matrices are computed for (5.81) - (5.82), but 

also a part of the local matrix for (5.87) - (5.88) for the segment . This part 

consists of (a) the integrals of  and  for only one  such that  is the inner 

normal for the triangle and (b) the terms with the time derivative and the integrals over 

 multiplied by . As soon as the contribution of the element on the opposite side of 

the fracture is assembled, the terms (a) with the second  as well as the same value of 

terms (b) are added to the local matrix of  (so that the factors  sum up to 

unity). Thus distinguishing between the sides of the fractures can be avoided. 
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5.5.2 Solution of the discretized system 

In programs d3f and r3t, implicit time discretizations are used. This means, the discreti-

zation of the model in space and time leads to a large sparse system of algebraic 

equations in every time step. Computation of the stationary flow with d3f requires the 

solution of a large sparse non-linear system of algebraic equations, too. In r3t, further 

methods like operator splitting, can be used for the reaction terms. 

In the simulations, these non-linear systems are solved by the Newton method. To 

make use of the sparsity of the linear systems in the iterations of the nonlinear solver, 

they are solved by the biconjugate gradient stabilized method (BiCGStab) with the ge-

ometric multigrid preconditioning (cf. /BAR 93/). In the multigrid cycle, the ILU -

smoothers and the Gaussian elimination are used as the coarse grid solver. This multi-

grid preconditioner proved to be very efficient in the case of not too complicated geom-

etries such that the coarse grid is not extremely detailed. The matrices in the grid hier-

archy are not computed by the Galerkin formula but assembled as the Jacobians of the 

discretized nonlinear systems for each grid. 

The quality of the smoothing by the ILU -decompositions in the geometric multigrid 

method strongly depends on the ordering of the grid nodes. The algorithm implemented 

in UG for the lexicographical ordering of the nodes is based on the geometric proper-

ties of the grid. Applied directly to the grids described in section 5.5, this algorithm pro-

duces a random ordering of the nodes situated at the same geometric positions on the 

fractures. For this ordering, the BiCGStab iteration demonstrates typically a very pour 

convergence. 

To avoid this situation, the geometric positions of the vertices  are changed to 

make the fracture “thick”, i. e. these vertices are moved towards the surrounding medi-

um away from . The positions of the vertices from  are not changed. The distance 

at which the vertices are moved is very small in comparison with the diameters of the 

grid elements, so that this transformation does not change the geometry of the grid 

essentially. For this new grid, the standard algorithms from UG produce a proper order-

ing. After the ordering phase, the original geometric positions of the vertices are re-

stored whereas the ordering is kept unchanged. For the ordering constructed in this 

way, the BiCGStab iteration with the geometric multigrid preconditioner achieves very 

good convergence rate. 
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Nevertheless, in the case of a large number of fractures, the coarse grid becomes very 

detailed and the efficiency of the geometric multigrid preconditioner is essentially influ-

enced by the coarse grid solver. In these situations, the Gaussian elimination can be 

replaced with the filtering algebraic multigrid method. 

A further difficulty arises in the simulations of the density-driven and stationary flows 

with d3f due to the floating-point representation of the nodal values of the pressure. In 

the model derived in section 5.2, up to the Dirichlet boundary conditions, the pressure 

is used only in the form of the gradients or the finite differences at the fractures. The 

discretized model depends only on the finite differences of the pressures at neighbour-

ing grid nodes, i. e. only on the local variations of the pressure. But these variations are 

typically very small in comparison with the values of the pressure in the whole domain, 

especially for the fine grids. This leads to the loss of the absolute precision in the nu-

merical approximation of the gradients due to the cancellation phenomena in the float-

ing-point arithmetic. Then the numerical solvers cannot achieve the prescribed abso-

lute precision and stop to converge. This situation can be avoided by setting a greater 

threshold for the absolute precision, but this reduces the accuracy of the solution, and, 

furthermore, this threshold depends on the (usually a priori unknown) maximum pres-

sure in the domain. 

As a remedy, the computation of the discrete solution in every time step has been split 

into two phases. In the first phase, the system is solved with a relatively large threshold 

of the absolute precision. It should be denoted the result of this computation by 

. Then  is used as a reference pressure in the second phase of the com-

putation. In that phase, the deviation  is used as the unknown function 

instead of . The gradient in the model is represented as  (and analo-

gously with the gradients in the fractures), where  is known so that the terms de-

pending on it can be moved into the right-hand side. The local variations of  are usu-

ally comparable with the values of , and the cancellation phenomena do not reduce 

the precision significantly. The result of the second phase of the computation is the 

concentration  and the correction , both computed with a practically acceptible pre-

cision. 

Basing on  and , the correct Darcy velocity can be computed, for example, for the 

visualization. Note, however, that a specially implemented procedure which uses the 

couple  should be used for this. Merely storing the sum  and the 

computation of the velocity from it makes no sense as the cancellation phenomena 
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take place during the summation. Furthermore, it should be noted that the precision of 

the computation of  (in contrast to that of ) in one time step does not play any role in 

the computation of the next time step as the model does not include  explicitly. 

5.6 Numerical experiments 

To validate the derived model and to verify the functionality of the software, several 

numerical experiments are carried out. The results from the simulations are compared 

with the low-dimensional representation of the fractures with the results from the exper-

iments with the full-dimensional fractures. Some of these tests with the program d3f are 

present here. Further tests can be found in /GRI 10a/, /GRI 11/ and /STI 11/. 

5.6.1 Tests in 2d 

The problem of the density-driven flow in the whole region of observation is formulated 

by using (5.39) - (5.40) with (5.29), (5.36) in the fracture, and (5.41) - (5.44) in the em-

bedding medium. The interface conditions are expressed by (5.67) - (5.71). In order to 

validate these results, simulations with the -dimensional fracture (cf. /JOH 02/, 

/JOH 06a/) are performed. In this case, (5.1) - (5.5) is solved, with the appropriate coef-

ficients, both in the fracture and in the embedding medium, and the interface conditions 

(5.45) - (5.49) are used. Also in this case, the results are shown in terms of velocity 

profile and isolines of the mass fraction. 

 

Fig. 5.3  Geometry and boundary conditions for the modified Henry problem featur-

ing a fracture 
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The following examples are computed for both the - and the -dimensional ap-

proach: (i) oblique fracture, (ii) junction of two oblique fractures. A modified version of 

the classic seawater intrusion problem by Henry /HEN 64a/ is considered where the 

domain, a rectangle  , features a fracture (cf. Fig. 5.3). At the top ( ) and 

the bottom (  ), zero-flux boundary conditions are imposed for both the flow and 

the transport equations. At the inland side (left, ),  is set ( , 

fresh water) and a constant flux (  , cf. /SIM 04/) is prescribed. At 

the sea side (right,  ),   ( ) and hydrostatic pressure 

are imposed. The parameters used for the computations are listed in  

Tab. 5.1 Parameters used for the computations 

Symbol Quantity Value 

 Diffusion coefficient in the medium 6.6 · 10-6 m2 · s-1 

 Diffusion coefficient in the fracture 13.2 · 10-6 m2 · s-1 

 Gravity 9.81 m · s-1 

 Permeability of the medium 1.019368 · 10-9 m2 

 Permeability of the fracture 1.019368 · 10-6 m2 

 Porosity of the medium 0.35 

 Porosity of the fracture 0.7 

 Viscosity 10-3 kg · m-1 · s-1 

 Density of water 10-3 kg · m-3 

 Density of brine 1.025 · 103 kg · m-3 

,  Dispersivity lengths 0 
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In the first experiment the thin fracture (  ) has endpoints at 

 and  (cf. Fig. 5.3 and Fig. 5.4). The funda-

mental result is that the velocity in the fracture produces a deflection of the isolines of 

the mass fraction, which is maximal at the right end of the fracture (sea side). The 

magnitude and the direction of the velocity in the fracture (from left to right) hinders the 

spreading of the brine in the fracture. This happens because of the strong permeability 

contrast between the fracture and the medium. Slight variations of the slope of the frac-

ture do not change the essence of the described phenomenology. 

Simulations were performed on a grid with about  grid nodes and the timestep 

was chosen  sec. In the full-dimensional representation, fracture width was re-

solved by 8 layers of elements inside the fracture. 

  

Fig. 5.4  Isolines of the mass fraction (corresponding to , 

) and velocity directions of the (left) - and (right) -

dimensional simulation of Henry's problem with a fracture of width 

  at time  min 

To compare the results of the simulations with the low- and the full-dimensional repre-

sentations of the fracture, the point with   on the middle line of the fracture is 

chosen. Then the concentration  from the simulation with the low-dimensional frac-

ture representation is compared with the concentration obtained by averaging the con-

centration from the simulation with the full-dimensional representation over the normal 

cross-section. As the full-dimensional simulation computes the mass fraction , it is 

transformed into the concentration by formula . For conven-

ience, the non-dimensional concentrations (volume fractions)  are com-

pared whose maximum value is 1. The absolute error between the non-dimensional 

concentrations of the two simulations is . These results are pre-

sented in Fig. 5.5. 
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As a further test, the intersection of two fractures with   is presented. 

The first fracture has the endpoints at  and , and the se-

cond one  and . All the other model parameters are the 

same as in the previous test. 

  

Fig. 5.5  Comparisons of full- and low-dimensional simulations at x=1.5 m  

non-dimensional concentrations (left) in the fracture and its absolute error, 

jump of the non-dimensional concentrations (right) between the sides of the 

fracture and its absolute error 

Simulations using both the low- and full-dimensional representations of the fractures 

produce similar pictures of the flow field and the distribution of the mass fraction, cf. 

Fig. 5.6. The deflection of the isoline cutting the lower part of the second fracture (on 

the right of the intersection point) points towards the inland side. In all other cases, the 

isolines of the mass fraction are deflected towards the sea side (right). Thus, along the 

second fracture the deflection of the isolines undergoes a transition, which takes place 

at the intersection point. This is also the center of the vortices. 

 

Fig. 5.6  Isolines of the mass fraction (corresponding to , 

) and velocity directions from the simulation with an intersection of 

fractures at time  min 
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Thus, for sufficiently thin fractures, the simulations with the low-dimensional represen-

tation of the fracture show qualitatively and quantitatively good agreement with the re-

sults obtained in the simulations with the full-dimensional representation of the fracture. 

Some restrictions of the model are discussed in /GRI 10a/, /GRI 11/and /STI 11/. 

5.6.2 Test in 3d 

The usage of the programs in 3d does not principally differ from that in 2d. As an ex-

ample, a three-dimensional variant of the problem from section 5.6.1 is used. The do-

main is an extrusion of the domain from section 5.6.1 in the -direction, so that it is a 

parallelepiped of size  . It contains two crossing fractures, a slightly oblique 

one and a vertical one. Fig. 5.7 presents the location of the fractures and a part of the 

boundary grid. The same model parameters (in particular, in the fractures) and bounda-

ry conditions as in section 5.6.1 are used. The horizontal fracture has the aperture 

 , and the vertical one  . 

 

Fig. 5.7  Location of the fractures, boundary grid and decomposition into the bound-

ary surfaces in the 3d test 

Fig. 5.8 shows the isolines for  (yellow, transparent) and  (blue, solid) at 

time  h. The vertical fracture allows the saltwater to penetrate into the upper part of 

the domain. The effect of the horizontal fracture can be mainly seen near the vertical 

one and is there the same as in the 2d tests in section 5.6.1. 
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Fig. 5.8  Isolines for c=0.1 (yellow, transparent) and c=0.3 (blue, solid) at time 

100 min. in the 3d test 

In Fig. 5.7, every boundary surfaces is painted with its own color. Note that the frac-

tures intersect the boundary. In particular, the intersection of the horizontal fracture with 

the boundary is completely embedded in the “rear wall” and does not cut it completely. 

For this, the “rear wall” has been split into 2 “bulk” surfaces. The intersections of the 

fractures with the “rear wall” are subdivided into 4 further (degenerated) surfaces. 

Thus, the “rear wall” consists of 6 surfaces, and the Dirichlet boundary conditions for  

and  must be specified on all them. 
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6 Modelling of free groundwater table 

In many applications of the groundwater flow the position of water table, i. e., the top 

surface that separates the fully and partially saturated zone in porous media, is un-

known in advance and has to be determined by the solution of corresponding mathe-

matical model. 

In this project, to enable such applications with d3f, several novel algorithms have been 

developed and implemented. The basic idea behind the algorithms is to use an implicit 

representation of the groundwater table by a so called level set function. In such a way 

one can use a fixed (enlarged) computational domain that encloses the groundwater 

flow with dynamic top surface and a fixed computational grid with no complex construc-

tion of moving meshes having the grid nodes fitting the dynamic position of groundwa-

ter table. Furthermore, the movement of groundwater surface can be found by the solu-

tion of advection equation for which well-established numerical methods exist.  

The advantages of level set methods are accompanied by some additional require-

ments during operation that are not necessarily trivial. The implementation in d3f in-

volves extrapolation algorithms for the computation of missing groundwater flow veloci-

ties above the top surface and the computations of signed distance function that is  

required to obtain the normal directions with respect to the top surface of groundwater 

flow. A few parameters have to be chosen to control the behaviour of the new numeri-

cal methods. 

6.1 Level set function 

In this section the level set formulation of an implicit description for the position of 

groundwater table will be given. 

6.1.1 Mathematical description 

As mentioned before, the position of the groundwater table (i. e., the top surface of 

water in porous media) will be described in an implicit way as the zero level set of 

some function, the level set function. 
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The groundwater table is considered only as some fixed domain  and in the time in-

terval . If one denotes by  the time dependant position of the considered 

groundwater table, the set of all points lying on  will be defined as the zero set of 

level set function , i. e., 

  . (6.1) 

It is supposed that  is a single non-intersecting curve (or surface in 3D) that begins 

and ends at the boundary  of the domain . In such a way, it divides the computa-

tional domain  into two parts, the part below and the part above . Of course, the 

groundwater flow is considered only in the part below  and no flow is computed in 

the part above . The time dependent part of  where the flow is considered will be 

denoted by  and the rest by . 

Of course, . It is supposed that the rest of boundary of , i. e. , is 

fixed and can be treated in a standard way, e. g., some Dirichlet and/or Neumann 

boundary condition can be prescribed. See Fig. 6.1 for illustration of the introduced 

notations. 

 

Fig. 6.1 Illustration of the notation. The dynamic groundwater table is denoted by 

, the groundwater flow is considered only in  

To distinguish easily for each  to which part it belongs, it will be required that 

 if  and, analogously,  if . In the following this is 

referred to as that the level set function fulfils a sign property. 

The initial position  must be defined by the user providing some appropriate choice 

of corresponding initial level set function . Such initial position of the 
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groundwater table is either given by the desired engineering application that has to be 

simulated numerically, or if some unknown static position of groundwater table is 

searched, it represents some appropriate initial guess that has to be suggested during 

the model set-up. 

If a trivial shape of initial position is considered (e. g., a horizontal surface), the choice 

of the level set function can be defined using some prepared functions in d3f. If the offer 

of prepared initial level set functions does not fit the considered application, a new 

function must be implemented for which three rules must be fulfilled: 

1. The zero set (i. e., the set of all points where the value of level set function 

equals zero) must be identical with the initial position of groundwater table. 

2. The level set function must be non-positive in the part of domain where the 

groundwater flow takes place and positive in the part where no flow is consid-

ered. 

3. The gradient of level set function shall be nonzero with the most preferable 

choice . 

Of course, for any initial position  there exist infinitely many level set functions 

 for which  together with the required sign property of 

 for values .  

For several reasons to be discussed later one unique choice is preferable, the so called 

signed distance function that will be denoted by . In fact, the signed distance 

function  will be computed in this approach also for , therefore 

.  

The function  describes the (minimal) distance of any point  to the curve , 

i. e. 

   (6.2) 

The notation  denotes the Euclidian norm of the vector , i. e. 

  (6.3) 
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The signed distance function  is always a continuous function, but not necessary a 

smooth one, because the gradient  needs not to be defined for some . 

Nevertheless, this function can be found by solving the so called eikonal equation 

  (6.4) 

whereas its solution must be searched in a weak form /SET 99/, see some description 

later in this report. 

Any level set function  associated with  that fulfills the sign property (and for 

which the (non-zero) gradient  is available) describes uniquely the normal vec-

tors  with respect to  at  by 

 , (6.5) 

that points outwards with respect to .  

If  in (6.5) is evaluated for some , it is a normal vector for some curve of 

which all points  are given implicitly by . Again, the normal vectors 

will play an important role in the time dependent computations, therefore  

  . (6.6) 

6.1.2 Numerical implementation 

The level set function is represented in d3f in the standard way of a grid function like the 

pressure or concentration that will be described now in more details. 

Let  for  be grid nodes of some triangulation for the domain . Let 

the discretization of time interval for which the numerical simulation will be realized 

have the form . The elements of the triangulation will be de-

noted by  for . 
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The finite element interpolation (shape) functions, as used by finite element meth-

ods, will be denoted by  and the following standard properties will be ex-

ploited:  are continuous functions, 

  (6.7) 

and the gradient ,  is well defined for each element of the triangulation. 

If the initial level set function  is given analytically, either using predefined functions 

in d3f or the one implemented by user, this function is represented by its numerical ap-

proximation  is obtained using the nodal values  

  (6.8) 

and the interpolation 

  (6.9) 

Consequently, the groundwater table  is approximated by  that is given as the 

zero set of . Therefore, the shape of such approximation is depending on the type of 

finite element interpolation functions. If triangles  (or tetrahedra in 3D) are used, the 

finite element interpolation functions  are piecewise linear, and, consequently, the 

groundwater table is approximated by a polygonal curve (in 2D case). Analogously, the 

gradient  is approximated by , but this approximation is not uniquely de-

fined on boundaries of elements , i. e., on edges, respectively sides of . 

As examples, two level set functions that are available in d3f are presented here.  

The first example is two- or three-dimensional linear level set function of the form  

  . (6.10) 

It is strongly recommended that for any application the linear level set function is cho-

sen such that the norm of its (constant) gradient is equal one, that means 

. In such a case it defines the signed distance function. Note that the 
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level set function in (6.10) can be represented exactly by the finite element interpolation 

(6.8) and (6.9) if at least piecewise linear shape functions are used. 

Once the function  is defined and initialized, it can be plotted using standard UG 

commands, see Figure below for an illustration. 

 

Fig. 6.2 Several contour lines (level sets) of the initial level set function (left) and 

zero contour line that defines the initial position of horizontal groundwater 

table (right) 

The second example is two- or three-dimensional level set function describing a part of 

circular interface: 

 , (6.11) 

where  denotes the radius and  the coordinates of the center for the circle 

(or sphere in 3D case). Note that (6.11) defines always the signed distance function. 

Concerning the finite element approximation of this function, it cannot be represented 

exactly and the quality of the approximation  is depending on the mesh. 

6.2 Computation of groundwater flow for a fixed groundwater table 

Firstly the extension of d3f is for groundwater flow of which the density is constant, 

e. g., the potential flow, will be described. In that case the equation for the unknown 

pressure is given by /BEA 88/, /FEI 99/ 

  (6.12) 
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and 

  (6.13) 

where  and  are constant properties of the groundwater (the density and viscosity, 

respectively), and  is the permeability that can be in general space dependant and 

anisotropic (i. e. represented by a matrix). Some standard boundary conditions must 

accompany the partial differential equation (6.13). 

The problem (6.13) is stationary, the only time dependency can be introduced by some 

time dependent computational domain  as it was discussed in section 6.1. This is 

motivated by arguments that the groundwater flow is immediately equilibrated with the 

actual position of the groundwater table. 

The movement of the groundwater table in time will be described in section 6.3. Here 

the case of a fixed time , e. g. , is considered, for which the position of ground-

water table  is known. So the task is to determine the groundwater flow described 

by (6.12) and (6.13) for a domain given by the part of  below , i. e. . 

For a fixed time one has to treat a standard model of groundwater flow. Some exten-

sion is necessary only for used numerical methods as described later. The boundary 

conditions on  are always the prescribed zero value for the pressure, i. e. the zero 

Dirichlet boundary condition. 

Without going into details, the general model of density driven flow in d3f can be formal-

ly used with moving groundwater table, but at the current stage of research and devel-

opment, the density shall be constant in the neighbourhood of the whole top groundwa-

ter table . 

6.2.1 Numerical implementation 

The position of the approximated top surface , that means the groundwater table, is 

described by some level set function , e. g. by the initial level set for . The idea 

of level set formulation is to use the standard computations of groundwater flow as 

usual in d3f with no modification of the triangulation of the domain . 



 

138 
 

For a fixed position of groundwater table, the computational domain is considered only 

in the part  of  below the fixed groundwater table. Consequently, the part of com-

putational domain  above the top surface is not included to simulations, it means 

no pressure (and velocity) is computed for grid nodes where the (fixed) level set func-

tion is positive. Therefore, the standard partial differential equation (6.13) for the 

groundwater flow is computed at the fixed time  only in the grid nodes  for which 

. 

The boundary condition  on  at any fixed time  is set directly by numerical 

discretization and cannot be changed.  

The main numerical tools how to extend the finite volume discretization of d3f for the 

case of implicitly given computational domain is the so called immersed interface for-

mulation. It is heavily based on linear interpolation and extrapolation what will be ex-

plained next. 

6.2.2 Immersed interface formulation 

The standard finite volume discretization as used in d3f and described in /FRO 98b/ can 

be realized only with elements  that lies completely below . Nevertheless, the 

discretization method must be applied also for elements  for which at least one cor-

ner, say , lies below , i. e. , and, at the same time at least one corner, say 

, lies above it. This is not possible without doing some additional work before, be-

cause the value of pressure in , say , is not available as it is not included to the un-

known values of the pressure to be determined. 

To derive a meaningful value of  that can be used for the derivation of i-th discrete 

equation, the following procedure is used for arbitrary type of element . This proce-

dure is inspired by the so called immersed interface methods /LIZ 06/. 

As mentioned in the previous paragraph, the above situation is characterized by the 

property  and . Supposing a linear interpolation between these two values, 

a unique point  exists for which this interpolation evaluates to zero. The coordinates 

of such a point can be easily defined by 

 , (6.14) 
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where  

  (6.15) 

Clearly, , therefore, the numerical pressure can be supposed to be zero at 

this point. Consequently, the value  can be extrapolated along the line starting at , 

crossing  and ending at , namely, 

  (6.16) 

Although  is valid in theory, this parameter can reach very small values and the 

computations of  using (6.16) can become unstable. Therefore, some constant pa-

rameter  is defined and if , the point  is considered to lie on , and the value 

of numerical pressure is set  using the Dirichlet boundary condition. 

The results of a simple example are presented below for a fixed horizontal groundwater 

table. Note that some outflow boundary conditions are defined at the bottom part of the 

square domain  to obtain some nontrivial groundwater flow regime in this example. 

 

Fig. 6.3 Groundwater table (left), pressure (middle), and groundwater flow (right) 

Next the computations of pressure, velocity and concentration in d3f in the case of an 

implicitly given computational domain are commented. Here the immersed interface 

formulation has to be used. 
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6.2.3 The pressure  

The pressure is computed only below the groundwater table, and at the exact position 

of the groundwater table it is equal 0, e. g. Dirichlet boundary conditions are used for 

the pressure on . This condition cannot be changed by users. The definition of oth-

er boundary conditions on the boundary  of the fixed domain  is done in standard 

way. Note that for the part of  above , the definition of boundary conditions is 

ignored. 

If the standard UG graphics is used to plot the pressure (as in Fig. 6.3), the values of 

the pressure above the groundwater table are formally set to 0. 

The UG graphics is in general imprecise for plotting the pressure near the groundwater 

table, because it can plot only functions that are linear in each element (the triangle in 

this example). For elements intersected by groundwater table, the pressure is piece-

wise linear inside of one element, i. e. it has a "knick" in such element. 

6.2.4 The groundwater velocity field  

The numerical groundwater velocity field can be computed only for grid elements, e. g. 

triangles, of which at least one corner lies below the groundwater table. That means, 

the level set function is negative in at least one corner of the element. If all corners lie 

below , the standard computation of velocity is used for this element. If at least one 

corner of the element lies above , at least one value of the pressure in a corner of 

the element is missing to compute the gradient of pressure numerically in (6.12) and to 

compute the velocity in the standard way. To provide the missing pressure value, an 

extrapolation is used from two values - the pressure below  and the zero pressure 

at . 

A new plot procedure was implemented and can be used with UG graphics, as done in 

Fig. 6.3. This plot procedure sets the zero velocity for all elements of which all corners 

lie above , for all other elements the procedure is used as described in the previous 

paragraph. 

The previously described extrapolation procedure of pressure is not unique, therefore 

one has to decide which particular form has to be used when computing the velocity. 
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This non-uniqueness can be illustrated for a triangle  for which one corner lies above 

 and the two remaining ones below it. To extrapolate the missing pressure value for 

the corner above, one has two choices because of two corners below  to be used 

with the extrapolation.  

In the plot procedure, the shape functions for each corner below  are evaluated in 

the point the velocity is to be computed for. The corner for which the shape function 

has the largest value is then used to extrapolate the missing pressure value for the 

corner above  as described in section 6.2.3. Finally, the standard procedure for the 

velocity computation can be used. 

6.2.5 The concentration 

The concentration, as usual in the standard version of d3f, has to be defined by initial 

conditions for some initial time. Concerning the extension of d3f for the presence of a 

free groundwater table, the concentration is kept above and at  at the values given 

by initial conditions that can be viewed, formally, as Dirichlet boundary conditions for 

the concentration. 

The concentration is constant everywhere in the example of Fig. 6.3, that means, the 

groundwater density is constant. It is strongly recommended to consider only examples 

for which the salt concentration at and near the top surface is everywhere (practically) 

constant, because at the current stage of research the mathematical modelling of 

groundwater table for variable density flows (especially the unstable situations of more 

dense flow above less dense one) is not yet finished. 

6.3 Computation of the dynamic groundwater table 

Before explaining each part of the computation for moving groundwater table in details, 

it is briefly illustrated, but entirely, for one time step. 

The basic idea behind the mathematical modelling of any moving interface is that only 

the speed of the interface in normal direction is necessary to consider. Any tangential 

movement along the interface has no influence on the position of the interface itself. 

The outward-pointing unit normal vector with respect to the groundwater table  will 

be denoted by , i. e., this vector is pointing outward of . 
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Following /BEA 88/, one can prescribe the speed of the groundwater table in normal 

direction, say , by 

 , (6.17) 

where  is the so called effective porosity with respect to flow /BEA 88, p. 255/, and 

 is the so called accretion, i. e., the rate at which the groundwater is added to 

the aquifer at the groundwater table.  

Following /BEA 88/, the effective porosity  is very difficult to measure and, in general, 

can vary in time and space between some initial and final water content. In the case of 

stationary (equilibrated in time) groundwater table, i. e. when , this parameter is 

equal to the porosity of porous media. A constant value of  can be set in the script 

file when computing any example with d3f. 

Although from a physical point of view, the speed  and the normal vectors  are only 

available at the groundwater table, but the level set formulation requires their definition 

at the whole domain . It can be shown /ASL 03/, /FRO 10b/ that an appropriate tool 

for such extension of  and  is the computation of signed distance function  and a 

constant extrapolation of  along characteristics generated by the normalized gradient 

of , i. e. 

  (6.18) 

These two special and nontrivial procedures were required to be implemented in the 

extension of d3f.  

Once the normal vectors  and the speed  are available in the whole domain  at 

each time , one can compute the advection step of the level set function 

  (6.19) 

The advection equation (6.19) is basic principle of level set methods. This equation can 

be solved numerically with popular discretization methods for fixed grids and the 
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movement of the zero level set of the function , the solution of (6.19), represents im-

plicitly the movement of the groundwater table.  

The three important steps of the level set methods to solve (6.19) are:  

 computations of signed distance function and its normalized gradient , 

 computations of the extrapolated speed , 

 computations of the advection step for level set function . 

Before explaining these steps in detail, typical features of all three steps are illustrated 

in the following section. 

6.3.1 Example of computations 

The previous considerations are briefly described by dealing with the first time step of 

computation as it can be realized with the example mentioned above. 

Firstly, the signed distance function, its normalized gradient and the extrapolated speed 

in the direction of the normalized gradient have to be defined. 

 

Fig. 6.4 Signed distance function (left), its gradient (middle) and the extrapolated 

speed (right) 

The signed distance function  in Fig. 6.4 is identical to the initial level set function  

in Fig. 6.2. The gradient of the function is constant in this case.  



 

144 
 

Clearly, if the initial position of the groundwater table is a straight line, such position 

can be represented exactly by a linear level set function  for which the norm of its 

gradient is equal one. Such function don’t need not to be computed numerically. Of 

course, the gradient of any linear function is perpendicular to all contour lines of the 

function. 

Therefore, the normal vectors  at  in (6.19) are simply unit vectors (0,1) and 

these vectors determine the direction in which the level set function  will be 

moved by solving the advection equation (6.19). It remains to determine the magnitude 

(the speed) of this movement. 

As described in the previous section, the speed  describing the movement of the 

groundwater table is defined only locally at the surface, see (6.17). To illustrate this for 

example  and  are taken for simplicity. 

From Fig. 6.2 one can see that the groundwater flow  points inwards to the domain 

and has its maximal value at the middle of the groundwater table. Therefore, from 

(6.17)  has its largest negative value at the middle of the groundwater table , it 

remains negative at  and approaches 0 near the boundary .  is set at two 

points where the groundwater table meets the boundary of , to avoid the movement 

of these two end points. In fact  is set on the whole boundary  for simplicity, 

i. e., all level sets (contour lines) of  will not move at the boundary. 

