

Unsicherheits- und Sensitivitätsuntersuchung der COCOSYS-AIM-Ergebnisse zum lodverhalten im PHEBUS-Versuch FPT1

Gesellschaft für Anlagenund Reaktorsicherheit (GRS) mbH

Technischer Bericht/ Technical Report

Reaktorsicherheitsforschung-Vorhabens Nr.:/ Reactor Safety Research-Project No.: RS 1190

Vorhabenstitel / Project Title: Gezielte Validierung von COCOSYS und ASTEC sowie Unsicherheits- und Sensitivitätsanalyse zum Iodverhalten

Specific Validation of COCOSYS and ASTEC and Uncertainty and Sensitivity study on Iodine

Berichtstitel / Report Title: Unsicherheits- und Sensivitätsuntersuchung der COCOSYS-AIM-Ergebnisse zum Iodverhalten im PHEBUS-Versuch FPT1

Autor / Authors: G. Weber B. Krzykacz-Hausmann F. Funke (AREVA NP, Erlangen)

Berichtszeitraum / Publication Date: Juli 2012

Anmerkung: Das diesem Bericht zugrunde liegende F&E-Vorhaben wurde im Auftrag des Bundesministeriums für Wirtschaft und Technologie (BMWi) unter dem Kennzeichen RS 1190 durchgeführt.

Die Verantwortung für den Inhalt dieser Veröffentlichung liegt beim Auftragnehmer.

Kurzfassung

Zu einer COCOSYS-AIM-Nachrechnung des PHEBUS-Versuchs FPT1 wurde eine Unsicherheits- und Sensitivitätsstudie zum Iodverhalten in einem Reaktor-Containment durchgeführt. Die Rechnung umfasste neben allen wesentlichen Iodreaktionen, auch die Wechselwirkung der Iodchemie mit der Thermohydraulik und dem Aerosolverhalten.

Für die Unsicherheits- und Sensitivitätsstudie wurde das GRS-Analyseprogramm SUSA verwendet. Insgesamt wurden 93 unsichere Parameter identifiziert und berücksichtigt, 56 davon waren Reaktionskonstanten des Iodmodells AIM. Der Kenntnisstand zu den Parametern wurde durch Experten von AREVA NP, Erlangen, und der GRS quantifiziert. Die Untersuchung wurde in zwei Schritten mit jeweils 208 Rechenläufen durchgeführt, wobei im zweiten Schritt die Unsicherheitsangaben des ersten Schritts punktuell präzisiert wurden.

Die wichtigsten Iod-Ergebnisvariablen sind die Konzentrationen der luftgetragenen Iodspezies I₂, CH₃I, IOx und CsI, die den potentiellen Quellterm aus der Anlage bilden. Der ermittelte Unsicherheitsbereich des Iodquellterms ist relativ groß. Die statistischen Toleranzgrenzen liegen typischerweise einen Quotienten 7,0 unter bzw. einen Faktor 5,0 über dem Referenzwert. Nur für einen frühen Quellterm, der fast ausschließlich aus CsI-Aerosol besteht, ist der Bereich deutlich schmaler. Auch die Unsicherheit anderer Ergebnisgrößen, wie z. B. die Konzentration der Iodspezies im Sumpf, ist erheblich.

Zur Unsicherheit der Iodergebnisse tragen vor allem fünf unsichere Parameter bei. Vier davon betreffen die AIM-Einzelmodelle (1) Radiolytische Bildung von molekularem Iod (I_2) im Sumpf, (2) Iod/Silberreaktion im Sumpf, (3) Ablagerung von I_2 auf Farbe und daraus (4) radiolytische Bildung von Organoiod. Der fünfte unsichere Parameter ist die Freisetzung von I_2 aus dem Kühlkreislauf ins Containment. Er ist eine Eingabegröße in der COCOSYS-AIM-Rechnung.

Der Kenntnisstand dieser unsicheren Parameter kann durch die gezielte Überarbeitung der entsprechenden Einzelmodelle verbessert werden, wozu teilweise neue experimentelle Daten erforderlich sind. Dadurch wird auch die Aussagesicherheit des mit COCOSYS-AIM berechneten lodquellterms effektiv angehoben.

Abstract

An uncertainty and sensitivity analysis on a COCOSYS-AIM calculation of the PHEBUS test FPT1 focusing on the iodine behaviour in the reactor containment was performed. The calculation comprised all relevant iodine reactions in the containment as well as the interaction of iodine chemistry with thermal hydraulics and aerosol physics.

The GRS analysis code SUSA was applied for the uncertainty and sensitivity study. A total of 93 uncertain parameters were identified and considered, 56 of them were reaction rate constants of the iodine model AIM. The state of knowledge of the parameters was quantified by experts from AREVA NP, Erlangen and GRS. The study was performed in two steps with 208 computer runs each. In the second step the uncertainty description of some selected parameters from the first step has been refined.

The most important iodine results are the concentrations of the gas phase iodine species I_2 , CH_3I , IOx and CsI, forming the potential source term from the plant. The analyzed uncertainty range of the iodine source term is relatively large. Typically, the statistical tolerance limits lie a quotient of 7.0 under respectively a factor of 5.0 above the reference value. Only for an early source term consisting mainly of CsI aerosol the typical range is significantly smaller. The uncertainty of other results, such as the iodine concentrations in the sump, is also rather large.

In particular, five uncertain parameters have an essential impact on the uncertainty of the iodine results. Four of them concern the following sub modes (1) radiolytic formation of molecular iodine (I_2) in the sump, (2) iodine/silver reaction in the sump, (3) adsorption of I_2 onto paint and from it, (4) radiolytic formation of organic iodine. The fifth parameter concerns the release of I_2 from the coolant circuit into the containment. It is an input value in the COCOSYS-AIM calculation.

The knowledge of these parameters can be improved by a specific revision of the identified sub models, partially requiring some new experimental data. Thus the certainty of the iodine source term prediction with COCOSYS-AIM can be enhanced efficiently.

Inhaltsverzeichnis

1	Einleitung				
2	PHEBUS-Versuch FPT1				
2.1	Übersicht				
2.2	Thermohydraulik und Aerosolverhalten in FPT1				
2.3	lodverhalten in FPT1	6			
3	COCOSYS-AIM-Rechnung zu FPT1	9			
3.1.1	Rechenprogramm COCOSYS-AIM-3	9			
3.1.2	Nodalisierung	9			
3.1.3	Rechenergebnisse	12			
3.1.3.1	Thermohydraulische und Aerosol-Ergebnisse	12			
3.1.3.2	lodergebnisse	13			
4	Unsicherheits- und Sensitivitätsuntersuchung	18			
4.1	Kurzer Abriss der angewandten Methodik der probabilistischen				
	Unsicherheits- und Sensitivitätsanalyse ("GRS-Methode")	18			
4.1.1	Durchzuführende Schritte einer Unsicherheits- und				
	Sensitivitätsanalyse	20			
4.1.2	Sensitivitätsanalyse	27			
4.1.3	SUSA - Programm	31			
4.2	Identifizierung der unsicheren Parameter	32			
4.3	Quantifizierung des Kenntnisstands	38			
4.3.1	Thermohydraulische Parameter (Parameter 1 – 6)				
4.3.2	Einspeisungen (Parameter 7 – 16) 41				
4.3.3	Aerosolparameter (Parameter 17 – 23)	44			
4.3.4	Dosisleistung (Parameter 24 und 25)	46			
4.3.5	Iodmodul-Parameter (Parameter 26 – 37)	46			
4.3.6	Iod-Reaktionskonstanten (Parameter 38 - 93)	51			
4.3.6.1	Hydrolyse im Sumpf (Parameter 38 – 42)	51			
4.3.6.2	Radiolyse im Sumpf (Parameter 43 – 46)	52			

4.3.6.3	Silber/lod-Reaktion im Sumpf (Parameter 47 – 49)	53			
4.3.6.4	Homogene organische Iod-Reaktionen im Sumpf, Parameter 50 – 54	54			
4.3.6.5	Iod/Farbe-Reaktionen im Sumpf (Parameter 55 – 63)				
4.3.6.6	Iod/Stahl-Reaktion im Sumpf (Parameter 64)				
4.3.6.7	Iod/Ozon-Reaktion im Gas (Parameter 65 – 71)	57			
4.3.6.8	Homogene organische Reaktion im Gas (Parameter 72)	58			
4.3.6.9	Iod/Farbe-Reaktion im Gas (Parameter 73 – 83)	58			
4.3.6.10	Iod/Stahl-Reaktion im Gas (Parameter 84 – 91)	60			
4.3.6.11	Iod-Massentransfer zwischen Wasser und Gas (Parameter 92 und 93).	61			
4.4	Identifikation von Abhängigkeiten	62			
4.5	Zusammenfassung der unsicheren Parameter	63			
4.6	Auswahl von Ergebnisvariablen	73			
4.7	Ergebnis des ersten Schritts der UaSA	75			
4.7.1	Iodquelltermrelevante Variable (UaSA, Schritt 1)	75			
4.7.1.1	Molekulares lod im Gas	76			
4.7.1.2	Organoiod im Gas	79			
4.7.1.3	IOx-Aerosol im Gas	81			
4.7.1.4	CsI-Aerosol im Gas	83			
4.7.2	Weitere Variable (UaSA, Schritt 1)	85			
4.7.3	Zusammenfassung und Konsequenz aus Schritt 1 der UaSA	90			
4.7.4	Änderungen an den Unsicherheitsangaben für Schritt 2 der UaSA	92			
4.8	Ergebnis des zweiten Schritts der UaSA	94			
4.8.1	Relevante Variablen für den Iodquellterm	95			
4.8.1.1	Molekulares lod im Gas	95			
4.8.1.2	Organoiod im Gas	98			
4.8.1.3	IOx-Aerosol und Ozon im Gas	100			
4.8.1.4	CsI-Aerosol und MMD im Gas	105			
4.8.1.5	Maximal freisetzbare lodmenge	107			
4.8.2	Weitere Iodvariablen	111			
4.8.2.1	lod am Condenser	112			
4.8.2.2	I ₂ -, I ⁻ -, HOI-Konzentration im Sumpf	115			

4.8.2.3	Ag-, AgOx- und AgI-Konzentration im Sumpf	116
4.8.2.4	Gesamte lodmenge im Sumpf	116
4.8.3	Thermohydraulische Variable	118
4.8.4	Überblick über die Ergebnisse der UaSA, Schritt 2	119
5	Zusammenfassung und Schlussfolgerungen	124
6	Literatur	129
7	Weitere Abbildungen	135
8	Verteiler	155

Abbildungsverzeichnis

Abb. 2-1	Schematische Darstellung der PHEBUS-Anlage, aus /JAC 00/	4				
Abb. 2-2	Ablauf des PHEBUS-Versuchs FPT1, aus /BOS 12/					
Abb. 2-3	Verlauf der Temperaturen im Containment während PHEBUS FPT1,					
	aus /BOS 12/	6				
Abb. 2-4	Wesentliche Iod-Reaktionen im PHEBUS-Containment	7				
Abb. 3-1	COCOSYS-Nodalisierung des PHEBUS-Containments					
Abb. 3-2	Gemessene und berechnete CsI- und IOx-Aerosolkonzentrationen	12				
Abb. 3-3	I ₂ Konzentration im Containment	13				
Abb. 3-4	Organoiodkonzentration im Containment	14				
Abb. 3-5	IOx-Konzentration im Containment	15				
Abb. 3-6	Agl-Konzentrationen im Sumpf	16				
Abb. 3-7	Am nassen Condenser abgelagertes lod	17				
Abb. 4-1	Graphische Veranschaulichung der Verteilungstypen zur					
	Quantifizierung der Parameterunsicherheiten	24				
Abb. 4-2	Wahrscheinlichkeitsverteilung für Parameter 16 (I2-Einspeisung)	43				
Abb. 4-3	Effektive Ag-Oberfläche als Funktion der Partikelgröße	48				
Abb. 4-4	Wahrscheinlichkeitsverteilung für Parameter 26 (Spezifische Ag-					
	Oberfläche)	48				
Abb. 4-5	Wahrscheinlichkeitsverteilung für Parameter 43 (Radiolytische Bildung					
	von I ₂ (w) aus I-(w))	53				
Abb. 4-6	I ₂ -Konzentration im Gas, UaSA Schritt 1, Variationsläufe	76				
Abb. 4-7	I ₂ im Gas, UaSA Schritt 1, Sensitivitäten	77				
Abb. 4-8	CH ₃ I im Gas, UaSA Schritt 1, Variationsläufe	80				
Abb. 4-9	CH₃l im Gas, UaSA Schritt 1, Sensitivitäten	80				
Abb. 4-10	IOx im Gas, UaSA Schritt 1, Variationsläufe	82				
Abb. 4-11	IOx im Gas, UaSA Schritt 1, Sensitivitäten	82				
Abb. 4-12	CsI-Aerosol, UaSA Schritt 1, Variationsläufe 8					
Abb. 4-13	CsI-Aerosol, UaSA Schritt 1, Sensitivitäten	84				
Abb. 4-14	I ₂ im Sumpf, UaSA Schritt 1, Variationsläufe	86				
Abb. 4-15	I_2 im Sumpf, UaSA Schritt 1, Sensitivitäten	86				
Abb. 4-16	I⁻ im Sumpf, UaSA Schritt 1, Variationsläufe	87				
Abb. 4-17	I⁻ im Sumpf, UaSA Schritt 1, Sensitivitäten	88				
Abb. 4-18	Silberiodid im Sumpf, UaSA Schritt 1, Variationsläufe	89				
Abb. 4-19	Silberiodid im Sumpf, UaSA Schritt 1, Sensitivitäten	89				

Abb. 4-20	I ₂ -Konzentration im Gas, UaSA Schritt 2, Variationsläufe	95
Abb. 4-21	I ₂ -Konzentration im Gas, UaSA Schritt 2, Toleranzgrenzen	96
Abb. 4-22	I ₂ -Konzentration im Gas, UaSA Schritt 2, Sensitivitäten	97
Abb. 4-23	CH₃I-Konzentration im Gas, UaSA Schritt 2, Variationsläufe	99
Abb. 4-24	CH₃I-Konzentration im Gas, UaSA Schritt 2, Toleranzgrenzen	99
Abb. 4-25	CH₃I-Konzentration im Gas, UaSA Schritt 2, Sensitivitäten	100
Abb. 4-26	IOx-Konzentration im Gas, UaSA Schritt 2, Variationsläufe	101
Abb. 4-27	IOx-Konzentration im Gas, UaSA Schritt 2, Toleranzgrenzen	101
Abb. 4-28	IOx-Konzentration im Gas, UaSA Schritt 2, Sensitivitäten	102
Abb. 4-29	O ₃ -Konzentration im Gas, UaSA Schritt 2, Variationsläufe	103
Abb. 4-30	O ₃ -Konzentration im Gas, UaSA Schritt 2, Toleranzgrenzen	103
Abb. 4-31	O ₃ -Konzentration im Gas, UaSA Schritt 2, Sensitivitäten	104
Abb. 4-32	CsI-Aerosolkonzentration im Gas, UaSA Schritt 2, Variationsläufe	106
Abb. 4-33	CsI-Aerosolkonzentration im Gas, UaSA Schritt 2, Sensitivitäten	106
Abb. 4-34	Maximal freisetzbare lodmenge, UaSA Schritt 2, Variationsläufe	108
Abb. 4-35	Maximal freisetzbare lodmenge, UaSA Schritt 2, Toleranzgrenzen	109
Abb. 4-36	Maximal freisetzbare lodmenge, UaSA Schritt 2, Sensitivitäten	110
Abb. 7-1	Massengemittelter Partikeldurchmesser des gesamten Aerosols,	
	UaSA Schritt 2, Variationsläufe	135
Abb. 7-2	Massengemittelter Partikeldurchmesser des gesamten Aerosols,	
	UaSA Schritt 2, Sensitivitäten	135
Abb. 7-3	CsI-Aerosolkonzentration am nassen Condenser, UaSA Schritt 2,	
	Variationsläufe	136
Abb. 7-4	CsI-Aerosolkonzentration am nassen Condenser, UaSA Schritt 2,	
	Sensitivitäten	136
Abb. 7-5	CsI-Aerosolkonzentration am trockenen Condenser, UaSA Schritt 2,	
	Variationsläufe	137
Abb. 7-6	CsI-Aerosolkonzentration am trockenen Condenser, UaSA Schritt 2,	
	Sensitivitäten	137
Abb. 7-7	I2-Aerosolkonzentration am nassen Condenser, UaSA Schritt 2,	
	Variationsläufe	138
Abb. 7-8	I ₂ -Aerosolkonzentration am nassen Condenser, UaSA Schritt 2,	
	Sensitivitäten	138
Abb. 7-9	I ₂ -Aerosolkonzentration am trockenen Condenser, UaSA Schritt 2,	
	Variationsläufe	139