The simplest way how to extend the values of  available only at the horizontal initial 

groundwater table is to consider a constant value of  along perpendicular lines to the 

groundwater table. There each constant is determined by the available value of  at 

the cross-section of the perpendicular line and the horizontal groundwater table. Such 

extension can be seen on the right picture of Fig. 6.4 where the contour lines of  

at  take a form of vertical lines inside of . Near the boundary  the function  

changes linearly (depending on the underlying grid) to value . 

In this simple initial situation can easily be defined  and  in (6.19) for  

without solving any equation. In general, the signed distance function  (that gives 

 by using (6.18)) is obtained by solving the so called eikonal equation. Similarly, 

the extrapolated speed  can be obtained for the general case by solving some 

linear advection equation. 
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Having  and , one can solve (6.19) for . This can be done now only 

numerically as it will be described in section 6.4.3. Nevertheless, from the form of 

 and  in Fig. 6.4 one can expect that all level sets of  for  (i. e., 

including the zero one, the groundwater table) will move downwards with the largest 

movement in the middle part of each level set and with no movement at their end 

points. Such behavior can be clearly observed in the left picture of Figure bellow, 

where the new position of groundwater table, the zero level set of , is plotted 

after numerical solution of (6.19) for one time step. 

 

Fig. 6.5 Position of groundwater table after one advection step (left), pressure (mid-

dle) and groundwater velocity field for the new position (right) 

Having the new position of groundwater table, one can compute for the changed do-

main  the new groundwater flow situation analogously to the approach as it has 

been realized for the initial time. The resulted pressure and groundwater flow can be 

seen in the middle and right picture of Fig. 6.5, respectively. 

The next sections will describe how the signed distance function and the extrapolated 

speed can be updated again with respect to new position of the groundwater table and 

groundwater flow, see Fig. 6.6. 
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Fig. 6.6 Signed distance function (left), normal directions (middle) and extrapolated  

speed (right) for the new position. 

6.4 Level set method for the dynamic groundwater table 

In next sections each of the three procedures mentioned will be described in more de-

tail. As it will be shown, all three procedures are based on a numerical solution of the 

following general advection equation 

  , (6.20) 

that must be accompanied by some initial and boundary conditions. In (6.20), 

 is the unknown function to be determined. The right hand side  is known 

and given, and the vector field  is either given (then the equation represents a linear 

advection equation) or dependent on the gradient of  when (6.20) takes the form of 

nonlinear partial differential equation. Clearly, (6.19) is a special case of (6.20) when 

, , and . 

Concerning numerical methods for the solution of (6.20), the so called flux-based level 

set method /FRO 07a/ is implemented in d3f using its high-resolution variant /FRO 07b/, 

/FRO 09/, and extended for the immersed interface formulation /FRO 10b/. The first 

order accurate variant of these methods applied to modeling of dynamic groundwater 

table was published in /FRO 10a/. 
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6.4.1 Computation of the signed distance function 

The purpose of the signed distance function  is to give the direction  for the move-

ment of the groundwater table, i. e., the advection of . This direction is computed from 

the normalized gradient of . 

The computation of the signed distance function is definitely the most complicated part 

of the level set method for the modelling of moving surfaces. Here, only the most im-

portant aspects of this topic will be given, for more details one can refer to, e. g., 

/SET 99/. 

Supposed that the time  is fixed, in the following it is skipped in the notation. Let the 

interface  (the groundwater table) be given implicitly as a zero level set of the function 

, it means . The signed distance function can be found 

then as a weak solution /SET 99/ of the following nonlinear stationary partial differential 

equation with Dirichlet boundary condition 

  (6.21) 

The equation is called in literature the “eikonal equation” /SET 99/, and it expresses the 

fact that the norm of the gradient of the signed distance function is equal one. 

The notion of weak solution plays an important role for the eikonal equation. For in-

stance, one can see that if some function  fulfills (6.21) then the same is true for the 

function - . Furthermore, one can show that the weak solution of (6.21) is a continuous 

function, but the gradient  needs not to be defined in a classical sense for each 

. 

(6.21) can be reformulated in a more convenient form for these purposes. Firstly, 

  (6.22) 

Next one can introduce a pseudo-time variable  and consider . The pur-

pose of this extension is to reformulate the solving procedure for the stationary problem 

(6.21) as a stationary solution of some time dependent advection equation that takes 
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formally the form (6.20). This can easily be done by considering two following advec-

tion equations: 

  (6.23) 

and  

  (6.24) 

As the initial condition for (6.23) and (6.24) one can use . Moreover, the 

two equations have the analogous Dirichlet boundary conditions to (6.21) described by 

 for  and .  

Clearly, these equations take the form of the general advection equation (6.20) with the 

vector field depending nonlinearly on . It can be shown that for some time s, say 

, the solution of (6.23), respectively (6.24), becomes stationary and, consequent-

ly, the function  fulfills (in a weak sense) the eikonal equation (6.21), see also 

/SET 99/. 

The two equations differ in what part of  they are solved. The first one (6.23) is solved 

for , and the second one (6.24) for . Such splitting of the domain 

 follows from the form of the velocity vector field in (6.23) and (6.24), and the charac-

teristic curves generated by it. 

 fulfills the sign property, i. e.  for  and  for . There-

fore, in the neighbourhood of  for  and  the vector field  is 

pointing from  to the inside of .  has almost normal direction to the interface. 

Analogously,  for  in the neighbourhood of  is pointing from  to 

the inside of . Therefore, for both equations the characteristic curves starting at  are 

following a path to the inside of the corresponding computational domain. So  takes a 

form of an inflow boundary. 

Fig. 6.7 illustrates the solution  of the eikonal equation and the related vector fields in 

the case of a circular interface. 
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Fig. 6.7 Domain  (blue circle) inside of  (square) and two vector fields, the first 

one  in , and the second one  in , (left) and the 

corresponding signed distance function  (right) 

(It is important to mention one important feature of the described procedure to compute 

the signed distance function that has a significant influence on its numerical computa-

tions. Namely, the position of the interface  is known only implicitly, so the computa-

tional domains  and  might not be reconstructed explicitly. This situation is nu-

merically treated using again an immersed interface formulation /FRO 10b/. 

It is good to discuss here briefly two distinguish roles of functions,  and , that both 

describe implicitly the position of  as its zero level set. In the numerical computations 

described later only the level set function  will be used to identify the position of , 

although the signed distance function could be also used for this purpose. The reason f 

is that in numerical computations the zero contour line of the approximation of  and of 

the approximation of  can differ. This difference is visible only for coarse meshes, 

nevertheless, to introduce no additional errors to the approximative position of the 

groundwater table, one shall use the numerical signed distance function  strictly only 

for the approximation of the normal vectors . 

In the described procedure of this section, the function  is obtained as a stationary 

(time independent) solution of the time dependent equations (6.23) and (6.24). In prac-

tice, it is sufficient to compute "almost" stationary solutions, as the equilibrated values 

of  are obtained sooner in the neighborhood of  where the appropriate values of  

are the most important. 

The time dependent eikonal equation (6.23) and (6.24) are nonlinear advection equa-

tions. The corresponding numerical scheme uses some (pseudo-) timestep that can be 
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computed automatically depending on the given minimal and maximal Courant number. 

This number gives some natural restriction on the choice of time steps, and so this 

choice needs not to be done by users. 

Finally, to illustrate the computations of the signed distance function for more complex 

cases, two additional figures are presented that show results computed with UG proce-

dures used in d3f.  

In Fig. 6.8 the interface takes the form of a square. Note the behaviour of the signed 

distance function in the neighbourhood of the four corners of the square. A similar be-

haviour might be observed also in computations of the groundwater table if it takes a 

piecewise smooth form due to, e. g., a non-smooth permeability field. 

 

Fig. 6.8 Signed distance function (right picture) for the implicitly given interface in 

the shape of a square (left picture) 

In Fig. 6.9 some smooth, but complex shaped interface is shown. The computed 

signed distance function is smooth in the neighborhood of the interface, but due to the 

complicated shape of  some corners are developed faraway from , and some con-

tour lines (the level sets) are divided into several pieces. 
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Fig. 6.9 Resulting signed distance function (right picture) for the implicitly given in-

terface of some complex shape (left picture) 

6.4.2 Computation of extrapolated speed 

In the following, the time variable  is fixed and skipped from the notation of some func-

tions. Let the signed distance function  be given (i. e. computed as described 

in section 6.4.1) that gives the direction  for  of the movement of the 

groundwater table according to (6.19). The next task is to determine the speed  in 

(6.19) using its definition (6.17). Because the groundwater velocity  is not known in 

the part of the domain above the groundwater table, to use (6.17) the speed  will be 

computed by the extrapolation of known speed at the groundwater table in normal di-

rection . 

The idea of extrapolation in this case is simple. One has to solve numerically the fol-

lowing particular form of general advection equation (6.20) for   

  . (6.25) 

Analogously to previous section, the variable  represents a pseudo-time and the equa-

tion is solved to stationary case, say at ,  when 

  . (6.26) 

This procedure can be seen as the constant extrapolation of  from  along the char-

acteristics generated by the vector field  /FRO 10b/. From (6.26) one obtains that the 
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contour lines (the level sets) of the stationary solution   are perpendicular to , 

see the right pictures in Fig. 6.4 and Fig. 6.6. 

Again, the advection equation (6.25) takes a form of the general equation (6.20) with 

the Dirichlet boundary conditions on the implicitly given boundary . It is solved using 

high-resolution flux-based level set method /FRO 07a/, /FRO 09/ by exploiting the im-

mersed interface formulation /FRO 10b/. 

In the following the speed  will be extrapolated from  also to the inside of , alt-

hough for this part of  the definition (6.17) is applicable. As described in /ADA 99/, 

such choice of extrapolation for  and the consecutive usage of  in (6.19) has a pref-

erable property for the solution  of (6.19). 

Particularly, to extrapolate  from  to , one solves 

  . (6.27) 

Again, the extrapolated speed  is obtained as a stationary (time independent) solution 

of the time dependent linear advection equation (6.27), respectively (6.25). In practice, 

it is often enough to compute "almost" stationary solutions. 

In having obtained the stable numerical solution and an optimum grid refinement, phys-

ical instabilities were induced by varying the various physical parameters and their ef-

fects studied by making the relevant changes in the stability criterion. The results are 

presented in the following sections. The grid and time stepping in Fig. 6.5 in the case of 

the circular interface  is computed with procedures used in d3f for ,  

and . The contour lines of extrapolated speed  takes clearly the form of straight 

lines that are perpendicular to . 
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Fig. 6.10 left:  circular interface    

middle: related signed distance function    

right: constant extrapolation along characteristics generated by  

6.4.3 Computation of the advection equation for the level set function 

Once the direction and the magnitude (velocity) of the movement of the groundwater 

table is given and extended to the whole domain, the level set function  can be advec-

ted by computing one (physical) timestep of linear advection equation (6.19). In such a 

way, all contour lines of  are moved with the speed , including its zero contour line 

(i. e., the groundwater table). 

Once the position of the groundwater table is changed, the overall algorithm can be 

repeated, i. e., the pressure and the groundwater flow can be computed for the new 

position of the groundwater table, the signed distance function and the extrapolated 

speed can be adjusted and another advection step for  can be realized. 

6.5 Computation of transport in r³t with free groundwater table 

Once the groundwater flow is modelled with d3f, often a contaminant transport has to 

be computed where the advection part of the transport is prescribed by the vector field 

 giving the computed flow regime. This important possibility has been implemented in 

r3t also for the case of free surface groundwater flow. 

To make this possible the data that describe the computed flow have to be transferred 

between two separate software tools d3f and r3t. For that purpose the numerical veloci-

ty field of groundwater flow has to be saved within d3f and afterwards to read in into r3t 

to characterize the advection part of contaminant transport. To introduce no additional 
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approximation errors, it is preferable to use the same computational grid as it was used 

in d3f.  

The most typical and relevant computations of flow and transport in porous media are 

for the case when the groundwater flow is stationary or almost equilibrated in time. The 

essential assumption of r3t is that the contaminants in the groundwater have negligible 

or no influence on the flow regime, therefore the transport can be computed inde-

pendently. From a practical point of view it means that the flow is saved in d3f at some 

chosen time of interest, and it is supposed to stay constant in time for consecutive 

computations with r3t. 

If the computations with d3f have been realized with moving groundwater table using 

the level set formulation, the analogous situation shall be considered also in r3t, namely 

that the transport of contaminant shall occur not in the whole computational domain , 

but only in its subset . For that purpose not only the velocity field is saved in d3f, but 

also the numerical level set function  that describes the position of the top surface for 

the groundwater implicitly at the chosen time of interest. 

In such a way, if approximations of the velocity field and the level set function from d3f  

are available in r3t, analogously to previously described immersed interface methods, 

the discretization of r3t is adapted to this case and the transport of contaminant is con-

sidered not in the whole domain , but only in its part  where the groundwater 

flow is available. 
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7 Computation of potential flow 

The origin and most important purpose of d3f is to compute density driven flow, that 

means groundwater flow with variable density. Such physical situation can occur, e. g., 

in the neighbourhood of a salt dome where a mixture of fresh and saline waters can 

occur. In most of other practical situations, the density of groundwater can be consid-

ered to be constant. Consequently, it is very often desirable to compute the so called 

potential flow where the groundwater flow is proportional to the pressure gradient or 

piezometric head. Moreover, for the case of extremely long time simulations of radioac-

tive contaminant transport – the main application of r3t – it is feasible to characterize 

the groundwater flow in some stationary regime. 

In the framework of d3f such situation can be the characterized most conveniently by 

defining some constant initial salt concentration in  and “no boundary condition” when 

the default choice of homogeneous Neumann boundary condition, the so called closed 

boundary, is used in r3t. Consequently, no transport of brine can occur and the 

groundwater density remains constant at the value determined by the initial brine con-

centration. 

If no time dependence is introduced for the input data characterized the boundary con-

ditions for the pressure and/or the source terms for the flow equation, the resulting 

equations are in fact stationary with no time dependence. 

To compute effectively such situation, the discretization and the corresponding script 

files have been modified to enable d3f users to compute the stationary case, i. e., the 

potential flow, directly with no time dependent computations. Even if some time de-

pendence is still considered for the flow with constant density, that means that the 

transport equation in d3f is trivial to solve and the only partial differential equation to be 

solved numerically is the flow equation. The discretization as implemented in d3f is ef-

fective enough to compute efficiently such special cases. 
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8 Numerical advances 

8.1 Higher order finite volume schemes 

Density driven flow in d³f is described by two conservation equations: the flow equation, 

expressing the conservation of the fluid-phase as a whole, and the equation for the 

transport of salt, formulating the balance of mass of the brine. These two equations are 

given by /FEI 99/: 

  (8.1) 

  (8.2) 

where 

  (8.3) 

is the Darcy velocity. An important aspect of these equations is the flux balance that 

becomes more obvious when the equations are written in integral form: 

  (8.4) 

  (8.5) 

Here, the integration volume  is an arbitrary subset of the considered domain  and is 

usually called control volume and each integral equation expresses the fact that 

changes of quantities in the control volume are due to fluxes over the boundary or 

sinks/sources within the control volume. 

Since the conservation property of these equations arise from the underlying basic 

physical properties, a discretization scheme should ideally reflect these properties in 

the numerical scheme. In order to guarantee the discrete conservation property, a finite 

volume scheme is used in d3f /FRO 96/. A generalization of this type of discretization 

scheme has been implemented for the equations of d3f. 
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8.1.1 Definition of a Finite Volume Scheme of Higher Order 

The generalization of the vertex-centered finite volume scheme has been proposed in 

/VOG 10/. It can be applied to conservation equations that are of the form: 

  (8.6) 

where c is some unknown solution, F is a flux function and f is some source term.  

In order to solve such type of equation numerically by a vertex-centered finite volume 

technique, two choices have to be made: The Ansatz space for the unknown solution 

has to be chosen, and the set of discrete control volume B, where the conservation law 

is fulfilled numerically, must be specified.  

The usual choice for the Ansatz functions in d3f is a set of linear trial function, i. e. the 

unknown solution is represented by linear functions on each element of the mesh dis-

cretizing the domain. This approach requires only degrees of freedoms that are locate 

in the vertices of the mesh. See Fig. 8.1 (left) for an example.  

            

Fig. 8.1  A finite-element mesh (black lines) with the degrees of freedoms (red dots) 

for linear Ansatz functions (left) and quadratic Ansatz functions (right). The 

blue lines show the discrete control volumes constructed by the barycentric 

method 

The generalization to higher orders can be achieved by using a polynomial representa-

tion for the unknown solution on each element that uses functions of order greater than 

one. Lagrange finite elements can be used for this purpose and result in degrees of 
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freedom on vertices, edges, faces and volumes in order to ensure the continuity of the 

solution. A visualization of the degrees of freedoms for quadratic Ansatz functions is 

given in Fig. 8.1 (right).  

For the set of control volumes several possibilities exist. In the software d3f the bary-

centric control volumes are used /FRO 96/. These are constructed by taking the convex 

hull of the following points: a vertex of the mesh, all barycenters of adjacent edges and 

faces of the vertex and all barycenters of the adjacent elements. An example of such a 

control volume is shown in Fig. 8.1 (left). The generalization of this construction is re-

lated to the chosen Ansatz space. The idea is to construct one control volume for each 

degree of freedom. This ensures that the resulting linear system remains quadratic. 

The procedure to construct such control volumes is as follows: For a given element of 

the mesh, subdivide the element virtually into smaller elements of the same type, such 

that the finer partition corresponds to a distribution of degrees of freedom equivalent to 

the linear case, i. e. all virtual subelements carry exclusively degrees of freedom in 

their vertices. Now, the same barycentric construction procedure as used for the linear 

case can be applied to the virtually refined elements to produce control volumes related 

to the subelements. Fig. 8.2 visualizes this procedure for a triangle with quadratic (left) 

and cubic (rigth) Ansatz spaces. The result of such a refinement is demonstrated in 

Fig. 8.2 (right). 

       

Fig. 8.2  Subdivision of triangles  
A single triangle (black lines) is virtually subdivided into smaller triangles 

(red lines) such that the subtriangles have the same structure as linear el-

ements. Applying the barycentric construction for linear control volumes re-

sults in control volumes as indicated by the blue lines 
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8.1.2 Application to the equation for density driven flow 

The finite volume scheme with Ansatz functions of higher order can be used to discre-

tize the equation modelling the density driven flow. 

Let  be the set of Ansatz functions that are necessary to form a basis of 

the piecewise polynomial spaces described above, where  is the total number of de-

grees of freedom. For both unknown solutions  the same Ansatz space, formed by 

these functions, is used. Thus, numerical solutions are searched, that represent the 

unknown brine mass fraction by 

  (8.7) 

and the unknown pressure by 

 . (8.8) 

Now, let  be the set of control volumes that are constructed based on the  

generalized barycentric control volume approach described above. The discretized 

form of the equations (8.4), (8.5) is given by: 

  (8.9) 

  (8.10) 

Here, by  the finite dimensional representations from (8.7), (8.8) are used. 

8.1.3 Numerical test example 

In order to test the implementation using higher order Ansatz functions the scheme is 

applied to the Henry problem /HEN 64/.  

The quality of the solutions, computed using different orders of Ansatz spaces, is com-

pared using a reference solution. This is a numerical solution of the problem at time 

step t = 120s, that is computed on a very fine grid and using very small time steps such 

that this solution is expected to be close to the true solution. The difference between 
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the reference solution  and some coarser approximation  is computed in          

H1-norm, i. e. by 

 . (8.11) 

The results for the linear, quadratic and cubic Ansatz spaces are shown in Tab. 8.1. 

Tab. 8.1 Measurements of the approximation rate for different orders of Ansatz 

spaces used to discretize the density driven flow equations   

FVp (p = 1,2,3) denotes the order of Ansatz function, N the number of de-

grees of freedom,  the difference between the computed solution and the 

reference solution. 

FV1 
N  rate 
15 3,23e0 --- 
45 3,08e0 0,07 

153 2,62e0 0,23 
561 2,05e0 0,35 

2145 1,27e0 0,69 
8385 6,85e-1 0,88 

33153 3,29e-1 1,06 
131841 1,56e-1 1,07 

FV2 
N  rate 
45 2,58e0 --- 

153 2,15e0 0,27 
561 1,52e0 0,50 

2145 7,93e-1 0,94 
8385 3,18e-1 1,31 

33153 1,01e-1 1,65 
131841 2,67e-2 1,92 

 

FV3 
N  rate 
91 1,93e0 --- 

325 1,43e0 0,43 
1225 7,79e-1 0,88 
4753 2,96e-1 1,40 

18721 7,64e-2 1,96 
74305 1,30e-2 2,56 

 

A visualization of the decrease of the approximation difference is shown in Fig. 8.3. 

 

Fig. 8.3 Difference to a reference solution of the Henry problem for the first three 

orders of Ansatz spaces measures in H1-norm 
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8.2 Algebraic multigrid solvers for density driven flow 

8.2.1 Introduction 

In saline solutions density effects play an important role, which gives rise to the prob-

lem of density driven flow. This chapter introduces a novel algebraic multigrid approach 

for density driven flow. The work is organised as follows: In section 8.2.2 the problem 

of interest is introduced and the context of the development of the solvers is described. 

In section 8.2.3 an algebraic multigrid method is introduced. The convergence of this 

method is proved in section 8.2.4. section 8.2.5 is devoted to the design of different 

preconditioning strategies. section 8.2.6 concludes this work by providing numerical 

experiments underlining the capabilities of the method. 

8.2.2 Density driven flow 

8.2.2.1 Governing equations 

The full equations for density driven flow state conservations of the fluid and the salt 

mass respectively, and are typically formulated in terms of pressure  and salt mass 

fraction , e. g., /BEA 91/, /HOL 98/:  

  (8.12) 

  (8.13) 

 with the Darcy velocity  

  (8.14) 

 and Scheidegger-type tensor  

  (8.15) 

Here, the density  and viscosity  are given by non-linear material 

laws. The Porosity , permeability , gravity , sources  are constant or depend on 

space only. 
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A simplified and frequently used version of (8.12) and (8.13) is the Boussinesq approx-

imation, cf. /NAE 08/, /BOU 03/. In this case the dependence of  on  is only 

considered for the velocity :   

  (8.16) 

  (8.17) 

Although this formulation is known to be less accurate for certain problems, /JOH 03/, it 

is considered in subsection 8.2.2.3 from a theoretical point of view. 

8.2.2.2 Solution strategies 

The fully non-linear system stated in (8.12) and (8.13) is solved using the software 

package d3f /FEI 99/. Time is discretized implicitly. The non-linear system resulting in 

each time step is linearized using a Gauß-Newton method. A line search strategy is 

employed for a globalisation of the method. In the innermost loop, it is required to solve 

a sequence of linear system of equations, denoted by  

  (8.18) 

Here,  is the nonlinear defect of the current iteration, and  is the Jacobian. The vec-

tor  is the resulting correction and search direction respectively.  

8.2.2.3 Model problem 

In order to study this in greater detail, the following model problem is stated: When 

(8.16) and (8.17) is linearized in some point  one obtains   

  (8.19) 

  (8.20) 

Here  is the search direction and  
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are the Darcy velocity and its derivative w.r.t  in the linearization point respectively. 

For the sake of simplicity, derivatives of the dispersion tensor  and the viscosity  

have been neglected. Rewriting (8.18) component-wise one obtains   

  (8.21) 

  (8.22) 

From (8.19) and (8.20) the following facts are deduced for this system: Firstly, the prob-

lem is elliptic w. r. t.  and the parabolic w. r. t. . Secondly, if , the variables 

decouple, as the  block from (8.20) may be eliminated by means of (8.19). In this 

case, one can first solve for  and then, in a next step for . Although this assumption 

is unrealistic, it may be satisfied in parts of the computational domain. In subsection 

8.2.5.2 will be come back to this observation. 

8.2.3 Algebraic Multigrid 

The time for the solution process is to a great extent often governed by the computa-

tional time required for the solution of the linearized system (8.18). As multigrid meth-

ods feature an optimal computational complexity for a variety of problem, they provide 

an attractive solver and have frequently been used in this context. These classical ge-

ometric approaches may however be limited: In some cases geometric methods are 

not robust (or may even fail) due to the choice of parameters and/or geometric aniso-

tropies. In other cases, the mesh provided initially as a coarse grid may have a sub-

stantial size already. This is the case, e. g., when fractures or known singularities are 

resolved on the coarsest mesh.  

In these situations the class of algebraic multigrid (AMG) methods provides an attrac-

tive alternative. This does not rely on a grid hierarchy, which is provided initially. The 

key idea is instead to extract all information from the linear system to solve, e. g., from 

the matrix graph and the matrix entries. 

One of the most popular, not to say classic, version of this class has been described in 

/RUG 87/, /STU 01/. Other approaches include smoothed aggregation, /VAN 96/, 

/MAN 99/, /VAN 01/, or AMG based on element interpolation, /BRE 01/. This work fo-

cuses on Filtering algebraic multigrid method (FAMG), previously described in 
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/WAG 00/ and /NAE 08/. The essential results are however likely to be applicable to 

different AMG approaches as well. 

After fixing notation in section 8.2.3.1 and 8.2.3.2, the key idea of the Filtering AMG 

method is described in section 8.2.3.3. In subsection 8.2.3.4 there will be described the 

process of coarse grid selection. The extension of the method to systems of PDEs is 

finally described in subsection 8.2.3.5. 

8.2.3.1 Preliminaries 

For reasons of flexibility, the system to solve is denoted by  

  (8.23) 

This can either be the original system (8.18), or a transformed system which will be 

introduced later in Section 8.2.3.5. Alternatively, one can also consider a sub-block, 

e. g.,  

 . 

Instead of solving a single discrete problem of type (8.23) multigrid methods employ a 

hierarchy of linear systems of equations  

 . (8.24) 

Degrees of freedom or variables are represented by index sets , where  indicates 

the grid level. The number of variables is assumed to be decreasing,  for 

all . The vectors  correspond to grid functions and should be identified with 

, . 

The transfer of grid functions between different grids is defined by the following transfer 

operator: 

While interpolation 

  (8.25) 
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maps a grid function from a coarse grid to a fine grid, the restriction  

  (8.26) 

operates in the opposite direction. Throughout this work, it is assumed that all transfer 

have full rank. 

8.2.3.2 Setup phase 

Algebraic multigrid methods construct the grid hierarchy (9) recursively in a separate 

setup phase, which precedes the actual solution phase. This is done recursively, start-

ing on the finest grid. It is often convenient to consider a two-grid method only. In this 

case,  and  are written. Given a matrix  and an associated index set 

 three tasks must be fulfilled in order to construct a coarse grid operator  and an 

index set :   

1. Selecting the coarse grid variables .  

This is usually obtained from -splitting  

  

which splits the variables  into a fine set  and a coarse set . The later one is then 

used to define the grid on the next level.  

2. Constructing interpolation , .   

Interpolation is defined as a matrix dependent, local operator. Thus the sparsity pattern 

of  should be fixed. A fine grid variable  is in general interpolated from a set of 

parent nodes : 

 . (8.27) 

An exact interpolation of coarse grid variables  can be used to guarantee that the-

se operators have full rank. After reordering the variables, the matrix 

can be represented as  and there can be written 

   . 
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3. Constructing a coarse grid operator .   

This is either by a Petrov-Galerkin ansatz , or, for , by the Ga-

lerkin ansatz  

The whole process is iterated and stopped, if  is sufficiently small or coarsening is 

stopped as . The resulting coarse grid problems are typically solved by a 

direct smoother. 

As will be described in Subsections 8.2.3.4 and 8.2.3.5, the first two tasks are solved at 

once by an iterative selection of a fine grid: A node  has the potential to become 

a fine grid node, if it can be interpolated 'well enough' from (surrounding) coarse grid 

nodes. For the time being, the symmetric version of FAMG is described and 

 chosen. Although more general constructions are possible, they have not 

proven to be successful. The goal is to preserve the elliptic character for the pressure. 

8.2.3.3 Filtering Algebraic Multigrid 

The key idea is to minimise the norm of the coarse grid operator approximately, while 

an additional constraint, the so called filter condition, guarantees that certain vectors 

are interpolated exactly. An interpolation operator is to be constructed as the solution of 

the following minimisation problem:   

  (8.28) 

  (8.29) 

For the sake of simplicity, all grid related subscripts have been dropped. The triple bar 

norm  refers to the Frobenius norm of a matrix,  for all 

. Moreover  is a smoother, or an approximation to a smoother, 

 is the interpolation and  is the injection to the coarse grid. The 

vector  is a representation of the near null space of the operator. The matrices  

and  serve as scaling matrices.  

Let the vector  denote the -th row of , i. e. ,  
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where  is the canonical unit vector for . According to (11) the following represen-

tation is found: 

  (8.30) 

 for  and  for  respectively. 

Given a (possible) fine grid node , which is interpolated from its parent  using 

weights defined by  from (8.30), the following minimisation problems must be solved: 

  (8.31) 

  (8.32) 

for all , which is equivalent to (8.28) and (8.29). 

8.2.3.4 Suitable parents and C/F splitting 

So far it was assumed that parent nodes  required to interpolate  had been fixed. 

In order to judge the quality of different sets of parents, a measure for the quality of 

interpolation is introduced first: 

Definition 3.1 (Quality measure)   
Let  be a set of parent nodes, and be the solution of the local minimisation prob-

lems (8.31) and (8.32). The value  

  

then defines a measure for the quality of interpolation.  

Only sets of parent nodes are used which are suitable in the following sense:  
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Definition 3.2 (Suitable parents)    

For  let  be a class of possible parents. A set  is a suitable set of 

parents for  w.r.t. the class , if 

  (15.a) 

and 

  (8.33) 

Here  is an absolute threshold judging the quality of interpolation. The parameter 

 allow to select parents which are close to the minimum. 