Abb. 7-10	I2-Aerosolkonzentration am trockenen Condenser, UaSA Schritt 2,				
	Sensitivitäten	139			
Abb. 7-11	I2-Konzentration an der Stahlwand, UaSA Schritt 2, Variationsläufe 14				
Abb. 7-12	I2-Konzentration an der Stahlwand, UaSA Schritt 2, Sensitivtäten 140				
Abb. 7-13	Fel2-Konzentration an der Stahlwand, UaSA Schritt 2, Variationsläufe	141			
Abb. 7-14	Fel2-Konzentration an der Stahlwand, UaSA Schritt 2, Sensitivtäten	141			
Abb. 7-15	Fixed-I-Konzentration an der Stahlwand, UaSA Schritt 2,				
	Variationsläufe	142			
Abb. 7-16	Fixed-I-Konzentration an der Stahlwand, UaSA Schritt 2, Sensitivtäten.	142			
Abb. 7-17	CsI-Konzentration an vertikalen Wänden, UaSA Schritt 2,				
	Variationsläufe	143			
Abb. 7-18	CsI-Konzentration an vertikalen Wänden, UaSA Schritt 2,				
	Sensitivitäten	143			
Abb. 7-19	I ₂ -Konzentration im Sumpf, UaSA Schritt 2, Variationsläufe	144			
Abb. 7-20	I2-Konzentration im Sumpf, UaSA Schritt 2, Sensitivitäten	144			
Abb. 7-21	I ⁻ -Konzentration im Sumpf, UaSA Schritt 2, Variationsläufe	145			
Abb. 7-22	I ⁻ -Konzentration im Sumpf, UaSA Schritt 2, Sensitivtäten	145			
Abb. 7-23	HOI-Konzentration im Sumpf, UaSA Schritt 2, Variationsläufe	146			
Abb. 7-24	HOI-Konzentration im Sumpf, UaSA Schritt 2, Sensitivitäten	146			
Abb. 7-25	Ag-Masse im Sumpf, UaSA Schritt 2, Variationsläufe	147			
Abb. 7-26	Ag-Masse im Sumpf, UaSA Schritt 2, Sensitivtäten	147			
Abb. 7-27	AgOx-Masse im Sumpf, UaSA Schritt 2, Variationsläufe	148			
Abb. 7-28	AgOx-Masse im Sumpf, UaSA Schritt 2, Sensitivitäten	148			
Abb. 7-29	AgI-Masse im Sumpf, UaSA Schritt 2, Variationsläufe	149			
Abb. 7-30	AgI-Masse im Sumpf, UaSA Schritt 2, Sensitivitäten	149			
Abb. 7-31	Gesamte Iodmasse im Sumpf, UaSA Schritt 2, Variationsläufe	150			
Abb. 7-32	Gesamte Iodmasse im Sumpf, UaSA Schritt 2, Sensitivitäten	150			
Abb. 7-33	Gastemperatur, UaSA Schritt 2, Variationsläufe	151			
Abb. 7-34	Relative Feuchte, UaSA Schritt 2, Variationsläufe	151			
Abb. 7-35	Gasgeschwindigkeit, UaSA Schritt 2, Variationsläufe	152			
Abb. 7-36	Sumpfwassertemperatur, UaSA Schritt 2, Variationsläufe	152			
Abb. 7-37	Gesamtdruck, UaSA Schritt 2, Variationsläufe	153			
Abb. 7-38	Kondensationsrate am nassen Condenser, UaSA Schritt 2,				
	Variationsläufe	153			

Tabellenverzeichnis

Tab. 3-1	Einspeisung von Gas, lod und Aerosol ins Containment	11
Tab. 4-1	Alternative Modellergebnisse N und Index s	26
Tab. 4-2	Alternative Modellergebnisse N sowie die Indizes s1 und s2	26
Tab. 4-3	Überblick über die ausgewählten unsicheren Parameter	35
Tab. 4-4	Unsichere Parameter, Teil 1 thermohydraulische-, Aerosol- und	
	Iodmodul Parameter	63
Tab. 4-5	Unsichere Parameter, Teil 2 Reaktionskonstanten	66
Tab. 4-6	Ausgewählte Ergebnisvariablen für UaSA Step 1 und 2	73
Tab. 4-7	Sensitivitäten der Ergebnisvariable $I_2(g)$ -Konzentration	78
Tab. 4-8	Sensitivitäten der Ergebnisvariable CH ₃ I-(g)-Konzentration	81
Tab. 4-9	Sensitivitäten der Ergebnisvariable IOx(g)-Konzentration	83
Tab. 4-10	Sensitivitäten der Ergebnisvariable CsI-Aerosolkonzentration	85
Tab. 4-11	Sensitivitäten der Ergebnisvariablen $I_2(w)$, I -(w) und AgI(w)	90
Tab. 4-12	Unsichere Parameter mit Einfluss auf die quelltermrelevanten Spezies	
	I₂(g), RI(g), IOx (UaSA Schritt 1)	91
Tab. 4-13	Sensitivitäten der Ergebnisvariable $I_2(g)$ -Konzentration, UaSA Schritt 2	97
Tab. 4-14	Sensitivitäten der Ergebnisvariable $CH_3I(g)$ -Konzentration, UaSA	
	Schritt 2	100
Tab. 4-15	Sensitivitäten der Ergebnisvariablen IOx-Konzentration und $O_3(g)$ -	
	Konzentration, UaSA Schritt 2	104
Tab. 4-16	Sensitivitäten der Ergebnisvariable CsI-Aerosolkonzentration und	
	mittlerer Partikeldurchmesser des gesamten Aerosols, UaSA Schritt 2.	107
Tab. 4-17	Sensitivitäten der Ergebnisvariable "Maximal freisetzbare lodmenge",	
	UaSA Schritt 2	111
Tab. 4-18	Sensitivitäten der Ergebnisvariablen CsI und I_2 am nassen und	
	trockenen Condenser, UaSA Schritt 2	113
Tab. 4-19	Sensitivitäten der Ergebnisvariablen I2-, FeI2-, fixed-I und CsI-	
	Ablagerung auf Stahlwänden	114
Tab. 4-20	Sensitivitäten der Ergebnisvariablen $I_2(w)$, $I^-(w)$, HOI(w), Ag(w), AgOx,	
	AgI(w) und des gesamten lods im Sumpf, UaSA Schritt 2	117
Tab. 4-21	Typischer Unsicherheitsbereich der 208 alternativen Verläufe von	
	Ergebnisparametern für den Schritt 2 der UaSA	120
Tab. 4-22	Alle unsicheren Parameter mit Einfluss auf die Unsicherheit der	
	Ergebnisvariablen in der UaSA, Schritt 2	122

1 Einleitung

Mit dem Containment-Rechenprogramm COCOSYS werden unter anderem Analysen von schweren Unfällen in Kernkraftwerken durchgeführt und der radioaktive Quellterm an die Umgebung berechnet. Dem Verhalten des Spaltprodukts lod kommt dabei besondere Bedeutung zu, da es wegen seiner Flüchtigkeit und seiner hohen Radiotoxizität in den ersten Wochen nach einem schweren Unfall die radiologischen Folgen in der Umgebung der Anlage bestimmt.

Das in COCOSYS integrierte, semiempirische lodmodell AIM (**A**dvanced lodine **M**odel) /WEB 09a/ wird von der GRS in enger Zusammenarbeit mit AREVA NP ständig weiterentwickelt. Aus der Nachrechnung von Experimenten und Parameterrechnungen ist bekannt, dass die Simulation des lodverhaltens wegen der großen Zahl chemischer Reaktionen und chemisch-physikalischer Prozesse mit größeren Unsicherheiten verbunden ist. Eine Quantifizierung dieser Unsicherheiten ist im Zuge der Validierungsarbeiten, das sind im Wesentlichen Rechnungen zu ausgewählten Iodversuchen, nicht möglich. Auch können die Ursachen dieser Unsicherheiten nur vage, z. B. aus Parameterrechnungen, ermittelt werden.

Für die Weiterentwicklung von AIM mit einem Abbau von Modellunsicherheiten sind Daten aus neuen Experimenten erforderlich, die in der Regel aufwendig und teuer sind. Um die zur Verfügung stehenden Mittel effizient einzusetzen, muss vor allem die Modellierung jener Reaktionen und Prozesse weiter verbessert werden, die einen wesentlichen Beitrag zur Unsicherheit des berechneten lodquellterms leisten. Bei der Identifikation von verbesserungsbedürftigen Teilmodellen können die Ergebnisse einer Unsicherheits- und Sensitivitätsanalyse (Uncertainty and Sensitivity Analysis - UaSA) eine wertvolle Entscheidungshilfe sein.

In der GRS wurde in anderen Vorhaben eine UaSA nach einer eigenen Methode für Simulations-Rechenprogramme entwickelt und verbreitet eingesetzt. Die Anwendung der sogenannten GRS-Methode wird durch das Programmsystem SUSA (Programm-System für Unsicherheits- und Sensitivitäts-Analysen) unterstützt /KRZ 88/, /KRZ 90a/, /KRZ 90b/, /KRZ 94/, HOF 93/, /KLO 99/. Mit SUSA wurden bereits erfolgreich Studien zu einer Reihe von thermohydraulischen und Aerosol-Rechenergebnissen mit COCOSYS durchgeführt. Für Rechnungen zum lodverhalten im Containment wurde SUSA bzw. UaSA bisher noch nicht eingesetzt. Auch sind keine vergleichbaren Analysen zu lodmodellen in anderen Unfallcodes (ASTEC, MAAP, etc.) bekannt. Eine Arbeit mit ähnlicher Zielsetzung wurde jüngst auf der Konferenz ERMSAR 2012 von IRSN vorgestellt /CHE 12/. Dabei wurde die Unsicherheit des mit ASTEC-IODE berechneten lodquellterms aus einem französischen 1300 MWe DWR untersucht. Dabei wurden nur 8 unsichere Parameter berücksichtigt. Die berechnete Unsicherheit des lodquellterms streut mindestens einen Faktor 20.

Als Referenzrechnung für die hier durchgeführte UaSA wurde eine COCOSYS-AIM-Rechnung des lodverhaltens im Containment des PHEBUS-Versuchs FPT1 /JAC 00/ und /BOS 12/ gewählt. Der Versuch, in dem das Verhalten von radioaktivem lod und anderen Spaltprodukten unter Kernschmelzbedingungen gemessen wurde, zeichnet sich durch seine große Realitätsnähe aus.

Zwei Hauptziele werden mit der Unsicherheits- und Sensitivitätsanalyse zur Simulation des Iodverhaltens mit COCOSYS-AIM verfolgt: (1) Es soll die Aussagesicherheit der Iod-Ergebnisse bestimmt werden und (2) es soll die spezifische Auswirkung der Unsicherheit einzelner Modell- und Anlagenparametern auf die Berechnung des Iodverhaltens im Sicherheitsbehälter und den Iodquellterm ermittelt werden.

Ein wichtiger Schritt in der UaSA ist die Definition der unsicheren Parameter im Iodmodell AIM und die Quantifizierung des Kenntnistandes bezüglich dieser Parameter. AIM enthält zahlreiche Einzelmodelle, von denen einige von AREVA NP zur Verfügung gestellt wurden, u. a. basierend auf experimentellen Ergebnissen aus verschiedenen Projekten (z. B. BMBF-Projekt "Flüchtiges Iod" /FUN 99a/, PARIS-Projekt /LAN 05/). Die Unsicherheiten aller Iodmodellparameter wurden nunmehr gemeinsam mit AREVA NP bewertet. Der Beitrag von AREVA NP war nicht Gegenstand des BMWi-Projekts RS 1190, er war aber für die erfolgreiche Durchführung der UaSA wesentlich.

2 PHEBUS-Versuch FPT1

Das PHEBUS Fission Product (FP) Projekt war ein internationales Forschungsprogramm zu schweren Reaktorunfällen bei IRSN in Frankreich. Es wurde das integrale Reaktorverhalten beim Aufheizen des Brennstoffs bis hin zur Spaltprodukt-Freisetzung an die Umgebung experimentell untersucht. Zwischen 1993 und 2004 wurden in der PHEBUS-Anlage in Cadarache, Frankreich, insgesamt 5 Versuche durchgeführt. In 4 Versuchen (FPT0, FPT1, FPT2, FPT3) wurde ein Brennstoffbündel zusammen mit einem Steuerstab zum Schmelzen gebracht und das Verhalten der freigesetzten Spaltprodukte (SP) in einem vereinfachten Primärkreis und einem angeschlossenen Containment gemessen. In einem fünften Versuch (FPT4) wurde nur die Freisetzung von Spaltprodukten aus einem zerstörten Kern ohne Messung von Primärkreis- und Containment-Chemie untersucht.

Im zweiten Test, PHEBUS FPT1 (1996), wurde ein DWR-Bündel mit hohem Abbrand und einem Steuerstab aus Silber-Indium-Cadmium niedergeschmolzen. Neben anderen Spaltprodukten wurde lod aus dem zerstörten Bündel freigesetzt und in das Containment transportiert.

Das Verhalten von lod wurde so detailliert wie für kein anderes Spaltprodukt (SP) gemessen bzw. analysiert. Der Versuch wurde erfolgreich mit COCOSYS-AIM nachgerechnet. Anhand dieser PHEBUS-Daten konnte AIM auch an einigen Stellen verbessert und erweitert werden, wie z. B. die Iod/Silber-Reaktion im Sumpf und die Iod/Ozon-Reaktion in der Atmosphäre /WEB 09a/.

2.1 Übersicht

In Abb. 2-1 sind die einzelnen Komponenten der PHEBUS-Anlage schematisch dargestellt. Links ist der Reaktor mit dem Brennstoffbündel und rechts das 10 m³ Containment. In das Containment ragt von oben der sogenannte Condenser, der aus einem nassen Teil, an dem zeitweise Dampf kondensiert, und einem trockenen Teil besteht und der mit Containment-typischem Dekontaminationsanstrich, im weiteren Text schlicht als "Farbe" bezeichnet, versehen ist. Der Sumpf ist mit 125 I Wasser gefüllt und der pH-Wert ist sauer (Anfangswert pH = 5,6). Die enthaltene Borsäure hat eine begrenzte Pufferwirkung. Der pH-Wert fällt dennoch im Verlauf des Experiments infolge des Eintrags von Aerosolen auf 4,5 am Ende des Versuchs (t = 97 h) ab. Die Con-

3

tainmentwand besteht aus elektropoliertem Stahl, nur die Condenseroberfläche ist mit Farbe angestrichen.

PHEBUS facility

Abb. 2-1 Schematische Darstellung der PHEBUS-Anlage, aus /JAC 00/

Abb. 2-2 zeigt die einzelnen Versuchsphasen des FPT1. Ab t = 3 h gelangen SP ins Containment, zuerst die Edelgase, dann flüchtige SP, darunter gasförmiges lod, weiter aerosolförmiges lod und schließlich weitere aerosolförmige SP. Mit ihnen wird auch Dampf freigesetzt, der zu einem großen Teil am nassen Condenser kondensiert. Bei t = 5,8 h wird das Containment vom Primärkreis strömungstechnisch getrennt und die aerosolförmigen SP lagern sich durch natürliche Prozesse im Containment vorwiegend am Boden ab. Die anschließende Chemie-Phase dient vorwiegend der Messung des lodverhaltens. In der Abwaschphase werden die auf dem elliptischen Boden abgelagerten SP mit Hilfe eines starken Sprays in den Sumpf abgewaschen. Nach 4 $\frac{1}{2}$ Tagen endet der Versuch.

Abb. 2-2 Ablauf des PHEBUS-Versuchs FPT1, aus /BOS 12/

2.2 Thermohydraulik und Aerosolverhalten in FPT1

Die Temperaturen der Containmentoberflächen, das sind die Behälterwand, der nasse und trockene Condenser sowie die Sumpfoberfläche werden während des ganzen Versuches auf konstanten, aber unterschiedliche Temperaturen gehalten (Abb. 2-3). Die Atmosphärentemperatur folgt der Wandtemperatur, nur während der Dampfeinspeisung treten kleinere Abweichungen auf. Vor dem Abwaschen werden die Sumpftemperatur und die Temperatur des nassen Condensers abgesenkt, um eine SP-Freisetzung durch Verdampfung des Sprühwassers zu verhindern.

Das Sumpfwasser wird mechanisch durchmischt. Im Sumpf befindet sich ein farbbeschichteter Coupon zur Messung der Iod/Farbe-Reaktion in wässriger Phase.

Abb. 2-3 Verlauf der Temperaturen im Containment während PHEBUS FPT1, aus /BOS 12/.

2.3 Iodverhalten in FPT1

Insgesamt werden in das Containment 0,72 g lod aus dem Kreislauf freigesetzt, das sind 64 % des Bündel-Inventars. Von den 0,72 g sind 1,25 % gasförmig, im Wesentlichen elementares lod (I_2) und HI. Der überwiegende Teil ist aerosolförmiges CsI.

CsI-Aerosol und I₂ werden zusammen mit anderen SP (Edelgase und Aerosole) sowie Steuerstab- und Strukturmaterial in das Containment eingespeist. Die Aerosole setzen sich vorwiegend auf dem elliptischen Boden ab. Nur etwa 1/10 gelangt direkt in den Sumpf. Das reaktive Gas I₂ reagiert mit der Stahlwand und mit dem Farbanstrich des Condensers. Unter Einwirkung radioaktiver Strahlung (0.2 bis 0.6 Gy/s) entsteht aus dem abgelagerten I₂ Organoiod (RI), dessen wichtigster Vertreter Methyliodid (CH₃I) ist. Die wesentlichsten Iod-Reaktionen sind schematisch in Abb. 2-4 dargestellt.

Abb. 2-4 Wesentliche Iod-Reaktionen im PHEBUS-Containment

In der Gasphase reagiert I_2 auch mit den Radiolyseprodukten der Luft, vor allem mit Ozon, unter Bildung des feindispersen Aerosols IOx.