Typical parameters are  and .  

By using this notion of suitable set of parents, a C/F splitting of the variables can be 

obtained by the following labeling algorithm /WAG 00/. This algorithm iteratively selects 

fine grid nodes for the set , which are interpolated from pairs of neighbors  

which are assigned to the coarse set . This selection process involve a weight 

 which is defined as a weighted balance between the number of newly created 

coarse grid nodes and the number of new connections in the coarse grid operator.  

Labelling algorithm  

Require: Variables V, suitable parents  

Ensure: Splitting  

1:    /* fine and coarse set are empty */ 

2:   /* all nodes are undecided */ 

3: Compute weights  for all  and  

4: while  do 

5:        Select  with minimal   
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6:        /* node i becomes fine*/ 

7:        

8:        

9:        

10:        Compute modified weights  

11: end while 

12:   /* Undecided nodes become coarse */ 

8.2.3.5 Systems of equations 

For systems of equations, a diagonal interpolation is considered, i. e.,  

  (8.34) 

for fine grid nodes . Now the entries of the block diagonal interpolation  

are given as the solution of   

  (8.35) 

  (8.36) 

where  has a prescribed sparsity pattern (8.34). The matrix  represents a diagonal 

scaling define d by , and the diagonal en-

tries have been redefined such that . 

8.2.4 Convergence 

In this section, a convergence theory for the method presented in section 8.2.3.3 is 

presented. For the remainder this section is restricted to scalar symmetric positive defi-
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nite systems. For  there is , and the following Ja-

cobi scales are used: 

  

 to define inner products and corresponding norms for . 

8.2.4.1 Global results 

A smoother with the iteration operator  is said to posses a smoothing property, 

/RUG 87/, if there is a constant , such that  

  (8.37) 

holds for all . The following proposition guarantees convergence and is a slight exten-

sion of the well-known convergence result in 0, /STU 01/.  

Proposition 4.1 (Two-grid convergence)   
Let the pre-smoother  be non-divergent, . The post-smoother  should 

satisfy the smoothing property (8.37). Moreover, assume there is a , such that the 

following interpolation property  

  (8.38) 

holds for all . Then the two-grid method converges and the energy norm of its opera-

tor is bounded by , where the contraction number is given by  

  

Proof.   

(i) Let . As  is a projector w.r.t. ,  

  

holds for arbitrary . In particular the identity  holds for 

. Applying the Schwarz inequality yields  
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and thus  

  

Applying the smoothing property (18) to the vector  yields  

  

  

which is equivalent to  

  (8.39) 

 after dividing by . 

(ii) As the left hand side is non-negative,  

  

holds, and one obtains the convergence estimate .  

(iii) Let . As  is a projection and  is non-divergent  

  

holds. The right hand side of (8.39) is a polynomial of degree 2, . 

The maximum is obtained for  with . If  and thus , 

one gets at least . 
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Note that the version 0, /STU 01/ only considered post-smoothing. In property (8.38) 

pre-smoothing  and interpolation  are considered as one unit influencing the con-

stant . The post-smoother  only influences the constant . 

8.2.4.2  Local results 

Under appropriate assumptions, the interpolation property (8.38) can be expressed 

locally. It is imposed that a set of the following local criteria L1-L4:  

Assumption L1.   

Let . For a -splitting of the variables let there be matrices  and a con-

stant , such that  

  (8.40) 

Assumption L2.   

For  there are -orthogonal subspaces  and  which allow for a decomposition  

  (8.41) 

The matrices  induce semi-norms  

  

which are full norms on the -orthogonal complement of . Eq. (8.40) implies 

  

where according to (21.b) the identity holds for .  

Moreover imposed are the following two assumptions for the subspaces  and : 

Assumption L3.   

There is a constant , such that  

  (8.42) 

 for all  and . 
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Assumption L4.   

There is a constant , such that  

  (8.43) 

 for all  and all   

These additional prerequisites characterise the splitting given in Assumption L2 (8.41) 

in greater detail: While (8.42) guarantees the spectral equivalence of the operators  

and  on the subspace , (8.43) is an interpolation property on the subspace . The 

spaces  and  thus represent good and bad subspaces w.r.t. the smoother: While 

oscillatory components in  can be treated by smoothing, smooth components in  

must be treated by interpolation. 

Remark 4.1   
If the objective (8.31) is constructed using the scalings , one obtains  

  (8.44) 

if each variable  is interpolated from suitable sets of parents . 

Remark 4.2   
From (8.42) and (8.43) is concluded that  and that the corresponding vec-

tors must be interpolated exactly, i. e. ,  

  

For FAMG this must be guaranteed by appropriate constraints in the filter condition 

(8.32). 

Using these assumptions, the following estimate can be derived: 

Lemma 4.1    

If (8.40) to (8.44) are satisfied, then  

  (8.45) 
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Proof.   

For  and  consider the decomposition  from (8.41). On the one 

hand (8.42) implies  

  

On the other hand (8.43) implies,  

  

As  and  the claim follows from a summation of the former 

inequalities. 

Inequality (8.45) is finally sufficient for the convergence of the two-grid method in the 

sense of Proposition 4.1: 

Proposition 4.2 (Local-to-global estimate)    

Let the C/F-splitting satisfy L1. For every  let there be a constant , such that 

the local estimate  

  (8.46) 

 Then also  

  

where  where  is from (8.40).   

Proof.   

For  one gets  
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8.2.4.3 Example: Choice of local operators 

The measure introduced in (8.33) are similar to those used for AMGe /BRE 01/. In this 

section, FAMG is formulated as an element-free variant of this method /HEN 01/. In 

contrast to the former mentioned works, the smoother  is included into the construc-

tion of interpolation. Consider a finite element context with P1/Q1 ansatz functions. For 

some triangulation  the stiffness matrix  is a result of local element stiffness matri-

ces,  

  

Local element-based matrices for vertex  can then be defined by  

  

where  denote the corner vertexes of element , and  denotes the neighbour-

hood of vertex . For this decomposition, the following estimates hold:  

  

where the super script index  indicates the depth of elements considered, and  

  

Remark 4.3   
Approaches with objectives similar to (8.33) are AMG based on computational mole-

cules /KRA 06/, /KRA 07/ and AMG based on least-squares interpolation /BRA 11/, 

/KAH 09/.  

For the inequality (8.45) in Lemma 4.1 the generalised eigenvalue problem is consid-

ered: 

  (8.47) 

 For all eigenvectors  with  and  define spaces  

 , (8.48) 
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such that (8.42) holds for the subspace . As a proof of (8.43) is difficult in a general 

setting, the idea is illustrated by the following model problem: Considered is a discreti-

zation of Poisson's equation on the rectangle  with  an aspect ratio 

. The discrete grid is defined by . For bi-

linear elements, the element stiffness matrix for the element  reads  

 . (8.49) 

Now, the local matrix  is considered and its local support by  : 

 is defined. For a Jacobi smoother followed by an -smoothing step , 

 holds all . For proving (8.43) it is thus sufficient to restrict to . To 

further simplify, a vertex  in the interior of the domain is considered. Schematically, this 

is shown in Fig. 8.4. 

 

Fig. 8.4 Visualisation of the operator  and its local support  for the model prob-

lem.  

Elements in the neighbourhood are shown in dark ( ) and light ( ) 

grey. Adjacent grid nodes belonging to  are also shown in grey. White el-

ements and nodes are not considered in the local construction 

The space  has a basis of 25 eigenvectors  with eigenvalues . The constant, 

, is the only eigenvector for the eigenvalue 0. Given an appropriate filter condi-

tion, there is obtained  
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It is assumed that all following vectors  are normalised w.r.t. . These then 

provide an orthonormal basis of . Defining the constants  

   

there is obtained  

  

which is equivalent to (8.43) and (8.46) respectively. Fig. 8.5 provides an analysis of 

these measures results for the isotropic (top, a=1) and the anisotropic (bottom, a=10) 

cases respectively. Vertex  is interpolated by its top and bottom neighbor, the interpo-

lation weight is . The smoother  is damped by a factor . The figure show 

the distribution of the eigenvalues  and of the corresponding interpolation measures 

 and  for . As  provides the interpolation estimate for the subspace 

, it provides an estimate for the subspace  defined in (8.43). 
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Fig. 8.5 Distribution of the eigenvalues  of the generalized eigenvalue problem 

(8.47) for model problem (8.49).  

The measures  and  are indicators for the interpolation quality for cer-

tain eigenvectors. Results are shown for the isotropic model ( , top), 

and the anisotropic model ( , bottom) 

8.2.5 Effective preconditioners 

 In this section the different ingredients for AMG solvers for density driven flow are pre-

sented. This begins with a study of the algebraically smooth error in Section 8.2.5.1. In 

Section 8.2.5.2 a transformation is introduced which decouples pressure and concen-

tration locally, which also aims to eliminate negative diagonal entries. Subsections 

8.2.5.3  8.2.5.5 finally introduce various preconditioners applicable to problems of den-

sity driven flow.  
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8.2.5.1 Algebraically smooth error 

The proper choice of AMG components depends on the character of the algebraically 
smooth error, i. e., those error components which are not treated efficiently by the 

smoother. In order to study this further there is focussed on Elder's problem, cf. 

/VOS 87/, a test case from a practical application which is discretized using the fully 

non-linear equations. Fig. 8.6 shows the solution at one particular point in time, which 

serves as the linearization point  for the next Newton iteration. Instead of plot-

ting the pressure , which is only defined up to a constant in this case, only the salt 

mass fraction  and the velocity field  are shown.  

 

Fig. 8.6 Solution at one particular point in time.  

In this point, the problem is linearized resulting in the Jacobian investigated 

in the further course of this study 

In this configuration, the algebraically smooth error for both components can then be 

studied independently. Fig. 8.7 illustrates the smoothed error : In this case the 

initial error before relaxation is concentrated in the -component. In the -part, one 

observes a typical behaviour for elliptic problems. Due to the coupling, the error is also 

distributed into the salt mass fraction. Here, the error tends to follow the velocity profile 

for . Complementarily Fig. 8.8 illustrates the smoothed error : Here, the error 

is first concentrated in the -component, but then distributed into the -component by 

relaxation. 
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Fig. 8.7 Smooth Error after 3 SGS relaxation sweeps after an initialisation with a 

random vector ;   

results for pressure  (top), and salt mass fraction  (bottom). 

 

 

Fig. 8.8 Smooth Error after 3 SGS relaxation sweeps after an initialization with a 

random vector ; arrangement of  and  as in Fig. 8.7. 
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8.2.5.2 Left Transformation 

One problem for FAMG results from potentially large negative diagonal entries in the 

 block. This is due the derivative  in the equations for the salt mass fraction 

(8.24). As a remedy, the following strategy is used: Instead solving  one can al-

ternatively consider a (left-)transformed system  

  (8.50) 

As motivated by analysis for the model problem (8.2.2.3) it is desirable to imitate a de-

coupling of  and  locally. This can be achieved by a multiplication with a block-

diagonal matrix  which transforms the diagonal entries 

  (8.51) 

 into  

 . (8.52) 

Similar techniques have been used for multiphase flow, e. g., /BEH 82/, /WAL 85/, 

/SCH 03/, /LAC 03/, /CLE 07/, but focus to eliminate . Note that transformation 

(8.50) does not modify the properties of standard smoothers. It does not preserve the 

norm of the defect however. 

8.2.5.3 Linear Gauss-Seidel block type preconditioners 

A general concept to solve the linear system of equation is to employ block Gauß-

Seidel type method (BGS). In this case both equations are solved iteratively in the or-

der of their occurrence. For a -ordering one obtains:   

 , (8.53) 

 . (8.54) 

Here,  and  are preconditioners for  and  respectively. The iteration ma-

trix is given by  
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 , (8.55) 

where  is a Schur complement w.r.t. . Note that 

choosing  as an inexact solver for  results in an Uzawa-type method. If the iter-

ation is performed in the reversed -ordering, one obtains  

  

  

 , (8.56) 

where now . Both formulations indicate conditions for a 

convergent method: 

1. The preconditioners  and  should be chosen such that the itera-

tions are fast to converge. For the system treated in -order the iterations 

 and  should converge quickly. For the system 

treated in -order the iterations  and  should 

converge quickly.  

2. In any case, both off-diagonal blocks  and  should be 

sufficiently small. In defiance of the tentative assumption that , especial-

ly the later fact cannot be guaranteed. For (8.56), this can however be compen-

sated by a good approximation . 
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8.2.5.4 Two-stage preconditioners 

The formulation (8.52) was previously used as an indicator that the system in (8.50) is 

essentially decoupled. In this case one is tempted to solve for  first and then for  by 

means of (8.56). Numerical experiments show however that this is not sufficient in 

many cases. Interestingly enough, this may produce similar results as iteration (8.55).  

Inspired by this observation, the class of so called two-state preconditioners, defined 

by the iteration matrix  

  

may be an attractive alternative alternative. Here  results from (8.55) by formally 

setting  and  is a simple block smoothing scheme. The idea of this 

approach is to apply a global correction for the pressure block  first. This is then 

followed by second a sweep with a standard point-wise smoother. This additional re-

laxation aims to reduce the error in  locally and to recouple the equations. 

8.2.5.5 Monolithic AMG preconditioner 

The last alternative is to applty a monolithic AMG solver as presented in in subsection 

8.2.3.5. This is not applicable, if the matrix  contains large negative diagonal en-

tries. In this case it is advisable – if not mandatory – to use the transformed system 

(8.50). As the method has already been described at length, the essential features are 

summarized at this point only. 

The operator  for problem (8.28)/(8.29) is provided by a point-block-Jacobi smoother. 

The smoother respects the local coupling of the unknowns. The filter vectors  are 

provided by the (smoothed) constants  and . The filter vectors 

on the next level are obtained by restricting , and one smoothing step, 

. In order to preserve linear independence, this smoothing step involves an 

uncoupled smoother  which is derived from the principal part . Additionally, the 

sub-matrix for the pressure  is used for the definition of the strength of connections. 

Finally, fine grid nodes are interpolated only, if . This helps to detect 

nodes, where the smoother diverges and enforces that this belong to the coarse grid. 
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8.2.5.6 Nonlinear block solvers 

In this work there was focused on a solution of the fully coupled system (8.12) and 

(8.13) by a Newton method. An alternative to the fully coupled method may be given by 

the iterative coupling algorithm /ORT 66/, /HAG 75/. This is the non-linear analogue 

of the preconditioners presented in subsection 8.2.5.3, cf. /STU 07/, /LUB 09/. Within 

each of the sub steps, a non-linear system is solved. Tests with density driven flow are 

however still in infancy. 

8.2.6 Numerical Experiments 

In the following section the performance of the method is investigated for two different 

test cases. Three different solvers are compared: The first is a standard geometric mul-

tigrid solver (GMG). The second is a ( )-Block-Gauss-Seidel scheme (BGS). Blocks 

are formed by unknowns according to (8.52): It is solved first for , then for . This 

provides an exact solver for problems with . Finally, a monolithic AMG (FAMG) 

solver is considered. In this case both unknowns are solved simultaneously. All meth-

ods serve as a preconditioner in a BiCGSTAB method. A V(1,1)-cycle is used, the 

smoother is a symmetric Gauß-Seidel scheme with a particular stabilisation strategy 

(/JOH 04/). Note that the presented comparisons must be understood as a proof of 

concept: As the AMG method requires an additional setup, they are usually less effi-

cient than their geometric counter parts. 

8.2.6.1 Test 1: Saltpool problem 

The first model problem is derived from the saltpool benchmark, cf. /JOH 06/. A two-

dimensional domain  is considered which is resolved by a structured 

quadrilateral grid (  dof). In order to investigate the robustness with respect to 

geometric isotropies, the parameter  characterises a stretching in -direction. Initially, 

the box is filled a fluid with a 10 % salt mass fraction in the lower 30 % of the box. Dur-

ing the course of the experiment, fresh water is injected in the upper left corner, while it 

is removed in the upper right corner by appropriate dirichlet conditions.The walls are 

treated as impermeable boundaries. Note that for AMG the choice of the coarse grid 

solver is crucial, as coarse matrices may become singular since the coarse grids do not 

contain Dirichlet nodes any more. Therefore an iterative scheme is applied as a coarse 

grid solver. 
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Numerical Results are provided in Tab. 8.2. As expected geometric multigrid deterio-

rates slightly with an increasing anisotropy . The performance of BGS and FAMG is 

robus w.r.t. . The convergence of BGS however is an indicator that essentially a non-

linear decoupling is observed: Provided that there is a large difference in the density, 

salt and fresh water phases essentially decouple. In the mixing region, the flow actually 

follows the boundary layer, and mixing is primarily due to diffusion. 

Tab. 8.2 Convergence results for the salt pool problem. Given are the number of 

time steps, the total number of Newton iterations (#nl), the total number of 

linear iterations (#lin) as well as the maximum and average number of line-

ar iterations per Newton iteration(#lin/#nl) 

Anisotropy 
 

 Method   Steps   #nl   #lin  #lin/#nl 

(max) 

#lin/#nl 

(ave) 

1 GMG   49   132   1183   53   8.96  

 BGS   44   117   2603   100   22.25  

 FAMG   43   113    839   13   7.42  

2 GMG   46   113   1356   65   12.00  

 BGS   43   109   2295   63   21.06 

 FAMG    43   109    826   14   7.58  

4 GMG   43   99   1529   43   12.72  

 BGS   43   101   2213   74   21.91  

 FAMG   43   101    660   11   6.53  

8 GMG   43   113   2239   51   19.8  

 BGS   43   111   2231   70   20.01  

 FAMG   43   111    705   13   6.35  
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8.2.6.2 Test 2: Layered Aquifer 

The second problem serves as a test how well the method treats problems with varia-

ble and discontinuous permeabilities. Fig. 8.9 shows the computational domain of an 

aquifer over a salt dome. The triangular, unstructured grid consists of 24257 vertices. 

The hydro-geological properties, in particular the permeabilities vary in space and fol-

low a log-normal distribution. Two models are considered: The Mixed Model includes 

sand, fine sand and silt, whereas the Sand model has only one hydro-geological unit. A 

more detailled description is provided in /FEI 99/. 

 

Fig. 8.9 A) Coarse grid and B) different hydro-geological areas and boundary condi-

tions for the layered aquifer.  

On the red surface on the bottom the fluid is in contact with a salt dome. 

Picture B): /FEI 99/ 

Numerical results for this model are provided in Tab. 8.3. First there was noted that the 

BGS method does not converge any more which indicates that problems are now com-

pletely coupled. The FAMG method tends to be a little bit more robust than geometric 

multigrid. In particular, it requires less time steps.  
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Tab. 8.3 Convergence results for the aquifer problem, with column data as in Tab. 

8.2. The block-Gauß-Seidel-scheme (BGS) does not converge 

Medium   Method   Steps   #nl   #lin   #lin/#nl  
(max) 

 #lin/#nl 
(ave) 

Mixed  GMG   18   157     4186     99   26.66  

 FAMG   15   127     2048     87   16.13  

Sand  GMG   40   326   15297   119   46.92  

 FAMG   30   260     7125     97   27.40  

8.2.7 Test 3: Norderney – Development of fresh water lenses 

The last test problem is from a simulation of the development of a fresh water lense 

under the island of Norderney in the German North Sea. The problem and geometry 

definitions are given in /SCH 04/. The problem is defined on a hexahedral grid (

dof). 

Tab. 8.4  Convergence results for the Norderney problem, with column data as in 

Tab. 8.2. The block-Gauß-Seidel-scheme (BGS) does not converge 

Type   Method  Steps   #nl   #lin   #lin/#nl 
(max) 

 #lin/#nl 
(ave) 

Boussinesq 

Approximation  

GMG  85  171  7294  132  55.26  

 FAMG  11  36  716  78  19.89 

Full Equations  GMG  88  178  10890  160  61.18 

 FAMG  11  30  807  71  26.90 
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Numerical results are shown in Tab. 8.4. In this case, the FAMG scheme is clearly su-

perior to standard geometric multigrid. This is presumably due to a good resolution of 

the geometric anisotropies. This holds true for the Boussinesq approximation and the 

full equations as well. It should be noted that in this case, the additional setup pays off 

and the FAMG solver is faster than the geometric solver, even when the additional set-

up is considered (data not shown). 

8.3 Parallelisation 

8.3.1 Introduction 

During the last decade the power and scale of large computer clusters has risen dra-

matically. This allows scientists of different fields to address their computational prob-

lems with an even greater attention to detail. However, constructing a general purpose 

simulation environment, which efficiently uses the power supplied by modern super 

computers, gets more and more challenging. 

In the progress of enhancing the simulation framework UG with new solvers and re-

finement strategies on unstructured hierarchical grids, a challenge was to improve the 

existing parallelization framework, which was no longer suited for the arising challeng-

es. The new parallelization layer should not only be easily usable in different modules 

of the main framework (e. g. the grid- and algebra libraries) but should also allow the 

construction of different and highly specific parallel solvers, like e. g. adaptive geomet-

ric multigrid solvers, algebraic multigrid solvers and domain decomposition methods, 

eventually allowing to further combine those. It thus was clear that a parallelization 

framework not only had to be highly adjustable to different data structures (e. g. hybrid 

adaptive multigrids, sparse matrices) but also to different algorithms, each requiring 

specific communication structures. To allow maximal flexibility and interoperability, 

there was decided against a central facility which handled all of the parallelization re-

lated issues and instead introduced a lightweight programming library, which allows to 

define communication structures on arbitrary distributed object sets and to perform 

communication between those objects using the established structures. 

With the parallel communication layer (pcl) /GRO 99/ a set of concepts has been 

developed addressing the described considerations. An implementation using C++ 
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template mechanisms has also been created and successfully been used in the simula-

tion environment UG. 

While loosely sharing some concepts with existing implementations for distributed 

graphs (e. g. DDD /BIR 94/) the pcl library takes a unique approach in its core design. 

Instead of specifying a black box which handles all of the parallelization issues, the pcl 

defines a set of basic classes, which can be freely used to organize distributed graphs 

and to communicate between overlapping or linked sections of those graphs. This 

lightweight concept is a strength of the pcl, since it allows to construct communication 

structures tightly adjusted to the specific needs of highly specialized algorithms (like 

e. g. algebraic multigrid solvers) without affecting communication structures required by 

other sections of the program (like e. g. the underlying distributed adaptive multigrid). 

The lightweight nature of the pcl furthermore allows to use it to parallelize existing 

codes, since no specific demands are present for the nodes in the distributed graphs 

nor to the graphs themselves. This has the great advantage that parallel and serial 

codes can be clearly separated and that code repetition is not an issue.  

One major difference to many existing libraries is especially noteworthy: the pcl library 

does not require global ids for the maintained distributed objects. While it is possible to 

generate global ids based on the given distributed graphs at any time, the pcl itself 

does not require them for its internal organization. As detailed below, this feature al-

lows to minimize communication during dynamic tasks like adaptive parallel grid re-

finement etc. 

8.3.2 Concepts 

In the following section the key concepts of the pcl are briefly discussed. For a thor-

ough discussion please refer to /GRO 99/. 

Interface: In an Interface  objects on a process , which are related to objects on a 

process , are stored in a determined order. This interface lies on process . At the 

same time there has to be an interface  on process . The order of the 

objects in the interfaces is crucial, since during communication between processes  

and  data is exchanged between the -th object in interface  and the -th object in 

interface . 
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Layout: On a process  several Interfaces , , … can be grouped together in a 

Layout . Layouts can e. g. be used to group all interfaces on a process that have a 

special property, e. g. master and slave interfaces. An arbitrary amount of layouts can 

exist, allowing to group interfaces not only by those properties, but also by the level in 

which associated objects lie in a multigrid hierarchy (both algebraic and geometric mul-

tigrid hierarchies). This allows to construct algorithms and solvers like smoothers or 

exact solvers, which only operate on a given level of a hierarchy. This again is crucial 

to guarantee good scalability in multigrid methods. 

InterfaceCommunicator: This class performs the actual communication between dis-

tributed objects. Data exchange can be scheduled for separate interfaces or for com-

plete layouts. It is notable that an interface can be used multiple times to schedule data 

in a single communication step. Data is not transferred to other processes until the 

method communicate has been called. During this method data is collected using 

communication policies, is transferred to the processes associated with the interfaces 

and is then extracted again using FK. 

CommunicationPolicy: Through the concept of communication policies it is possible 

to adjust the data collection and extraction process to the structures and data-types 

used in the concrete application or library. Data is written and read from binary 

streams, which are supplied by a Communicator. This allows to reuse buffers in differ-

ent communication steps, further minimizing the introduced overhead 

ProcessCommunicator: This communicator allows to perform communication be-

tween processes (not on individual distributed objects). It contains methods to broad-

cast data, to gather and scatter data, to send and receive raw data and more. Process 

communicators are associated with a group of processes, to which the communication 

is restricted. They can e. g. be used to distribute grids and matrices between processes 

or to check whether all processes reached a given approximation threshold during the 

solution of a PDE. 

8.3.3 Implementation Details 

Since the pcl is a lightweight layer, and since only the InterfaceCommunicator and the 

ProcessCommunicator perform communication, it should be rather easy to supply im-

plementations for different platforms and message-passing libraries. 
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Until now only an MPI /GRO 99/ based implementation exists. Due to the broad availa-

bility of MPI on cluster-systems, this should however fulfill the requirements of most 

users. Furthermore template classes are provided, which implement the concepts of an 

Interface and of a Layout. Those implementations are very flexible and can be adjusted 

to arbitrary structures and element-containers through template parameters and type 

traits. It is of course also possible to implement and use custom interfaces and layouts 

from scratch, as long as they implement the associated concepts. 

Please note that no special object type has been defined above. Indeed, this is not 

required. The distributed objects are supplied directly by the user of the pcl. Two ex-

amples are given to illustrate this: 

 The grid manager stores pointers to the grids elements (vertices, edges, faces and 

volumes) in the interfaces, allowing to access those elements during data commu-

nication without redirection through handles or lookup tables. 

 The algebra library stores vector-indices in the interfaces. Algorithms that e. g. 

make vectors consistent can thus be implemented with minimal runtime overhead. 

It may be interesting to point out that the concepts given above do not contain any form 

of node- or interface-attributes, like e. g. master- or slave-nodes. Indeed this is not 

necessary since the user is free to associate any kind of attribute with different layouts. 

Since there are no restrictions on the number of layouts, each application can freely 

construct layouts representing connections between objects associated by arbitrary 

attributes. Some examples are given below: 

8.3.3.1 Parallel Multigrid 

In the simulation environment the parallel multigrid was chosen to distribute the multi-

grid hierarchies with a low-dimensional horizontal overlap, e. g. when distributing a 

triangular grid, each triangle will exist only on one process, edges and vertices however 

share copies between several processes. Due to the hierarchical structure of the grids 

it was however also important to allow cuts between parents and children in different 

levels of the hierarchy. Thus also vertical interfaces and layouts, which allow to com-

municate data during prolongation and restriction, were introduced. For vertical layouts 

however a full-dimensional overlap is required, since data associated with all elements 

has to be prolongated/restricted during a multi-grid cycle. 
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In order to define a clear communication structure the following layout-types for the 

implementation of the parallel multi-grid were introduced: 

 horizontal master layouts, 

 horizontal slave layouts, 

 vertical master layouts, 

 vertical slave layouts. 

Separate horizontal layouts exist for the vertices and edges – and in 3d faces – of a 

grid, separate vertical layouts exist for vertices, edges, faces and volumes. 

In Fig. 8.10 an example is given on how the horizontal interfaces of a distributed trian-

gular grid look like. To keep things simple only the interfaces for the grid vertices on a 

single level are depicted. 

Note that while a slave node on each process is a member of exactly one slave inter-

face, master nodes may be shared between several master interfaces. Also note that a 

node is either in a master or in a slave interface or in no interface at all. Master and 

slave interfaces are gathered in master- / slave-layouts on each process, which simpli-

fies communication. 

In Fig. 8.11 horizontal and vertical interfaces for a one dimensional hierarchical grid 

distributed on two processes are depicted. 

 

Fig. 8.10  Horizontal interfaces  for the vertices of a distributed grid on three pro-

cesses . On the left hand the original serial grid is depicted 
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Fig. 8.11  Exemplary distribution of a 1d grid onto 2 processes  

Starting with an initial grid on process 0, the grid may be refined until it is 

distributed to other processes. This introduces vertical interfaces (dashed 

arrows), that identify identical objects that are stored by several copies on 

both processes. Further refinement produces a grid hierarchy on each pro-

cess. The arrows indicate horizontal interfaces. 

It was decided here that slave objects in a grid should not be directly connected with 

each other through interfaces. While this would be possible using the pcl – and indeed 

is used in some solver implementations - there was decided against it for the grid paral-

lelization. First of all those additional interfaces are not required for tasks like adaptive 

refinement or dynamic redistribution and would only introduce unnecessary mainte-

nance. Secondly one can exchange data between slave nodes by first collecting data 

in the master nodes and distributing them to associated slaves afterwards. The two 

communication steps involved in this scenario are often preferable to direct slave to 

slave communication, since this would require even more data communication (each 

slave would communicate with all other associated slaves, which results in  

copy operations instead of  in the implementation, where  is the number of associ-

ated slaves). Note that the parallel layout defined on the grid elements can be viewed 

as minimal, since it only contains interfaces required to identify connected components 

on different processes. Starting from this minimal layout one can construct other lay-

outs, which e. g. contain overlapping sections or slave to slave connections. This is 

e. g. used to construct interfaces for the parallel algebra module, which is described in 

more detail in section 8.3.3.2. 