Ein wesentlicher Teil der lodchemie spielt sich in wässriger Phase, im Wesentlichen im Sumpf ab. Hydrolyse- und Radiolysereaktionen bestimmen die Anteile von flüchtigen (I₂) und nichtflüchtigen lodspezies (I⁻, IO₃⁻, HOI) im Sumpf. In Gegenwart von organischem Material wird auch RI im Sumpf gebildet. Die flüchtigen Spezies I₂ und RI treten aus dem Sumpf in den Gasraum aus. I₂ aber auch I⁻ reagieren im Sumpf mit den Silberpartikeln zu AgI, das nicht flüchtig und schwerlöslich ist und sich in dem sogenannten Schlamm des Sumpfes ablagert.

Die lodspezies haben sehr unterschiedliche physikalische Eigenschaften:

- Organoiod (CH₃I, etc.) ist ein nicht-reaktives Gas, das sich nicht nennenswert auf Oberflächen ablagert und keine chemischen Reaktionen eingeht, aber radiolytisch zersetzt werden kann.
- Elementares Iod (I₂) ist ein reaktives Gas, das eine Vielzahl von Verbindungen eingeht und wasserlöslich ist. I₂ lagert sich auf Oberflächen ab und kann von dort wieder freigesetzt werden.
- Cäsiumiodid (CsI) ist ein leicht hygroskopisches Aerosol. Es dissoziiert im Wasser zu nicht flüchtigem l⁻ und Cs⁺.

3 COCOSYS-AIM-Rechnung zu FPT1

3.1.1 Rechenprogramm COCOSYS-AIM-3

Das **Co**ntainment **Co**de **Sys**tem COCOSYS wird von der GRS zur umfassenden Simulation der Vorgänge in Containments von Leichtwasserreaktoren bei einem schweren Unfall entwickelt /ALL 08/. Ein Schwerpunkt von COCOSYS ist die Erfassung von Wechselwirkungen zwischen Thermohydraulik, Wasserstoffverbrennung, Aerosolphysik, lodchemie und das Nuklidverhalten. AIM (**A**dvanced Iodine **M**odule) ist das lodmodell in COCOSYS. AIM-3 berechnet insgesamt 70 chemische Reaktionen und physikalische Prozesse für 26 lodspezies und 8 Spezies anderer Elemente in jeder Rechenzone sowie den lodtransport mit den Gas- und Wasserströmen zwischen den Räumen. Die thermohydraulischen Randbedingungen werden vom Thermohydraulik-Modul zur Verfügung gestellt und das Aerosolverhalten der partikelförmigen Iodspezies wird im Aerosolmodul berechnet. Alle AIM-3-Teilmodelle werden, so wie in /WEB 09a/ beschrieben, auch in der Rechnung zu FPT1 eingesetzt. Eine Ausnahme bildet nur das Iod/Stahl-Modell /SPE 12/, das in einer weiterentwickelten Form verwendet wurde.

Alle Rechnungen zur Unsicherheits- und Sensitivitätsstudie werden mit der aktuellen Anwenderversion COCOSYS V2.4, die auch die aktuelle AIM-3-Version enthält, durchgeführt /KLE 12/. Auch die bereits früher durchgeführte und in /BOS 12/ beschriebene Rechnung zu FPT1, die jetzt als Referenzlauf diente, wurde mit dieser Version wiederholt. Die Abweichungen von den alten Ergebnissen sind minimal.

3.1.2 Nodalisierung

Aufgrund der Erfahrung aus früheren Arbeiten zu PHEBUS wird das lodverhalten in FPT1 in einer integralen Rechnung, also inklusive Thermohydraulik und Aerosolphysik simuliert. Obwohl die Containmentatmosphäre relativ gut durch Naturkonvektion durchmischt war, wird eine Mehrraumrechnung durchgeführt. Die Mehrraum-Nodalisierung erlaubt, die lodverteilung zwischen dem Condenser, der Behälterwand und dem Sumpf zu analysieren sowie lokale Konzentrationsunterschiede gasförmiger und abgelagerter lodspezies zu bestimmen.

Die thermohydraulische Nodalisierung des PHEBUS Containments hat 14 Zonen (Abb. 3-1). Zylindrische Zonen sind von kreisringförmigen Zonen umgeben, um die Natur-

9

konvektion mit Gegenströmung vor allem im Bereich des Condensers gut abbilden zu können. Für die Iod-Rechnung können zwei oder mehrere thermohydraulische Zonen zu einer sogenannten Iod-Zone zusammengefasst werden. Für FPT1 wurde diese Option genutzt und die Iod-Nodalisierung umfasst daher 9 Zonen. Die Iokale Auflösung ist für das vorliegende Problem völlig ausreichend.

Abb. 3-1 COCOSYS-Nodalisierung des PHEBUS-Containments

Einspeisungen

Die Einspeisedaten für Dampf, Wasserstoff, CsI und andere SP-Aerosole in das Containment aus /JAC 00/ sind in Tab. 3-1 zusammengefasst. Es werden die Aerosolkomponenten CsI, Ag, IOx, und Restaerosol (AEREST) simuliert. In AEREST sind alle anderen Komponenten wie SP, Steuerstabmaterial, sowie Bündel und Strukturmaterial zusammengefasst.

Die I_2 -Einspeisung wird aufgrund einer Abschätzung von IRSN vorgegeben, da die Messung kein eindeutiges Ergebnis lieferte. Die Abschätzung ergab, dass 1,25 % des ins Containment freigesetzten lods gasförmiges I_2 waren. Es konnte aber nicht geklärt werden, ob das I_2 tatsächlich aus dem Primärkreis und damit aus dem Kern stammt oder ob es erst im Containment gebildet wurde.

Ein- spei- sung	Zo- ne	Einspeisezeit, [s]	Masse, [g]	MMD*, [µm]	σ**	Anmerkungen
Dampf	C6I	0 – 18610	2.57 [.] 10 ⁴	-	-	
H ₂	C6I	8760 – 14460 und 15380 – 17320	0.101	-	-	Aus der Hüllrohr- Oxidation
N ₂	C6I	8200 – 35220	-1.82 [.] 10 ³	-	-	Abzug durch Pro- benahme
Csl	C6I	10500 – 17522	1.48	1.61	1.9	Aerosol, davon 0.72 g lod
I ₂	C6I	10500 – 17523	9 [.] 10 ⁻³	-	-	Entspricht 1.25 % des gesamten lods, das ins Containment freigesetzt wurde
Ag	C6I	11040 – 17150	31.9	1.61	1.9	Aerosol, 10 % AgO _x
IOx	C6I	12810 – Ende der Rechnung	berech- net	0.2	2.0	IOx berechnet von AIM; Aerosolpara- meter aus THAI- Experimenten
Rest- aero- sol	C6I	10050 – 17550	75.5	1.61	1.9	Umfasst alle ande- ren Aerosole SP, Steuerstabmaterial, Bündel und Struk- turmaterial, etc.

Tab 21	Eineneisung von Cas	Ind und Apropal ing Containment
1 a.b. 5-1	Linspersung von Gas	

für Aerosole * massengemittelter Median-Durchmesser, ** Standardabweichung

3.1.3 Rechenergebnisse

3.1.3.1 Thermohydraulische und Aerosol-Ergebnisse

Die thermohydraulischen Ergebnisse, das sind im Wesentlichen der Gesamtdruck im Containment, die Atmosphärentemperaturen und die Kondensationsraten am nassen Condenser, sind in guter Übereinstimmung mit den Messwerten. Dies ist auf die kontrollierten Wandtemperaturen zurückzuführen. Die Temperaturen weichen nicht mehr als \pm 1 K von den Messwerten ab /JAC 00/.

Die berechneten Atmosphärenströme (Naturkonvektion) stellen sich als stark genug heraus, die luftgetragenen SP im Containment stets gut zu durchmischen. Messwerte zu den Strömen liegen nicht vor, doch deuten alle Messergebnisse auf eine stets homogene Verteilung der SP im Containment hin.

In Abb. 3-2 ist die gemessene und berechnete CsI-Aerosolkonzentration wiedergegeben. Das aus dem Primärkreis eingespeiste CsI lagert sich schnell ab.

3.1.3.2 lodergebnisse

Die wichtigsten lodspezies sind die luftgetragenen, die im Falle eines Containmentlecks an die Umgebung entweichen können. Das sind I₂, Organoiod und die aerosolförmigen Spezies CsI und IOx. Sie bilden den lodquellterm.

lod im Gas

Abb. 3-3 zeigt die gemessenen und mit COCOSYS-AIM gerechneten gasförmigen I₂-Konzentrationen. Am Anfang des Versuchs (Konzentrationsspitze) ist ausschließlich das aus dem Primärkreis direkt eingespeiste I₂ im Containment vorhanden, 1,25 % des gesamten freigesetzten Iods. Dieses lagert sich schnell auf den Oberflächen ab. Im weiteren Verlauf wird durch Radiolyse im Containmentsumpf neues I₂ gebildet und es stellt sich mit den Abbaureaktionen in der Gasphase (I₂-Ablagerung, I₂/Ozon) ein Gleichgewicht ein. Nach dem Abwaschen des elliptischen Bodens steigt die Konzentration in der Gasphase wegen der höheren I⁻-Konzentration im Sumpf. In der Rechnung wird die I₂(g)-Konzentration um etwa einen Faktor 6 unterschätzt.

Abb. 3-3 I₂ Konzentration im Containment

Der Verlauf der Organoiodkonzentration ist in Abb. 3-4 dargestellt. Die Übereinstimmung der Rechen- mit den Messwerten ist generell gut, nur die gemessene Konzentrationsspitze am Anfang des Versuchs wird nicht korrekt wiedergegeben.

Abb. 3-5 zeigt die IOx-Konzentration im Containment. Es sind nur drei Messwerte verfügbar. Insbesondere nach dem Abwaschen lässt sich der gerechnete Konzentrationsverlauf nicht überprüfen.

Abb. 3-4 Organoiodkonzentration im Containment

Abb. 3-5 IOx-Konzentration im Containment

lod im Sumpf

Durch Hydrolyse und radiolytische Prozesse werden im Sumpf bei einem pH zwischen 4.55 und 5.77 die Spezies I_2 , IO_3^- , I^- und HOI gebildet. I_2 und I^- reagieren mit den Agbzw. AgOx-Partikeln zu schwerlöslichem AgI (Abb. 3-6). Diese Reaktionen hängen unter anderem von der spezifischen Oberfläche der Ag-Partikel ab. Je größer die spezifische Oberfläche, desto schneller laufen die Reaktionen im Sumpf ab.

In AIM ist die spezifische Oberfläche der Ag- und AgOx-Partikel für Containment-Sumpf-Anwendungen auf $5.7 \cdot 10^{-3} \text{ m}^2 \cdot \text{g}^{-1}$ gesetzt. Das entspricht einer mittleren Partikelgröße von 100 µm. Dabei wird angenommen, dass die schweren Silberpartikel im Sumpf schnell in den sogenannten Schlamm auf dem Sumpfboden sedimentieren und dort weiter agglomerieren.

Abb. 3-6 Agl-Konzentrationen im Sumpf

Abgelagertes lod

Abgelagertes lod wurde nur am nassen Condenser gemessen Abb. 3-7. Die Messung mit dem Online-Gammaspektrometer erfasst das gesamte lod, das sich im Wesentlichen aus abgelagertem CsI-Aerosol, physisorbiertem I₂ und chemisorbiertem lod zusammensetzt.

Das mit AIM berechnete abgelagerte lod ist hauptsächlich CsI. Bis zum Abwaschen des elliptischen Bodens bei t = 69,5 h stimmen Rechen- und Messwerte sehr gut überein. Durch Wandkondensation am Condenser wird dann in der Rechnung ein Großteil des abgelagerten, wasserlöslichen CsI in den Sumpf gespült. Durch die erhöhte $I_2(g)$ -Konzentration im Gas nach dem Abwaschen steigt die adsorbierte I_2 Menge und in der Folge das chemisorbierte lod am Condenser an. Die Messung zeigt keine Änderung der gesamten lodmenge am nassen Condenser. Eine mögliche Erklärung ist eine radiolytische Reaktion des abgelagerten CsI mit der Farbe. In AIM ist eine solche Reaktion nicht modelliert.

Die lodrechnung zu PHEBUS FPT1 ist die Referenzrechnung für die Unsicherheitsund Sensitivitätsuntersuchung. Details der Rechnung sind in /BOS 12/ beschrieben.

PHEBUS FPT1, COCOSYS-AIM Calculation

Abb. 3-7 Am nassen Condenser abgelagertes lod

4 Unsicherheits- und Sensitivitätsuntersuchung

4.1 Kurzer Abriss der angewandten Methodik der probabilistischen Unsicherheits- und Sensitivitätsanalyse ("GRS-Methode")

Ziel von Analysen zur Unsicherheit und Sensitivität von Anwendungen komplexer Rechenmodelle ist die Beantwortung von zwei Fragen:

- (1) Wie groß ist der gemeinsame Einfluss aller Eingangsunsicherheiten auf die Ergebnisse des Rechenmodells? (Unsicherheitsanalyse)
- (2) Welche dieser Eingangsunsicherheiten tragen am meisten zur der Unsicherheit im Ergebnis bei? (Sensitivitätsanalyse)

Aussagen zu (1) sind u. a. von Bedeutung:

- beim Vergleich von Rechenmodellergebnissen mit Genehmigungsanforderungen.
 Damit lassen sich die Konservativität von Eingangsparametern und das Einhalten von Grenzwerten quantitativ bewerten.
- beim Vergleich von Rechenmodellergebnissen mit Messwerten bei Voraus- oder Nachrechnung von Experimenten. Damit lässt sich der Grad der Übereinstimmung von Experiment und Rechnung bewerten.
- beim Vergleich von Ergebnissen verschiedener Rechenmodelle zu demselben Szenario. Damit lässt sich der Grad der Übereinstimmung der Ergebnisse der beteiligten Rechenmodelle untereinander bewerten.

Aussagen zu (2) liefern Anhaltspunkte dafür, wo der Kenntnisstand durch weitere theoretische Untersuchungen, Experimente, Expertenbefragungen, Literaturrecherchen, Datensammlungen usw. vorrangig verbessert werden sollte, um die Unsicherheit der Ergebnisse des Rechenmodells in möglichst effizienter Weise zu reduzieren. Damit können Schwerpunkte für die Weiterentwicklung und Verbesserung des Rechenmodells gesetzt oder Hinweise geliefert werden, wo Entwicklungsarbeiten eingestellt werden könnten, weil durch genauere Modellierung keine wesentliche Reduzierung der Gesamtunsicherheit der Rechnung mehr zu erzielen ist.

Hauptmerkmale der in der GRS entwickelten Methode zur Unsicherheits- und Sensitivitätsanalyse ("GRS-Methode"), wie sie in der vorliegenden Studie angewandt wurde, sind:

- Die Quantifizierung der epistemischen Eingangsunsicherheiten, d. h. der Unsicherheiten im Kenntnisstand zu den Eingangsparametern, erfolgt probabilistisch durch Angabe von Wahrscheinlichkeitsverteilungen unter Zugrundelegung der Bayes'schen oder subjektivistischen Interpretation des Wahrscheinlichkeitsbegriffs, (Wahrscheinlichkeit zur Quantifizierung des Kenntnisstandes = "Grad des Fürwahrhaltens", "degree-of-belief").
- Die "Fortpflanzung" der Eingangsunsicherheiten durch das Rechenmodell bis zum Endergebnis erfolgt mit Methoden der Monte-Carlo-Simulation, d. h. durch Zufallsauswahl der Parameterwerte gemäß den zugrunde gelegten Wahrscheinlichkeitsverteilungen. Wegen des hohen Rechenzeitbedad. h.rfs der verwendeten Rechenmodelle (z. B. ATHLET, ASTEC, COCOSYS etc.) muss der Stichprobenumfang, d. h. die Anzahl der im Zuge dieser Monte Carlo Simulation durchzuführenden Rechenläufe, möglichst gering gehalten werden.
- Aussagen zur resultierenden Ergebnisunsicherheit basieren auf statistischen Methoden der "geordneten Stichproben" ("order statistics") und werden in Form verteilungsfreier statistischer Toleranzgrenzen formuliert. Die "Schärfe" dieser Unsicherheitsaussagen wird dabei durch zwei statistische Größen β und γ vorgegeben

 β = "Wahrscheinlichkeitsinhalt", "Überdeckungswahrscheinlichkeit", "probability content", "coverage" gibt an, welcher Anteil der Ergebnisunsicherheit von den zu ermittelnden Grenzen erfasst werden soll (in der Regel β = 0,95 bzw. 95%), und

 γ = "Vertrauensgrad", "Konfidenzniveau", "confidence level" gibt an, mit welcher statistischen Sicherheit (Vertrauen, Konfidenz) dies aufgrund der Beschränktheit des Stichprobenumfangs gelten soll (in der Regel γ = 0.95 bzw. 95%). Hiermit wird der Einfluss des Schätzfehlers berücksichtigt, der aus einer begrenzten Anzahl von Rechnungen resultiert.

In der gängigen internationalen Praxis wird eine Aussage über die Gesamtunsicherheit des Rechenergebnisses mit einer Wahrscheinlichkeit β von mindestens 95% und einem Vertrauensgrad γ von ebenfalls mindestens 95% gefordert. Bei einer Gaußverteilung würde dies in etwa dem Bereich $\mu \pm 2\sigma$ (Mittelwert \pm doppelte Standardabweichung) entsprechen. Die Standardabweichung ist gleich der Wurzel aus der Varianz, d. h. dem Mittelwert der quadrierten Abweichungen. Eine Abdeckung der doppelten mittleren Abweichung wird als adäquat und ausreichend angesehen.