P0 P1
Level

0

1

2

3
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Note that other implementations, e. g. the old parallelization in UG using DDD, feature 

a similar structure, however, with subtle differences. While UG previously was using 

horizontal and vertical interfaces, too, the full dimensional overlap, the tight algebra to 

grid coupling and other restrictions of the underlying parallelization library, lead to the 

introduction of a variety of additional interfaces, leading to a more rigid setup than this 

approach. With the separation of components (grid, discretization and algebra) and the 

lightweight nature of the pcl, the implementation of different parallel algorithms is more 

flexible now. 

8.3.3.2 Parallel Algebra 

 

Fig. 8.12 1d Algebra hierarchy  

Exemplary distribution of algebra vectors onto 2 processes arising from a 

linear ansatz function on the 1d grid in Fig. 8.11. Each process stores a 

usual vector for each grid level, that has the size of the number of nodes on 

the level. In addition interfaces between the processes are created, that as-

sociate identified values. This is shown by the arrows, with the actual identi-

fication written above. Note, that again horizontal and vertical interfaces are 

created. 

The pcl has been used to parallelize the algebra structures of the simulation environ-

ment. The basic idea of the parallel algebra structures is to store a serial object (e. g. 

an algebraic vector) on each process and then enrich the serial object with IndexLay-

outs, that handle the information about those degrees of freedom that are stored on 
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more than one process. The Interfaces store in a vector-like structure the process-local 

indices, that are connected to other processes. This allows fast iteration over the indi-

ces, that are connected to another process. 

Usually the degrees of freedom used in the algebra are somehow associated with the 

geometric objects of the grid that is used for the simulations. Since for those grid ob-

jects the layouts are already created, the algebra layouts can be build up using the 

information in the grid layouts. However, it is important to note, that the algebra layouts 

are completely independent from the grid layouts. Thus, if needed they can be build up 

without grid information or the grid information can be dropped once the algebra lay-

outs have been created. This is essential to create a stand-alone parallel algebra envi-

ronment and is very useful when purely algebraic sol,vers like algebraic multi-grid solv-

ers, are intended to be implemented, since they can change or build up the interfaces 

separately.  

Using the interfaces the usual operations on parallely stored vectors can be performed 

/WIE 99/. Each process simply writes the vector values for all indices of its interface 

into the binary stream. These values are sent to the associated process where the val-

ues are unpacked and set, added or subtracted to the process-local indices in the inter-

face of the receiving process. Using such algorithms the storage type of a parallel vec-

tor can be changed between 

 consistent (each process has the true value) 

 additive (the sum over all process returns the true value) 

 unique (true value in the master, but zero in the slave). 

The chosen setup of the interfaces is very suitable for the implementation of a multi-

grid algorithm. The communication during the smoothing steps on each grid level is 

performed using the horizontal interfaces. The restriction and prolongation of the data 

may include communication when a layer is reached where the grid has been distribut-

ed. Here, the vertical interfaces are used. 

8.3.4 Scaling Results 

As detailed above, the parallel communication layer has been implemented as a light-

weight and highly adjustable template library. Special attention has been payed to keep 
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the overhead required for parallelization as low as possible, while still giving users a 

library that vastly eases the creation of efficient parallel algorithms in the scope of a 

simulation framework. 

Tab. 8.5  Strong Scaling of the laplace problem, regular 8x8 quads coarse grid, 

8 refinements, 4,198,401 DoFs 

 

In order to test the implementation the result of a simple test problem is shown. The 

Laplace equation on the unit square is used 

  (8.57) 

and a regular grid of quadrilaterals. The equation is discretized using the vertex-

centered finite volume scheme. 

Tab. 8.5 shows the result of the strong scaling up to 64 processes. The assembling of 

the stiffness matrix is trivially parallelizable by adding contributions of each element to 

the process-local matrix and the measured scaling is optimal as expected. The same 

optimal scaling is found for the grid refinement and the application of the multigrid solv-

er and shows that the pcl can be used efficiently on these processor numbers. 

Tab. 8.6  Weak Scaling of the laplace problem, regular 8x8 quads coarse grid, 

131.841 DoFs per PE 

 

Tab. 8.6 shows the results for the weak scaling of the test problem up to 2048 pro-

cesses, that has been performed on the NEC Nehalem Cluster at the HLRS, Stuttgart. 

The computations started with a 8x8 coarse grid and refined to the desired level as 
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indicated in the table. The measurements show that the pcl can be efficiently used to 

address such numbers of processes. 
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9 Preprocessing 

9.1 Introduction 

Grid construction for domains with thin fractures is a complex task. Several steps are 

required: First, a representation of the boundary of the regarded domain must be speci-

fied, then a description of all relevant fractures in the domain has to be given. Intersec-

tions between different fractures and between fractures and the domains boundary 

have to be calculated. Since intersection algorithms typically produce geometries with 

bad element aspect ratios, the shapes of the triangles have to be optimized by inserting 

new vertices and by moving old ones. After that the volume grid representing the medi-

um itself has to be created. Special care has to be taken during this step to exactly 

preserve the specified fractures and boundaries. After the volume geometry has been 

created, finally the geometry at the fractures has to be adjusted, since additional de-

grees of freedom are required along the fractures by the used discretization scheme, 

as described in section 5.5.1. 

Since each algorithm requires its own special set of parameters and since most of 

them can be fine-tuned to achieve optimal results, the tools were implemented as an 

extension to the general-purpose meshing application “ProMesh”. The tools and algo-

rithms already available in ProMesh together with the newly developed specialized 

algorithms for fracture expansion and volume grid generation allowed the creation of a 

flexible pipeline, ready for geometries of vastly differing types. 

While complex 3 dimensional simulations are the main goal of the project, the under-

standing, which can be obtained from a 2 dimensional simulation, should not be under-

estimated. It was thus important to support both the generation of 2d and 3d geome-

tries, optimally with a very similar set of tools. 

9.2 ProMesh 

ProMesh is a cross platform tool for the creation, manipulation and optimization of 2 

and 3 dimensional volume geometries, developed at the Goethe Center for Scientific 

Computing at the University of Frankfurt. Its user interface allows to visualize geome-

tries, to select different parts and elements of those geometries and to apply a variety 

of algorithms on the whole geometry or on selected parts. Each geometry in ProMesh 
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can be divided in separate subsets, which can be used during simulation to define re-

gions with different parameters or different boundary sections. A short overview over 

the graphical user interface is given in Fig. 9.1.  

 

Fig. 9.1  ProMesh: A cube with two volume-subsets, divided by a fracture  

(1): 3d view, (2): tools, (3): scene inspector, (4): log, (5): clip planes, (6) tool 

bar 

In the 3d view (1) the currently loaded geometries are displayed. The displayed geome-

tries can be rotated, scaled and moved by dragging the mouse in the 3d view. Vertices, 

edges, faces and volume-elements can be selected by mouse clicks. In the tools sec-

tion (2) one can find a variety of different algorithms, gathered in different groups. The 

“Selection” group e. g. contains algorithms, which transform the current selection (e. g. 

extending or inverting it). The “Refinement” group contains algorithms to adaptively 

refine parts of the grid and the “Layers” group contains the expansion algorithms, which 

are used to prepare the fractures for simulation. The “Scene Inspector” (3) gives a list 

of all subsets (vertex, edge, face and volume subsets). It allows to choose a color for 

each subset and to hide different subsets. The “Log” window (4) is used to inform the 

user over currently executed tasks or to print specific information on current geome-

tries. The “Clip Planes” window (5) is especially useful in 3d, where it allows to cut the 



 

201 
 

geometry along different planes, thus allowing to closer inspect the structure of the 

interior volume grid. The main tool bar (6) finally gives quick access to render options 

and holds shortcuts for commonly used actions (e. g. load, save, …). 

9.3 Grid generation 

As mentioned in the introduction, the task of constructing a geometry for the simulation 

of transport in fractured media consists of multiple steps. Some of those steps can be 

fully automated, others require input and guidance from a user. 

First, the specification of the boundary and low dimensional fracture geometries is de-

scribed, followed by a description how occurring intersections can be resolved. The 

operations involved in optimizing the shapes of the triangles of the grid are explained. 

The algorithms behind volume-geometry generation are examined. Finally will be de-

scribed in detail, how the required fracture expansion can be realized. 

9.3.1 Boundary and fracture descriptions 

Boundary and fracture geometries can have a lot of different sources. If one wants to 

construct a simple example, he can construct such a geometry directly in ProMesh. 

This is most commonly done by first creating a plane or a box through one of the “Grid 

Generation” tools, followed by coordinate transformations, as well as refine and extrude 

operations. 

Quite often boundary and fracture descriptions are encountered, which are specified as 

part of a problem description. Those geometries are then often stored in common for-

mats such as the stl-format or the wavefront-obj-format. ProMesh can import those 

files, which gives the possibility to directly work on geometries, which were specified 

from external sources. 

Since those formats are very common, they are also supported by many commercial 

and open-source modeling applications, like Blender, 3DS Max or Maya. Nearly all 

CAD programs also support an export to at least the stl-format. This again allows users 

to specify boundary and fracture descriptions in almost any tool they like, given that it 

can export its data to one of those common formats (or to a format which is convertible 

to “.stl” or “.obj”). 
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9.3.2 Resolving intersections 

While the geometries from 9.3.1 describe the boundaries and fractures, they often do 

not contain information on how the fractures and boundaries are connected – i. e. in-

tersections of the different fractures and of fractures with the boundary are not resolved 

in the grid. This however is required in order to guarantee a correct interconnection 

between all parts of a domain. A bunch of algorithms has thus been implemented, 

which assist in resolving those intersections. An automated version of the algorithm 

exists, however, in complicated geometries this algorithm would have to guess the de-

sired result – manual guidance is thus preferable in such cases. The main tasks per-

formed to resolve intersections are the following: 

1. Remove doubles: Joins all vertices, which are closer to each other than a given 

threshold. This is especially important for geometries imported from “.stl” format, 

where each triangle defines its own vertices, leading to multiple vertices sharing 

one coordinate. 
2. Project vertices to close edges: Projects vertices to edges, which are closer to 

the vertex than a given threshold. The edge is splitted and the vertex is used as 

endpoint for the newly created edges. 
3. Project vertices to close faces: Projects vertices to faces, which are closer to the 

vertex than a given threshold. The face is splitted and the vertex is used as a cor-

ner for the newly created faces. Note – if this operation is executed after the verti-

ces have been projected to close edges, then degenerate cases can be avoided. 
4. Resolve edge intersections: This operation is mainly used for 2d geometries. 

Edges intersecting each other are splitted and a new vertex is introduced at the 

crossing. In most cases this step is obsolete in 3d, since edges are intersected au-

tomatically during step 5 (“resolve triangle intersections”). 
5. Resolve triangle intersections: Calculates intersections between triangles. New 

vertices, edges and faces are introduced as required. The algorithm is quite in-

volved, since it requires a local retriangulation of intersecting triangles. However, 

this technique is by far more robust than other comparable techniques, like e. g. re-

peated edge splits. Note that if this algorithm is executed, step 4 (“resolve edge in-

tersections”) can in most cases be skipped. 
For optimal performance an octree is used, to quickly find triangles, which are close 

to each other. 
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Note that all of these algorithms are restricted to the set of currently selected elements 

in a given grid. This allows to further improve performance and to restrict all operations 

as required. Selecting all elements of a grid is of course valid too. 

After all those operations have been carefully executed, one should obtain a regular 

grid, which does no longer contain unresolved intersections. However, the intersection 

algorithms often produce triangles of bad aspect ratios, since they try to only introduce 

a minimal number of new elements. Since elements of a good shape quality are re-

quired for simulation, and since the shapes of the fracture and boundary geometries 

have to be preserved, an optimization must be performed over the shapes of all trian-

gles. 

9.3.3 Triangle-grid optimization 

In order to improve the aspect ratios of the triangles, one of the operations listed below 

is repeatedly performed on randomly chosen edges. An operation is thereby only per-

formed, if it leads to an improvement of the aspect ratio of neighbored triangles. 

The operations, which are repeatedly applied to different edges in order to improve the 

triangular grid, are the following (see Fig. 9.2): 

 Edge split: An edge is splitted by inserting a new vertex. This affects adjacent tri-

angles, which have to be splitted along that edge, too. 

 Edge swap: Given two triangles (a, b, c) and (b, c, d), the common edge (b, c) can 

be swapped by removing the two triangles and by introducing new triangles (a, b, 

d) and (a, c, d), with a common edge (a, d). 

 Edge collapse: During an edge collapse of an edge e, the adjacent triangles of e 

and e itself are removed from the grid. The two endpoints of e are merged. This 

leads to a reduction of the number of vertices, edges and faces. 
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Fig. 9.2  Edge operations: Edge swap, edge split and edge collapse 

While the edge operations are important to improve the topology of the grid, coordinate 

smoothing is used to further improve regularity of the triangles, analogous to /FRE 98/. 

In Fig. 9.3 an example is given, that shows how the optimization algorithm improves 

the aspect ratio of the triangles in a grid. 

        

Fig. 9.3 The optimization algorithm applied to a cube with an internal fracture (blue) 

9.3.4 Volume geometry generation 

Now that the boundary and fracture geometries are fully prepared, it is time to construct 

the volume geometry. 

edge swap

edge split

edge collapse
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In 2d a triangles grid is constructed using the sweep line method described in 

/BER 00/. This method preserves edges in the interior of a domain and is thus well 

suited. Mesh-optimization as detailed in section 9.3.3 is then used to further improve 

the aspect ratios of the resulting triangles. 

In 3d a tetrahedral net has to be constructed, which preserves all given fractures and 

boundaries. For this task the ARTE grid generator was extended (see /FUC 01/) to 

support nested geometries. The ARTE grid generator is used, since it was carefully 

build to preserve all given geometrical structures, while still building tetrahedrons with a 

good aspect ratio. 

During creation of the volume grid, one has to weight between the quality and the 

coarseness of the resulting grid. Since the geometric multigrid solver benefits from a 

coarse base grid, coarseness is desirable. However, a coarse representation of com-

plex geometries can often only be achieved by using elements with a bad aspect ratio. 

This again has a negative influence on the convergence of the solver. Thus a balance 

has to be stricken between those counteracting goals – at least if we’re using the geo-

metric multigrid approach. Another promising approach is the use of algebraic multigrid 

solvers. Those solvers use a fine grid to assemble a matrix and perform matrix coars-

ening afterwards to construct a hierarchy of matrices, which is suited for a multilevel 

method. However, since algebraic multigrid methods are not easy to set up, the geo-

metric multigrid method is still important and grids should not be constructed unneces-

sarily fine. In Fig. 9.4 two cuts of a cubic geometry with an inner fracture are shown. 

           

Fig. 9.4 Cuts of a cubic fractured geometry consisting of tetrahedrons 
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9.3.5 Fracture expansion 

At this point one obtained a grid, which is in principle ready for simulation. However, 

the special properties required by the discretization scheme, as described in section 

5.5.1, require the generation of additional degrees of freedom along the fractures. In 

this section an algorithm is detailed, which will generate those degrees of freedom by 

constructing additional flat elements. 

The grid resulting from the steps above shall be denoted by , where 

 denotes the set of vertices and  the set of -dimensional 

elements in ,  and  being the number of vertices and elements of . In this con-

text an element  is identified with a tuple of vertices which describe the corners of 

. The following notation is used: . By 

 the mapping is denoteed that associates a vertex with its position in  

and by  the mapping that associates an element  with its convex hull. 

For the -dimensional elements in the fracture analogous notation is used. 

Let  with  and 

 be the grid subset representing the fractures. 

Our discretization requires additional degrees of freedom at the fracture vertices. An 

additional vertex is created for each additional degree of freedom required. In order to 

associate them with the surrounding grid, degenerated elements are introduced – ele-

ments with vertices having pairwise the same position so that the elements have zero 

width. In two dimensions, these are e. g. quadrilaterals resembling an edge, and in 

three dimensions prisms and pyramids are used that degenerate to a triangle. Note 

that, since additional degrees of freedom are necessary on both sides of the fracture, 

the fracture has to be expanded into two layers of degenerated elements (cf. Fig. 9.5). 

One could think of constructing the degenerated elements by iterating over all fracture 

elements , creating degenerated elements on both sides of each . However, this 

approach leads to complications at fracture junctions, where special cases have to be 

implemented depending on the number of intersecting fractures. This becomes even 

more evident in three dimensions, where a multitude of special cases would be re-

quired to handle the different intersection constellations. 
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Fig. 9.5  Topological scheme of the degenerated elements and additional vertices in 

the fracture 

Rather is operated on the elements adjacent to the fracture. To this end, for each 

 and all the associated subsets  such that  lies in the closure of 

 ( , , ), new vertices  are introduced at position 

. Let then  be the set of those new vertices. 

For each element  that shares a side with a fracture, consider each side  of 

, so that . Let ,  be the corners of side . 

Let , …,  be the subsets for which  and  lies in the closure 

of , . Then, a degenerated element is constructed from the vertices  and 

the newly inserted vertices , . Let  be the set of all those new degener-

ated elements. 

Finally the fracture neighboring elements have to be reconnected in such a way that 

they use the new vertices. Let  be the set of all elements 

that share a vertex with the fracture. For every a new element  is created by 

replacing in  each vertex  such that , with the associated vertex 

, where the closure of  contains , . Let  be the set of 

all those new elements . 

By merging and reordering the vertices in  and  and by using the elements from  

and , one obtains the sets  and 

 as introduced in section 5.5.1. The resulting grid has all the properties 

required for simulation. 

v1,v1,2

v2,3

v2

v2,4

v3 v3,7

v3,6

v3,5
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To keep the special structure of the grid in the fracture during the creation of the grid 

hierarchy during simulation, anisotropic refinement rules must be used for the degen-

erated elements. Furthermore, the degenerated elements adjacent over their non-

degenerated sides should be refined simultaneously. This maintains the two-layer to-

pology of the grid in the fracture. 

9.4 Graphical user interface 

9.4.1 Introduction 

The automated mapping of program functionality to intuitive user interfaces is a highly 

challenging task. Nevertheless, it is a promising way to significantly improve software 

quality by simplifying the development process. 

In the last decades increasing computing power made more and more accurate simula-

tions possible. Usually, these kind of simulations require the simultaneous control of 

numerous input parameters like the full geometry, including material properties, cou-

pling of different physical processes, different grids, numerical methods, simulation 

software and finally computers. 

To handle this complexity it is important to establish a visual and intuitive environment 

for the user. There are several types of users. The one that is expert in the application 

problem to be simulated, but not in numerics or computing, is an important one. Other 

users, however, have, despite of problem specific knowledge, also a lot of expertise in 

numerics. Thus, a flexible environment is necessary, which allows the set-up of a simu-

lation in close analogy to the decisions and selections the user is taking when ap-

proaching the simulation of a model. 

To accomplish this task, the Visual Reflection Library (VRL) as Framework for auto-

matic graphical user interface (GUI) generation is used. Based on VRL, a visual work-

flow-management software has been developed to allow the integration of the simula-

tion system Unstructured Grids (UG) and applications that are based on UG, such as 

the upcoming version of d³f. 
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9.4.2 Declarative GUI programming 

9.4.2.1 Definition 

Declarative GUI programming is already used by several technologies such as Qt 

/NOK 09/ and JavaFX /ORA 10/. Those toolkits introduce specific scripting languages 

for defining custom GUI elements. While making the development of custom user inter-

faces more efficient, this approach does not solve the problem that the connection be-

tween the non-graphical backend of the application and the frontend (GUI) has to be 

created manually and changed whenever the application structure changes. 

Declarative Programming as used by VRL is focused on the last aspect. A mechanism 

was created that allows to keep the backend and frontend in synchronization. VRL 

does not introduce a specific language for GUI development. Rather than that, interac-

tive visualizations of Java /ORA 96/ objects were automatically generate, i. e., their 

public interface. This totally decouples the GUI generation from the language, i. e., ob-

jects from every language that can be accessed via the Java Reflection API can be 

visualized. Throughout this paper Groovy code /COD 09/ was used unless noted oth-

erwise.  

As mentioned before VRL GUI generation is based on the Java Reflection API. There 

are other tools and frameworks that make use of this information as well to create user 

interfaces. A common use of this is a property editor as used in development environ-

ments such as the Netbeans Integrated Development Environment (IDE) /ORA 10a/ or 

Eclipse /ECL 11/. But a property editor is optimized for manipulating data and does not 

give interactive access to the functionality of an object. The BlueJ IDE /KOL 03/ pro-

vides interactive access to the functionality of an object. The intention here is to give an 

introduction to object-oriented programming. This is an attempt to allow visual interac-

tion with Java objects. However, it does not provide a full mapping from functionality to 

graphical interfaces. These usages of GUI generation via Reflection do not solve the 

problem of automatically generating high-quality interfaces. The challenge is to create 

a general-purpose framework for declarative GUI programming. 
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9.4.2.2 VRL component types 

To accomplish this task VRL uses three types of visual components (see Fig. 9.6). An 

object representation is a container, comparable to a program window that can group 

several child components. A method representation is a container component inside an 

object representation. It can also group child components and provides elements for 

calling the represented method. To represent variable data VRL provides type repre-

sentations. In most cases they allow interaction with the visualized data. 

 

Fig. 9.6  VRL Component Types 

9.4.2.3 Object visualization 

Fig. 9.7 shows the visualization result for a simple class that provides a method that is 

capable of adding two integer numbers. Based on the component types of Section  it is 

possible to create interfaces with only a minimal amount of code. To create a graphical 

user interface it is only necessary to specify the functionality. In this case a GUI is re-

quested that is capable of adding two integer values.  

 

Fig. 9.7 Visualization of a simple Java object 
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Compared to Java code that does not only implement the functionality but also involves 

GUI generation, this example shows that declarative GUI development can be very 

efficient. It has to be mentioned that this example visualization has several extra fea-

tures such as error messages for incorrect data etc. 

 

Fig. 9.8 Code used to create the visualization shown in Fig. 9.7 

For a common Java implementation using the Swing /LOY 02/ toolkit much more code 

is required. A sample is shown in Fig. 9.9. (This is not necessarily the shortest possible 

implementation.) 

 

Fig. 9.9  Compact implementation of a Swing application that is able to add two 

numbers 

Furthermore VRL can do the interface generation without any additional interface relat-

ed commands. But by defining the problem domain, interfaces can be customized (see 

section 9.4.2.4). This is one of the major advantages. The VRL user only provides func-

tionality and optionally some details about the problem domain. These details are not 

commands. They are meta information, i. e., annotations that do not influence the func-

public class AddIntegers { 
  public Integer add(Integer a, Integer b) { 
    return a+b 
  } 
} 

public class Main { 
  public static void main(String[] args) { 
    javax.swing.JFrame frame = new javax.swing.JFrame("Add Integers"); 
    frame.setLayout(new java.awt.GridLayout()); 
    final javax.swing.JTextField input1 = new javax.swing.JTextField(); 
    final javax.swing.JTextField input2 = new javax.swing.JTextField(); 
    final javax.swing.JTextField output = new javax.swing.JTextField(); 
    frame.add(new javax.swing.JLabel("Integer")); 
    frame.add(input1); 
    frame.add(new javax.swing.JLabel("Integer")); 
    frame.add(input2); 
    frame.add(new javax.swing.JLabel("Result")); 
    frame.add(output); 
    javax.swing.JButton btn = new javax.swing.JButton("invoke"); 
    btn.addActionListener(new java.awt.event.ActionListener() { 
      public void actionPerformed(java.awt.event.ActionEvent e) { 
        output.setText(new Integer(new Integer(input1.getText()) + 
           new Integer(input2.getText())).toString()); 
      } 
    }); 
    frame.add(btn); 
    frame.pack(); 
    frame.setVisible(true); 
    } 
} 
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tionality of the given code. The absence of GUI related commands keeps the code 

simple and clean. Even more important is the fact that the code can be used for other 

purposes as d³f well. That is, the implemented functionality can be used in any Java 

program or library without changing the code. For source code that does contain GUI 

related commands other than annotations this is in often impossible. 

Even though architectural patterns such as the Model-View-Control pattern (MVC) 

/GAM 95/ improve the development process and help to separate the functionality from 

the graphical interface, it is assumed that the application logic should be completely 

independent from the user interface and should not be a part of the implementation. 

Namely, if not automatically generated, the graphical user interface and the application 

logic will always diverge to some degree and a lot of work has to be done to prevent 

that. In many projects this results in user interfaces that cannot provide the newest 

functionality of the application backend. In these cases users have to disregard the 

graphical user interface and use the backend directly (programmatically). This adds 

even more features to the backend that are not accessible through the user interface. 

Under the assumption that UG provides a service that is able to create such an inter-

face description for its functionality, VRL visualization can be done without an extra 

implementation. For the upcoming UG version such a service is in preparation. The 

early tests show that this is a highly promising approach. 

9.4.2.4 Domain specific GUI elements 

While object representations and method representations are mostly generic elements, 

type representations are individual components. Their appearance depends on the 

data type of the visualized variable and the problem domain. The example in Fig. 9.8 

from Section 9.4.2.1 is recalled here. The code does not include any GUI related com-

mands. Thus, VRL uses a default type representation for the parameter types. For 

numbers and strings this is relatively easy. 

Although this seems to be a reasonable approach for simple objects, it is not clear that 

this is true for complex cases as well. Compared to classical GUI development this 

seems rather inflexible. To overcome those problems VRL supports multiple type rep-

resentations per data type. By supplying information about the problem domain, i. e., 

the context of the variable to visualize, it is possible to advise the system to choose 
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between different type representations. For this example one might want to use a slider 

instead of an edit field. VRL supports such meta information via parameter annotations. 

Parameter annotations can be used to request a specific visualization and to define 

problem specific properties such as value ranges. If the requested visualization is 

available it will be preferred over the default visualization. Fig. 9.10 shows a custom-

ized version of Fig. 9.8. The resulting visualization is shown in Fig. 9.11. 

Defining properties of the type representation may be impractical in some cases be-

cause the annotations will become rather complicated. In this case it is suggested to 

define a custom type representation which will be discussed in section 9.4.2. 

 

Fig. 9.10 Illustration of parameter annotations 

 

Fig. 9.11 Visualization of a simple Java object using parameter annotations 

9.4.2.5 Custom type representations 

To extend the number of known problem domains, VRL can be extended by adding 

custom type representations. Currently type representations for common variable types 

such as Integer, Float, Boolean and String exist. In addition it provides inter-

active type representations for 2D and 3D visualizations. The UG specific extensions 

enable UG script generation and include MathML /WOR 99/ based rendering for math-

 public class AddIntegers { 
   public Integer add( 
      @ParamInfo(style="slider",options="min=0;max=100") Integer a, 
      @ParamInfo(style="slider",options="min=0;max=100") Integer b) { 
     return a+b; 
   } 
 } 
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ematical formulas (see Section and ). Extensions for modifying surface properties such 

as boundary conditions are in development. 

Technically a type representation is a Swing component that provides additional meth-

ods for data processing and visualization including data specific error handling. Defin-

ing custom type representations is a problem specific task. Thus, except from basic 

understanding of the Swing framework, only problem specific knowledge is required. 

 

Fig. 9.12 Type representations for java.lang.Integer and java.awt.Color 

An overview of different type representations for java.lang.Integer and ja-

va.awt.Color is shown in Fig. 9.12. Now these features are discussed with the help 

of an example. Fig. 9.13 shows a sample class wanted to provide a type representation 

for. 

 

Fig. 9.13 Circle Class 

class Circle { 
     
    public int radius 
     
    public Circle(Integer radius) { 
        this.radius = radius 
    } 
} 
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If VRL visualizes an object that uses the Circle class from Fig. 9.13, it uses a default 

type representation that only shows the class name. Defining a custom type represen-

tation enables VRL to use an improved visualization. Fig. 9.14 shows a possible im-

plementation of a type representation for the class defined in Fig. 9.13. The constructor 

defines the class to visualize and defines the name to use (an empty name is used). 

The setViewValue( Object o ) method defines how to visualize an object. For 

every class that uses the Circle class in its public interface VRL will use the type rep-

resentation defined in Fig. 9.14 unless requested otherwise. The getViewValue() 

method can be used to create an object based on the current visualization, e. g., user 

input. In this case an interactive visualization is not provided. Thus, the value that is 

currently visualized will be returned. In many cases it is sufficient to implement a con-

structor, the setViewValue( Object o ) and getViewValue() methods. Thus, 

no special knowledge of the internal implementation is required. 

 

Fig. 9.14  Type representation for the Circle class 

class CircleType extends BufferedImageType { 
 
    public CircleType(){ 
        setType(Circle.class) 
        setValueName(" ") 
    } 
     
    public void setViewValue(Object o) { 
        def circle = o as Circle 
        def image  = 
            ImageUtils.createCompatibleImage(300,300) 
        def g2 = image.createGraphics() 
         
        g2.setColor(Color.green) 
        def thickness = 5 
        g2.setStroke(new BasicStroke(thickness)) 
         
        int centerX=image.getWidth()/2 
        int centerY=image.getHeight()/2 
         
        int x = centerX + thickness/2 - circle.radius 
        int y = centerY + thickness/2 - circle.radius 
         
        int width = 2 * circle.radius-thickness/2 - 1 
        int height = 2 * circle.radius-thickness/2 - 1 
         
        g2.drawOval(x,y,width,height)  
        g2.dispose() 
         
        super.setViewValue(image) 
    } 
 
    public Object getViewValue() { 
        return this.@value 
    } 
} 
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Fig. 9.15  Class that uses the Circle class in its public interface, listing 

Fig. 9.15 shows a class that creates an instance of the circle class and returns it. The 

corresponding VRL visualization is shown in Fig. 9.16. 

 

Fig. 9.16 Class that uses the Circle class in its public interface 

9.4.3 Visual programming 

9.4.3.1 Data dependencies 

Each visual programming environment needs a method to define data dependencies. 

Therefore, VRL components can be connected via wires (see Fig. 9.17). Defining de-

pendencies by connecting components is a technique that is used by several tools 

such as the Visualization Data Explorer from IBM /IBM 91/. Data dependencies are 

defined by connecting return values and parameters of methods. VRL connections are 

type-safe. To evaluate data dependencies it is necessary to define a sequence of 

method calls, i. e., to determine which methods have to be called to compute the re-

quested result. 

Interactive type representations notice every value change. All dependent type repre-

sentations will be emptied to prevent data inconsistencies. The return value type repre-

class CircleCreator { 
     
    public Circle createCircle( 
        @ParamInfo(name="Radius") Integer radius) { 
        return new Circle(radius) 
    } 
} 
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sentations of all dependent methods are marked as out of date. If the user invokes a 

method VRL will compute the dependencies and call all required methods. 

But, determining the sequence of method calls by evaluating the data dependencies 

limits the user in several ways. It is not possible to freely define a deterministic algo-

rithm. In common programming languages method call sequences can be defined in-

dependently from data dependencies. 

9.4.3.2 Codeblocks 

 

Fig. 9.17 Data dependency between two objects 

To enable the feature of defining method call sequences, VRL supports codeblocks. A 

VRL codeblock is equivalent to a block in C++ or Java. VRL contains code generators 

that can map a sequence of method calls to Groovy code, see Fig. 9.17. This se-

quence is defined by selecting method representations via mouse gestures.  

 

Fig. 9.18 Custom sequence of method calls via codeblocks 
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The corresponding Java object can be visualized like any other object. Hence, VRL 

provides mechanisms for defining custom method call sequences. This is important to 

enable the definition of complex workflows. For UG this feature is essential, as it is 

necessary to allow custom computation workflows, like the current UG scripting lan-

guage does. 

One problem with the current approach is that it is not easily possible to invoke a 

method multiple times, each time with different parameters. This issue was addressed 

by supporting multiple object visualizations. These visualizations can be used to invoke 

the same method with different parameters. 

9.4.3.3 IDE features 

As the Java VM allows dynamic class loading /HAL 02/ it is also possible to define the 

functionality as Java class and visualize it with VRL at run-time. In addition to that VRL 

provides Groovy support. An integrated editor enables the user to write custom com-

ponents. Even type representations can be developed at run-time. This allows interac-

tive GUI development and extends the visual programming features. The Groovy code 

does not have to be added via the editor. It can also be retrieved from a code generator 

such as the codeblock generator described in section 9.4.3.2. To simplify the develop-

ment process VRL-Studio was created, a small VRL based IDE. VRL-Studio is also 

used to create the UG frontend. 

9.4.3.4 Persistence 

VRL uses a XML based persistence model. It stores canvas properties, objects (in-

stances of classes) and the state of their visualization. The source code of classes de-

fined with the Groovy editor is stored as well. Such a configuration is called a session. 

Most VRL based programs are based on a session file. To ensure that the final pro-

gram can be deployed, VRL sessions can be exported. The exported file contains the 

session file and the VRL runtime, including external dependencies. 
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9.4.3.5 Creating applications 

9.4.3.5.1 Problem definition 

Even though several features that improve the creation of user interfaces have been 

decribed, the question whether application development is possible is not answered 

yet. Creating the workflow is done by connecting objects (some of their type represen-

tations) and creating codeblocks. But what about the application itself? In many cases 

it is necessary to create a reduced user interface, designed for a specific purpose. This 

is what defines the application from a user point of view. VRL provides several features 

to achieve this (see Sections 9.4.3.5.2 and 9.4.3.5.3). 

9.4.3.5.2 Parameter groups 

After defining the workflow of an application one usually wants to group the most im-

portant parameter visualizations to simplify the user interface. With the methods delin-

eated so far, the only choice is to change the classes that define the application func-

tionality or to add classes specifically designed to group selected parameters. 

But in some cases this is either impossible or impractical as one does not want to 

change the code only to achieve a specific grouping of object parameters. This leads to 

code that is only used to create the GUI itself. However, this is exactly what shall be 

avoided. Thus, VRL provides a feature called Parameter Groups. This means that, pa-

rameters from object visualizations can be selected and grouped in a separate window. 

This is shown in Fig. 9.19 and Fig. 9.20. 

 

Fig. 9.19 Parameter groups (selection) 
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Fig. 9.20 Parameter groups (result) 

9.4.3.5.3 Window groups 

The problem now is that all the objects are visible, whether important or not. Therefore 

VRL allows the definition of window groups. A window group defines the location and 

the visibility of each window that is part of the group. This enables the user to hide all 

objects that shall not be part of the reduced user interface. 

9.4.3.5.4 Example 

Combining both features, an application workflow can be simplified significantly. Fig. 

9.21 shows a simple function plotter. It provides objects for defining the function that 

shall be plotted, properties that define the function variables and the visual appearance 

of the output. Finally it shows the output itself. It is an interactive 3D visualization of the 

evaluated function. 

 

Fig. 9.21  Function plotter 
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Fig. 9.22  Reduced interface for the function plotter  from Fig. 9.21 

It is assumed that the only important task is the definition of the function and their pa-

rameters. The final application interface is shown in Fig. 9.22. 

9.4.3.5.5 Multiple views 

As was to be seen in section 9.4.2.4, VRL enables the definition of a task specific view. 

However, it is also possible to define multiple window groups. This enables the defini-

tion of multiple task specific views. In the function-plotter-example this could be a sepa-

rate view for changing the appearance of the visualization. 

9.4.3.5.6 Limitations 

Currently the definition of a reduced user interface has some limitations. When group-

ing parameters it is not possible to choose between different component layouts and a 

parameter cannot be grouped twice. Because this is an important feature it is planned 

to integrate advanced layout support in the near future. 

9.4.4 VRL applications 

Now some real examples are shown to demonstrate the current state of VRL. 
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9.4.4.1 BasicMath 

BasicMath is an extension for VRL. BasicMath provides several mathematical objects 

such as scalar, vector and matrix and corresponding functions such as vector norm or 

matrix vector multiplication etc. The mathematical objects are represented as visual 

instances. BasicMath enables visual formulation of mathematical expression. Object 

names can be displayed as mathematical expressions, i. e., special characters such as 

integral, norm are supported. 

To render mathematical expressions BasicMath integrates the MathML renderer JEu-

clid. However, it is not necessary to use MathML code for object names. Plain text is 

also supported. All functions/operators can automatically create the name of their re-

sult. By combining several functions/operators the name of the last result consists of 

the complete expression. But the result name can be overriden with an arbitrary ex-

pression. 

Functions can be added from a popup menu to the canvas of VRL-Studio. Objects like 

e. g. a matrix will be created and added to canvas by a so-called MatrixGenerator. In 

addition to Functions/Operators and data elements, BasicMath provides so-called gen-

erators, one for each element type (matrix, vector, etc.). The usage of generators and 

functions/operators is illustrated with the help of the following example. 

 

Fig. 9.23  BasicMath Sample Session 
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After creating two vector objects and one matrix object via corresponding generators 

the objects are used for calculations. In Fig. 9.23 objects for vector addition and matrix-

vector multiplication are used. 

In section  a component is described that uses the data objects shown in the example 

to interact with UG. Fig. 9.24 shows a scalar, matrix and a vector object. They are used 

by the component that interacts with UG. 

 

Fig. 9.24  UG input with three BasicMath elements 

It is possible to visually access data elements in different ways, e. g., the data of a ma-

trix object can be accessed by a vector. An example is the manipulation of the matrix 

diagonal. To enable this feature BasicMath uses so called mappings, i. e., bijective 

mappings between two index sets. Visual changes of the data elements affect all visu-

alizations that use these data elements. 

9.4.4.2 UG 3 

In the following part of this article it will be shown which graphical components have 

been created for the current version of UG. Furthermore, their functionality is described 

and how they can be used to simplify the UG workflow. The assumption was made that 

a common user does not want to implement the mathematical algorithms himself. That 

is, the user wants to use the existing functionally to solve a specific problem without 
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deeper understanding of the workflow internals. The workflow itself is rather static. But 

the parameters are subject to change and depend on the specific problem. Therefore 

all components allow to interactively specify selected parameters. 

Additional type representations and components allow the visualization and interactive 

manipulation of mathematical objects such as matrices, vectors and scalars. The exist-

ence/availability of these visualizations and corresponding data structures enable the 

visual formulation of mathematical contents/relations/subjects. This functionality is part 

of the VRL extension BasicMath. 

9.4.4.3 Line of action  

9.4.4.3.1 Creating a VRL based graphical frontend 

The development process of a VRL module that integrates a specific UG workflow 

could be classified as follows: 

 identify the problem specific parameters 

 create custom type representations for special parameter types 

 create the Java classes that implement the necessary functionality (will be visual-

ized by VRL) 

 create custom script files to store the user-specified parameters 

 include the custom script files into the existing UG scripts 

9.4.4.3.2 Components for the diffusion-convection-equation 

To improve the handling of the UG components for the d iffusion convection equation 

  

and their results special components were created. 
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a) UGInput 

As shown in Fig. 9.24 on the right side UGInput allows to set the parameters of the 

diffusion convection equation and visualizes the equation with user defined parameter 

names. The equation is based on automatic generated MathML code. This allows a 

flexible adaption of the visualization of the equation. 

Timesteps and geometry can be set by typing the number respectively the path to the 

wanted geometry file. 

b) LivePlotter 

The LivePlotter allows to observe the evolution of the geometry over time during the 

calculation. Furthermore, the geometry can be freely translated, rotated and zoomed. 

With this component it was tried to enable the user to evaluate the current solution. 

c) SolutionPlotter 

As shown in Fig. 9.25 the SolutionPlotter has been created to visualize the evolution of 

the geometry after the competition is finished. SolutionPlotter allows the same interac-

tion with the geometry like LivePlotter but he can additionally replay the development or 

visualize the geometry at a specific timestep. 

The application area of the SolutionPlotter are e. g. iterative processes where a big 

interest in the evolution of the geometry and or the visual presentation of it. 

LivePlotter was developed to valuate an intensive calculation at nearly real time, if the 

evolution of the corresponding geometry is known or estimated to be of a special kind. 

So the calculation can be aborted if the development did not fit the wished progress. 
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Fig. 9.25 SolutionPlotter component visualizing a calculated geometry 

d) PickPlotter 

PickPlotter shown in Fig. 9.26 allows different operation states and actions. They are 

represented by buttons that are shown on the left side of the visualization area. 

 

Fig. 9.26  The PickPlotter component showing a geometry file and two selected 

areas 
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In the translation-rotation mode it is possible to define a custom rotation point on the 

geometry surface. When defining the rotation center the geometry will be translated. 

That is, the rotation point will be moved to the center of the visualization area. Addi-

tionally, there is the possibility to define boundary conditions on the visualized geome-

try, which are also graphically represented. There is one state to select all triangles 

along the deep axis in a selection rectangle and one state to select only the first visible 

triangle under the mouse pointer. 

The type of the marginal condition can be selected by pressing one of the three smaller 

buttons on the left lower corner of the visualization area. To notify UG about the selec-

tion this component can write the custom information to a script file. 

9.4.4.4 d³f 

9.4.4.4.1 Automatic registration of functionality with the VRL 

UG and d3f provide a broad spectrum of functionality that must be accessible via the 

VRL user interface. These programs consist of several small logic components (such 

as discretization, boundary condition, numerical solvers) that must be combinable in 

many ways to adapt to the specific needs of a single simulation. In order to allow this 

kind of flexibility it is evident that an automatic generation of visualization as provided 

by the VRL must be combined with a automatic binding of UG/d3f functionality to the 

VRL. While Java has native reflection support, this is not true for C/C++. Since UG/d3f 

is written in C/C++ for performance reasons, a binding software called UGbridge has 

been developed to furnish UG and d3f with this property. The implementation uses 

C++-template techniques and provides a typesafe binding.  

9.4.4.4.2 Visual components for d³f 

In the new version of d³f/UG for the VRL several components have been made availa-

ble in the graphical interface. These components are: 

 Loading and Saving of a physical Domain from file 

 Vertex-centered finite volume discretization of the equations of density driven flow 

 Dirichlet boundary conditions, Flow boundary conditions 
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 Setting of physical parameters such as molecular diffusion, gravity, permeability, 

viscosity and porosity 

 Selection of different numerical solvers such as BiCGStab and preconditioners like 

geometric multi-grid, incomplete Cholesky factorization, Gauss-Seidel 

 Output of the computed solution for brine mass fraction and pressure to vtk-file for-

mat 

In Fig. 9.29 and Fig. 9.30 an example session is presented to illustrate the software. 

The well established Elder problem /ELD 67/ is computed for a two dimensional do-

main. In Fig. 9.29 the simplified user interface is shown that is designed to allow users 

to change several physical parameters of the simulation without going into the details 

of the numerical simulation. The core of the session is the component “d³f Component” 

that groups the whole setting of the density driven flow problem solved in this example. 

Invoking the “filename” button the user can choose a physical domain by a fileselec-

tion-dialog as it is shown in Fig. 9.27. 

 

Fig. 9.27 Interactive selection of physical domain 

The selection of the physical parameters is shown in Fig. 9.28. The simulation can be 

started by the “start” button in the upper left corner. Detailed information about the cur-

rent status of the solution process is displayed in the message box at the bottom 

(shown in Fig. 9.29). The solution can be viewed in an interactive preview window on 

the upper right corner. More advanced users have the possibility to control further de-

tails of the numerical simulation. In Fig. 9.30 some hidden components of the simula-

tion core are shown that can be opened by a user if needed. In this session, the user 
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can specify the boundary conditions for pressure and brine mass fraction as well as the 

initial conditions. Other non-displayed parts of the setting such as the setup of the nu-

merical solvers can be opened and influenced as well. 

 

Fig. 9.28 Selection of physical parameters 
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Fig. 9.29 d³f sample application (a) 
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Fig. 9.30 d³f sample application (b)
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10 The postprocessor 

The post processor is based on the post processing package developed for the soft-

ware packages d3f and r3t. In this project, the key aspects were the adaptation of the 

data interface and the visualization and data analysis methods dealing with the newly 

added computational concepts (most notably the addition of fractures) and the exten-

sion of existing methods to new requirements and the expansion of the computational 

framework (such as the representation of free boundaries by level sets, the visualiza-

tion of sources and sinks, new methods for function evaluation and integration etc.). 

The most important tasks were: 

 The visualization of data in fractures. On the one hand, the elements and nodes 

belonging to a fracture have to be identified by the post processor. On the other 

hand, the lower dimensional structure must be visualized in a way that facilitates 

distinguishing it from the visualization of bulk properties. 

 Free and moving, implicitly described boundaries. Besides the visualization of 

the boundary itself, whose location is described by a scalar level set function, the 

primary task is to take into account the free boundary as a description of the do-

main to be considered when visualizing other quantities. 

 Including sources and sinks in the visualization. The position and magnitude of 

the sources and sinks should be represented by appropriate visual markers in the 

graphical output. The visualization must allow these to be time-dependent. 

 Unifying and extending the probing and integration methods. The method for 

probing at points, lines and curves, integrating scalars over lines and sub domains 

and flows over boundaries and hyper surfaces, both in 2d and 3d, stationary and 

time-dependent, should be restructured and extended to form a complete set of 

tools with a unified work flow. 

The post processor is based on the library GRAPE (Graphical Programming Environ-

ment). It stores the full hierarchical computational data sets in an efficient data struc-

ture tailored to the requirements of post processing, the visualization and data analysis 

methods access the data through GRAPE's procedural interface. This allows the 

memory- and time-efficient handling of large – stationary and time-dependent – data 

sets and capitalizing on the hierarchical structure for adaptive post processing meth-

ods. The interfaces have been tailored to the specific needs of the E-Dur project. In the 

following an overview of the new functionality will be given. 
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10.1 Fractures 

 

 

 

Fig. 10.1  Salt concentration at three time steps of the Elder problem with a diagonal 

fracture  

Concentration is depicted in the fracture (dark colours) and in the bulk (light 

colours). 

The display methods for fractures are realized by a substantial extension of the con-

cept of sub domains, taking into account that fractures are objects which are essentially 

of one dimension lower than the computational domain. Fig. 10.1 illustrates the visuali-

zation of a scalar function that has values in the fracture and outside. Visualization of 

the function in the bulk and in the fracture is performed by separate display methods to 

increase the post processing flexibility. Here, the same colour bar is used by both 

methods, but the saturation of colours is decreased in the bulk to facilitate the distinc-

tion from the values in the fracture. On the other hand, the one-dimensional fracture 

has been inflated in normal direction to allow the visualization of a scalar quantity in the 

fracture by colour shading. 

In the computational mesh fractures are represented by so called degenerated ele-

ments (see section 5.5.1). These are elements for which the vertices of two opposite 

sides may coincide. From a geometrical point of view these elements are lower dimen-
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sional objects, as they possess no thickness, but they are still full dimensional ele-

ments of the mesh in the topological sense. Indeed, for example in two space dimen-

sions this means that a quadrilateral belonging to a fracture has no area but it gives 

access to four adjacent elements. Each fracture consists of two layers of degenerate 

elements, each associated with one of the two sides of the fracture. In the following 

figures this situation is sketched topologically. Thereby red vertices indicate the “inner” 

nodes associated with the fracture and the blue vertices are shared by the bulk ele-

ments adjacent to the fracture. 

 

Fig. 10.2 Topological structure of two elements in a fracture 

 

Fig. 10.3 Geometrical representation of the two elements from Fig. 10.2 

As the data format for exchanging data between the simulator and the post processor 

does not differentiate between non degenerate and degenerate elements, the location 

of the fracture has to be reconstructed using the topological and geometrical infor-

mation stored together with the mesh.  

This algorithm consists on the following steps: 

 Find all degenerated elements on the macro level. 

 Determine for all degenerated elements which faces have neighbours belonging to 

the bulk media. Vertices belonging to these faces are called “outer vertices”. Calcu-

late the normal vectors on these faces. 

 If for a vertex there are no faces with a bulk neighbour, this vertex is called “inner 

vertex”. 

This distinction is necessary because numerical data representing vector- and scalar-

valued function is attached to the vertices of the mesh, i. e. that the degrees of free-

doms representing quantities within a fracture are associated with “inner vertices”, 
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whereas the quantities at each side of the fracture are given by the degrees of freedom 

at the “outer vertices” of a given fracture.  

The reconstruction of the fracture has to be done only on the coarsest level of the 

mesh, where all the topological information is available. For elements belonging to 

more refined levels of the mesh, the information whether an element belongs to a frac-

ture or not and whether a vertex is an inner or an outer vertex is inherited using the 

hierarchical architecture of the mesh.  

To visualize the degenerated elements, they have to be artificially enlarged in the direc-

tion given by the normal. 

 

Fig. 10.4 Fracture element with normal pointing outwards 

 

Fig. 10.5 The outer vertices are displaced in normal direction 

The new display methods are capable of visualizing scalars as well as vector valued 

functions within the fracture. This functionality is implemented in the following methods: 

fracture: colour shading of a scalar function on a 1d fracture in a 2d domain. The frac-

ture is colour shaded based on the values of the scalar-valued function  provided in the 

slot scalar of the function selector. The user can specify the colour bar and amount by 

which the fracture is inflated in normal direction. Cf. Fig. 10.1, where it is employed in 

conjunction with the method isoline to show the same function in the bulk. 

fracture3d: colour shading of a scalar function on a 2d fracture in 3d. As above, the 

method operates on one scalar function. Colour bar and (artificial) thickness of the frac-

ture can be selected. Cf. Fig. 10.7. 
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clip-fracture3d: colour shading of a scalar function on a cross section through a 2d 

fracture in 3d. This method has the same set of parameters as fracture3d above. In 

addition, the clipping plane can be selected. Cf. Fig. 10.8. 

vec_fracture: plotting a vector field in a 1d fracture in 2d with arrows. A vector valued 

function – from the slot vector of the function selector – is visualized using arrows. The 

user can control the width of the inflated fracture and the scaling of the arrows. Addi-

tionally, the arrows can be coloured according to the absolute value of the function, 

cf. Fig. 10.6. 

vec_fracture3d: plotting a vector field in a 2d fracture in 3d with arrows. This is the 3d 

equivalent to vec_fracture, the parameters are as above. 

 

Fig. 10.6 A vector field in a fracture 

 

Fig. 10.7  A scalar field in a 2D fracture in three dimensions 
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Fig. 10.8  Cross section through a two dimensional fracture in 3D 

10.2 Visualization on free and moving boundaries 

Another new aspect in this project was the introduction of free boundaries. These a 

priori unknown boundaries are represented as the zero level set of a utility function, the 

“level set function” (see section 6). 

From the perspective of post processing, there are two important aspects of free 

boundaries. On the one hand, one wants to visualize the geometry of the free bounda-

ry. This can be done by the display methods isoline (in two dimensions) and level (in 

the three-dimensional case). It is now also possible to colour surfaces given as level 

sets of one specific function depending on the value of another scalar function, as is 

shown in Fig. 10.9 for an artificial, spherical level set function. This allows in an effec-

tive way to colour code data such as a concentration of the boundary implicitly de-

scribed as a level set. 

On the other hand, especially since on the outside of the free boundary (where there is 

no water) functions (such as concentration of salt or radionuclides) usually do not have 

meaningful values, one may want to restrict the visualization of functions to the subset 

of the level set actually representing the inside of the domain. This can in general be 

achieved using the Data Analysis Tool (DAT), which allows to restrict the visualization 

to a part of the mesh in a very general and flexible way. This approach works together 

with nearly all display methods (with the exception of those where the restriction to a 

part of the domain does not make sense). Selected display methods (clip-isoline-
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multi and spades) have been remodelled to increase the performance and visual qual-

ity when used in conjunction with the DAT, an example – again using an artificial, 

spherical level set function – is shown in Fig. 10.10. 

 

Fig. 10.9  Salt concentration on the level set of an artificial level set function; display 

method level 

 

Fig. 10.10  Salt concentration on parallel clipping planes; the drawing region is deter-

mined as the sub level set of an (artificial) level set function; display method 

is clip-isoline-multi 

For the exploration of free boundaries, especially in conjunction with additional data, 

the following methods have been implemented or adapted: 

expand-to-dat-send: call on a Scene or TimeScene to activate the Data Analysis 

Tool (DAT). The DAT allows the user to select and modify the function to be displayed 

and the part of the domain to be displayed. If one enters LEQ(phi,0) – assuming phi is 

the level set function – as the set parameter to be parsed and interpreted by the DAT, 

visualization will be restricted to the sub-levelset of phi in all compatible display meth-

ods. 
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clip-isoline-multi and spade: colour shading on several clipping planes. These two 

display methods have been modified for increased performance and optimized graph-

ical quality when working with domains with free and moving boundaries. 

level: draw a selected level surface of a scalar function in 3d. The user can specify the 

level set to be drawn. In the context of free boundaries, the parameter level has to be 

set to zero. In addition, the method level has been modified to allow the colour shading 

of the free boundary according to another scalar function, e. g. a concentration. The 

function used for colour shading is taken from the slot texture of the function selector. 

A button texture allows to activate or to deactivate this feature. 

10.3 Visualization of sources and sinks 

The extension of d3f and r3t features the treatment of source respectively sink terms. 

Sources and sinks are represented by lines or points and they are accessed via an 

additional data file, where position, length, and capacity of the sources and sinks are 

stored. Sources or sinks are displayed by red or blue tubes, respectively, showing the 

position of the sources or sinks. Additionally arrows are displayed above the domain, 

pointing downwards for sinks and upwards for sources. The length of these arrows is 

scaled with respect to the amount of discharge and can be animated to reflect time 

dependent discharge. The functionality allowing to display sources and sinks is encap-

sulated in the project “source”. This project manages the reading of the input file, the 

calls for the actual display-methods and options for the visualization: 

 

Fig. 10.11  Sources and sinks in a model geometry 
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source: project for the visualization of sources and sinks. With the button Load 

source, the user can specify the source file with the description of sources and sinks. 

The radius of the tubes used in the visualization can be adjusted via pipe radius. 

10.4 Function evaluation probing and integration 

Visualization methods on the whole computational domain (such as colour shading of 

scalar functions) give a good qualitative measure of data functions. If one needs more 

precise quantitative results it is useful to determine the exact value at distinct points or 

more general evaluated along curves or planes. 

 

Fig. 10.12  Several probe input methods 

The “probe” module provides this functionality. The values can be displayed directly or 

saved in plain ASCII files for easy storage, reference and further processing. For prob-

ing multiple points or lines it is possible to read coordinates from files. Algorithmically 

this is based on a hierarchical search in the element tree, exploiting data locality when 

evaluating on nearby points. 

Points can be probed by either clicking into the visualization or by entering coordinates, 

either by hand or by parsing a coordinate file, which provides the coordinate of the 

points to probe. Similarly it is possible to probe over straight lines. 
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Furthermore it is possible to probe arbitrary curves by providing the necessary data via 

an input file. Again the result can be displayed and saved to a data file for further pro-

cessing. 

The possibility to sample functions on an equidistant Cartesian grid and write the re-

sults to a plain text file can be used to import data into other programs for comparison, 

further processing etc. 

 

Fig. 10.13 Probe output (left) and grid sampling (right) 

 

Fig. 10.14 Plot from probing at three different points 

A second class of functionality provided by the probe module are the integration meth-

ods: It is possible to integrate over two dimensional planes or three dimensional boxes 

or even over the whole domain. This is needed e. g. when determining flows over 
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boundaries or planes within the domain. Integrating over full dimensional boxes is a 

useful addition to this functionality. The integration methods where substantially ex-

tended in their functionally with the E-Dur project. Several options were added in 2D 

and/or 3D, for example there now is a method to integrate the flow over an arbitrary 

user defined line in 2D. Furthermore the user interface was unified and modified to im-

prove the work flow when using this methods. The probing interface is now a powerful 

ingredient of the post processing. 

All this functionality is provided for 2D and 3D domains as well as for scalar- and vector 

valued function data enabling to extract in a flexible interactive way quantitative infor-

mation and generate corresponding lower dimensional plots of the post processed da-

ta. Additionally this includes the possibility to evaluate (and plot) the function over the 

time or at a specific time, and allows to create multiple outputs when necessary (e. g. 

vector valued data). The structures and methods involved are: 

probe: project for probing and integration. This project collects all methods for evaluat-

ing functions at specified sets of points and for integration. The user can select the 

Filename of the output file and control the fineness of the discretization. All methods 

can be used on stationary and time-dependent data, for scalar and vector valued data 

(with some obvious exceptions) and (if appropriate) in two and three space dimensions. 

point-probe: evaluating at single points. A scalar or vector valued function can be 

evaluated at points selected by the user. Coordinates can be specified by clicking in 

the visualization window or entered manually. 

line-probe: evaluating along a line. A function is evaluated at a number of points along 

a line. The end points of the line are entered in the same way as in point-probe, the 

discretization is given by the ruler fineness.  

curve-probe: evaluating along an arbitrary curve. This method evaluates the function 

along a curve given as a polygonal object. The function is evaluated at all points of the 

polygon. The polygon has to be provided as a Triang1d object. 

sample: evaluate on a Cartesian grid. The selected function is sampled on a Cartesian 

grid. The discretization of this grid can be controlled by specifying the number of points 

or the point distance in each direction. Output can be ASCII or binary. 
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integrate plane integrate over a plane. This method integrates the flow over a plane 

(i. e. it integrates c v · n where c is a concentration, v a velocity and n the normal to the 

plane) in a three dimensional domain. The functions c and v are specified in the slots 

scalar and vector of the function selector, the plane is selected by the plane editor. 

The analogue is possible for lines in 2d. 

integrate box: integrate a function over a box. This method integrates a function over 

box. The box can be specified by giving two corners (assuming the edges to be aligned 

to the coordinate axes) and / or interactively shifted and rotated. Integration is done by 

an adaptive method based on point evaluations, the number of initial levels and the 

epsilon error threshold can be selected. 

integrate domain: integrate over the whole domain. Integrates the selected function 

over the full computational domain. If some sub domains have been deactivated, these 

are also excluded from the integration. 

integrate-bnd-send: integrate over the boundary. Integrate the flow over the boundary 

of the computational domain analogously to integrate plane. As in integrate domain, 

only active sub domains are considered. The functions are given in the same way as 

for integrate plane. 

10.5 Visualization of stochastic data 

A particular computational challenge in E-Dur are domain descriptions which incorpo-

rate stochastic data, such as statistical values for the permeability of different materials. 

Such data usually does not fit the underlying computational mesh. Typically this type of 

data has to be displayed on a certain cross section of the bulk domain. If the user has 

specified such a cross section the stochastic data is mapped to that cross section via 

graphic hardware acceleration using the 3D texture functionality provided by OpenGL. 

Thereby, a three dimensional texture is a set of colour values in a three dimensional 

array. The texture mapping maps points to be rendered to an index in the three dimen-

sional array and therefore to the colour value for that point. The input files have to pro-

vide the dimensions of the 3D array and list of period statistical data values which are 

then converted by the Grape routines to a 3D texture that is passed to the OpenGL 

routines. This functionality is provided by the method 
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3dtexture: 3d texture mapping for stochastic permeabilities. The display method 

3dtexture maps scalar data given in 3d on a Cartesian grid to a cross section of the 

computational domain. The user can load the permeability file with the button Load 
File. The colour mapping can be specified by selecting and / or modifying a colour bar. 