19

Sensitivitätsaussagen sollen zum Ausdruck bringen wie hoch der Beitrag ist, den die Unsicherheit in jedem der einzelnen Eingangsparameter zur Gesamtunsicherheit in der Ergebnisgröße liefert, d. h. "Sensitivität" wird im Sinne von Unsicherheitsimportanz, "uncertainty importance" verstanden. Solche Sensitivitätsaussagen basieren auf geeigneten Sensitivitätsmaßen oder Sensitivitätsindizes ("uncertainty importance indices"), in deren Berechnung sowohl die im Rechenmodell abgebildeten funktionalen Zusammenhänge als auch die Verteilungen zur Quantifizierung der Unsicherheiten in den einzelnen Parametern eingehen.

Die "GRS-Methode" hat gegenüber anderen Methoden der Unsicherheits- und Sensitivitätsanalyse folgende Vorteile:

- Sie ist ohne Einschränkungen auf jedes beliebige Rechenmodell anwendbar. Besondere Anpassungen des Rechenprogramms sind nicht nötig, außer dass die Werte der zu variierenden Parameter über den Eingabedatensatz zugänglich sein sollten.
- Die Anzahl N der durchzuführenden Rechenläufe hängt nur von der geforderten "Schärfe" der Unsicherheitsaussagen ab, ausgedrückt durch die beiden statistischen Größen β (= zu erfassende Unsicherheit) und γ (= gewünschte statistische Konfidenz aufgrund der Beschränktheit des Stichprobenumfangs N), nicht aber von der Anzahl der beteiligten unsicheren Eingangsparameter oder der resultierenden Ergebnisvariablen.
- Die Herleitung der Aussagen zur Sensitivitätsanalyse erfolgt auf der Basis derselben Modellrechnungen wie die Herleitung der Aussagen zur Unsicherheitsanalyse, es werden also hierfür keine zusätzlichen Rechenläufe benötigt.

4.1.1 Durchzuführende Schritte einer Unsicherheits- und Sensitivitätsanalyse

Für die Durchführung der Unsicherheits- und Sensitivitätsanalyse sind folgende Arbeitsschritte erforderlich:

- Erstellung eines Eingabedatensatzes f
 ür das COCOSYS-AIM Rechenmodell (Referenzfall).
- Auswahl von Eingabeparametern, deren Unsicherheiten f
 ür einflussreich gehalten werden, hier 93 unsichere Parameter, s. Kapitel 4.3.

- Vorausauswahl der Ergebnisvariablen, f
 ür welche die Unsicherheits- und Sensitivit
 ätsaussagen gemacht werden sollen, hier 28 Ergebnisvariablen, s. Kapitel 4.6.
- Präparierung des Eingabedatensatzes zur Aufnahme der zu variierenden Parameterwerte f
 ür die Durchf
 ührung der Variationsrechnungen und zur Ausgabe der gew
 ünschten Ergebnisgr
 ö
 ßen.
- Quantifizierung der Parameterunsicherheiten

Für jeden der ausgewählten 93 Eingabeparameter Festlegung von Referenzwert, Wertebereich, Wahrscheinlichkeitsverteilung und evtl. weiterer Zusatzbedingungen wie z. B. Abhängigkeiten mit anderen Parametern, die im Zuge der Monte Carlo Simulation zu beachten sind. Im vorliegenden Fall wurden Korrelationskoeffizienten von jeweils 0.5 zwischen den Parametern Nr. 10, 12 und 15 festgelegt, um die Kenntnisstandabhängigkeit zwischen diesen Parametern zu quantifizieren, s. Kapitel 4.4. Es wurden überwiegend die Verteilungstypen Uniform, Log-Uniform, Dreiecks, Log-Dreiecks zur Quantifizierung der Parameterunsicherheit verwendet. Begründung dazu s. weiter unten.

 Durchführung der Zufallsauswahl von Parameterwerten und der entsprechenden Variationsrechnungen mit COCOSYS-AIM

Für alle unsicheren Parameter werden aus den festgelegten Wertebereichen entsprechend den festgelegten Wahrscheinlichkeitsverteilungen und Abhängigkeiten jeweils N = 208 Parameterwerte nach dem Zufallsprinzip ausgewählt (Monte-Carlo). Mit diesen Parameterwerten werden dann die entsprechenden N = 208 Eingabedatensätze erstellt und die Rechenläufe mit COCOSYS-AIM durchgeführt (Begründung für die Wahl von N = 208 s. unten). Aus jedem Rechenlauf ergibt sich dann jeweils ein alternativer zeitabhängiger Verlauf für jede der 28 betrachteten Ergebnisgrößen.

- Berechnung, geeignete Speicherung und gemeinsame graphische Darstellung der Ergebnisse der N = 208 Variationsrechnungen, d. h. der 208 Zeitverläufe für jede der betrachteten 28 Ergebnisvariablen.
- Unsicherheitsanalyse Bestimmung und graphische Darstellung der (zeitabhängigen) Unsicherheitsbereiche aus den Ergebnissen dieser N = 208 Variationsrechnungen in Form zeitabhängiger zweiseitiger statistischer 95%/95% Toleranzgrenzen für die ausgewählten Ergebnisvariablen (Formeln dazu s. unten).

- Sensitivitätsanalyse Berechnung und graphische Darstellung zeitabhängiger Sensitivitätsindizes zur Ermittlung der Rangfolge der Beiträge der einzelnen Parameterunsicherheiten zur Unsicherheit der jeweiligen Ergebnisgröße (Formeln dazu s. unten).
- Diskussion und Interpretation der Analyseergebnisse.

Weitere Erläuterungen

1. Begründung der Wahl der Verteilungstypen *Uniform, Dreieck, Log-Uniform und Log-Dreieck* zur Quantifizierung der Parameterunsicherheit und deren graphische Veranschaulichung:

- Die **Uniformverteilung** (auch Rechtecks- oder Gleichverteilung genannt) wird verwendet, wenn nur der Wertebereich (Intervall, min. und max.) eines Parameters gegeben ist, sonst aber keine weiteren Informationen oder Kenntnisse über diesen Parameter vorliegen. Alle Werte innerhalb des Intervalls sind dann als gleichwahrscheinlich zu betrachten, d. h. keinem der Werte wird gegenüber den übrigen in irgendeiner Weise der Vorzug gegeben (sog. "Maximum-Entropie-Prinzip"). Die Uniformverteilung wurde vorwiegend verwendet, wenn die Unsicherheit eines Parameters direkt oder über einen additiven Term zum Referenzwert zu quantifizieren war.

- Die **Dreiecksverteilung** ist dann angebracht, wenn zusätzlich zum Werteintervall (min., max.) eines Parameters auch ein Modalwert (in der Regel der Referenzwert) vorliegt, bei welchem die Verteilungsdichte ein ausgeprägtes globales Maximum besitzen soll, sonst aber keine weiteren Informationen oder Kenntnisse über diesen Parameter vorliegen. Der Modalwert/Referenzwert muss nicht in der Mitte des Werteintervalls liegen. Die Verteilungsdichte hat die Form eines Dreiecks mit der Spitze über dem Modalwert. Den vom Modalwert weiter entfernten Werten kommt daher naturgemäß eine geringere Wahrscheinlichkeit zu als den näher liegenden. Die Streubreite (Varianz) der Werte im Zuge der Zufallsauswahl bei der Dreiecksverteilung ist damit geringer als bei einer Uniformverteilung über demselben Intervall. Auch diese Verteilung wurde verwendet, wenn die Unsicherheit eines Parameters direkt oder über einen additiven Term zum Referenzwert zu quantifizieren war und die entsprechende Uniform-Verteilung als zu breit gestreut beurteilt wurde.

Die Log-Uniform-Verteilung geht aus der Uniform-Verteilung durch die Exponen-
tialtransformation hervor oder, anders ausgedrückt, der Logarithmus einer Log-Uniform verteilten Variablen ist Uniform verteilt. Die Log-Uniform ist besonders dann angebracht, wenn die Unsicherheit eines Parameters durch einen multiplikativen unsicheren <u>Korrekturfaktor</u> bezogen auf den Referenzwert repräsentiert werden soll. Der Werteintervall dieser Verteilung hat die Form [1/a, a] mit a>1 und die Wahrscheinlichkeitsdichte ist f(x) = c/x, mit c = 1/(2Ina). Darüber hinaus gilt die charakteristische und erwünschte Eigenschaft, dass im beliebigen rechten Teilintervall der Form [1,b] genauso viel Wahrscheinlichkeit/Unsicherheit liegt wie in dem entsprechenden linken Teilintervall [1/b, 1] und zwar für jeden Wert b mit 1≤b≤a. Grob gesprochen bedeutet dies z. B., dass der zutreffende Parameterwert im Vergleich zum Referenzwert mit der gleichen Wahrscheinlichkeit höchstens doppelt so groß wie mindestens halb so groß sein kann.

Die **Log-Dreiecksverteilung** (mit Modalwert bei 1) wird, ähnlich der Log-Uniform-Verteilung, ebenfalls zur Darstellung und Quantifizierung der Unsicherheit eines Parameters durch einen multiplikativen unsicheren **Korrekturfaktor** verwendet. Die Streubreite (Varianz) der Log-Dreiecksverteilung ist naturgemäß geringer als die der entsprechenden Log-Uniform Verteilung. Ansonsten bestehen die gleichen Beziehungen, insbesondere die gleichen Symmetrieverhältnisse wie bei der Log-Uniform-Verteilung, s. oben.

Neben den jeweiligen Wahrscheinlichkeitsverteilungen zur probabilistischen Quantifizierung der Unsicherheit der einzelnen Parameter wurden auch **Korrelationskoeffizienten** zur Quantifizierung der **Kenntnisstandabhängigkeit** zwischen einzelnen Parametern festgelegt, und zwar jeweils ein Korrelationskoeffizient von 0.5 zwischen den Parametern 10 und 12, 10 und 15, sowie 12 und 15 (vgl. Tab. 4-4). Interpretation dazu: Die Unsicherheit der beteiligten Parameter setzt sich jeweils "zur Hälfte" aus einem identischen gemeinsamen Anteil und einem unabhängigen individuellen Anteil zusammen.

Die in der vorliegenden Studie verwendeten Verteilungstypen sind in Abb. 4-1 schematisch dargestellt.

23

Abb. 4-1 Graphische Veranschaulichung der Verteilungstypen zur Quantifizierung der Parameterunsicherheiten

2. Begründung für die Wahl von N = 208 und Formeln zur Bestimmung der entsprechenden 95%/95%-Unsicherheitsbereiche:

Für die vorliegende Analyse wurden N = 208 Rechnungen durchgeführt. Jede dieser Rechnungen liegt eine der N = 208 verschiedenen, nach dem Zufallsprinzip generierten Wertekombinationen der 93 Eingangsparameterwerte zu Grunde. Dabei wurden alle Parameter gleichzeitig variiert und die Werte durch einfache Zufallsauswahl ("simple random sampling") aus den spezifizierten Wahrscheinlichkeitsverteilungen bestimmt unter entsprechender Berücksichtigung eventueller Abhängigkeiten zwischen den Parametern /KRZ 88/. Die Gesamtheit der resultierenden N = 208 alternativen (zeitabhängigen) Modellergebnisse bildet dann eine Stichprobe aus der (zeitabhängigen) Wahrscheinlichkeitsverteilung für jede der interessierenden Ergebnisgrößen zu festgelegten Zeitpunkten. Diese Anzahl N ist bei der Anwendung der GRS-Methode unabhängig von der Anzahl der unsicheren

Modellparameter und der Anzahl der interessierenden Ergebnisgrößen. Sie hängt lediglich von den geforderten statistischen Eigenschaften der zu bestimmenden Toleranzgrenzen ab, ausgedrückt durch die beiden statistischen Größen:

- β = zu erfassende Unsicherheit (hier β = 0.95) und
- γ = gewünschte statistische Konfidenz aufgrund der Beschränktheit des Stichprobenumfangs N (hier γ = 0.95).

Die Bestimmung der einseitigen (oberen) Toleranzgrenze L erfolgt auf der Basis der "order statistics", d. h. der N der Größe nach sortierten Werte $y(1N) \le y(2N) \le \dots \le y(NN)$ der betrachteten Ergebnisgröße Y zum festgelegten Zeitpunkt, und zwar gemäß der Gleichung

(1) d. h. als der sortierte Y-Wert Nr. s von insgesamt N. Mit anderen Worten, die obersten N-s Werte werden eliminiert. Der gesuchte Index s∈{1,...,N} bestimmt sich aus der Beziehung

$$\sum_{i=s}^{N} {N \choose i} \beta^{i} (1-\beta)^{N-i} \leq 1-\gamma , \qquad \qquad \text{GI. 4-2}$$

(2) die zwischen N, s, β und γ bestehen muss, damit L = y(sN) ein einseitiges (β,γ)-Toleranzlimit ist /GUT 70/, /KRZ 90a/, /GLA 08/. Die nachfolgende Tabelle zeigt einige Wertpaare (N,s), die aus der obigen Beziehung GI. 4-2 für (β,γ) = (0.95, 0.95) bestimmt wurden.

Tab. 4-1 zeigt einige Werte von N und den dazugehörigen Index s, ermittelt aus der obigen GI. 4-2 für β = 0.95 und γ = 0.95, so dass die "order statistics" y(sN) ein einseitiges 95%/95%-Toleranzlimit ist.

Tab. 4-1	Alternative	Modellergebnisse	N und	Index s
----------	-------------	------------------	-------	---------

N	59	93	124	153	181	208	234	260	286	311	336	361	 555
s	59	92	122	150	177	203	228	253	278	302	326	350	 536

Danach sind z. B. mindestens N = 59 Rechenläufe erforderlich, um ein einseitiges oberes (oder unteres) 95%/95%-Toleranzlimit bestimmen zu können, welches dann aus dem 59-ten, d. h. dem größten der 59 Werte besteht.

Die Tabelle kann auch so gelesen werden, dass man, um das einseitige 95 %/95 %-Toleranzlimit zu erhalten, die obersten (oder untersten) N-s Werte aus der Stichprobe entfernen darf.

Die zweiseitigen Limits ergeben sich aus derselben Formel, nur dass nun zwei Indices s1 und s2 \in {1,...,N} mit s1<s2 so zu bestimmen sind, dass die insgesamt zu eliminierenden Werte s1 = N - s2 +1 gleichmäßig auf beide Seiten verteilt werden. Dieses Vorgehen führt zu Tab. 4-2. Sie zeigt einige Werte von N und die dazugehörigen Indizes s1 und s2, so dass die beiden Werte y(s1N) und y(s2N) der "order statistics" ein zweiseitiges 95%/95%-Toleranzintervall bilden.

Tab. 4-2 Alterna	ative Modellergebnisse	N sowie die	Indizes s1 und s2
------------------	------------------------	-------------	-------------------

N	93	153	208*	260	311	361	410	 1013
s2	93	152	206	257	307	356	404	 994
s1	1	2	3	4	5	6	7	 20
*in vorliegender Iod-Analyse								

Nach dieser Methode wären also mindestens N = 93 Rechenläufe erforderlich, um ein zweiseitigen 95 %/95 %-Toleranzintervall bestimmen zu können, welches dann aus dem 1-sten, d. h. dem kleinsten, und dem 93-ten, d. h. dem größten der 93 Werte bestehen würde (erste Wertespalte). Die 3-te Wertespalte ist für die vorliegende Studie

relevant und besagt, dass bei N = 208 Rechenläufen das 95%/95%-Toleranzintervall aus dem dritt kleinsten und dem dritt größten der 208 Stichprobenwerte besteht, mit anderen Worten, dass man von insgesamt N = 208 Stichprobenwerten die kleinsten zwei und die größten zwei eliminieren darf. Gegenüber dem Mindeststichprobenumfang von N = 93 hat der erhöhte Stichprobenumfang zwei Vorteile: (1) Reduzierung der Konservativität der so ermittelten Toleranzlimits, vgl. /GLA 08/ und (2) Erhöhung der Genauigkeit der resultierenden Sensitivitätsaussagen ("importance ranking").

Weitere Einzelheiten zur Unsicherheitsanalyse nach der "GRS-Methode" und zusätzliche Literaturhinweise können den Referenzen /KRZ 90a/ /GLA 05/ /GLA 08/ entnommen werden.

4.1.2 Sensitivitätsanalyse

Aufgabe der Sensitivitätsanalyse ist es festzustellen, wie hoch der Beitrag ist, den die Unsicherheit in jedem der einzelnen Eingangsparameter zur Gesamtunsicherheit in der Ergebnisgröße liefert. Gemäß der Höhe der einzelnen Beiträge ergibt sich eine Rangordnung unter den unsicheren Eingangsparametern bezüglich des Einflusses ihrer Unsicherheiten auf die Unsicherheit der Ergebnisgröße ("uncertainty importance ranking"). Diese Rangordnung liefert nützliche Hinweise darauf, wo der Kenntnisstand vorrangig verbessert werden sollte, um die Unsicherheit im Ergebnis möglichst effektiv zu reduzieren.

Im Vordergrund des Interesses einer Sensitivitätsanalyse steht also nicht die Frage, wie sensitiv ist der Wert einer Ergebnisgröße gegenüber kleinen Schwankungen der Werte der einzelnen unsicheren Eingangsparameter um den jeweiligen Nominalwert ("lokale", "differentielle" Sensitivität), sondern vielmehr, wie stark hängt die Unsicherheit einer Ergebnisgröße von den Unsicherheiten in den einzelnen Eingangsparametern ab ("globale" Sensitivität im Sinne von Unsicherheitsimportanz, "uncertainty importance"). Im ersten Fall sind nur die im Rechenmodell abgebildeten funktionalen Beziehungen zwischen Eingangsparametern und Ergebnisgröße wirksam, im zweiten zusätzlich auch die durch Wahrscheinlichkeitsverteilungen quantifizierten Parameterunsicherheiten.