 

Fig. 10.15 Stochastic data mapped to a cross section of the model geometry 

10.6 Visualization of sub domains 

The visualization methods for sub domains have been extended, improved, and 

adapted in several aspects. E. g. it is now much easier to specify a “realistic” colouring 

for the sub domains corresponding to the different media: 

subdomain display sub domains. This display method draws all or selected sub do-

mains. With the button subdomains, you can open a window that allows sub domains 

to be be blanked out. Additionally, each sub domain can be assigned a RGB colour 

value at this point. The buttons Save / Load File make it possible to save a manually 

specified colouring of the set of sub domains and to reload it later. 

   

Fig. 10.16  Visualization of sub domains with manually selected colouring
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11 Code verification and applications 

To verify the code advances of d³f and r³t various test cases were performed. These 

were test cases with existing analytical solution as well as such that might be com-

pared with results got by other software codes. 

11.1 Test cases with thermohaline-driven flow 

11.1.1 Test case „1d-heat transport“ 

11.1.1.1 Balance equation 

The time-dependent amount of heat Q(t) in a moving domain B(t) can be written as  

dVtwtQ
tB )(

),()( x  (11.1)

Q(t)- heat in B(t) [J] 

B(t) - time-dependent 3D-domain [m³] 

w(t) - heat density [J m-³] 

Allowing for a heat flux J across the moving surface of B and including a heat source r 

within B, Reynolds’ transport theorem yields for a fixed domain G (e. g. /GAR 87/): 

0dVrw
t
w

G

Jv  (11.2)

G - fixed domain [m³] 

v - pore velocity [m s-1] 

J - non-advective heat flux across the surface of G [J m-² s-1] 

r - sink/source of Q in G [J m-³ s-1] 

The velocity v  represents here the pore velocity which is related to the Darcy flux q  

by the porosity as 

qv  (11.3)
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q  - Darcy flux [m s-1] 

 - porosity [-] 

However, the source term r is not of interest here and will be dropped in the following. 

The process of heat transport covers the fluid-filled pore space as well as the solid ma-

trix in G which has to be reflected in the balance equation:  

0dVw
t

w

G

Jv  
(11.4)

 - Index; f for fluid s for solid 

Introducing porosity as the ratio of pore volume to total volume 

sf

f

VV
V

 
(11.5)

Vf - volume of the pore space [m³] 

Vs - volume of the solid part (matrix) [m³] 

allows to quantify the complementary fractions of domain G  

GGGGG sf )1(  (11.6)

Gf - Volume of the fluid [m³] 

Gs - Volume of the solids [m³] 

Assuming a rigid matrix the two balance equations (11.4) can be added as 

01 ssff JvJv s
s

f
f w

t
w

w
t

w
 

(11.7)

For heat conduction in solid matter and immobile fluids Fourier’s law applies which is 

formally identical with Fick’s law of diffusion: 

TJ T  (11.8)

TJ  - heat flux due to thermal conductivity [J m-² s-1] 
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 - thermal conductivity [J m-1 K-1 s-1] 

Spreading of heat according to the same principles as mechanical dispersion has to be 

considered also:  

wmD DJ  (11.9)

DJ  - heat flux due to mechanical Dispersion [J m² s-1)] 

mD  - mechanical dispersion [m² s-1] 

Heat flux due to mechanical dispersion adds to the conductive heat flux: 

DT JJJ  (11.10)

Next, the flow processes will be looked upon closely. Contrary to advection of the fluid 

phase no movement of the solid phase is considered here 

0sv  (11.11)

from which directly follows 

0sDJ  (11.12)

Equations (11.8) to (11.12) transform balance equation (11.7) into 
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fmff Dv

 (11.13)

In the next step the heat density can be eliminated from balance equation (11.13). The 

equation contains heat density only as a subject to derivatives and differences of the 

heat density can be related to differences of temperature (e. g. /FLU 61/) by:  

TCw  (11.14)

C - heat capacity [J m-³ K-1] 

T - temperature [K] 
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Heat capacity in turn can be expressed by the specific heat capacity and the mass 

density: 

cC  (11.15)

c  - specific heat capacity [J kg-1 K-1] 

 - mass density [kg m-³] 

Inserting (11.14) and (11.15) in balance equation (11.13) yields 

0
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 (11.16)

In the literature local thermal equilibrium between fluid and solids is usually assumed 

(e. g. /HYA 83/). Therefore only one temperature has to be considered. Note that it thus 

does not make sense to differentiate between a thermal source in the fluid and a 

source in the solid: 

0
)(

1

)(

T
t

Tc

TcTTc
t

Tc

ss

ffff
ff

s

fmff Dv

 (11.17)

Transforming the first two terms in (11.16) by means of the product rule leads to  
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 (11.18)

where the expression in round brackets represents the left hand side of the continuity 

equation for fluids in a rigid porous medium (e. g. /KRO 91/): 
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V
t f

f
fv  (11.19)

V  - volumetric fluid sink/source [m³ m-³ s-1] 

 - density of the fluid crossing the domain boundary [kg m-³];  

  for a sink: f , for a source  can assume any value  

Since no sinks or sources are considered here the right hand side of (11.19) equals 

zero. Balance equation (11.18) can thus be simplified to  
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 (11.20)

Now the derivatives are transformed once more: 
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Assuming that 

 changes in rock density,  

 changes in the specific heat capacity of water, and 

 changes in the specific heat capacity of rocks 

can be neglected in comparison to the changes in temperature (for the referring data 

see /KRO 10/) equation (11.21) simplifies to 
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 (11.22)
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or rearranged to 

01

1

Tc
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v
 (11.23)

The terms in curly brackets represent weighted means of the heat capacity and of the 

thermal conductivity or their bulk value, respectively: 

sf 1

1 ssff ccC
 (11.24)

C  - bulk heat capacity [J m-³ K-1] 

 - bulk thermal conductivity [J m-1 K-1 s-1] 

With these abbreviations (11.23) is transformed into 

0T
C

c
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T
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c
t
T ffff

fmf Dv  (11.25)

leading to a form that compares nicely to the tracer transport equation  

0cc
t
c

cc Dv
 

(11.26)

c  - concentration [kgtracer kgfluid
-1] 

cv  - pore velocity (solute transport) [m² s-1] 

cD  - hydrodynamic dispersion [m² s-1] 

where terms are related as follows 

fmc
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 (11.27)
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R  - retardation coefficient [-] 

If (11.26) is interpreted as a heat transport equation cD  has the meaning of a thermal 

dispersion and cv  is a retarded velocity. 

11.1.1.2 Analytical solution for advective-diffusive transport 

For an instantaneous increase of concentration at the boundary of a one-dimensional 

semi-infinite domain an analytical solution of the advection-diffusion equation (11.26) 

was derived by Ogata and Banks /OGA 61/: 

tD
tvxerfce

tD
tvxerfc

cc
cc

c

cD
xv

c

c c

c

222
1

01

0  (11.28)

0c  - initial concentration [kgtracer kgfluid
-1] 

1c  - boundary concentration [kgtracer kgfluid
-1] 

x  - distance from the boundary [m] 

This solution has already been applied to verify other numerical heat transport models 

(SWIFT: /WAR 84/, HydroGeoSphere: /THE 10/) using the parameters listed in Tab. 

11.1. Note that in these cases the pore velocity was used for the Ogata-Banks solution 

(OBs) instead of the Darcy velocity. Flow parameters and boundary conditions were 

chosen accordingly for the d3f-model. 
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Tab. 11.1 Parameter values for the Ogata-Banks model after /THE 10/ 

Parameter Symbol Value Unit 
bulk thermal conductivity 2.16 J m-1 K-1 s-1 
specific heat capacity of solid sc 1254.682 J kg-1 K-1 
specific heat capacity of water fc 4185 J kg-1 K-1 
solid density s 1602 kg m-³ 
fluid density f 1000 kg m-³ 
matrix porosity  0.1 (-) 
longitudinal dispersivity L 14.4 m 
thermal dispersion coefficient cD 1.15 10-5 m² s-1 
retardation coefficient R 5.323 (-) 
Darcy flux fq 3.53 10-7 m s-1 
retarded pore velocity cv 6.63 10-7 m s-1 
initial temperature 0T 37.78 °C 
boundary temperature 1T 93.33 °C 
domain size L 600 m 
output times t1, t2 2148, 4262 d 

The data given in Tab. 11.1 is partially redundant and thus can be used to check their 

consistency as well as the understanding of the parameters and of the derived equa-

tions. Checks are possible calculating  

 the retardation coefficient using (11.27) b),  

 the retarded pore velocity using (11.3) and (11.27) a), and  

 the thermal diffusion coefficient (11.27) c).  

While retardation coefficient and retarded pore velocity can be reproduced the calcu-

lated thermal diffusion coefficient of 1.05 10-5 m s-1 differs slightly for unknown reasons 

from the tabulated data. 

11.1.1.3 Analytical solution for heat conduction 

Close inspection of equation (11.28) reveals that the OBS is equivalent with the solu-

tion of /CAR 59/ for pure heat conduction if the flow velocity is set to 0. In an even 

shorter form using dimensionless variables it is presented for solute transport in 

/TUR 82/ as 
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erfcĉ  (11.29)

ĉ - dimensionless concentration [-] 

 - dimensionless spatial coordinate [-] 

01

0ˆ
cc
ccc  (11.30)

c - concentration [kgtracer/kgfluid] 

tD
x

c2
 (11.31)

 - dimensionless spatial coordinate [-] 

The OBS can thus be safely used for checking numerical solutions for pure heat con-

duction. 

11.1.1.4 Test of heat conduction in d3f 

In a preliminary test, the OBS was used to test the implementation of heat conduction 

in d3f. To ensure the equivalence of the heat conduction problem to the problem de-

scribed by /OGA 61/ a rigid matrix with constant density, viscosity, and porosity was 

assumed. The data listed in Tab. 11.2 was used as input for the d3f-simulation. The 

thermal dispersion coefficient was not assigned explicitly but resulted from the values 

set for the heat capacities, densities and the bulk thermal conductivity. 

The one-dimensional problem formulated by Ogata and Banks was represented by a 

two-dimensional vertical model with stagnant pore water. Length and height amounted 

to 100 m and 10 m, respectively. Boundary conditions for temperature, pressure, con-

centration and flow velocity were assigned according to Fig. 11.1. 

The thermal dispersion coefficient Dc used for the calculation of the analytical solution 

had to be adapted to the actual problem. Since mechanical dispersion is omitted with-

out convection, only the bulk thermal conductivity and the bulk heat capacity contribute 

to the calculation of the thermal dispersion coefficient (cp. (11.27) c)). All parameters 

used for the analytical solution are listed in Tab. 11.2. 
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Fig. 11.1 Model geometry, initial and boundary conditions for the two-dimensional 

conductive heat transfer problem 

Tab. 11.2 Parameter values for the Ogata-Banks model for purely convective heat 

transfer, modified after /THE 10/ 

Parameter Symbol Value Unit 
bulk thermal conductivity 2.16 J m-1 K-1 s-1 
specific heat capacity of solid sc 1254.682 J kg-1 K-1 
specific heat capacity of water fc 4185 J kg-1 K-1 
solid density s 1602 kg m-³ 
fluid density f 1000 kg m-³ 
matrix porosity  0.1 (-) 
longitudinal dispersivity L 14.4 m 
thermal dispersion coefficient cD 9.79 10-7 m² s-1 
retardation coefficient R 5.323 (-) 
Darcy flux fq 0 m s-1 
retarded pore velocity cv 0 m s-1 
initial temperature 0T 37.78 °C 
boundary temperature 1T 93.33 °C 
domain size L 300 m 
output times t1, t2 2148, 4262 d 

Temperature profiles were extracted at two time steps along the dashed line illustrated 

in Fig. 11.1. Heat is transported diffusively into the area starting from the left boundary. 

During this process the temperature gradient becomes less steep (cp. Fig. 11.2). The 

numerical results show an excellent agreement with the analytical solution. This leads 

to the conclusion that d3f reproduces the heat conduction process correctly. 
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Fig. 11.2 Analytical solution (OBs) and the referring numerical results from d³f for the 

test of heat conduction 

11.1.1.5 Test of the advective heat transport in d3f 

After the pure heat conduction mechanism had been checked, the interaction of heat 

conduction, heat diffusion and thermal dispersion were investigated. The advection-

diffusion problem set up for this purpose is equivalent to the one-dimensional heat flow 

problem described in section 11.1.1.2. The data listed in Tab. 11.1 was used as input 

for the d3f-simulation. 

The one-dimensional problem formulated by Ogata and Banks was represented by a 

two-dimensional vertical model with a constant and strictly horizontal flow all over the 

model. Length and height amounted to 600 m and 10 m, respectively. Boundary condi-

tions for temperature, pressure, concentration and flow velocity were assigned accord-

ing to Fig. 11.3  
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Fig. 11.3 Geometry, initial and boundary conditions for the Ogata-Banks model 

Constant velocity was attributed to both vertical boundaries so that a steady flow from 

the left to the right was prescribed. At the top of the left hand side boundary, the pres-

sure was set to zero as an anchor point for the pressure distribution. The upper and 

lower boundaries were impermeable both for the fluid and the temperature.  

On the inflow boundary, the temperature was set to 366.48 K. The temperature on the 

outflow boundary equaled the initial temperature of 310.93 K within the area. Generally, 

a constant temperature at the outflow boundary is unphysical because arriving heat 

cannot leave the model domain. However, the more appropriate in-/ outflow boundary 

condition had not yet been implemented in d³f at the time of the simulation. The model 

was therefore run for a period of time in which the heat wave did not reach the outflow 

boundary yet as in earlier works like /WAR 84/ or /THE 10/. The outflow boundary con-

dition did therefore not affect the shape of the curve. 

At two points of model time temperature profiles were extracted along the dashed line 

drawn in Fig. 11.3. They are compared in Fig. 11.4 with the results from the OBS solu-

tion for which the retarded pore velocity and the thermal dispersion coefficient were 

used as input. Both simulated curves produced with d3f show a very good agreement 

with the analytical solution. It can thus be concluded that d3f reproduces the interaction 

of heat convection, heat conduction, and thermal dispersion correctly. Note that the 

shape of the curves did not change with a higher refinement level of the calculation 

grid. 
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Fig. 11.4 Analytical solution (OBs) and referring numerical results from d³f 

11.1.2 Test case heat transfer in anisotropic porous media 

A 2D example including heat transfer with temperature-dependent fluid properties was 

presented by /YAN 00/. The example is based on geological observations at the White-

shell Research Area in Southern Canada /DAV 94/ and represents the scenario of a 

radioactive waste disposal in low-permeability anisotropic granite. This test case has 

already been used to verify the numerical heat transport model HydroGeoSphere 

/THE 10/, /GRA 05/. 

 

Fig. 11.5 Model geometry and boundary conditions for heat transfer in anisotropic 

porous media 
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11.1.2.1 Model description 

The model region consists of a vertical cross-section of 2000 m × 1000 m including 

three different layers (cf. Fig. 11.5). The upper two layers are characterised by a mod-

erate (Layer 1) to an intermediate (Layer 2) anisotropic permeability, whereas the per-

meability of the bottom layer (Layer 3) is very low and isotropic. In this low permeability 

layer a horizontal vault with a cross-sectional area of 1300 m × 25 m is positioned at a 

depth of 500 m. The vault is assumed to have the same thermal properties as the sur-

rounding rock while being impermeable to water flow. The radioactive waste within the 

vault produces heat at an exponentially decreasing rate. The surficial heat output of the 

vault is described by the following function (cf. /DAV 94/): 

   (11.32) 

where  is the heat flux in W m-2 and t the time in seconds. The temperature at the top 

boundary is set to 6 °C and at the bottom boundary to 17.5 °C, according to the aver-

age geothermal gradient of 11.5 °C km-1 at the Whiteshell Research Area /DAV 94/. 

The bottom boundary is assumed to be impermeable to flow, whereas a fixed head is 

assigned to the top boundary. A no-flow boundary condition for fluid flow as well as for 

heat flow is assigned to the vertical boundaries. All parameters used for the simulation 

are listed in Tab. 11.3. 

Tab. 11.3 Parameter values for the Yang-Edwards model after /THE 10/ 

Parameter Symbol Value Unit 
Bulk thermal conductivity  2.0 kg m s-3 K-1 
Heat capacity of solid  800 m2 s-2 K-1 
Heat capacity of water  4174 m2 s-2 K-1 

Solid density  2630 kg m-3 
Matrix permeability   Layer 1: 1.0×10-15, 5.0× 10-15 

Layer 2: 1.0×10-17, 5.0× 10-17 
Layer 3: 1.0×10-19, 1.0× 10-19 
Vault:     1.0×10-25, 1.0× 10-25 

m2 

Matrix porosity  0.004 - 
Domain size  2000, 1000 m 
Output times t1, t2, t3 104, 3×105, 7×106 d 
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Fig. 11.6 Temperature profiles in the vertical symmetry axis of the model 

11.1.2.2 Results and Discussion 

In the d3f-model, heat-producing waste was represented by line-shaped sources on all 

four surfaces of the vault emitting the heat as defined by eq. (11.32). Simulations with 

this configuration showed a poor match with the results from /YAN 00/ (cf. Fig. 11.6). 

Generally, the temperatures calculated with d3f were considerably lower than those 

reported in /GRA 05/ and /YAN 00/. After 104 and after 105 days, the maximum tem-

peratures in the d3f-model were only half as high as the maximum temperatures in the 

models of /GRA 05/ and /YAN 00/. Apparently too little heat energy had entered the 

system in the d3f-simulation. Therefore the fluxes emitted from the line-shaped heat 

sources were doubled in another simulation. The results using the modified heat 

source showed an excellent agreement with the results of /GRA 05/ and /YAN 00/ (cf. 

Fig. 11.7). 

The temperature rose first in the vicinity of the heat sources. After 104 days, a tempera-

ture of 200 °C was reached at the edge of the vault accompanied by a steep negative 

temperature gradient towards the surrounding area. The temperature gradient less-

ened during the simulation due to a) the spread of the heat and b) the decreasing heat 

input. After 105 days the temperature at the vault amounted to 150 °C and after 3 105 

only a temperature of 80 °C was reached in the proximity of the vault. 

t = 104 days t = 105 days 
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Fig. 11.7 Comparison of the temperature fields 

After 3 106 days, the isoline of the maximum temperature forming an ellipsoidal shape 

was not located around the vault anymore but had moved downwards. The initial geo-

thermal gradient was recovered after 7 106 days. 

The flow field of the modelling system was plotted for two time steps to visualise effects 

of the heat dynamic on the hydraulics. It was expected that the strong heating at the 

beginning of the simulation would cause the fluid to expand and therefore to induce an 

upward flow above the vault. A downward flow was expected later in the simulation, 

when temperature at the vault would decrease again thus leading to an increase of 

water density. The flow fields after 104 days and 105 days show these effects (Fig. 

11.8) and thereby demonstrate the coupling of heat transport and fluid flow in d3f. 
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Fig. 11.8 Flow fields calculated with d3f 

Then the question remained whether the line heat sources were actually emitting the 

prescribed amount of heat energy. To answer this question the amount of heat energy 

in the model domain at a certain time was estimated and compared with the theoretical 

value based on the integrated total heat inflow rate over time. Both values were found 

to be in good agreement. Since the process of heat conduction was already qualified 

with the help of the Ogata-and-Banks model (see section 11.1.1) this result confirms 

correct handling of the line heat source in d3f. 

While working on this test case it turned out that /GRA 05/ had also found discrepan-

cies between the heat source described in /YAN 00/ and the resulting temperature field 

(T. Graf, personal communication). In combination with the fact that no exact infor-

mation was available about the way the heat source had been implemented in the 

model of /YAN 00/, this casts suspicion on the comparability of the heat sources in the 

different models in question. The worth of the model of /YAN 00/ as a test case ap-

pears therefore to be rather limited. Nevertheless, some conclusions can be drawn: 
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 Two-dimensional simulation of heat conduction with d3f provides reasonable re-

sults. 

 The calculated flow patterns stand to reason. Coupling of heat transport to fluid flow 

using temperature-dependent flow parameters thus appears to be correctly imple-

mented.  

 The resulting convection is very small, so no effect of the hydraulics on the thermal 

processes can be observed in this model. 

11.2 Density-driven flow in fractured media 

11.2.1 Test case „matrix diffusion“ 

11.2.1.1 Physical system 

Several analytical solutions concerning the phenomenon of matrix diffusion have been 

developed since the early 1980’s. Among them is the solution of /TAN 81/. Here, a frac-

ture with the aperture 2b in a porous rock as shown in Fig. 11.9 is considered. Flow 

velocity v in the fracture is assumed to be constant. More simplifying assumptions are 

listed in /TAN 81/ to enable the formulation of manageable analytical solutions: 

 Complete mixing across the fracture width is assured by transverse diffusion and 

dispersion. 

 Transport in the matrix is only due to molecular diffusion due to a very low permea-

bility. 

 Transport along the fracture is much faster than transport within the matrix.  

 

Fig. 11.9 Physical system underlying the analytical solutions of /TAN 81/ 

x 
y 

v 2b 
fracture (high permeability) 

matrix (low permeability) 

matrix (low permeability) 
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This setup allows to describe solute transport by two one-dimensional equations - one 

for solute transport in the fracture and one for solute transport in the matrix - which are 

coupled at the fracture surface. The directions of the two referring mass fluxes are as-

sumed to be orthogonally orientated. Diffusion in the matrix in the direction of the frac-

ture is thereby neglected. 

In case of the solution of /TAN 81/ the following processes are considered:  

 in the fracture 

 advective transport along the fracture 

 longitudinal mechanical dispersion 

 molecular diffusion 

 adsorption at the fracture surface 

 radioactive decay 

 in the matrix 

 molecular diffusion 

 adsorption within the matrix 

 radioactive decay 

Solute is injected with a constant rate at the origin of the coordinate system providing a 

maximum solute concentration of c0 at the point of injection. Consequently a transient 

solute distribution develops at the beginning. However, the combined effects of all pro-

cesses considered lead eventually to a steady-state distribution in fracture and matrix. 

11.2.1.2 General transient solution 

In the solution of /TAN 81/ longitudinal mechanical dispersion and molecular diffusion 

in the fracture are combined to the hydrodynamic dispersion expressed by the disper-

sion coefficient fD  

mollf DvD  (11.33)

 fD  - coefficient of hydrodynamic dispersion in the fracture [m² s-1] 
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 l  - longitudinal dispersion length [m] 

 v  - flow velocity in the fracture [m s-1] 

 molD - molecular diffusion coefficient in water [m² s-1] 

This formulation appears to be incomplete because it ignores tortuous effects in the 

fracture on the molecular diffusion. Eq. (11.33) is thus modified here by a fracture tor-

tuosity f : 

molflf DvD  (11.34)

 f  - tortuosity of the fracture [-] 

This modification does not affect the analytical solutions since only the coefficient of 

hydrodynamic dispersion enters these solutions. Radioactive decay is characterized by 

the decay constant  which is defined as 

21

2ln
t

 (11.35)

  - decay constant [1 s-1] 

 21t  - half life [s] 

The effect of linear sorption in the fracture is introduced by a retardation coefficient fR  

according to 

b
K

R f
f 1  (11.36)

 fR  - retardation coefficient for the fracture [-] 

 fK  - distribution coefficient for the fracture [m] 

 b  - half of the fracture width [m] 

Note: The dimension of the distribution coefficient Kf is defined as the ratio of concen-

tration of adsorbed solute ca to the concentration of solute in the solution c. From this 

definition it is clear that the dimension of Kf depends on the dimensions in which the 

two above mentioned concentrations are given. While solute concentration c is always 

treated as a volume concentration in /TAN 81/ the adsorbed solute concentration is 
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given as solute mass per surface area in case of the fracture. In case of the matrix so-

lute concentration is given as solute mass per mass of matrix. 

In the matrix the retardation coefficient mR  is thus calculated differently: 

m
m

b
m KR 1   (11.37)

 mR  - retardation coefficient for the matrix [-] 

 b  - bulk density of the matrix [kg m-³] 

 m  - matrix porosity [-] 

 mK  - distribution coefficient for the matrix [m³ kg-1] 

In order to include the effect of tortuosity in the matrix explicitly an effective diffusion 

coefficient mD  is defined for the matrix: 

molmm DD  (11.38)

 mD  - effective diffusion coefficient [m² s-1] 

 m  - tortuosity of the matrix [-] 

The solution for the concentration in the matrix reads 

d
T

T
YerfceT

T
Yerfce

eee
c
c

l YY

x
x

x

22

22

22
2

4

0

 (11.39)

c - solute concentration [kgsolute/kgsolution] 

0c  - maximum solute concentration [-] 

 - supplementary parameter (q. v. (11.40)) 

 l - supplementary variable (q. v. (11.41)) 

 - supplementary variable (q. v. (11.42)) 

T  - supplementary variable (q. v. (11.43)) 

Y  - supplementary variable (q. v. (11.44)) 

x  - coordinate [m] 
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 - integration variable [-] 

fD
v

2
 (11.40)

tD
R

D
xl

f

f

f2
 (11.41)

t  - time [s] 

24 f

f

D
R

 (11.42)

2

2

4 f

f

D
xR

tT  (11.43)

)(
4 2

222

byB
A

xY  (11.44)

 - supplementary parameter (q. v. (11.45)) 

A  - supplementary parameter (q. v. (11.46))  

B  - supplementary parameter (q. v. (11.47)) 

2
2 4

v
DR ff  (11.45)

mmm

f

DR

bR
A  (11.46)

m

m

D
RB  (11.47)

The solution for the concentration in the fracture can be found by setting by . 
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11.2.1.3 Numerical model 

11.2.1.3.1 Inconsistencies between analytical solution and numerical model 

Several simplifying assumptions underlie the analytical solution of /TAN 81/ as de-

scribed above. They are not necessarily the same as those that were used for the de-

velopment of the codes d³f and r³t:  

The assumption of pure diffusive transport in the matrix cannot be reproduced exactly 

with the numerical codes. However, choosing a very low permeability for the matrix in 

comparison to fracture permeability yields a sufficiently close approximation.  

The restriction that transport along the fracture is much faster than transport within the 

matrix is only attributed to the analytical solution. This assumption provides the basis 

for approximating diffusive transport in the matrix as a one-dimensional process that 

runs exclusively orthogonally to the fracture /TAN 81/. Such a consideration about the 

ratio of process velocities is not required for the numerical model. But of course it has 

nevertheless to be taken into account for the definition of a test case forming the basis 

of a comparison between analytical and numerical solution. 

11.2.1.3.2 Model setup 

In /TAN 81/ the analytical solution is evaluated based on two sets parameters that differ 

only in the flow velocity in the fracture. The high velocity case was adopted here. Due 

to the extensive fracture description in d3f some additional parameters were required. 

All parameters are listed in Tab. 11.4. 

A two-dimensional domain is defined as shown in Fig. 11.10. No-flow boundary condi-

tions are assigned to all boundaries except where the fracture is located. Here, inflow 

and outflow velocity, respectively, are prescribed. In order to prevent significant flow 

from the fracture into the matrix (and vice versa) the permeability in the matrix is cho-

sen to be nine orders of magnitude lower than the permeability in the fracture. To the 

inflow boundary of the fracture a solute concentration of 1 is assigned. All other bound-

aries show a “concentration out”-condition. Initially, the whole domain contains no so-

lute. 
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Tab. 11.4 Parameters for the matrix diffusion model according to /TAN 81/, additional 

parameters for d³f are written in blue 

Quantity Dimension  Value 
fracture 
length of fracture (x-direction)  m 7.5 
width of fracture (2b) m 0.0001 
flow velocity in the fracture m d-1 0.01 
longitudinal dispersion length m 0.5 
tortuosity  - 1 
retardation coefficient  - 1 
porosity  1 
isotropic permeability m² 10-10 
orthogonal permeability m² 10-10 
orthogonal tortuosity - 1 
transversal dispersion length m 0.01 
   
matrix   
depth of the matrix (y-direction) m 1.20 
porosity - 0.01 
tortuosity  - 0.1 
retardation coefficient  - 1.0 
isotropic permeability m² 10-19 
longitudinal dispersion length m 0.5 
transversal dispersion length m 0.01 
   
fluid   
diffusion coefficient m² s-1 1.6 10-9 
density kg m-³ 1000 
viscosity Pa s 0.001 
   
solute   
half life  a 1.2 1021 
   
end of simulation a 5 

11.2.1.3.3 Results  

The comparison of analytical and numerical solution is given in terms of solute distribu-

tions in the fracture as well as in the matrix at 1, 3, and 5 years simulation time. Fig. 

11.11 depicts the concentration in the fracture calculated from the analytical solution 

and with d3f. Minimal deviations in the solutions for 1 year disappear apparently with 

time. 
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Fig. 11.10 Geometry and boundary conditions for the numerical model 

 
Fig. 11.11 Concentration in the fracture: analytical and numerical solution 

In Fig. 11.12 the contour lines for the analytical solution are drawn in black, the contour 

lines from the d3f-model are colour coded. In all cases the match is satisfying. Only at 

the left hand side boundary some systematic deviations can be observed. While the 

analytical solution predicts straight concentration contour lines d3f-results provide lines 

that are rounded out in such a way that they connect orthogonally with the boundary.  
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Fig. 11.12 Concentration in the matrix after 1, 3, and 5 years;   

black lines: analytical solution, coloured lines: numerical solution 

1 year

3 years

5 years
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This little deviation is the consequence from neglecting diffusion in the matrix in the x-

direction (direction of the fracture). The analytical as well as the numerical solution 

agree in that the concentration gradient is not oriented exactly in the y-direction (or-

thogonally to the fracture) but turned a bit in the direction of fracture flow. But the two 

solutions differ in the way these gradients are evaluated in terms of diffusive mass flux. 

This becomes evident at the inflow boundary of the fracture. Transport of solutes enter-

ing the matrix at this point is strictly in the y-direction according to the analytical solu-

tion. But real diffusion has also a component in the x-direction. In other words, the so-

lute flux in the matrix originating right from the fracture at the inflow boundary spreads 

out and thereby reduces the flux component in the y-direction. The analytical solution 

thus overestimates the concentration at the left hand side boundary of the model letting 

the results of d3f appear to be more realistic. 

11.2.2 Testcase Majak 

Model calculations for a two-dimensional, vertical groundwater flow and transport mod-

el were conducted in the course of the project ASTER) /WAL 05/ using the code 

FEFLOW 5 /DIE 04/. The investigation area is located in the area of Chelyabinsk, 

southeast of the Ural Mountains in the West Siberian Plateau. Exploratory analyses 

were conducted concerning the storage of radioactive waste in a fractured, porphyric 

host rock formation.  

11.2.2.1 Site description 

Flow and transport calculations are based on a schematic cross section through the 

area (cf. Fig. 11.13 /WAL 05/). The fractured porphyric rock can be divided into a lower 

zone with very low water circulation and an upper zone with low water circulation. A 

weathering zone forms the transition to a layer of clay and gravel at the surface. The 

main structural characteristic of the cross section is the intensive fracturing of the two 

lower layers with different dip directions and dip angles of the fractures. 

The clay and gravel in the upmost layer as well as the weathering zone are subject to 

the main groundwater circulation in the model area, which is indicated by the blue ar-

row in Fig. 11.13. Groundwater flow and transport of contaminants within the lower 

fractured porphyric units is mainly bound to the fracture network, shown by the black 

arrows in Fig. 11.13. 
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Fig. 11.13 Schematic cross section through the investigation area after /WAL 05/ 

11.2.2.2 Model set-up 

A schematic two-dimensional model was set up based on the cross section given in 

Fig. 11.13. Model calculations presented in the ASTER final report /WAL 05/ were re-

viewed and adapted. Updated model calculations were conducted using the code 

FEFLOW Classic 6.0 /DHI 10/.  

11.2.2.2.1 Geometry and model grid 

The model represents an area of about 814 m width and of about 1057 m depth 

(cf. Fig. 11.14). 

The four geological units as well as five explicit fractures (F1 to F5) are described by 

the model set-up. The fractures can be traced through the two lower units of porphyric 

rock and are dipping at different angles between 50 and 90 degrees. They do not inter-

sect with the model boundaries. The coarse grid was generated using the code 

ProMesh 3.2, see section 9.2. It contains 660 vertices, 1710 edges and 1051 faces. 

For the simulations it was refined to 21,310 vertices, 84,898 edges and 55,840 ele-

ments. The FEFLOW model consists of 45,176 nodes and 89,356 elements.  



 

275 
 

 

Fig. 11.14 Model geometry based on the schematic cross-section with identifiers of 

the units and fractures 

11.2.2.2.2 Groundwater flow simulations 

Hydrogeological parameters were assigned to the flow model according to the ASTER 

final report. Some of the parameters were modified to meet more common geological 

settings. Parameters used to calculate the groundwater flow without considering heat 

transport are given in Tab. 11.5 and Tab. 11.6. The simulations were run assuming a 

steady-state flow in a saturated medium with a confined groundwater table. 

Tab. 11.5 Hydrogeological parameters for the four geological units 

ID Geological unit Conductivity [m s-1] Permeability [m²] 

I Clay and gravel 2.08 10-5 2.08 10-12 

II Weathering zone 5.79 10-6 5.79 10-13 

III Fractured zone  
(low water circulation) 1.16 10-10 1.16 10-17 

IV Fractured zone  
(very low water circulation) 1.16 10-14 1.16 10-21 
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Tab. 11.6 Hydrogeological parameters for the five fractures 

Parameter Fractures 

Aperture [m] 1.0 10-2 

Conductivity [m s-1] 7.52 10-6 

Permeability [m2] 7.52 10-13 

The initial salt concentration was set to 0 kg m-3, according to the very low groundwater 

mineralisation. The temperature was globally set to 293.15 K for first model calcula-

tions. The boundary conditions for the d3f simulations are illustrated in Fig. 11.15. The 

groundwater recharge of 1.31 10-9 m s-1 was converted to 1.13184 10-4 m d-1 for the 

FEFLOW simulations. The pressure boundary conditions in d3f were chosen to match 

the constant hydraulic heads of 1048.8 m at the left and 1048.4 m at the right model 

boundary assigned in FEFLOW. The conversion was based on 

   (11.48) 

with h = hydraulic head [m], P = pressure [Pa],  = fluid density [kg m-3], g = gravitation 

vector [m  -2], and y = height [m] of the considered point in the model domain. 

 

Fig. 11.15 Boundary conditions for the groundwater flow simulations with d3f 



 

277 
 

Both the FEFLOW and the d3f model were run assuming steady-state flow conditions. 

The resulting pressure distribution, flow velocities and flow fields are used to evaluate 

and to compare the model results.  

According to the total depth of the model domain the pressure difference between the 

top and the bottom of the model domain amounts to 1.03 104 kPa (cf. Fig. 11.16). The 

FEFLOW and d3f model show a very good agreement. 

 

Fig. 11.16 Pressure distribution in the model area in [kPa]  

Coloured isolines were computed with d3f and black isolines were comput-

ed with FEFLOW. 

The highest flow velocities can be observed in the upper two units, whereas low and 

very low flow velocities occur in unit III and IV, respectively. The groundwater flow ve-

locities in the matrix mainly correspond to the permeabilities that were assigned to the 

different hydrogeological units. The strongest deviations from this pattern can be ob-

served in unit IV where exceptionally low flow velocities occur between the bottom 

parts of the fractures. 

The flow velocity ranges from d3f and FEFLOW simulations given in Tab. 11.7 as well 

as the velocity distributions (Fig. 11.17) show a very good agreement. The flow veloci-

ties in the upper three units range within the same orders of magnitude and also their 
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spatial distribution agrees quite well. Only between the fractures in deepest layer the 

velocities calculated by d3f are two orders of magnitude smaller than the velocities cal-

culated by FEFLOW.  

Tab. 11.7 Velocity ranges for the different units from d3f and FEFLOW simulations 

 vmin (d3f) vmax (d3f) vmin (FEFLOW) vmax (FEFLOW)

Unit I 2.6 10-8 m s-1 6.8 10-10 m s-1 2.9 10-8 m s-1 6.5 10-10 m s-1 

Unit II 1.3 10-8 m s-1 2.5 10-11 m s-1 9.5 10-9 m s-1 1 10-11 m s-1 

Unit III 2 10-13 m s-1 5 10-16 m s-1 2 10-13 m s-1 8 10-16 m s-1 

Unit IV 4 10-17 m s-1 2.5 10-22 m s-1 9 10-17 m s-1 3 10-20 m s-1 

 

Fig. 11.17 Groundwater flow velocity in the matrix and in the fractures on a logarithmic 

scale (colours) calculated by d3f (left) and FEFLOW (right) 

Groundwater flow directions and velocities in the matrix and the fractures are present-

ed exemplarily from d3f simulations (cf. Fig. 11.18). Due to the groundwater recharge, a 

downward flow can be observed in the upper two units of the model. The streamlines 

are partly deflected at the boundary to the subjacent, less permeable layer and run in 

wide parts parallel to the layer boundary. In the first about 100 m the groundwater 

leaves to both sides of the model area. Below that depth, the main flow direction is not 

driven by the groundwater recharge but by the pressure boundary conditions specified 
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for both sides. This flow field to the right, however, is modified by the influence of the 

fractures. Especially in the lower permeable units, the velocity vectors shown in Fig. 

11.18 get deflected by the higher permeable fractures, e. g. a flow towards fracture F5 

occurs in the bottom left corner of the model (nomenclature of the fractures cf. Fig. 

11.14). 

 

Fig. 11.18 Groundwater flow directions and velocities in the matrix and the fractures 

calculated with d3f. Velocity vectors are scaled to the same size 

A zone of very low flow velocities can be observed in the wedge below the intersection 

of the fractures F1 and F2. The groundwater coming from the left is led upwards by 

fracture F2 and only a small proportion of the water crosses the fracture. The area to 

the right of this fracture is also only slightly fed from the other side because the 

groundwater flowing downwards through the fracture F1 runs mainly off to the right 

following the pressure gradient imposed by the boundary conditions. The same situa-

tion applies to the wedge below the intersection of the fractures F3 and F4. 

The flow field calculated by FEFLOW shows a good agreement with the d3f flow field 

described above. Beside the same general flow direction the FEFLOW results show 
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the same prominent characteristics: a) the change between the outflow and inflow on 

the left boundary occurs approximately at the same location, b) fracture F5 acts as 

drainage in the bottom left corner of the model area and c) the zones of very low flow 

velocities below the intersecting fractures F1/F2 and F3/F4 is also represented by the 

FEFLOW simulation although this effect is less pronounced. 

Results from d3f-calculations for flow directions and velocities in the fracture system are 

shown in Fig. 11.19. The flow velocities vary between 10-15 and 10-8 m s-1 reaching 

higher flow velocities in the upper parts of the fractures than in the lower parts. The 

main flow path through this system is formed by fractures F1 and F5. Water from the 

relatively highly permeable unit II is transported downwards through fracture F1 until 

the intersection with fracture F5. This fracture is dipping at a low angle into the direction 

of the gradient the pressure boundaries impress upon the model area and therefore 

leads the water back upwards to unit II. Fractures F2, F3, and F4 also draw down water 

from unit II and supply fracture F5 with it. 

The groundwater in the factures partially bypasses parts of F5 by flowing downwards 

through a fracture dipping to the right (F1 and F3) and then upwards again through an 

intersecting fracture that dips to the left (F2 and F4). Along these paths the flow velocity 

stays relatively constant. 

In the bottom part of the fractures, i. e. the part below the lowest intersection with an-

other fracture, velocities occur that are three to four orders of magnitude lower than in 

the remaining fracture system. This is because only a small amount of water can be 

drawn from or pressed into the low permeable matrix the fractures end in. 

FEFLOW simulations produce a flow system in the fractures that is very similar to that 

in d3f. The main flow path with comparable flow velocities is the same as in d3f. Also 

the drawing and bypassing behaviour of fractures F1 to F4 is equal. Differences are 

found in the bottom part of the fractures. Here, the flow velocities lie two to three orders 

above the flow velocities calculated with d3f.  
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Fig. 11.19 Groundwater flow directions and velocities in the factures calculated with 

d3f. Velocity vectors are scaled to the same size 

FEFLOW also shows a different behaviour concerning the flow direction in the frac-

tures. In the bottom part of fracture F2 the streamlines point alternatingly upwards and 

downwards with no clear trend. In the bottom part of fracture F4 the FEFLOW stream-

lines point in the opposite direction to the d3f streamlines. 

Differences between the results of d3f and FEFLOW simulations had to be expected 

due to the different treatment of the fractures. In d3f jumps of physical quantities from 

one side of a fracture to the other can be handled because a fracture is represented by 

three values orthogonal to its plane: one value for each interface with the matrix and 

one for the middle of the fracture. Nevertheless, the fracture is considered to be (d-1)-

dimensional compared to the d-dimensional model. In FEFLOW such discontinuities of 

physical quantities cannot be represented as only one value is assigned to each point 

of the fracture plane. Coupling between the processes on both sides of the fracture is 

thus stronger in the FEFLOW model. 
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In summary, the following results were obtained concerning the groundwater flow simu-

lation: 

 The results of the d3f- and FEFLOW-simulations show a satisfactory agreement. 

Some differences had to be expected due to the differences in the implementation 

of the fractures in the two program codes. Good agreement is obtained concerning 

the values and the distribution of the flow velocities in the different layers. Only 

small differences are found in unit IV between fractures F1 and F2 as well as be-

tween fractures F3 and F4. 

 The main characteristics of the flow field in the matrix calculated with FEFLOW cor-

respond to the results from the d3f simulations. However, influence of the fractures 

on the flow in the matrix is less prominent in the FEFLOW model. The results of d3f 

show pronounced areas of very low velocities in the wedge between two fractures. 

 Results for the flow in the upper part of the fracture system are in good agreement. 

In the lower third, however, where velocities are low in comparison, FEFLOW cal-

culates higher flow velocities and in two cases also different flow directions. 

11.2.2.2.3 Groundwater flow simulations considering heat transport 

Heat transport was simulated on the same cross-section as described before. The pa-

rameters concerning the heat transport are listed in Tab. 11.8 Permeabilities and con-

ductivities of the different units were set to the same values as in Tab. 11.5. Only the 

permeability of the fractures was increased to intensify the effect of the flow field on the 

temperature distribution (cf. Tab. 11.9). The effects of temperature on density and vis-

cosity were neglected to facilitate the comparability of the simulation results. 

Tab. 11.8 Hydrogeological parameters for the matrix and the fractures in the ground-

water simulation concerning heat transport 

Parameter Matrix Fracture 

Porosity [-] 4.65 10-3 5·10-3 

Tortuosity [-] 1.0 1.0 

Molecular diffusivity [m2 s-1] 1.0 10-9 1.0 10-9 

Longitudinal dispersivity [m] 5.0 5.0 
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Parameter Matrix Fracture 

Transversal dispersivity [m] 5.0 10-1 5.0 10-1 

Heat capacity of the fluid [J kg-1 K-1] 4.170 4.170 

Heat capacity of the solid [J kg-1 K-1] 2.199 2.199 

Heat conductivity of the fluid [J s-1 m-1 K-1] 5.97 10-1 5.97 10-1 

Heat conductivity of the fluid [J s-1 m-1 K-1] 2.66 2.66 

Mass-density of the solid phase (rock) 3.0 103 3.0 103 

Tab. 11.9 Hydrogeological parameters for the five fractures in the groundwater simu-

lation concerning heat transport 

Parameter Fractures 

Aperture [m] 1.0 10-2 

Conductivity [m s-1] 1.0 10-1 

Permeability [m2] 1.0 10-8 

Boundary conditions used in the d3f model are illustrated in Fig. 11.20. A temperature 

of 275.15 K was set at the top and of 305.15 K at the bottom surface of the model. To 

the left boundary, an in-/outflow boundary condition was assigned which means that 

the inflow temperature reflected the general temperature gradient of about 2.84 K per 

100 m and the outflow temperature was allowed to vary. On the right boundary only 

outflow occurred which was allowed to take variable temperatures. The boundary con-

ditions in FEFLOW were set accordingly. Only the in-/outflow boundary condition used 

on the left side was not available in FEFLOW so that a Dirichlet´s boundary condition 

with the same general temperature gradient was employed instead. 

In both models a temperature distribution according to the general temperature gradi-

ent of about 2.84 K per 100 m was assigned as initial distribution. 
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Fig. 11.20 Model geometry and temperature boundary conditions for the groundwater 

flow simulations with d3f based on the schematic cross section 

Both the d3f and FEFLOW model were run for 187 000 days simulation time. Although 

it would have needed about ten times more time steps to reach the equilibrium state, 

the temporal dynamic already provided a good basis to compare the models. The ve-

locity field in this scenario differed from the velocity field presented in Chap-

ter 11.2.2.2.2 because of the higher permeability of the fractures. However, only the 

temperature distribution produced by the two models shall be compared in this chapter.  

The overall temperature distribution follows the temperature gradient imposed by the 

boundary conditions of 275.15 K at the model surface and of 305.15 K at the bottom of 

the model (cf. Fig. 11.20). This distribution is modified because the fluid and thus heat 

in the fractures is transported faster than in the adjacent matrix. Due to heat conduction 

this effect influences also the surrounding matrix. Mainly in the upper two thirds of the 

model domain the temperature isolines in and near the fractures are shifted with the 

flow in the fractures. This effect is most prominent in the vicinity of the main flow path 

where the isolines are moved downwards along fracture F1 and upwards along fracture 

F5. 



 

285 
 

 

Fig. 11.21 Temperature isolines after 187 000 days calculated with d3f (coloured iso-

lines) and FEFLOW (black isolines) 

The temperature isolines after 187 000 days computed with d3f and FEFLOW show an 

excellent agreement (cp. Fig. 11.21). The black isolines obtained from FEFLOW calcu-

lations lie almost perfectly beneath the coloured d3f-isolines. 

11.2.2.2.4 Transport simulations 

A transport simulation with constant density and viscosity was performed with d3f and 

r3t in order to test the capability of the codes to cope with transport in fractures. The 

results of these simulations were compared to FEFLOW calculations. 
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Fig. 11.22 Boundary conditions for the transport model in d3f 

The flow parameters listed in Tab. 11.5, Tab. 11.6 and the flow boundary conditions 

discussed in Chapter 11.2.2 were set for the d3f and FEFLOW simulation. Additionally, 

a point source with an inflow rate of 1.0·10-11 m3 s-1 was introduced near the intersec-

tion of the fractures F1 and F5 in d3f (cf. Fig. 11.22). The resulting steady-state velocity 

field served as basis for the r3t-simulations.  

Only element-wise sources were available in FEFLOW so that the inflow rate had to be 

related to the element size. Thus a flux of 3.7812·10-6 m d-1 was added to an element 

with the size of 0.23 m2 at the location of the point source in d3f. 

The transport parameters were the same as for the groundwater simulations consider-

ing heat transport (cf. Tab. 11.8). The transport boundary conditions for d3f and r3t are 

depicted in Fig. 11.22. In FEFLOW the boundary conditions were assigned accordingly. 

Only the in-/outflow boundary condition on the left side was again replaced by a Di-

richlet´s boundary condition and the source was related to the element size. In all three 

programs the initial concentration was set to 0 mg l-1 in the whole model area. 

The contaminant was assumed to be a tracer that perfectly follows the fluid motion and 

neither underlies radioactive decay nor shows any sorption. 
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11.2.3 Results 

The introduction of the volume source causes a change in the flow field compared to 

the groundwater flow simulations in Chapter 11.2.2. This effect mainly affects the bot-

tom layer left to the fractures F1 and F5 (cf. Fig. 11.23). It can be observed that the 

fluid flows radially outwards from the source. This pattern is broken where higher flow 

velocities e. g. in the fractures become dominant. The absolute values of flow velocity 

produced by FEFLOW are in the same order of magnitude (cf. Fig. 11.23). However, 

the differences between the bottom part of fracture F1 and F2 and fracture F3 and F4 

remain the same as in Chapter 11.2.2 The flow directions in FEFLOW are comparable 

to d3f but could not be shown due to the lack of an appropriate graphic option. 

 

Fig. 11.23 Groundwater flow directions and velocities in d3f (left) and FEFLOW (right) 

Velocity vectors are scaled to the same size. 

The effect of the source on the flow velocities in the fracture differ between d3f and 

FEFLOW. In d3f the fluid mainly adds to the flow in fractures F5 and the triangle formed 

by the fractures F1, F2 and F5 (cf. Fig. 11.23). Here, the velocity ranges between 

5.0·10-10 and 2.0·10-9 m s-1. The flow velocity in the bottom dead ends of fractures F1 

and F2 are very low and amount to 10-14 to 10-11 m s-1. 

In FEFLOW, the downward flow through fracture F1 is twice as high as in d3f. In the 

dead ends of fractures F1 and F2 the flow velocity is one to three orders of magnitude 

higher than in d3f and amounts to 10-12 to 10-10 m s-1. Furthermore, in the bottom part of 
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fracture F2 the flow is directed upwards in d3f and downwards in FEFLOW (not shown). 

The upward flow in fracture F2 between the intersection with the fractures F1 and F5 is 

reduced compared to d3f. Thus, the relevance of the upward flow in fracture F2 is re-

duced and more fluid is transported downwards into the matrix in FEFLOW. 

   

Fig. 11.24 Groundwater flow velocities in the fractures calculated with d3f (left) and 

FEFLOW (right)  

Velocity vectors are scaled to the same size. 

For the sake of clarity, the results of d3f, r3t, and FEFLOW are compared pairwise. 

Thus, Fig. 11.25 shows only the results of d3f and r3t after 4.6·106 days. Then, d3f and 

FEFLOW results are compared in Fig. 11.26. 

The concentration isolines of 55, 45, 35, and 25 mg/l form after 4.6·106 days concentric 

circles around the source due to the radial flow direction discussed above (cf. Fig. 

11.25). The 15 and 5 mg/l-isolines, however, are distorted because of the higher flow 

velocities in the fractures. The downward flow in fracture F1, for example, retards the 

spread upward of the tracer and accelerates its spread downward. Thus, the isolines 

are drawn in the flow direction. The degree of distortion depends on the flow velocity 

within the fracture. A low flow velocity causes only a slight change of the spread pat-
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tern, e. g. in the bottom third of fracture F5, as opposed to the great change due to high 

flow velocities in fracture F1. 

The isolines produced by d3f and r3t show a very good agreement. The agreement is 

almost perfect in the area left to the fractures (cf. Fig. 11.25). The 15 and 5 mg/l-

isolines differ slightly because the transport in the fractures seems to be marginally 

faster in r3t than in d3f. However, the differences are small and both codes produce the 

same characteristics. 

 

Fig. 11.25 Concentration isolines after 4.6·106 days calculated with d3f (dashed line) 

and r3t (solid line) 

The distribution of the tracer after 3.5·107 days computed with d3f and FEFLOW are 

shown in Fig. 11.26. The isolines in the region with low influence of the fractures on the 

flow field show a very good agreement. The differences between the codes near the 

fractures can be explained by the flow velocities within the fractures. Although in both 

models the flow velocities in the fractures near the source are increased, the influence 

of these fractures is different. In FEFLOW, the downward flow in fracture F1 is more 

important than in the d3f model and less fluid is transported upward through fracture F2. 

Therefore, the tracer is transported further downward in FEFLOW within the simulation 

time. Therefore less tracer than in d3f passes across fracture F1 and is transported 

upwards through fracture F5.  
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Fig. 11.26 Concentration isolines after 3.5·107 days calculated with d3f (solid line) and 

FEFLOW (dashed line) 

In summary, the d3f, r3t, and FEFLOW results of the tracer transport simulation show a 

good agreement. As expected, the d3f and r3t results are very similar. The marginal 

differences may have numerical reasons e. g. the length of the time steps differed 

slightly. 

Differences between the d3f and FEFLOW results are mainly caused by differences in 

the flow velocity in the fractures and thus in the distribution of the tracer. The very good 

agreement in the area without influence of the fractures demonstrates that the imple-

mentation of the point source in d3f and the element-wise source in FEFLOW match 

quite well. 
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11.2.4 3d test case with a single fracture in an inhomogeneous matrix 

11.2.4.1 Description of the test case 

As a 3d test case an example provided by /ZIE 91/ was used that is based on a simple 

three-dimensional fracture-matrix system. The set-up described in the following was 

modelled in /ZIE 91/ with the code ROCKFLOW /KRO 91/ and now also with d3f allow-

ing a performance comparison of the two codes. The models concerned will be called 

the ‘ROCKFLOW-model’ and the ‘d3f-model’ further on. 

The model domain is cube-shaped with a side length of 100 m. It has a homogeneous 

permeability of 10-11 m² except for the lowermost 10 metres of the model to which a 

permeability of 10-10 m² was assigned. The model domain contains an almost diagonal 

planar fracture as shown in Fig. 11.27 with an aperture of 1 m and a permeability of 

10-9 m, two orders of magnitude higher than in of the surrounding matrix. Water enters 

the model domain through a 10 m high area at the upper edge of the cube above the 

location of the fracture. In this area the hydraulic head amounts to 0 m. It leaves the 

domain again through a similar vertical area of 10 m height at the bottom of the model 

domain where a head of -100 m is prescribed (see Fig. 11.27). The pressure assigned 

to the inflow and outflow boundaries has to account for hydrostatic pressure, additional-

ly. This yields values for the pressure at the inflow boundary from 0 MPa to 

9.8 x 104 MPa and at the outflow boundary from -9.8 x 104 MPa to 0 MPa, respectively.  

At the upper back corner of the cube within the inflow boundary over a tracer also en-

ters the model domain. Tracer inflow into the ROCKFLOW-model is realised as a point 

source while in the d³f-model tracer inflow is prescribed over an area of 2 m x 2 m. In 

both cases a relative concentration of 1 is assigned to the inflow location. All other 

boundaries are closed for flow and transport.  

Fig. 11.27 shows the set-up of the problem, and Fig. 11.28 the computational grid. 

Flow and transport were simulated with d3f using a time step of 1000 s and a multigrid 

level of 4, resulting in 1.4 millions nodes. For investigating grid convergence the d³f-

model was once also run with a level of 3 with 181 000 nodes. The ROCKFLOW-model 

comprised only 3751 nodes. 
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Fig. 11.27 Model and boundary conditions;  blue: inflow/outflow boundaries 

 

Fig. 11.28 Computational grid, created with ProMesh (see section 9.2);   

front side and inner elements removed for better view 

11.2.4.2 Results 

In the following, three models are discussed and compared: the ROCKFLOW-model, 

the d3f-model and, for reference, a modified d³f-model that contains no fracture. Com-

pared are vertical cross sections through the models showing the velocity and concen-

tration fields. For simulating the system without the fracture the permeability of the frac-

ture was set to the value for the surrounding matrix, i. e., 10-11 m2.  

10 m 

20 m 
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11.2.4.2.1 Velocity 

Fig. 11.29 and the left plot in Fig. 11.30 show the velocity field in a vertical section 

through the model domain from the ROCKFLOW- and the d³f-model, respectively. As 

may be seen from these figures, the velocities are similar for both models. The right 

plot in Fig. 11.30 shows the velocity field in the modified d3f-model without the fracture. 

A comparison of the d3f-models in Fig. 11.30 shows the influence of the fracture on the 

flow field. In the left plot it can clearly be seen that the fracture acting as a hydraulic 

shortcut deflects the streamlines considerably.  

 

Fig. 11.29 Velocity field in a vertical cross section from the ROCKFLOW-model, 

source: /ZIE 91/ 

   

Fig. 11.30  Velocity field in a vertical cross section from the d3f-model (location as indi-

cated in Fig. 11.29); left: with fracture, right: without fracture  
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11.2.4.2.2  Concentration 

The results from the ROCKFLOW-model in terms of solute concentrations at steady-

state are given in /ZIE 91/ as a sequence of eleven vertical concentration profiles, c.f. 

Fig. 11.31. Related results from d3f are depicted in Fig. 11.32 in four vertical cross sec-

tions whose location and thus relation to the results from the ROCKFLOW-model is 

indicated in Fig. 11.31. The concentration fields agree rather well. Fig. 11.32a also in-

dicates a discontinuity of the concentration across the fracture. Here, the different han-

dling of fractures in ROCKFLOW and d3f becomes obvious. In a ROCKFLOW-model 

the same node that represents the fracture represents also the matrix within the patch 

of elements that share this node. Under these circumstances the concentration profile 

across a fracture is continuous in ROCKFLOW. In d3f, however, such a node is re-

solved into at least three nodes allowing jumps of the concentration across a facture. It 

is thus that a complete match of the results cannot be expected. 

 

Fig. 11.31  Vertical concentration profiles from the ROCKFLOW-model at steady state; 

from /ZIE 91/; specified cross sections relate to Fig. 11.32 

Exemplarily, a rough check concerning grid convergence is done by reducing spatial 

resolution using multigrid level 3 instead of 4. The results are given in terms of concen-

trations in two vertical cross sections as depicted in Fig. 11.29. The plots with multigrid 

level 3 naturally show more smearing in the concentration distribution where large 

concentration gradients exist. But they agree qualitatively well with the related results 

obtained with multigrid level 4. 

a)

b)

c)

d)
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Fig. 11.32  Vertical concentration profiles (logarithmic scale) from the d3f-model at 

steady state condition at the locations indicated in Fig. 11.31  

                                    

Fig. 11.33  Vertical concentration profiles (logarithmic scale) from the d³f-model at 

steady state condition at the locations indicated in Fig. 11.31 for a refine-

ment level of 3 

11.2.4.3 Summary 

The d³f-model was able to reproduce velocity and concentration fields of the three-

dimensional fracture-matrix system produced with the ROCKFLOW-model. The influ-

ence of the fracture on flow and transport as also discussed based on results from the 

d3f-model. It was found that the fracture introduces a discontinuity for flow and transport 

in the matrix. Simulation of solute transport with refinement level 3 generates smearing 

of the concentration in comparison to results with refinement level 4 but qualitatively no 

real difference. Thus, grid convergence appears to has been almost reached.  

a) b) c) d)

a) c)
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11.2.5 A realistic fracture flow model - SKB’s Task8b 

11.2.5.1 Introduction  

In the past the Swedish SKB has established several Task Forces, two of which are of 

interest here: the Task Force on groundwater flow and transport of solutes (TF 

GWFTS) and the Task Force on engineered barrier systems (TF EBS). In collaboration 

representatives of both Task Forces have come up with the definition of the so-called 

Task 8, a compilation of several subtasks – called 8a, 8b, etc. – with a view to the hy-

draulic interaction between the bentonite clay buffer and the granitic host rock.  

Presently, the Task is intended to be active from 2010 until 2013. It runs thereby paral-

lel to the related BRIE-project (Bentonite Rock Interaction Experiment) at the Äspö 

Hard Rock Laboratory (HRL). The BRIE-project is concerned with an in-situ test where 

one or two boreholes will be drilled from a tunnel floor cutting at least through one large 

and one minor fracture and will be filled with bentonite. The procedure for finding and 

characterizing a suitable site for the test is also part of Task 8. The objective of this 

experiment is to measure a) water uptake of the bentonite via different water flow paths 

– i. e. fractures and rock matrix – and b) the reaction of the flow system in the rock. 

Task 8 includes predictive as well as interpretive modelling parallel to the on-going 

BRIE-experiment. 