Bei Anwendung der "GRS-Methode" erhält man die Sensitivitätsinformation auf der Basis derselben N = 208 Rechenläufe wie sie zur Ermittlung der Unsicherheitsergebnisse bereits durchgeführt wurden. Zusätzliche Modellrechnungen eigens zum Zwecke der Sensitivitätsbestimmung werden also nicht benötigt.

Die gewünschte Rangordnung unter den unsicheren Parametern gemäß ihrem Beitrag zur Ergebnisunsicherheit erhält man mit Hilfe von Sensitivitätsmaßen oder -indizes. Ein Sensitivitätsmaß für eine Ergebnisgröße Y bezüglich eines unsicheren Parameters X ist ein in der Regel normierter, d. h. zwischen -1 und +1 liegender Zahlenwert, der die Stärke des Einflusses der Unsicherheit dieses Parameters auf die Unsicherheit der Ergebnisgröße quantitativ zum Ausdruck bringt.

Es gibt viele unterschiedliche Arten von Sensitivitätsmaßen mit unterschiedlichen Eigenschaften und Besonderheiten. Um zu beurteilen, welche von ihnen im jeweiligen Fall die geeigneten sind, ist nicht nur die genaue Kenntnis dieser Eigenschaften und Besonderheiten erforderlich, sondern häufig sind auch zusätzliche Untersuchungen durchzuführen. Im Rahmen der GRS-Methode werden in der Regel standardmäßig die sog. korrelationsbasierten Sensitivitätsmaße angewandt, wie z. B. der gewöhnliche Korrelationskoeffizient, der standardisierte Regressionskoeffizient, der partielle und der semipartielle Korrelationskoeffizient.

Um auch nicht-lineare Zusammenhänge zu erfassen, werden häufig Rangtransformationen durchgeführt. Die Originalwerte der Parameter und der Ergebnisse werden dabei durch die entsprechenden Ränge innerhalb der entsprechenden Stichproben substituiert. Aus diesen Rangwerten können dann in analoger Weise die entsprechenden rangkorrelationsbasierten Sensitivitätsmaße berechnet werden, so z. B. die Rang-Korrelationskoeffizienten, die den Grad eines monotonen Zusammenhangs zwischen Parameter X und Ergebnisgröße Y angeben.

Mehr Details zu diesen und weiteren Sensitivitätsmaßen siehe, /KRU 58/, /IMA 85/, /KRZ 90b/, /HOF 99/, /SAL 00/, /KRZ 01/

Im vorliegenden Fall wurde für die gesamte Analyse als Sensitivitätsmaß der *Rang-Korrelationskoeffizient* (nach Spearman, Abkürzung RCC Spearman's <u>Rank Correlati-</u> on <u>Coefficient</u>) gewählt. Er wird nach der für die vorliegende Studie ausgewählten Formel

$$\operatorname{RCC}(Y,X) = \frac{\sum (R(y_i) - \overline{Ry})(R(x_i) - \overline{Rx})}{\sqrt{\sum (R(y_i) - \overline{Ry})^2 \sum (R(x_i) - \overline{Rx})^2}} \quad \text{GI. 4-3}$$

ermittelt. Hierbei sind

 $R(y_i)$ = Rang des Wertes y_i innerhalb der N Stichprobenwerte der Ergebnisgröße Y $R(x_i)$ = Rang des Wertes x_i innerhalb der N Stichprobenwerte des Parameters X \overline{Rx} , \overline{Ry} = die entsprechenden Stichprobenrangmittelwerte.

Die wichtigsten Eigenschaften des Sensitivitätsmaßes RCC sind:

- $-1 \leq \text{RCC} \leq +1$,

- ist die Ergebnisgröße Y unabhängig von Parameter X, so ist RCC = 0,
- ist die Ergebnisgröße Y eine monotone steigende Fkt. in X, so ist RCC = +1,
- ist die Ergebnisgröße Y eine monotone fallende Funktion in X, so ist RCC = -1.

Der Rang-Korrelationskoeffizient ist also ein Maß für den Grad der monotonen Abhängigkeit der Ergebnisgröße Y vom Eingangsparameter X, im Unterschied zum gewöhnlichen Korrelationskoeffizienten (nach Pearson), der nur den Grad der linearen Abhängigkeit wiedergibt. Je größer der Rang-Korrelationskoeffizient seinem Betrag nach ist, desto größer ist daher der Grad dieser Abhängigkeit und damit auch der Einfluss der Unsicherheit des betreffenden Parameters auf die Unsicherheit der Ergebnisgröße. Das Vorzeichen des Rang-Korrelationskoeffizienten gibt die Ausrichtung dieses Einflusses wieder. Ein positives Vorzeichen bedeutet, dass mit zu- oder abnehmenden Werten des betreffenden Parameters die betrachtete Ergebnisgröße ebenfalls tendenziell zu- oder abnimmt. Entsprechend bedeutet ein negatives Vorzeichen, dass sich diese Ausrichtung umdreht. Diese Eigenschaft kann bei der Interpretation der Ergebnisse der Sensitivitätsanalyse von Bedeutung sein.

Die Darstellung der Sensitivitätsergebnisse für zeitabhängige Ergebnisgrößen erfolgt weitgehend graphisch, indem der Verlauf des Rang-Korrelationskoeffizienten bezüglich jedes einzelnen Parameters zu den für die Analyse festgelegten Zeitpunkten über der Zeitachse aufgetragen wird.

Man kann davon ausgehen, dass bei dem vorliegenden Stichprobenumfang von N = 208 die Werte des Rang-Korrelationskoeffizienten RCC, die betragsmäßig kleiner sind als etwa 0,15 bis 0,20, statistisch nicht signifikant sind und daher vernachlässigt werden können.

In diesem Zusammenhang ist auch das sog. Rang-Bestimmtheitsmaß RR², auch "multipler Rang-Korrelationskoeffizient" genannt, bedeutsam. Es wird nach der Formel

$$RR^{2} = r'_{Y,X} R^{-1}_{X,X} r_{Y,X}$$
 GI. 4-4

berechnet. Hierbei sind

- r_{Y,X} = Vektor der Rang-Korrelationskoeffizienten zwischen der Ergebnisgröße Y und der Gesamtheit aller Eingangsparameter X und
- R_{x,x} = Matrix der Rang-Korrelationskoeffizienten zwischen allen Eingangsparametern X.

Das Rang-Bestimmtheitsmaß RR² kann interpretiert werden als derjenige Anteil der Unsicherheit der Ergebnisgröße Y, der durch die Rang-Regression in allen Parametern erklärt wird. Je näher der RR²-Wert bei 1 liegt, desto höher ist dieser Anteil und desto zuverlässiger sind die rang-basierten Sensitivitätsmaße, zumindest die betragsmäßig größeren unter ihnen. Jedoch ist Vorsicht geboten, wenn der Stichprobenumfang N die Anzahl k der unsicheren Parameter nicht deutlich genug übersteigt. Ein hoher RR²-Wert könnte dann auf den sog. "overfit" der Rang-Regression infolge zu geringen Stichprobenumfangs zurückzuführen sein, anstatt auf die hohe Güte der Rang-Regression. Im vorliegenden Fall, d. h. bei k = 93 unsicheren Parametern und N = 208 Rechenläufen ergibt sich für RR² eine obere Signifikanzgrenze von etwa 0.53 (=95 %-Quantil der Beta(k/2,(N-k-1)/2)-Verteilung). Wenn also der errechnete RR²-Wert diese Signifikanzgrenze unterschreitet, kann die Variabilität oder Unsicherheit der Ergebnisgröße durch die Rangregression in den unsicheren Parametern nicht mehr zufriedenstellend erklärt werden. Eine Sensitivitätsaussage auf der Basis der rang-basierten Sensitivitätsmaße wäre dann u. U. nicht mehr zuverlässig. Dies war aber in der vorliegenden Studie nicht der Fall.

Mit der Sensitivitätsinformation ist ein zusätzliches Entscheidungskriterium für die effiziente Verbesserung der Aussagesicherheit von Rechenprogrammergebnissen gegeben. Es lassen sich zusätzliche Experimente oder andere Informationen zur Verbesserung des Kenntnisstandes zu wichtigen unsicheren Parameterwerten identifizieren, deren Resultate voraussichtlich zur Verringerung der Unsicherheitsbereiche der Rechenergebnisse führen. Außerdem können die Sensitivitätsmaße Hinweise auf Fehler im Rechenprogramm, seiner Eingabespezifikation oder auch auf Modellierungsdefizite geben und so zur gezielten Verbesserung eines Rechenprogramms beitragen.

Weitere Einzelheiten zur Sensitivitätsanalyse und zusätzliche Literaturhinweise können den Referenzen /KRZ 90b/, /HOF 99/, /SAL 00/ entnommen werden.

4.1.3 SUSA - Programm

Die Anwendung der GRS-Methode bei der Durchführung einer Unsicherheitsanalyse wird durch das Programmsystem SUSA (Programm-**S**ystem für **U**nsicherheits- und **S**ensitivitäts-**A**nalysen) unterstützt /KRZ 88/, /KRZ 90a/, /KRZ 90b/, /KRZ 94/, /HOF 93/, /KLO 99/. Das in der GRS entwickelte Programmsystem SUSA ermöglicht eine vollständige und weitgehend automatisierte Durchführung einer Unsicherheits- und Sensitivitätsanalyse von skalaren sowie von zeit- und/oder ortsabhängigen Modeller-gebnissen. Mit SUSA wird die Aufgabe des Experten im Rahmen dieser Analyse im Wesentlichen reduziert auf die Identifizierung der unsicheren Eingangsparameter und auf die Quantifizierung des Kenntnisstandes zu diesen Parametern.

SUSA bietet eine große Auswahl von Verteilungstypen für unsichere Eingangsparameter zur Quantifizierung der Unsicherheit von Parametern. Zur Quantifizierung der Abhängigkeiten zwischen unsicheren Parametern können sowohl unterschiedliche Abhängigkeitsmaße als auch bedingte Verteilungen (Verwendung einer unterschiedlichen Verteilung für unterschiedliche Modell-Korrelationen im Rechenprogramm) sowie auch funktionale Beziehungen eingegeben werden. Zur Generierung von Parameterstichprobenwerten steht sowohl die einfache Zufallsauswahl ("simple random sampling") als auch das sog "Latin-Hypercube" -Auswahlverfahren zur Verfügung.

Nachdem mit jedem der ausgewählten Parametervektoren eine Rechnung durchgeführt wurde, die zu jeder der interessierenden Ergebnisgrößen ein Resultat geliefert hat, leitet SUSA daraus quantitative Unsicherheitsaussagen zu den Ergebnissen ab, z. B. in Form von statistischen Toleranzgrenzen. Für die Sensitivitätsanalyse steht eine Auswahl von verschiedenen Sensitivitätsmaßen zur Verfügung. Alle Ergebnisse aus der Unsicherheits- und Sensitivitätsanalyse werden grundsätzlich graphisch dargestellt. Für SUSA existiert sowohl eine Workstation-Version als auch eine PC-Version. Die Workstation-Version von SUSA ist eine flexible "up-to-date" Version auf dem neuesten Entwicklungsstand hinsichtlich Methodik und Ergebnisdarstellung. Sie besteht aus einer Sammlung von "stand-alone" FORTRAN Programmen, die jeweils für bestimmte Aufgaben und Teilschritte der Analyse im Rahmen der "GRS-Methode" zuständig sind. Die Benutzung dieser Programme erfordert eine gewisse Vertrautheit mit der "GRS-Methode" und deren Ablauf. Diese Version wird deshalb vornehmlich bei GRS-internen Anwendungen der Unsicherheits- und Sensitivitätsanalyse eingesetzt.

Die PC-Version mit ihrer menü- und dialoggesteuerten Benutzeroberfläche bietet einen hohen Grad an Benutzerkomfort. Diese Version bietet eine konsequente Benutzerführung durch die einzelnen Teilschritte der Analyse.

4.2 Identifizierung der unsicheren Parameter

Als erster praktischer Schritt der UaSA zum Iodverhalten wurden die unsicheren Parameter in der COCOSYS-AIM Referenzrechnung zu PHEBUS FPT1 identifiziert.

Sie lassen sich grob in zwei Gruppen gliedern:

- Thermohydraulische- und Aerosol-Parameter
- lodparameter.

Zur Thermohydraulik und zum Aerosolverhalten im Containment wurden von der GRS bereits mehrere Unsicherheits- und Sensitivitätsuntersuchungen mit unterschiedlichen Schwerpunkten durchgeführt (s. unten). Der Versuch FPT1 ist in Bezug auf die Thermohydraulik nicht sehr anspruchsvoll, da das Containment klein (10 m³) ist und alle Strukturtemperaturen kontrolliert werden. Dies macht eine Auswahl und Quantifizierung der Unsicherheiten der thermohydraulischen und Aerosolparameter vergleichsweise einfach.

Zum Iodverhalten im Containment wurde mit COCOSYS-AIM noch keine UaSA durchgeführt. Auch mit anderen vergleichbaren Codes (ASTEC-IODE, MELCOR-INSPECT) sind solche Studien nicht bekannt. Bei einer Literaturrecherche im Internet wurden einzig Unsicherheitsanalysen zu chemischen Systemen gefunden, doch lieferte keine für die vorliegende Studie verwertbare Informationen, wie z. B. zur Quantifizierung der Unsicherheit chemischer Reaktionsparameter oder die Korrelation solcher Parameter für Hin- und Rückreaktion. Aus diesen Gründen war eine selektive Auswahl von unsicheren Parametern nicht möglich und es wurden praktisch alle in der Rechnung verwendeten lodparameter in die Analyse mit einbezogen.

Insgesamt wurden 93 unsichere Parameter identifiziert. 37 betreffen die Thermohydraulik- und Aerosolrechnung sowie Randbedingungen für die Iod-Rechnung, wie der pH-Wert des Sumpfes.

Thermohydraulische und Aerosol-Parameter

Für die Auswahl der thermohydraulischen und Aerosolparameter wurden auch Ergebnisse der früheren UaSA zur Aerosolrechnung mit FIPLOC zum Versuch VANAM-M2 /LAN 94/ sowie der Gasverteilungsrechnung mit ASTEC zum THAI Versuch TH13 (ISP-47) /GLA 08/ herangezogen. In Vordergrund stand bei der Auswahl der unsicheren Parameter ein möglicher Einfluss auf die Iodrechnung, wie er z. B. durch die Temperatur gegeben ist.

Die Geschwindigkeit der meisten Iodreaktionen hängt von der Gas- bzw. Sumpftemperatur ab. Die Basiswerte der Reaktionskonstanten (BAS in /WEB 09a/) sind die kinetischen Konstanten bei 25°C. Für höhere Temperaturen wird im Allgemeinen eine Abhängigkeit nach Arrhenius modelliert.

Auch Ablagerungs- und Resuspensionsprozesse von lodspezies auf Oberflächen (z. B. die I₂-Desorption von einer Stahlwand) sind temperaturabhängig. Dies gilt auch für das Konzentrationsgleichgewicht zwischen dem abgelagerten lod und dem lod in der Gasphase.

Weiter hat die **Kondensationsrate** am nassen Condenser Einfluss auf die I₂-Ablagerung und den Transport in den Sumpf (Abwaschen). Eine ähnliche Abhängigkeit existiert beim Abwaschen des lods mittels Sprühen vom elliptischen Boden ebenfalls in den Sumpf.

Eine Reihe der lodreaktionen im Sumpf sind vom **pH-Wert** abhängig. Sie sind in der Regel an der Wasserstoffionenkonzentration $[H^+]$, wie in Tab. 4-5 dargestellt, zu erkennen (s. z. B. Hydrolyse).

Radiolytische Reaktionen des lods treten sowohl in der Wasserphase als auch in der Gasphase auf. Sie spielen eine wesentliche Rolle bei der Bildung von flüchtigem I₂ und Organoiod im Containment. Daher ist die **Dosisleistung** in Sumpf und in der Atmosphäre ein wichtiger Parameter der Unsicherheits- und Sensitivitätsanalyse.

Erfahrungsgemäß weisen die gemessenen **Einspeiseraten** größere Unsicherheiten auf, zumal diese bei PHEBUS in der Regel aus Aktivitätsmessungen abgeleitet oder aus dem Containmentinventar zurückgerechnet wurden, wie z. B. die Einspeiserate für I_2 .

Die Auswahl der unsicheren Aerosolparameter wie Formfaktoren, mittlere Materialdichte, atmosphärische Grenzschichtdicke, etc. erfolgte in Anlehnung an die Ergebnisse einer früheren UaSA /LAN 94/.

lodparameter

Wie bereits erwähnt, berechnet AIM die Konzentrationen von 26 lodspezies unter Berücksichtigung von 70 chemischen Reaktionen und physikalischen Prozessen (z. B. Adsorption auf Oberflächen). Dabei wird das übliche Konzept der chemischen Reaktionskinetik angewendet. Die allgemeine Form einer typischen Reaktionsgleichung, hier exemplarisch mit 2 Ausgangsspezies und 2 Produktspezies, ist

$$A + B \stackrel{k_1}{\underset{k_2}{\leftarrow}} C + D$$
GI. 4-5

k1 ist die Reaktionsgeschwindigkeitskonstante (im Folgenden verkürzt als Reaktionskonstante bezeichnet) für die Vorwärtsreaktion und k2 die für die Rückwärtsreaktion. Die Geschwindigkeit der chemischen Reaktion (im Folgenden oft auch als Reaktionsrate bezeichnet) wird hier exemplarisch für die Bildungsrate der Spezies C dargestellt und ist dann

$$\frac{d[C]}{dt} = k1[A][B] - k2[C][D] + S$$
Gl. 4-6

[A], [B], [C] und [D] sind die volumenbezogenen molaren Konzentrationen der Ausgangs- und Produktspezies, wobei die Verwendung molarer Konzentrationen anstelle der chemischen Aktivitäten in den in Störfallchemie-Problemen zu behandelnden niedrigen Konzentrationsbereichen eine sinnvolle Näherung / Vereinfachung darstellt. S ist die Quelle der Spezies C, z. B. durch Einspeisung.