Task 8b addresses scoping calculations for a possible borehole in a simplified realisa-

tion of the actual site at the Äspö HRL. While this Task was originally intended to make 

the modellers of the bentonite buffer familiar with the influence of a real groundwater 

flow system it was acknowledged that it could also be used as a platform for testing the 

fracture flow capabilities of the codes involved. A description of the groundwater flow 

system underlying Task 8b as well as of the numerical model and its results will be 

given in the following. 
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11.2.5.2 Geometry of the groundwater flow system 

11.2.5.2.1 Coordinates 

The coordinate system used in Task 8 is the Swedish RT90 system. At Äspö this sys-

tem leads to large numbers if the x- and y-coordinates are given in meters. It is there-

fore recommended to cut off the leading 4 digits of the x- and y-coordinates. 

All coordinates provided in the task description /BOC 11/ and in the supplementing 

data-files are given as integers meaning that they are resolved only in the meter-scale.  

11.2.5.2.2 Model Domain 

The suggested model domain is cube-shaped with a side length of 40 m. It is bounded 

by a set of eight corners. The coordinates given in the task description lead to slightly 

off-orthogonal angles for the top and bottom quadrilaterals. In order to provide a better 

approximation to a cube-shaped boundary corrected values with a precision of millime-

tres instead of meters were calculated.  

11.2.5.2.3 Drifts and boreholes 

In the model domain two drifts were excavated: the TASD- and the TASO-tunnel. The 

drifts have a plane floor and plane walls but a domed roof. The TASD-tunnel begins 

outside the model domain but ends within. The TASO-tunnel branches off from the 

TASD-tunnel and also ends within the domain. The cross-sections of both drifts are 

reduced towards the last meters to the end of the respective drift. Contrary to the task 

description these changes are not considered here.  

There are two boreholes from the Temperature Buffer Test (TBT) and the Canister Re-

trieval Test (CRT) – labelled here: “deposition borehole 2” and “deposition borehole 3” 

– at the bottom of the TASD-tunnel and one fictional borehole at bottom of the TASO-

tunnel, called “deposition borehole 1”. Their size is not directly given. However, from 

the data it can be assumed that they have a diameter of 1.60 m and a depth of 9 m. A 

“user-defined” borehole with a diameter of 30 cm and a depth of 3 m is also considered 

as requested by the task description. 
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The geometry data is provided in stl-files as ensembles of triangles representing the 

surface of the drifts. In case of the TASD-tunnel the description covers also the part 

outside the model domain. The intersection of TASD- and TASO-tunnel is not resolved. 

Instead, the describing triangles for the TASO-tunnel reach into the TASD-tunnel. 

As with the definition of the model boundaries the data provided electronically resolve 

the coordinates only with an accuracy of 1 m. This leads to strange structures as 

shown in Fig. 11.34 a). The given structures were therefore replaced by geometrical 

descriptions that encompass only a minimum of bounding faces as in Fig. 11.34 b). 

The curvature of the roof is simplified to a polygon with five nodes. Boreholes are rep-

resented by hexagonal prisms. Additionally, the part of the TASD-tunnel that lies out-

side the model boundaries is cut off. 

      

Fig. 11.34 Geometry of the openings; a) original data, b) modified data 

The remaining geometrical model contains some inaccuracies:  

 The intersection of TASD- and TASO-tunnel is still not resolved.  

 There is a little slope in the TASD-tunnel leading to an initial slanting of the floor of 

the TASO-tunnel that is also not considered in this description.  

 The top of the boreholes is only approximately consistent with the floor of the drifts.  

a) b)
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11.2.5.2.4 Fractures 

In the model domain seven large-scale fractures are located. They are larger than the 

40 m model domain. The edges of the fractures are therefore defined by the intercep-

tion of fractures and the model boundaries.  

Data from the task description shows that the fractures are almost but not quite plane 

features (see Fig. 11.35 a). At a closer look they show actually a polyhedral structure. 

In the framework of this description, however, the fractures are treated as planes as 

shown in Fig. 11.35 b). Due to inclination of the fractures and position within the model 

domain some fractures are represented by pentagons.  

              

Fig. 11.35 Fracture geometry; a) original data, b) modified data 

Additionally, a hypothetical single rock fracture is assigned to the model as a circular 

(or equivalent) feature of a diameter of 10 metres with its centre along the centre axis 

of the additional borehole (see section 11.2.5.2.3). As a reference case the single rock 

fracture lies horizontal and is located 1.5 metres below the drift floor.  

Note that some interceptions of different fractures might lead to geometries that pro-

voke difficulties for grid generation as well as for the numerical simulation.  

a) b)
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11.2.5.3 Hydraulic properties 

Three different hydraulic features have to be characterized: the rock matrix, the large-

scale fractures and the user-defined fracture. Drifts and boreholes are assumed to be 

open to the atmosphere. While the data for the rock is given in terms of hydraulic con-

ductivity and porosity only transmissivity is measured in case of the fractures. An aper-

ture is assigned to the fractures in the task description to enable modelling in discrete 

fracture networks (DFN). If this transport aperture is also applicable for flow simulations 

is not clear. Nevertheless, it is used here to derive the fracture permeability. All the 

data is compiled in Tab. 11.10. Derived values are given in italics. 

Tab. 11.10 Hydraulic properties of the hydraulic features 

Property Rock matrix 
Large-scale  
fractures 

User-defined  
fracture 

Hydraulic conductivity [m s-1] 1 10-12    

permeability [m²] 1 10-19 5 10-7 5 10-8 

porosity [-] 1 10-5 1 10-3 1 10-3 

transmissivity [m2 s-1]  5 10-8  5 10-10  

transport aperture [m]  1 10-5  1 10-6 

11.2.5.4  Hydraulic boundary conditions 

As mentioned above, atmospheric pressure is assigned to the surface of the drifts and 

boreholes. For the conditions on the outer surface of the model an excel-file with the 

results of a large-scale flow simulation for the HRL Äspö was provided with the task 

description. The relevant information about dynamic pressure, flow and salinity for the 

model could be extracted from this file. Note that dynamic pressure is defined here as 

the difference between absolute pressure and hydrostatic pressure. The data was giv-

en as pointwise information from the nodes of an irregular grid. The position of the 

nodes in space is depicted in Fig. 11.36.  
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Fig. 11.36 Location of the given nodes in space 

Since no information about the connection of the nodes with their neighbouring nodes 

was given, the data could not simply be interpolated to derive values on the model 

boundary planes. Instead the following strategy – illustrated in Fig. 11.37 – was ap-

plied:  

for each of the six boundary planes  

 define the mathematical formula for the plane 

 find all nodes within a distance of l to the plane  

 for each of those nodes  

 find other nodes  

 within a distance of 2 l  

 on the opposite side of the plane 

 calculate coordinates for the interception of the connecting line with the plane  

 interpolate the data for the interception 
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Fig. 11.37 Extraction strategy for the boundary conditions 

The extraction process using a value of l = 20 m yielded enough data points to con-

struct 2d-data fields in the six bounding planes. They are shown exemplarily for the 

dynamic pressure in Fig. 11.38. These planes had to be reduced to the boundary faces 

as indicated in Fig. 11.39. The whole model surface is shown in Fig. 11.40 including 

the interception of fractures and boundary faces.  

 

Fig. 11.38 Six planes showing dynamic pressure 
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Fig. 11.39 Clipping of a boundary plane 

             

Fig. 11.40 Dynamic pressure on the model boundaries 

Fig. 11.40 shows a rather erratic pressure distribution on a small scale that represents 

the original simulation results on that scale probably quite poorly. Flow simulations 

based on these boundary conditions can be expected to show numerical difficulties and 

unphysical results.  

On a larger scale, however, it shows also a certain pattern. The pressure distribution 

on the model boundary was therefore approximated by an analytical formulation. The 
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quality of the approximation is depicted in Fig. 11.41, where the extracted data and the 

results from the analytical function can be compared.  

edyn

cba

dp
222

 
(11.49)

 dynp   - dynamic pressure [Pa] 

 ,,   - local coordinates [m] (q. v. (11.50)) 

 a,b,c,d,e  - constants (q. v. Tab. 11.11)  
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(11.50)

 x , y   - auxiliary coordinates [m] (q. v. (11.51)) 

 z   - vertical coordinate [m] 

6367000

1551000

yy

xx
 (11.51)

 x,y   - horizontal RT90-coordinates [m] 

Tab. 11.11 Constants for equation (11.49) 

a b c d e 

165 -926 413 -14,000,000 0.7 
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Fig. 11.41 Comparison of extracted data (a)) and results of the analytical function (b)) 

Note that the pressure distribution of the original simulation does apparently account 

for the influence of the open TASD-tunnel and the fractures only rather loosely. The 

boundary conditions with respect to pressure will therefore have to be modified to avoid 

unrealistic flow rates. 

11.2.5.5 Influence of salinity 

There is a noticeable trend in the salinity data provided by the TF GWFTS as depicted 

in Fig. 11.42. However, the maximum difference amounts to less than 0.1 %. In the 

light of the overall model uncertainties the effect from the varying density can therefore 

safely be neglected. 

a) 

b) 
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Fig. 11.42 Salt concentration on the model boundaries 

11.2.5.6 Numerical grid 

The first attempt on the grid for the coarse grid solver was performed with the 

ProMesh3-Tool (see section 9.2). It consisted of 12 634 nodes and 62 175 elements. 

Fig. 11.43 a) shows the model surface where the TASD-tunnel cuts through the model 

surface. The intersections of the fractures with the mode boundary are visible as 

straight lines on the surface. A vertical cross-section through the model is shown in Fig. 

11.43 b). Both drifts can be identified by the characteristic cross-sections as well as the 

coloured fractures. Fig. 11.43 c) and Fig. 11.43 d) represent horizontal cross-sections 

in the plane of the drifts, one including the 3D-elements for the rock matrix and one 

showing only fractures and surfaces. 

The reason for this comparatively fine discretization lay in the fracture geometry which 

included several subparallel fractures intersecting in close vicinity and thus required a 

rather fine grid resolution. This led to problems with the multigrid solver because the 

coarse grid solver did not work economically anymore. At a later stage a coarser grid 

was developed as shown in Fig. 11.44 that consisted only of about 25 000 elements 

which improved the computational performance considerably. The finest grid used dur-

ing the calculation contained 140296 nodes and 588776 elements. 
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Fig. 11.43 First attempt on the coarse grid; a) view of the model surface, b) vertical 

cross-section, c) horizontal cross-sections 

      

Fig. 11.44 Ultimately used coarse grid for the model; a) view from above, b) view from 

below 

a) b) 

c) d) 

a) b) 
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11.2.5.7 Results 

11.2.5.7.1 Dynamic pressure 

Results are given in terms of dynamic pressure distributions, flow fields, and water out-

flow at the model boundary. Fig. 11.45 shows isoplanes in a vertical cross-section 

through the TASD-tunnel representing the dynamic pressures of -3.5, -3.0, -2.5, -2.0, 

and -1.5 MPa. The pressure decreases from the cube surface in the direction of the 

openings showing the highest gradient at the end of the TASD-tunnel. The contour 

plane of lowest pressure (blue) follows loosely the surface of the openings. This is evi-

dent at the deposition boreholes 2 and 3. 

 

Fig. 11.45 Isoplanes of the dynamic pressure at the TASD-tunnel 

The part of the model shown in Fig. 11.45 is only little disturbed by fractures. The 

isoplanes thus have a rather smooth look. If the vertical cross-section is slightly turned 

clockwise, though, several fractures are located in the remaining volume of the model 

which results in wave-like disturbances especially at a distance to the geotechnical 

openings as seen in Fig. 11.46. 
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Fig. 11.46 Influence of fractures on the isoplanes of the dynamic pressure  

11.2.5.7.2 Flow velocity 

Exemplary for the calculated flow field in a fracture Fig. 11.47 depicts a wire plot of the 

model including a fracture highlighted in red. Direction and flow velocity in the fracture 

are indicated by equally spaced vectors of varying length. Flow occurs from the cube 

surface towards the tunnels and boreholes as expected from the pressure plots. A sig-

nificant influence on the flow field from other fractures is not expected, and in fact can-

not be observed, because all fractures are of comparable orientation and assumed to 

be larger than the model domain. Therefore, all of them simply connect the surfaces of 

the model with the geotechnical openings resulting in comparable pressure gradients, 

too. 
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Fig. 11.47 Flow field in a fracture  

The situation is different for the flow field in the matrix. Here, the fractures provide hy-

draulic shortcuts for the water on its way from the cube surface to the openings. The 

plot of the velocity field in a horizontal cross-section through the matrix provides a 

meaningful example. In Fig. 11.48 the flow direction is indicated by vectors and the flow 

rates are visualised by an underlying contour plot. The position of the intersections with 

the fractures can clearly be determined by the abrupt colour changes in the contour 

plot. Where this happens the fractures influence the flow field in the matrix by deflecting 

the stream lines. At some locations the colour changes are accompanied by visible 

changes in the flow direction as well. 

The highest flow velocities can of course be found where the openings are closest to 

the cube surface, most obvious at the end of the TASD-tunnel. Interestingly, the area 

showing the highest velocities appears to be more or less symmetrically arranged 

around the tunnel face despite the fact, that the tunnel face is not parallel to the cube 

surface. In a homogeneous domain the location with the highest flow velocity would 

have been expected at the tunnel edge closest to the surface. But apparently, the frac-
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ture system lowers the flow resistance to the other edge in such a way that inflow into 

the tunnel is more or less equally distributed along the tunnel face. 

 

Fig. 11.48 Flow field in the matrix  

11.2.5.7.3 Water outflow 

Since /BOC 11/ provide no means of comparing the results described above with data 

from the HRL at least a rough check was devised. Water flow into the openings was 

calculated to be compared with flow data from a different location in the HRL. The V2-

fracture system at niche 2715 in the HRL had been found to be highly permeable and 

to produce about 50 ml s-1 /KUL 02/. This compares nicely to the amount of water flow-

ing out of tunnels and boreholes which amounts to approx. 180 g s-1 in the model es-

pecially considering that this value comes from the first and uncalibrated model.  
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11.3 Modelling with free groundwater table 

11.3.1 Flow within a dam 

For testing the functionality of free surface flow in d³f in principle, the well-known ex-

ample of flow through a dam is used. Here, only a plausibility test can be provided. A 

code verification in detail and with realistic applications will be performed in the frame-

work of a subsequent project. 

11.3.1.1 Introduction 

A schematic diagram of the groundwater flow within a dam is shown in Fig. 11.49. The 

dam is supposed to consist of a homogeneous material. The dam is supposed to con-

sist of a homogeneous, isotropic material. On the left hand side the water table is de-

fined by the sea level or the surface of a lake which are assumed here to be invariable 

with time. On the right hand side of the dam another surface water is situated with a 

lower level than the water on the left hand side. The bottom of the dam is assumed to 

be impervious. The water density does not vary with space or time. The resulting flow 

thus represents a potential flow field where the potential is given in terms of the piezo-

metric/hydraulic head. 

With a view to potential flow the sketch in Fig. 11.49 shows an interesting variety of 

boundary conditions. Where the dam is adjoined to a water reservoir the hydraulic 

head is constant meaning that the boundary is also an an equipotential line. The im-

permeable bottom represents a streamline since no flow is allowed across this bounda-

ry. The same applies to the free groundwater table at steady-state conditions. The 

seepage section of the boundary where water leaves the dam above the level of the 

surface water has a varying potential i. e. the hydraulic head equals the height of the 

dam surface. 



 

313 
 

 

Fig. 11.49 Schematic diagram of groundwater flow within a dam 

11.3.1.2 Hydrogeological model 

The generic dam model investigated here has a length of 22.5 m and a height of 

10.8 m. The dam has a permeability  m² and a porosity  The initial 

state of the hydrogeological model and the boundary conditions are shown in Fig. 

11.50. For the initial level set function  was chosen (see also 

section 6.) A Dirichlet boundary condition p = 0 Pa is assigned to the free surface 

boundary and to the right hand side of the dam above water level. To the lateral 

boundaries below water level hydrostatic pressure is assigned. The bottom boundary is 

closed to flow. Any influence of salt is neglected: The concentration is set to 0, density 

and viscosity are constant. Dispersion and diffusion are neglected.  

 

Fig. 11.50 Hydrogeological model for the dam with boundary conditions; blue line: 

initial level set function  
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11.3.1.3 Results 

After a model time of about 1 month steady state was reached. The resulting ground-

water surface, pressure and velocity field are depicted in Fig. 11.51. The isobars range 

from 0 (blue) to 70 kPa (red). The velocity reaches absolute values from about 

10-7 m s-1 up to almost 10-8 m s-1. 

 

Fig. 11.51 Groundwater surface, velocity vectors and isobars at steady state.  

Blue area: No values are computed outside the saturated zone 

Based on the general statements in the introduction the results are consistent with the 

expectations: 

 The velocity vectors at the groundwater table as well as at the bottom boundary 

representing two explicitely known streamlines are indeed aligned to these fea-

tures. 

 Since streamlines in a potential field are always orthogonal to the equipotential 

lines it follows that water enters or leaves the model domain across the boundaries 

to surface waters at a right angle. This cannot clearly be seen in Fig. 11.51. Here, 

the geometric resolution or the accuracy of the graphical representation of the sur-

face might not be sufficient. 

 For the same reason the groundwater table – representing a streamline – connects 

to the dam surface on the left hand side at a right angle. 

 Above the water table on the right hand side of the dam a seepage region has in-

deed been formed. 
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 The emergent angle for flow through the seepage area is not clearly defined be-

cause of the varying potential at the boundary. This angle has to be less than 90°. 

 Consequently, the angle of the free groundwater surface to the dam surface is also 

not defined but significantly less than 90°.  

 Usually, the curve shape of the free surface has an inflexion point. 

Note that the isolines in Fig. 11.51 do neither show stream lines nor equipotential lines 

but the hydraulic pressure. 

11.3.1.4 Conclusion 

It was intended to demonstrate that free surface modelling with d³f is viable and that 

the computed level set function represents the free groundwater surface properly for a 

simple, typical test case. Using the well-known model of seepage flow through a dam 

this aim could be met qualitatively. The computed surface as well as the results for 

pressure and velocity are plausible and meet the expectations. 

Further investigations of this feature are necessary. In test cases performed within the 

framework of subsequent projects results will have to be compared with measured data 

or results of other codes. Additionally, 3d test cases have to be considered.
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12 Conclusion and outlook 

12.1 Scaling in heterogeneous media 

A stability criterion was derived for density-driven systems by means of homogeniza-

tion theory. For systems orthogonal to gravity the derived stability number could predict 

the onset of fingering, dependent on density and viscosity contrasts, flow velocity and 

concentration gradients. Omitting the Oberbeck-Boussinesq approximation, timely sta-

bility predictions could be achieved, and the criterion could be extended to much higher 

density contrasts. Finally, dispersion could be included. For testing the stability number, 

an Elder-type system was used. The derived stability number is a function of the per-

turbation wavelength and the mixing zone width.  

The criterion was extended to heterogeneous media, and an expression was deter-

mined that predicted stabilising and destabilising effects of variance and correlation 

length. Medium anisotropy was not included in the expression for the stability number. 

12.2 Thermohaline-driven flow 

The thermohaline flow problem was described mathematically, and the thermodiffusion 

effects were introduced. Different thermodynamical concepts were developed, investi-

gated and compared with thermohaline flow and thermodiffusion models known from 

literature. The influence of the Soret and Dufour effects were investigated and dis-

cussed with the result that both are neglectable in the currently envisaged range of 

applications for d³f.  

Finally, three field equations to be solved in d³f were derived, describing the mass bal-

ance of the fluid-phase, the mass balance of the solute and the energy balance of the 

mixture as a whole. Two variants were considered, the Boussinesq approximation and 

the complete equation system. 

Theoretical and experimental analyses were performed to determine the scope of valid-

ity of the equations. As a 3d test case the evolution of a brine parcel in the case of 

negative and positive buoyancy was modelled also demonstrating the capability of d³f 

to handle models with more than 108 nodes. 
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12.3 Flow and transport in fractured media 

Structures of reduced dimension representing fractures in a porous medium were es-

tablished within d³f and r³t. The system of partial differential equations to be solved for 

a d-dimensional model changed into a system of both dimensions d and d-1.  

The concept is based on the assumption that flow and transport within a fracture are 

independent of the processes within the surrounding matrix. Interface conditions for the 

fracture-matrix-interaction had to be formulated. Averaging over the fracture width was 

a special challange for the development of both the model and the numerical methods. 

In the former d³f the three differential equations to be solved were based on pressure 

and brine mass fraction as primary variables. To simplify the averaging process, the 

equations were re-formulated: Now the salt concentration is used as the second prima-

ry variable. 

The finite volume discretisation had to be adapted. The fractures are represented by so 

called degenerated elements that have a thickness of zero. Grid generators and re-

finement algorithms were adapted. 

The transport equations of r³t were treated analogously for every contaminant trans-

ported. 

Different 2d and 3d test cases were successfully worked on to verify the code and to 

test its capability. 

12.4 Free surface modelling and potential flow 

D³f and r³t were enabled to model a free groundwater surface. Here, in accordance 

with the ug-philosophy, the numerical grid stays fixed, which leaves the task to distin-

guish between the nodes below and above water level. For this purpose a new level 

set method was developed where the free groundwater surface is represented in an 

implicit way as the zero level set of the level set function. These zero level set is com-

puted by solving the advection equation. 

This solving algorithm in d³f was tested using different examples. Additionally, a 

groundwater recharge model was implemented and tested successfully. 
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For models without any transport effects a feature was created that allows the compu-

ting of only potential flow within one step. 

12.5 Numerical advances 

The solvers within d³f were improved and optimized. A higher order finite volume meth-

od was introduced to improve accuracy.  

New filtering algebraic multigrid (FAMG) methods were developed and implemented. 

These FAMG methods proved very suitable for computing problems with large fracture 

networks. 

Additionally, the ug parallelisation concept was advanced to a flexible tool, the parallel 

communication layer (PCL). These PCL is applicable to many solvers and enables d³f 

and r³t to use modern parallel computers effectively. 

12.6 Adaption of pre- and postprocessors 

The postprocessor based on GRAPE (GRAphical Programming Environment) was ad-

vanced and extended by new methods to be able to visualise and analyse data effec-

tively. New visualisation concepts had to be developed for data on fractures or the free 

groundwater surface. New methods for data extraction were studied. 

A main focus lay on the development and implementation of visualisation concepts 

working on lower dimensional structures, another on the robust visualization and anal-

ysis of different types of data for implicitely described surfaces. The existing tool set for 

the interactive local data extraction was extended significantly. 

A new PCL based graphical user interface was developed. Additionally, the interactive 

graphical tool ProMesh was adopted for geometrical model building and grid genera-

tion, especially for models containing fractures and internal hollow spaces like drifts or 

boreholes. With GISLab a new tool was developed that enables to read data for sub-

surface contour plots from GIS or pointwise data and to preprocess it for the subse-

quent processing in ProMesh. The existing grid generator ARTE was further developed 

and adapted to the new fracture discretisation. 
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12.7 Code verification 

The codes were tested by means of various test cases. To verify the implementation of 

thermohaline flow, a 1d test case was compared with an existing analytical solution 

known from the literature and a 2d test case with a documented solution calculated 

with another numerical heat transport model. In both cases the d³f results agreed well 

with the reference solutions. 

Testing fracture flow started with a simple matrix diffusion test case with one single 

fracture. The results from d³f were compared with an analytical solution and matched 

this solution very well. A second 2d test case for a large scale domain with 5 fractures 

was taken from the project ASTER (FKZ 02E9612 und FKZ 02E9622). The FEFLOW-

model presented there was reconstructed with d³f and r³t which led also to a satisfying 

match of the results. As a third test case Task 8b of the Äspö Task Force on groundwa-

ter flow and transport of solutes (TF GWFTS) was modelled, a 3d case including 7 

large-scale interesting fractures and various geotechnical openings. The ability of d³f to 

cope with a complex fracture system was tested on the basis of Task 8. During the 

procedure which led to reasonable results in the end some shortcomings in the pre- 

and postprocessing tools as well as in the solver became apparent and were resolved 

ac-cordingly. 

Modelling free surface flow with d³f was only checked for plausibility based on the prob-

lem of flow within a dam. The results met the criteria derived from theoretical consider-

ations concerning potential flow. 

12.8 Outlook 

The new features of d³f and r³t are tested now with regard to code verification. Most of 

the test cases performed were very simple. To enhance the confidence in accuracy 

and capability it is necessary to apply the codes to field cases and to compare the re-

sults with measured data or with the results of other models. 

Thinking about data uncertainties and the reliability of forecasts, parameter variations 

and stochastic modelling will be indispensable in future. Because flow and transport 

models in strongly heterogeneous media remain complex and time-consuming, modern 

efficient methods for the handling of uncertainties have to be found. 
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On the other hand, there is a fast-paced progress in computer science. Software codes 

have to be adapted continuously to remain competitive even over short periods of time. 

Modern computers have hybrid structures, cache distribution and handling differ com-

pared to classical parallel computers, and new processors as GPUs or Cell processors 

are used. To keep the codes d³f and r³t state-of-the-art one has to keep track of these 

developments and to advanced them if appropriate to be able to exploit these new 

high-performance technologies. 

12.9 Summary 

Originally, the codes d³f and r³t were developed to model 2d and 3d density-driven flow 

and transport of nuclides or contaminants in strongly heterogeneous porous media. By 

the extensions presented in this report they are now also empowered to model heat 

transport. Modelling of porous media is complemented with the explicit modelling of 

fractures. The possibility to model free surface flow provides the ability to take into ac-

count pumping wells and groundwater recharge, too. With a view to long-term safety 

analyses of repositories for radioactive waste the application field is enlarged to other 

host rocks than rock salt, such as mudstone and crystalline rocks. This leads to a sig-

nificant fortification of the possibilities and of the reliability of simulations in this field. 

Moreover, the advances of d³f and r³t described above provide not only more versatile 

tools for safety analyses, but also represent significant advances in the field of numer-

ics and software engineering. 
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A Appendix A: Notation 

The most general notations used in this report are given below. Where different authors 

used different symbols for the same quantity the referring chapter is also cited. 

 

q  - flow velocity vector [m s-1] (chapter 4, 5, 6, 8) 

u  - flow velocity vector [m s-1] (chapter 3) 

v  - flow velocity vector [m s-1] (chapter 4, 11) 

V  - flow velocity vector [m s-1] (chapter 6) 

K  - permeability tensor [m²]  (chapter 4, 5, 6, 8, 11) 

k  - permeability tensor [m²]  (chapter 3,11) 

 - thermal conductivity [W m-1 K-1] (chapter 4) 

 - thermal conductivity [W m-1 K-1] (chapter 11) 

C  - specific heat capacity [J kg-1 K-1] (chapter 4) 

c  - specific heat capacity [J kg-1 K-1)] (chapter 11) 

 - temperature [K] (chapter 4) 

 - temperature [K] (chapter 11) 

 - solute mass fraction [-] (chapter 3, 4, 5, 8) 

 - solute mass fraction [-] (chapter 8) 

c  - volumetric solute concentration [kg m-³] (chapter 5) 

c  - specific solute concentration [kg m-³] (chapter 11) 

 - porosity [-] 

 - density [kg m-³] 

 - viscosity [Pa s] 

 - tortuosity [-] 

p  - hydraulic pressure [Pa] 

g  - gravitational acceleration [ms-²] 

D  - dispersion tensor [m² s-1] 

mD  - molecular diffusion coefficient [m² s-1] 

I  - identity matrix [-] 

l  - longitudinal dispersion length [m] (chapter 4, 5, 6, 8, 11) 

||  - longitudinal dispersion length [m] (chapter 3) 

t  - transverse dispersion length [m] (chapter 4, 5, 6, 8, 11) 
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 - transverse dispersion length [m] (chapter 3) 

 - heat flux vector 

 - diffusive flux  
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Poliwoda, C.: Erstellung von Bedienoberflächen zur Steuerung von ausgewählten UG-

Komponenten mit VRL, 2011. 

Rupp, M.: Filternde Algebraische Mehrgitterverfahren zur Berechnung großer Eigen-

wertprobleme, 2008. 

Stepniewski, M.: Approximation glatter Ränder und Volumengittergenerierung zur al-

ternativen Erzeugung von 3D-Gitterhierarchien für Mehrgitterverfahren, 2011. 

Stichel, S.: Numerisches Coarse-Graining in UG, 2008. 

Vogel, A.: Ein Finite-Volumen-Verfahren höherer Ordnung, 2008. 

Wehner, C.: Numerische Verfahren für Transportgleichungen unter Verwendung von 

Level-Set-Verfahren, 2008. 

PhD theses 

Feuchter, D.: Geometrie- und Gittererzeugung für anisotrope Schichtengebiete, Hei-

delberg, 2008. 

Hauser, A.: Large Eddy Simulation auf uniform und adaptiv verfeinerten Gittern, Hei-

delberg 2009. 

Musuuza, J. L.: Scaling Haline Flows in Heterogeneous Formations, PhD Thesis, 

Friedrich-Schiller-Universität Jena, 2010. 

Nägel, A.: Schnelle Löser für große Gleichungssysteme mit Anwendungen, Heidelberg, 

2010.
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C Appendix C: Meetings 

Regular 
project 
meeting 

Date Location Organizer 

1. February 13, 2007 Heidelberg Prof. Wittum 

2. October 22, 2007 Braunschweig GRS 

3. April 21-22, 2008 Leipzig Prof. Attinger 

4. October 27, 2008 Frankfurt Prof. Wittum 

5. April 20-21, 2009 Maulbronn Prof. Wittum 

6. October 19, 2009 Frankfurt Prof. Wittum 

7. April 19-20, 2010 Leipzig Prof. Attinger 

8. November 08-09, 2010 Braunschweig GRS 

9. May 05, 2011 Frankfurt Prof. Wittum 
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