Unsichere Parameter sind in der Regel die Reaktionskonstanten, also k1 und k2.

Für jede der 70 Reaktionen in AIM wird eine Reaktionskonstante verwendet, darüber hinaus können die kinetischen Ansätze jedoch auch noch weitere Modellparameter enthalten. Auch wichtige Modellparameter werden in dieser Studie mit betrachtet. Insgesamt wurden 56 chemische Reaktionskonstanten als potentiell unsichere Parameter berücksichtigt. Unberücksichtigt blieben nur solche Reaktionen, die in der analysierten FPT1-Rechnung definitiv keine Rolle spielen, wie z. B. die Ablagerung von lodspezies auf Beton, da Beton im PHEBUS-Containment nicht vorhanden ist. Tab. 4-3 gibt einen Überblick über die potentiell unsicheren 93 Parameter, wobei die lod-Parameter einen Großteil davon darstellen. Details zu den angeführten lod-Parametern finden sich in der AIM-Beschreibung /WEB 09a/.

Eine vollständige Aufstellung aller unsicheren Parameter mit Darstellung des Referenzwerts und der verwendeten statistischen Grundannahmen für die UaSA mit Bezug auf Thermohydraulik, Einspeisungen, Aerosol und Iod-Moduldaten enthält Tab. 4-4 in Kapitel 4.5. Tab. 4-5, die ebenfalls in Kapitel 4.5 zu finden ist, enthält analoge Angaben zu den Iodreaktionen.

Teilmodell	Anzahl	Unsichere Parameter
Thermohydraulik	6	 Wandtemperaturen (Containment- wand, Condenser, Sumpf) Wärmeüberganskoeffizient Charakteristische Länge Nicht abwaschbare Aerosolkon- zentration
Einspeisung	10	 Einspeisedaten für Dampf (Rate und Enthalpie) CsI-Aerosol (Rate und Partikelgrö- ße) Ag und AgO_x-Aerosol (Rate und Partikelgröße) Restaerosol (Rate und Partikelgrö- ße) I₂

Tab. 4-3	Überblick über	die ausgewählten	unsicheren Parameter
----------	----------------	------------------	----------------------

Teilmodell	Anzahl	Unsichere Parameter
Aerosol	7	 Diffusionsgrenzschichtdicke Aerosolmaterialdichte Turbulente Dissipationsrate Dyn. und AgglomFormfaktoren Kollisionseffizienz Wasserfilmdicke für Abwaschen
Dosisleistung	2	in der Atmosphäre und im Sumpf
lod-Moduldaten	12	 pH des Sumpfes Spezifische Oberfläche der Ag- Partikel I₂ und CH₃I Massentransferkoeffi- zienten Sumpf/Atmosphäre Min. Wandkondensationsrate für nasse Bedingungen Anfangskonzentration von organi- schem Material Anteil von abgelagertem I₂, der ab- gewaschen wird 5 weiter Parameter für IOx und Iod/Stahl-Reaktion
lod-Reaktionskonstanten		
Hydrolyse von lod	5	 I₂.Hydrolyse (Schritt 1 von 2) Rückreaktion von I₂-Hydrolyse (Schritt 1 von 2) I₂-Hydrolyse (Schritt 2 von 2); HOI Disproportionierung Rückreaktion von I₂-Hydrolyse (Schritt 2 von 2); HOI Disproportio- nierung I-Oxidation durch gelöstes O₂
Anorganische Iod-Radiolyse	4	 Radiolytische I₂-Bildung aus I⁻ Rückreaktion der radiolytischen I₂- Bildung aus I⁻ Radiolytische I₂-Bildung aus IO₃⁻ Rückreaktion der radiolytischen I₂- Bildung aus IO₃⁻
Iod/Silber-Reaktion	3	 Agl-Bildung aus Ag + I₂ Agl-Bildung aus AgO_x + I⁻ AgO_x-Bildung durch die Oxidation von Ag
Homogene organische lodre- aktionen in der Wasserphase	5	 Thermische CH₃I-Bildung aus I₂ Thermische CH₃I-Bildung aus HOI radiolytische CH₃I-Zersetzung Hydrolyse von CH₃I durch H₂O Hydrolyse von CH₃I durch OH⁻
lodreaktionen mit Farbe in der Wasserphase	9	 I₂-Ablagerung auf Farbe I₂-Resuspension von Farbe nach

Teilmodell	Anzahl	Unsichere Parameter
		 I₂-Ablagerung (T ≤ 90 °C) I₂-Resuspension von Farbe nach I₂-Ablagerung (T > 90 °C) I⁻-Resuspension von Farbe nach I₂- Ablagerung I⁻-Ablagerung auf Farbe I⁻-Resuspension von Farbe nach I⁻ Ablagerung Chemisorption aus physisorbiertem I⁻ Thermische CH₃I-Freisetzung von Farbe Radiolytische CH₃I-Freisetzung von Farbe
Iodreaktionen mit Stahl in der Wasserphase	1	 I₂-Konversion zu I⁻ an Stahloberflä- chen
Iod/Ozon-Reaktion	7	 IOx-Bildung aus I₂ und O₃ Radiolytische Zersetzung von IOx Radiolytische Bildung von O₃ Radiolytische O₃-Zersetzung O₃-Zersetzung an Farbe O₃-Zersetzung an Stahl Thermische O₃-Zersetzung
Homogene organische lodre- aktionen in der Gasphase	1	- Radiolytische CH₃I-Zersetzung
Iodreaktionen mit Farbe in der Gasphase	11	 I₂-Ablagerung auf trockener Farbe I₂-Ablagerung auf nasser Farbe I₂-Resuspension von trockener Farbe I₂-Resuspension von nasser Farbe Chemisorption von physisorbiertem I I₂-Ablagerung auf nasser Farbe und Abwaschen in den Sumpf Abwaschen von Farbe in den Sumpf als I⁻ Thermische Freisetzung von phy- sisorbiertem I Radiolytische CH₃I-Bildung aus physisorbiertem I Thermische CH₃I-Bildung aus chemisorbiertem I Radiolytische CH₃I-Bildung aus chemisorbiertem I
Iodreaktionen mit Stahl in der Gasphase	8	 I₂-Ablagerung auf trockenem Stahl I₂-Resuspension von trockenem Stahl I₂-Ablagerung auf nassem Stahl,

Teilmodell	Anzahl	Unsichere Parameter
		 Fel₂-Bildung und Abwaschen in Sumpf Chemisorption von physisorbier- tem l₂ Feuchteabhängigkeit der Chemi- sorption Rückreaktion von Chemisorption mit zwei verschiedenen Pfaden Abwaschen von l₂ als l⁻ in den Sumpf Abwaschen von Fel₂ als l⁻ in Sumpf
Massentransfer Sumpf/Atmosphäre	2	 I₂-Massentransfer zwischen Gas und Sumpf CH₃I-Massentransfer zwischen Gas und Sumpf
Total	93	

4.3 Quantifizierung des Kenntnisstands

Die Quantifizierung des Kenntnisstandes wurde von den folgenden Experten gemeinsam vorgenommen:

- F. Funke, AREVA NP, (gesamtes lodmodell)
- G. Weber, GRS, (Thermohydraulik, Aerosol, einige lod-Teilmodelle)
- M. Pelzer, GRS, (lod/Stahl-Modell)
- W. Klein-Hessling, GRS, (Modelle zur Thermohydraulik)

Dabei wurden vorwiegend die folgenden Informationen bzw. Regeln verwendet:

- Die Reaktionskonstanten zur AIM-Modellierung wurden im Allgemeinen aus Iod-Experimenten gewonnen. Die Messergebnisse streuen mehr oder weniger stark. Die Streuung ist ein Maß für die Unsicherheit der Reaktionskonstanten.
- Im Zuge von Validierungsrechnungen f
 ür COCOSYS-AIM wurden oft Reaktionskonstanten variiert. Die dabei gewonnene Erfahrung ist ein Beitrag zur Quantifizierung der Unsicherheit der Reaktionskonstanten.
- 3) Drei einfache Regeln für die Beschreibung der Unsicherheit von gekoppelten Hin- und Rückreaktionen wurden aufgrund von Erfahrung mit AIM neu erstellt und sind nachfolgend beschrieben.

Regel 1

Die Reaktionskonstante der Rückreaktion (k2 inGl. 4-5) hat die gleiche Unsicherheitsverteilung wie die der Reaktionskonstante der Hinreaktion (k1 in Gl. 4-5).

Begründung: Hin- und Rückreaktion werden in der Regel mit derselben Messeinrichtung untersucht. k1 wird in der Regel aus dem Anstieg der Reaktionsprodukte (C und/oder D in Gl. 4-5) am Beginn des Versuchs ermittelt, während k2 meist aus dem Gleichgewicht der Konzentrationen zwischen den Reaktanten A + B mit den Produkten C + D bestimmt wird.

Regel 2

Die Unsicherheiten von Hin- und Rückreaktion sind nicht miteinander korreliert. Das heißt, die Reaktionskonstanten k1 und k2 können unabhängig voneinander variiert werden und das Gleichgewicht zwischen den Reaktanten (A, B) und den Produkten (C, D) kann sich ändern. Bei einer vollständigen Abhängigkeit wäre das Gleichgewicht konstant.

Regel 3

Die Unsicherheit bei der Modellierung einer chemischen Reaktion wird nur durch einen einzigen unsicheren Parameter repräsentiert. D. h. Details wie z. B. die Abhängigkeit von der Temperatur (Arrhenius-Formel) oder von pH-Wert werden hier nicht separat untersucht. Solche detaillierten Untersuchungen könnten in einer Folgestudie an einer kleineren Auswahl unsicherer Parameter durchgeführt werden.

4.3.1 Thermohydraulische Parameter (Parameter 1 – 6)

Die unsicheren thermohydraulischen Parameter der COCOSYS-AIM-Rechnung zu PHEBUS FPT1 sind:

- Wandtemperaturen atmosphärischer Zonen
- Wandtemperaturen der Sumpfzone
- Wandtemperaturen des Condensers
- Charakteristische Länge
- Wärmeübergangskoeffizient
- Restkonzentration der Silberpartikel im Kondensat

Wandtemperatur atmosphärischer Zonen (Parameter 1)

Die Temperatur der Stahlwand des Behälters wurden im Versuch FPT1 kontrolliert und in der Rechnung über Tabelle vorgegeben. Die gerechnete Oberflächentemperatur an allen 7 Heatslabs weisen nur kleine Abweichungen zu den gemessenen Wandtemperaturen von maximal 1 K auf. Die Unsicherheiten werden daher mit ± 1 K Abweichung vom Referenzwert als additiver Term in Form einer Dreiecksverteilung (-1,0; 0; +1,0) festgelegt.

Wandtemperaturen der Sumpfzone (Parameter 2)

Die Abweichung der gerechneten Wandtemperatur im Sumpf vom Messwert ist noch geringer als in der Atmosphäre. Es wird daher eine engere Dreiecksverteilung (-0,5; 0; +0,5) für Werte additiv zum Referenzwert vorgegeben.

Wandtemperaturen des Condensers (Parameter 3)

Auch für den nassen und trockenen Condenser sind die Abweichungen zwischen gerechneter und gemessener Wandtemperatur etwa gleich groß wie für den Sumpf. Die vorgegeben Wandtemperaturen für den nassen und den trockenen Teil des Condensers werden daher mit der gleichen dreiecksverteilten Unsicherheit (-0,5; 0; +0,5) additiv beaufschlagt.

Charakteristische Länge (Parameter 4)

Die charakteristische Länge (HLENG) ist in COCOSYS ein Modellparameter, der den Turbulenzzustand der Atmosphäre entlang einer Struktur (Heatslab) bei freier Konvektion beschreibt /KLE 12/. Der empfohlene Wert für Reaktoranwendungen liegt bei 0,05 m. Der Parameter wurde bereits früher in einer UaSA der ASTEC-CPA-Rechnung des He-Verteilungsversuchs THAI TH14 untersucht /GLA 08/. Dabei wurde HLENG zwischen 0,1 und 1,0 m mit einer deutlichen Auswirkung auf die Atmosphärentemperatur variiert.

Hier werden die drei diskreten Werte (0,01; 0,05; 0,5) mit den Wahrscheinlichkeiten (0,1, 0,6, 0,3) direkt für alle Heatslabs der Gasphase (Behälterwand und trockener Condenser) vorgegeben.

Wärmeübergangskoeffizient (Parameter 5)

Der Wärmeübergangskoeffizient auf der Seite der Kühlflüssigkeit für den nassen Condenser wird in der Rechnung anhand von Messwerten in Form einer Tabelle vorgegeben. Die Werte liegen zwischen 80 und 350 W/(m²K). Der Koeffizient ist bereits auf die Versuchsverhältnisse optimiert und daher ziemlich sicher. Der Unsicherheitsfaktor auf die Tabellenwerte wird im Bereich (1/1,2; 1,2) also (0,83; 1,2) gleichverteilt angenommen.

Restkonzentration der Silberpartikel im Kondensat (Parameter 6)

In COCOSYS existiert nur ein einfaches Abwaschmodell für unlösliche Aerosole. In diesem wird angenommen, dass unlösliche Aerosole in den Wasserfilme entlang der Wände nur bis zu einer vorgegebenen Restkondensation CAERES abgewaschen werden können. Ist CAERES niedrig, wird in der Rechnung viel abgewaschen, andernfalls wenig. Da das Abwaschen vom Condenser und vom elliptischen Boden in der Rechnung tendenziell unterschätzt wird, wird der Referenzwert CAERES = 0,04 kg/m³ gleichverteilt zwischen (0,01; 0,08) variiert.

4.3.2 Einspeisungen (Parameter 7 – 16)

Die zeitabhängigen Einspeiseraten für Gase und Aerosole sind aus Messwerten abgeleitet und daher unsicher. Die in der Rechnung erfassten Komponenten sind:

- Dampf
- Csl-Aerosol
- Ag-Aerosol
- AgOx-Aerosol
- Restaerosol
- l₂

Dampf-Einspeisung (Parameter 7 und 8)

Laut Testbericht /JAC 00/, Bild 5.1-15, ist die Unsicherheit der Dampfeinspeiserate ca. 12 %. Diese wird als Faktor mit logarithmisch gleichverteilter Wahrscheinlichkeit im Intervall (0.89; 1.12) berücksichtigt. Die logarithmische Gleichverteilung wird hier, wie in vielen anderen Fällen auch, gewählt, um bei multiplikativen Korrekturfaktoren bzw. bei einem gleich großen Quotienten auf den Referenzwert die gleiche Anzahl von Stichproben unter und über dem Referenzwert zu erhalten (vgl. Kapitel 4.1.1).

Der Dampf kühlt in der Einspeiseleitung von 170 °C auf 120 °C ab und die spezifische Enthalpie sinkt dadurch von 2767 kJ/kg auf 2706 kJ/kg. Die Unsicherheit der spezifischen Enthalpie des eingespeisten Dampfes wird daher als additiver Term mit der Gleichverteilung (-61; 0) vorgegeben.

CsI-Aerosol-Einspeisung (Parameter 9 und 10)

Der weitaus größte Teil des lods (> 98,75 %) wird als CsI ins Containment eingespeist. Die Unsicherheit der CsI-Einspeiserate wird anhand der Messwerte mit ± 10 % abgeschätzt. Die Unsicherheit wird durch einen Faktor auf den Referenzwert aus dem triangulären Unsicherheitsbereich (0,91; 1; 1,1) berücksichtigt.

Die Partikelgrößenverteilung des CsI-Aerosols wird, wie für die anderen Aerosolkomponenten, als logarithmische Normalverteilung vorgegeben. Diese ist durch den Mittelwert und die Standardabweichung definiert. Hier wird nur die Unsicherheit des Mittelwerts berücksichtigt. Sie deckt auch die potentiellen Unsicherheiten der Standardabweichung ab. Unter Einbeziehung der Erfahrung aus anderen Aerosolexperimenten wird die Unsicherheit der Partikelgröße durch einen Faktor aus der logarithmischen Dreiecksverteilung (0,83; 1; 1,2) festgelegt.

Ag-, AgO_x- und Restaerosol-Einspeisung (Parameter 11 bis 15)

Messungen zu FPT1 aber auch anderen PHEBUS-Versuchen haben gezeigt, dass durch Agglomeration die verschiedenen Aerosolkomponenten zwischen den Partikeln gut verteilt sind. Das heißt, dass die Zusammensetzung der Komponenten in jedem Partikel etwa gleich ist.

Die Unsicherheit der Einspeiseraten von Ag-, und Restaerosol ist ähnlich der des Csl-Aerosols, da sie mit der gleichen Messeinrichtung ermittelt wurde. Aus diesen Gründen werden die Unsicherheiten der Einspeiserate und der mittleren Partikelgröße für das Ag-, das AgO_x- und das Restaerosols gleich wie für Csl angenommen.

Die Einspeiserate von AgO_x wurde im Versuch nicht gemessen. Früheren Untersuchungen folgend (z. B. /GIR 04/) wurden 10 % der gesamten Silbermenge als AgO_x eingespeist. Im Sumpf wird $AgO_x(w)$ auch radiolytisch aus Ag(w) weiter gebildet. Die Unsicherheit dieser Reaktion ist im Parameter 49 berücksichtigt. Die gesamte Unsicherheit der AgO_x-Menge im Sumpf ist somit durch die Parameter 13 und 49 beschrieben.

Einspeisung von flüchtigem I₂ (Parameter 16)

Bereits zu Beginn des Tests wurde im Containment gasförmiges lod, das wie üblich als I₂ interpretiert wurde, gemessen. I₂ beträgt 1,25 % der gesamten freigesetzten Iodmasse, der Rest ist CsI. Es ist aber unklar, ob I₂ aus dem PHEBUS-Primärkreis (Circuit) kam oder erst im Containment durch eine schnelle radiolytische Reaktion im Wasserfilm am nassen Condenser gebildet wurde. Die zweite Möglichkeit ist eine Hypothese, die zum ersten Mal ausführlich mit ASTEC-IODE analysiert wurde /BOS 12/. Diese Art der Simulation ist aber noch nicht ausgereift und wird zurzeit weder in ASTEC-IODE noch in COCOSYS-AIM bei Reaktoranwendungen eingesetzt.

Es sprechen einige Fakten und Argumente für jede der beiden Möglichkeiten (nicht gemessene I_2 -Einspeisung ins Containment, I_2 Bildung am Condenser), ein zwingender Beweis für eine Variante konnte aber bislang nicht gefunden werden. Die große Unsicherheit in der I_2 -Einspeiserate muss daher berücksichtigt werden. Wird die Einspeiserate definitionsgemäß nur auf die Freisetzung aus dem Primärkreis bezogen, kann die Rate auch gegen null gehen. Im ersten Schritt der UaSA wurde die tabellarisch vorgegebene Einspeiserate daher durch einen Faktor mit der Polygon-Verteilung (0; 1; 2 / 1; 1; 0) beaufschlagt (Abb. 4-2).

Abb. 4-2 Wahrscheinlichkeitsverteilung für Parameter 16 (I₂-Einspeisung)

Im zweiten Schritt der UaSA wurde der Wahrscheinlichkeitsverteilung für den Parameter 16 modifiziert.

4.3.3 Aerosolparameter (Parameter 17 – 23)

Die ausgewählten unsicheren Aerosolparameter sind im Einzelnen:

- Dicke der Diffusionsgrenzschicht (DELDIFF)
- Effektive Partikeldichte (DENSTY)
- Turbulente Dissipationsrate (TURBDS)
- Dynamischer Formfaktor (CHI)
- Agglomerationsformfaktor (GAMMA)
- Partikelkollisionseffizienz (COLEFF)
- Mittlere Wasserfilmdicke (THFILM)

DELDIFF (Parameter 17)

Tendenziell wird mit COCOSYS die Aerosolabscheidung an den senkrechten Behälterwänden in den PHEBUS Tests unterschätzt. Für FPT1 wurde eine Ablagerung von 0,14 % des eingespeisten CsI berechnet, gemessen wurden dagegen ca. 5 % /JAC 00/). Eine mögliche Erklärung ist, dass die Abscheidung durch kleine atmosphärische Turbulenzen im Versuch erhöht wurde, die aber in der Rechnung nicht erfasst sind. In COCOSYS wird nur die Brown'sche Diffusion berücksichtigt. Die Abscheiderate durch Diffusion kann im Modell durch eine Verkleinerung der Grenzschichtdicke erhöht werden. Der Referenzwert (1E-4 m) wird daher durch Werte aus der Polygon-Verteilung (1E-5; 1E-4; 2E-4 / 1,0; 1,0; 0) nach unten erweitert. Die Mehrzahl der Stichprobenwerte liegt unter dem Referenzwert.

DENSTY (Parameter 18)

In COCOSYS kann nur eine einheitliche, mittlere Aerosoldichte für alle Aerosolkomponenten vorgegeben werden (Eingabegröße DENSTY). Die theoretische Dichte der aerosolförmigen Spaltprodukte, Brennstoff- und Strukturmaterialien reicht von 1,9E3 kg/m³ (Cs) bis 19,2E3 (Uran) bzw. 21,0E3 (Re) kg/m³. Berücksichtigt man die Anteile der einzelnen Elemente an der gesamten Aerosolmasse, errechnet sich eine mittlere theoretische Dichte von ca. 7E3 kg/m³. In der Aerosolrechnung wird die sogenannte effektive Dichte verwendet, die die lockere Packung der Primärpartikel und Gaseinschlüsse berücksichtigt. Der Referenzwert in der FPT1-Rechnung beträgt daher 3E3 kg/m³. Der gleichverteilte Unsicherheitsbereich erstreckt sich vom Referenzwert bis zur theoretischen Dichte (3E3; 7E3).

TURBDS, CHI, GAMMA und COLEFF (Parameter 19 bis 22)

Die turbulente Dissipationsrate TURBDS findet nur im hier weniger bedeutenden Scheranteil der turbulenten Agglomeration Anwendung. 1E-3 m²/s² ist ein Standardwert, der wenig untersucht ist.

Der dynamische Formfaktor CHI beschreibt den Einfluss der Abweichung von der Kugelform der Aerosolpartikel auf die Ablagerung, vor allem bei Sedimentation. Mit dem Agglomerations-Formfaktor GAMMA wird dagegen der Einfluss der Abweichung von der Kugelform auf das Agglomerationsverhalten erfasst. Die Partikelkollisionseffizienz COLEFF ist die Wahrscheinlichkeit mit der kollidierende Partikel auch agglomeriert bleiben. Sie wird nach verschiedenen Modellen berechnet. Als Referenzfall wird das Modell nach Pruppacher-Klett (COLEFF = -1,0) verwendet. Bei COLEFF = 0,0 wird die sogenannte Fuchs-Korrelation eingesetzt.

Die Unsicherheitsverteilung dieser Aerosolparameter wird unter Heranziehen der Ergebnisse in /LAN 94/ festgelegt:

- TURBDS Referenzwert 1E-3 m²/s²; Gleichverteilung (1E-3; 1E-2); direkter Wert
- CHI Referenzwert 1,0; Dreiecksverteilung (1,0; 1,0; 1,3); direkter Wert
- GAMMA Referenzwert 1,0; Dreiecksverteilung (1,0; 1,0; 2,0); direkter Wert
- COLEFF Referenzwert -1,0; diskrete Verteilung (-1,0; 0,0 / 0,7, 0,3); direkter Wert

THFILM (Parameter 23)

THFILM ist die mittlere Wasserfilmdicke an den Wänden bei Kondensation und wird für das Abwaschen von Aerosolen verwendet. In PHEBUS FPT1 wird vom Condenser und vom elliptischen Boden abgewaschen. THFILM hat einen Einfluss auf die Abwaschgeschwindigkeit und bestimmt auch die Menge an nicht-löslichem Aerosol, die von der Wand nicht abgewaschen wird. Der Referenzwert beträgt 3,4E-4 m.

4.3.4 Dosisleistung (Parameter 24 und 25)

Die Dosisleistung wird bei der Berechnung der radiolytischen Reaktionen im Sumpf und in der Gasphase verwendet. In FPT1 wurde die Dosisleistung nicht direkt gemessen. Für die COCOSYS-AIM-Rechnung wird daher eine abschätzende Berechnung von IRSN mit MCNPX 2.5.0 übernommen /BOS 12/. Die Dosisleistung wurde nur zu 5 diskreten Zeitpunkten berechnet. Dazwischen wurde interpoliert. In der Atmosphäre liegt die Dosisleistung zwischen 0,2 und 0,6 Gy/s und im Sumpf zwischen 0,05 und 0,2 Gy/s. Die Unsicherheit der Dosisleistung in der Gasphase und im Sumpf wird daher wie folgt abgeschätzt:

- DOSE_ATM, CIJRATE Referenzwert Tabelle; logarithmische Gleichverteilung (0,77; 1,3); Faktor auf Referenzwert
- DOSE_SUMP, CIJRATE Referenzwert Tabelle; logarithmische Gleichverteilung (0,77; 1,3); Faktor auf Referenzwert.

4.3.5 Iodmodul-Parameter (Parameter 26 – 37)

Die sogenannten Iodmodul-Parameter sind neben den Reaktionskonstanten auch für die AIM-Rechnungen erforderlich. Dazu gehören:

- Spezifische Oberfläche der Silber- und Silberoxid-Partikel (S_{Ag})
- Minimale Wandkondensationsrate für nasse Bedingungen (ACOND)
- Mittlerer Durchmesser der IOx-Primärpartikel
- Standardabweichung des mittleren Durchmessers der IOx-Primärpartikel
- Maximal verfügbare Eisenmenge für Chemisorption auf der Stahloberfläche (FEMAX)
- Splittingfaktor für Reaktion 75 für das Iod/Stahl-Modell (C75)
- Gas- und wasserseitiger I₂-Massentransferkoeffizient (KMTGAS, KMTWAS)
- Anteil des auf Farbe abgelagerten I₂, der abgewaschen wird (F44)
- Stöchiometrie-Faktor für Modell der IOx-Bildung
- pH im Sumpf (PH)

 Anfangskonzentration organischer Reste im Sumpf (R), die mit lod reagieren können.

Spezifische Oberfläche SAg

Die spezifische Oberfläche aller Silberpartikel im Sumpf wird für die Reaktionen von I₂ mit Ag und von I⁻ mit AgOx benötigt. Beide Reaktionen führen zu nicht-flüchtigen und schwer löslichen AgI-Partikeln. Sie sammeln sich am Boden des Sumpfes im Schlamm an.

Das Silber stammt aus zerstörten Regelstäben. Da das Silberinventar deutlich größer als das lodinventar im Kern ist, können die beiden Reaktionen in Containment-Sümpfen eine starke lodsenke darstellen und so den lodquellterm erheblich reduzieren. Im FPT1-Sumpf liegt nach dem Waschen etwa 100-mal mehr Silber als lod vor. Von der Silber/lod-Reaktion wird auch in Analysen schwerer Reaktorunfälle Kredit genommen, d. h. die Reaktion kann den potentiellen lodquellterm aus der Anlage erheblich reduzieren.

Im AIM-Modell sind die Iod/Silber-Reaktionen direkt proportional zur spezifischen Oberfläche S_{Ag}, d. h. mit steigendem S_{Ag} steigen auch die Reaktionsgeschwindigkeiten. Der empfohlene Wert für AIM-Rechnungen basiert auf den FPT1-Analysen und beträgt S_{Ag}= 6E-3 m²/g. Der Referenzwert in der FPT1-Rechnung ist mit S_{Ag} = 5,7E-3 m²/g geringfügig kleiner. Dies entspricht einer mittleren Größe der Ag-Partikel im Sumpf von 98 µm (Abb. 4-3). Dabei wird berücksichtigt, dass die schweren Silberpartikel nunmehr als Hydrosol schnell auf den Sumpfboden sedimentieren und dort weiter agglomerieren. Nur noch ein Teil der Partikeloberfläche, aber nicht mehr als die geometrische Bodenfläche des Sumpfes, steht für Reaktionen zur Verfügung. Dieser Prozess ist im Detail noch nicht in AIM modelliert, er ist aber im Wert von S_{Ag} pauschal berücksichtigt.

In ASTEC-IODE wird mit $S_{Ag} = 0,3 \text{ m}^2/\text{g}$ ein deutlich größerer Wert verwendet (Abb. 4-3). Dies entspricht einer mittleren Größe der Ag-Partikel im Sumpf von 1,86 µm und ist daher etwa gleich jener des luftgetragenen Aerosols. Ein Anwachsen der Partikelgröße durch die oben genannten Prozesse wird nicht berücksichtigt. Die mit der größeren spezifischen Oberfläche in IODE berechneten Reaktionsraten sind ca. 40-mal größer als in AIM. Der mit großem S_{Ag} (IODE) ermittelte Iodquellterm ist viel kleiner als jener mit kleinem S_{Ag} (AIM) berechnete.

Abb. 4-3 Effektive Ag-Oberfläche als Funktion der Partikelgröße

Der Unsicherheitsbereich für den Parameter S_{Ag} des Ag-Hydrosols liegt daher zwischen den beiden Maximalwerten (Abb. 4-4), wobei der Default-Wert in AIM am wahrscheinlichsten ist.

Spezifische Oberfläche S_{Ag} Referenzwert 5,7E-3; Dreiecksverteilung (5,7E-3, 5,7E-3, 0,3); Faktor auf Referenzwert

Abb. 4-4 Wahrscheinlichkeitsverteilung für Parameter 26 (Spezifische Ag-Oberfläche)

ACOND (Parameter 27)

In AIM wird zwischen trockenen und nassen Bedingungen bei der Ablagerung von lodspezies auf Oberflächen unterschieden. Mit der vorgegebenen Wandkondensationsrate ACOND wird der Übergang zwischen trocken und nass definiert. Ist die tatsächliche Wandkondensationsrate > ACOND ist die Bedingung "nass" erfüllt.

 ACOND Referenzwert 1E-3 kg/(m²s); Dreiecksverteilung (1E-4, 1E-4, 2E-3); Werte werden direkt vorgegeben

DIO3 und SIO3 (Parameter 28 und 29)

Zu der mittleren Partikelgröße und der Standardabweichung der primären IOx-Partikel gibt es zurzeit nur wenige verlässliche Messungen. Dazu gehören die aus den THAI-Versuchen lod-13 und lod-14. Allerdings war bei Messbeginn das Aerosol bereits etwas "gealtert", d. h. die Partikel waren durch Agglomeration etwas angewachsen. Diese Messungen zeigten Partikelgrößen um 0,3 μ m. Der Referenzwert in der FPT1-Rechnung ist 0,2 μ m mit einer typischen Standardabweichung von 2,0. Werte > 3,0 für die Standardabweichung sind bei diesem Aerosolbildungsprozess (gas-to-particle-conversion) auszuschließen.

DIO3 Referenzwert 2E-7 m; Gleichverteilung (4E-8; 5E-7); Werte werden direkt vorgegeben

SIO3 Referenzwert 2,0; Polygon-Verteilung (1,5; 2,0; 3,0 / 1,0; 1,0; 0,0); Werte werden direkt vorgegeben

FEMAX, C75 (Parameter 30 und 31)

Messungen an THAI-Stahl (AISI 316 Ti) Coupons im Rahmen des OECD-Vorhabens BIP (Behaviour of Iodine Project) zeigten erhebliche Unterschiede im I₂-Aufnahmevermögen von Stahl /BIP 11/. Anhand dieser Messungen wurde der Unsicherheitsbereich für FEMAX grob abgeleitet.

C75 ist ein Splittingfaktor für die Rückreaktion von chemisorbiertem I_2 in gasförmiges I_2 bzw. fest gebundenes, sogenanntes fixed-I.

- FEMAX Referenzwert 2E-5 mol/m²; logarith. Gleichverteilung (1E-5, 4E-4); Werte werden direkt vorgegeben
- C75 Referenzwert 0,54; Dreiecksverteilung (0,15; 0,54; 0,54); Werte werden direkt vorgegeben

KMTGAS und KMTWAS (Parameter 32 und 33)

Das Sumpfwasser wird durch einen Rezirkulationsloop umgewälzt und die Atmosphäre über dem Sumpf wird durch Naturkonvektion durchmischt. Die verwendeten Default-Werte für KMTGAS und KMTWAS treffen bei diesen Verhältnissen gut zu. Das Massentransfermodell in AIM wurde unter anderem anhand der THAI-Versuche Iod-9 und Iod-23 überprüft (/WEB 09b/, /FIS 12/). Aufgrund dieser Arbeiten lassen sich folgende Unsicherheitsbereiche angeben

- KMTGAS Referenzwert 1,4E-3 m/s; Dreiecksverteilung (5E-4; 1,4E-3; 3E-3); Werte werden direkt vorgegeben
- KMTWAS Referenzwert 1E-5 m/s; Dreiecksverteilung (5E-6; 1E-5; 5E-5); Werte werden direkt vorgegeben

F44 (Parameter 34)

F44 gibt an, welcher Anteil von auf Farbe abgelagertem I₂ mit dem Wandkondensat in den Sumpf abgewaschen wird bzw. welcher Anteil adsorbiert zurückbleibt (1 - F44). Dieser Faktor wurde in Laborexperimenten bei AREVA gemessen. Die Übertragung auf andere geometrische Verhältnisse wie in PHEBUS ist mit Unsicherheiten verbunden, die berücksichtigt werden.

 F44 Referenzwert 0,68; Gleichverteilung (0,3; 0,8); Werte werden direkt vorgegeben

STOFAK (Parameter 35)

Der Stöchiometrie-Faktor STOFAK gibt die mittlere Anzahl der Ozon-Moleküle an, die mit I₂-Molekül zu einem IOx-Molekül reagieren.

STOFAK Referenzwert 3,9; Gleichverteilung (-0,2; 0,2); Werte werden zum Referenzwert addiert

pH des Sumpfes (Parameter 36)

Der pH des Sumpfes wird in der Rechnung anhand von Messwerten vorgegeben. Die eingesetzten zwei pH-Sensoren zeigten über den gesamten Versuchszeitraum nahezu die gleichen Werte. Nur in der letzten Phase (Chemiephase) weichen sie geringfügig voneinander ab. Entsprechend schmal wurde auch der Unsicherheitsbereich gewählt. pH Referenzwert Tabelle; Gleichverteilung (-0,2; 0,2); Werte werden zum Referenzwert addiert

Organisches Material R (Parameter 37)

In jedem Sumpf sind organische Substanzen zu erwarten (Auslaugung aus Farbe, Fette, etc.), die in der homogenen Phase mit lod zu Organoiod reagieren können. Zu den Konzentrationen der organischen Stoffe existieren praktisch keine Messungen, auch nicht in FPT1. In lod-Codes werden dementsprechend Annahmen zur Anfangskonzentration gemacht, die u. a. in AIM aus Multi-Parameter-Anpassungen an lod-Integralversuche stammen und somit sehr unsicher sind.

 Organisches Material R Referenzwert 1E-5 mol/l; logarithmische Gleichverteilung (0,1; 10); Faktor auf Referenzwert

4.3.6 Iod-Reaktionskonstanten (Parameter 38 - 93)

Hier wird der Kenntnisstand aller unsicheren Iod-Reaktionskonstanten, die potentiell einen Einfluss auf die Simulation des Iodverhaltens im Versuch FPT1 haben, quantifiziert.

4.3.6.1 Hydrolyse im Sumpf (Parameter 38 – 42)

Die Hydrolyse gehört zu den wichtigsten Reaktionen im Reaktorsumpf. Zusammen mit der Radiolyse bestimmt sie die Konzentration der lodspezies $I_2(w)$, $I^-(w)$, HOI und IO_3^- . In AIM wird die Hydrolyse in 2 Stufen gerechnet und ist durch 5 Einzelreaktionen modelliert. Einen wesentlichen Einfluss auf die Hydrolyse hat der pH-Wert. Bekannte Unsicherheiten betreffen unter anderem die Stärke der Abhängigkeit vom pH-Wert und die Konzentration des gelösten Luftsauerstoffs im Sumpf /WEB 09a/. Die Reaktionskonstanten der Einzelreaktionen werden pauschal mit der gleichen Unsicherheitsverteilung versehen.

Parameter 38 I₂ Hydrolyse (Schritt1 von 2), Referenzwert BAS1(11), logarithmische Gleichverteilung (0,5; 2,0), mit Faktor auf Referenzwert

- Parameter 39 Rückreaktion der I₂ Hydrolyse (Schritt1 von 2), Referenzwert BAS1(12), logarithmische Gleichverteilung (0,5; 2,0), mit Faktor auf Referenzwert
- Parameter 40 I₂ Hydrolyse (Schritt 2 von 2), Referenzwert BAS1(13), logarithmische Gleichverteilung (0,5; 2,0), mit Faktor auf Referenzwert
- Parameter 41 Rückreaktion von I₂ Hydrolyse (Schritt 2 von 2), Referenzwert BAS1(15), logarithmische Gleichverteilung (0,5; 2,0), mit Faktor auf Referenzwert
- Parameter 42 I⁻Oxidation durch gelöstes O2, Referenzwert BAS1(11), logarithmische Gleichverteilung (0,5; 2,0), mit Faktor auf Referenzwert

4.3.6.2 Radiolyse im Sumpf (Parameter 43 – 46)

Unter Unfallbedingungen ist die Radiolyse die Hauptquelle für I₂ im Sumpf und wegen des Massentransfers auch für die Containmentatmosphäre. Die Radiolysereaktionen sind von der Dosisleistung und vom pH-Wert des Sumpfes abhängig. Vor allem die Stärke der pH-Abhängigkeit (sie wird durch die Exponenten in den Thermen $[H^+]^{N20}$ und $[H^+]^{N29}$ ausgedrückt) ist unsicher und wurde bereits zweimal anhand von Validie-rungsrechnungen geändert /WEB 09a/, /WEB 05/. Die Abweichungen sind in alkalischen (pH > 7) Sümpfen größer als in sauren. In PHEBUS FPT1 ist der Sumpf sauer.

Aufgrund der gewonnenen Erfahrung, vor allem bei der Analyse verschiedener Radiolyse-Modelle anhand von EPICUR Versuchen /PIN 05/ und /FUN 08/, werden die folgenden Unsicherheitsverteilungen gewählt

- Parameter 43 Radiolytische Bildung von I₂(w) aus I-(w), Referenzwert BAS1(20), Iogarithmische Gleichverteilung (0,5; 2,0), mit Faktor auf Referenzwert; Abb. 4-5
- Parameter 44 Rückreaktion der radiolytischen I₂(w) Bildung aus I⁻(w), Referenzwert BAS1(21), logarithmische Gleichverteilung (0,5; 2,0), mit Faktor auf Referenzwert

- Parameter 45 Radiolytische $I_2(w)$ Bildung aus $IO_3^-(w)$, Referenzwert BAS1(29), logarithmische Gleichverteilung (0,5; 2,0), mit Faktor auf Referenzwert
- Parameter 46 Rückreaktion der radiolytischen I₂(w) Bildung aus IO₃⁻(w), Referenzwert BAS1(21), logarithmische Gleichverteilung (0,5; 2,0), mit Faktor auf Referenzwert

Abb. 4-5 Wahrscheinlichkeitsverteilung für Parameter 43 (Radiolytische Bildung von l₂(w) aus l-(w))

4.3.6.3 Silber/lod-Reaktion im Sumpf (Parameter 47 – 49)

Wie bereits erwähnt sind Silberpartikel aus zerstörten Regelstäben im Sumpf eine effektive Senke für I₂. I⁻ reagiert mit oxidiertem Silber (Oxidschicht auf Silberpartikeln) ebenfalls zu Agl.

Die in AIM verwendeten Reaktionsgeschwindigkeitskonstanten wurden aus Versuchen mit Silberfolien bei AEA Technologie /DIC 03/ und aus Versuchen mit Silberpulver bei AREVA /FUN 01/ abgeleitet. Die Unsicherheiten bei der Übertragung der Laborergebnisse auf reale Verhältnisse sind hoch, gerade weil bei der Modellierung vereinfachend davon ausgegangen wurde, dass die Partikel des Ag-Hydrosols permanent im Sumpf schwimmen und sozusagen eine gut durchmischte Suspension bilden. Die in den PHEBUS-Versuchen gemessene relativ schnelle Ablagerung auf den Boden ist nicht berücksichtigt. Diese Modellunsicherheit wird in der UaSA durch größere Unsicher-

heitsbereiche der Parameter 47 und 48 berücksichtigt. Eine weitere Modellunsicherheit betrifft die Oxidation der Silberoberfläche.

Die Unsicherheiten werden daher wie folgt festgelegt

- Parameter 47 Agl(w)-Bildung aus Ag(w) + I₂(w), Referenzwert BAS1(28), logarithmische Gleichverteilung (0,1; 10,0), mit Faktor auf Referenzwert
- Parameter 48 Agl(w)-Bildung aus AgOx(w) + $I^{-}(w)$, Referenzwert BAS1(56), logarithmische Gleichverteilung (0,1; 10,0), mit Faktor auf Referenzwert
- Parameter 49 Bildung von AGOx(w) aus Ag(w) und O₂(w), Referenzwert BAS1(73), logarithmische Gleichverteilung (0,33; 3,0), mit Faktor auf Referenzwert.

4.3.6.4 Homogene organische Iod-Reaktionen im Sumpf, Parameter 50 – 54

In AIM ist die thermische Bildung von Organoiod im Sumpf aus $I_2(w)$, HOI(w) und gelösten organischen Verbindungen (Öle, organische Lösungsmittel aus Farbe und Kabelisolation, etc.) empirisch modelliert. Das Modell in AIM wurde aus IMPAIR-3 /GÜN 92/ übernommen. Die Geschwindigkeitskonstanten wurden an die ACE/RTF-Versuche angepasst /GRE 95/.

Da diese Reaktionen in PHEBUS FPT1 eine eher untergeordnete Rolle spielen (kleiner Farbcoupon in Sumpf, vermutlich nur geringe Verschmutzung mit organischem Material) werden die Rückreaktionen nicht explizit erfasst. Die Unsicherheiten werden wie folgt abgeschätzt

- Parameter 50 Thermische $CH_3I(w)$ -Bildung aus $I_2(w)$ und $CH_3(w)$, Referenzwert BAS1(22), logarithmische Gleichverteilung (0,2; 5,0), mit Faktor auf Referenzwert
- Parameter 51 Thermische CH₃I(w)-Bildung aus HOI(w) und CH₃(w), Referenzwert BAS1(40), logarithmische Gleichverteilung (0,1; 10,0), mit Faktor auf Referenzwert

- Parameter 52 Radiolytische Zersetzung von CH₃I(w), Referenzwert BAS1(24), logarithmische Gleichverteilung (0,2; 5,0), mit Faktor auf Referenzwert
- Parameter 53 Hydrolyse von $CH_3I(w)$ mit H_20 , Referenzwert BAS1(30), logarithmische Gleichverteilung (0,2; 5,0), mit Faktor auf Referenzwert
- Parameter 54 Hydrolyse von $CH_3I(w)$ mit OH^- , Referenzwert BAS1(32), logarithmische Gleichverteilung (0,2; 5,0), mit Faktor auf Referenzwert

4.3.6.5 Iod/Farbe-Reaktionen im Sumpf (Parameter 55 – 63)

I₂(w) und I⁻(w) werden an Farbflächen im Sumpf bzw. in FPT1 am Farbcoupon adsorbiert und reagieren teilweise mit dem Farbmaterial. Von I₂-beladenen Farbflächen können I₂(w), I⁻(w) und CH₃I und von I⁻-beladenen I⁻(w) und CH₃I freigesetzt werden. Diese Reaktionen hängen von der Temperatur sowie vom Fabrikat bzw. den Bestandteilen und dem Alter der Farbe ab. Die Modelle in AIM beruhen auf Experimenten unter Verwendung von Farbanstrichen, die repräsentativ für deutsche Containment-Anstriche sind und die zum Teil experimentell künstlich gealtert wurden. Die Unsicherheitsbereiche wurden anhand der Streuungen einschlägiger Messergebnisse /HEL 96/, /NEU 08/ abgeschätzt.

- Parameter 55 Ablagerung von I₂(w) auf Farbe im Sumpf, Referenzwert BAS1(17), logarithmische Gleichverteilung (0,5; 2,0), mit Faktor auf Referenzwert
- Parameter 56 I₂-Freisetzung von Farbe im Sumpf, Referenzwert BAS1(38), logarithmische Gleichverteilung (0,5; 2,0), mit Faktor auf Referenzwert
- Parameter 56 I_2 -Freisetzung von Farbe im Sumpf nach I_2 -Ablagerung, für T \leq 90°C, Referenzwert BAS1(38), logarithmische Gleichverteilung (0,5; 2,0), mit Faktor auf Referenzwert
- Parameter 57 I_2 -Freisetzung von Farbe im Sumpf nach I_2 -Ablagerung, für T > 90°C, Referenzwert BAS2(38), logarithmische Gleichverteilung (0,5; 2,0), mit Faktor auf Referenzwert

- Parameter 58 I⁻-Freisetzung von Farbe im Sumpf nach I₂-Ablagerung, Referenzwert BAS1(69), logarithmische Gleichverteilung (0,5; 2,0), mit Faktor auf Referenzwert
- Parameter 59 I⁻Ablagerung auf Farbe im Sumpf, Referenzwert BAS1(37), logarithmische Gleichverteilung (0,5; 2,0), Faktor auf intern berechnete Reaktionskonstante
- Parameter 60 I⁻-Freisetzung von Farbe im Sumpf nach I⁻Ablagerung, Referenzwert BAS2(19), logarithmische Gleichverteilung (0,5; 2,0), Faktor auf intern berechnete Reaktionskonstante
- Parameter 61 Bildung von chemisorbiertem I⁻ auf Farbe im Sumpf aus physisorbiertem I⁻, Referenzwert BAS1(79), logarithmische Gleichverteilung (0,5; 2,0), Faktor auf Reaktionskonstante
- Parameter 62 Thermische Bildung von CH3I auf Farbe im Sumpf, Referenzwert BAS1(39), logarithmische Gleichverteilung (0,1; 10,0), Faktor Reaktionskonstante
- Parameter 63 Radiolytische Bildung von CH3I auf Farbe im Sumpf, Referenzwert BAS1(18), logarithmische Gleichverteilung (0,1; 10,0), Faktor auf intern berechnete Reaktionskonstante

4.3.6.6 Iod/Stahl-Reaktion im Sumpf (Parameter 64)

Gelöstes $I_2(w)$ im Sumpf lagert sich nicht dauerhaft auf Stahlflächen im Wasser ab, sondern reagiert mit dem Stahl zu Eiseniodid, das in der wässrigen Umgebung schnell dissoziiert und in Lösung geht. Im Wasser steigt deshalb die $I^-(w)$ -Konzentration an und die $I_2(w)$ -Konzentration geht zurück.

Diese Konversionsrate wurde in Laborversuchen gemessen /FUN 96/ und in AIM übernommen. Aufgrund von Analysen zum THAI-Versuch Iod-9 wurde die Konversionsrate später erheblich nach oben revidiert /WEB 09b/. Die Unsicherheitsverteilung wurde daher entsprechend breit gewählt. Die kleinen Werte (> 0.02) repräsentieren die alten Messwerte, während die großen Werte (0,8 < 1 < 1.2) um den neuen Default-Wert liegen.

Parameter 64 Konversion von I₂(w) zu I⁻(w) an Stahlflächen in Sumpf, Referenzwert BAS2(55), Histogramm (0,02; 0,8; 1,2; 2,0 / 0,3; 0,5; 0,2), Faktor auf intern berechnete Reaktionskonstante

4.3.6.7 Iod/Ozon-Reaktion im Gas (Parameter 65 – 71)

Durch radioaktive Strahlung werden in der Luft/Wasserdampf-Atmosphäre des Containments Radiolyseprodukte gebildet, die $I_2(g)$ zu IOx oxidieren. IOx ist im gasförmigen Zustand nicht stabil, sondern bildet unmittelbar ein Aerosol aus kleinen sogenannten Primärpartikeln. Die Gesamtheit der Radiolyseprodukte wird im Modell durch Ozon repräsentiert, da Ozon eines der Radiolyseprodukte darstellt und gleichzeitig so auch zur experimentellen Simulation von Strahlung herangezogen werden kann. In AIM ist die Bildung und Zersetzung von IOx und O₃ modelliert.

Für die Abschätzung der Unsicherheitsverteilung wurden Daten aus einer früheren Abschätzung von Unsicherheitsbereichen zu dem Iodmodell IMPAIR-3 /FUN 01/ und experimentellen sowie modelltheoretischen Arbeiten zur Iod/Ozon-Reaktion herangezogen /FUN 99a/, /DIC 03/ und /BOS 08/.

Parameter 65	Radiolytische Bildung von IOx aus I_2 und O3, Referenzwert BAS2(1),
	Gleichverteilung (1246, 4615), direkter Wert

- Parameter 66 Rückreaktion der radiolytischen Bildung von IOx aus I₂ und O₃, Referenzwert BAS2(2), Gleichverteilung (1,1E-6, 3,5E-6), direkter Wert
- Parameter 67 Radiolytische Bildung von O₃, Referenzwert BAS2(71), Gleichverteilung (3.9E-11, 5,5E-11), direkter Wert
- Parameter 68 Radiolytische Zersetzung von O₃, Referenzwert BAS2(72), Gleichverteilung (2,205E-2, 8,38E-2), direkter Wert

Der Unsicherheitsbereich der Parameter 65 bis 68 entspricht im Prinzip den Angaben in /FUN 01/, nur dass die Bereiche für Parameter 65 und 68 wegen der hier nicht expli-

zit berücksichtigten Unsicherheit der Aktivierungsenergie erweitert wurden. Diese Unsicherheit betrifft die Temperaturabhängigkeit der Reaktionskonstanten.

- Parameter 69 O₃ Abbau auf Farbe, Referenzwert BAS2(82), logarithmische Gleichverteilung (0,64, 1,56), Faktor auf Referenzwert
- Parameter 70 O₃ Abbau auf Stahl, Referenzwert BAS2(83), logarithmische Gleichverteilung (0,5; 2,0), Faktor auf Referenzwert
- Parameter 71 Thermischer O₃ Zerfall, Referenzwert BAS2(78), logarithmische Gleichverteilung (0,64, 1,56), Faktor auf Referenzwert

4.3.6.8 Homogene organische Reaktion im Gas (Parameter 72)

Durch radioaktive Strahlung wird Organoiod in der Gasphase wieder zersetzt. Der Unsicherheitsbereich wird wie in /FUN 01/ abgeschätzt gewählt.

Parameter 72 O₃ Abbau auf Stahl, Referenzwert BAS2(65), logarithmische Gleichverteilung (0,5, 2,0), Faktor auf Referenzwert

4.3.6.9 Iod/Farbe-Reaktion im Gas (Parameter 73 – 83)

 $I_2(g)$ lagert sich bei trockenen und bei nassen Verhältnissen (d. h. mit Wandkondensation) auf Farbe ab. Ist es nur physisorbiert, also nicht chemisch gebunden, kann es wieder in die Gasphase resuspendiert oder mit dem Wandkondensat abgewaschen werden. I_2 geht auch Reaktionen mit den Farbbestandteilen ein und ist dann fest an die Farbe gebunden (chemisorbiert). Thermisch und radiolytisch kann sowohl aus dem abgelagerten I_2 als auch aus chemisorbiertem Iod Organoiod gebildet werden.

Die Iod/Farbe-Reaktion wird in einer Reihe von experimentellen Projekten weiter untersucht. Dazu gehören THAI Iod-Versuche, das OECD-Vorhaben BIP (Behavior of Iodine Project, /BIP 11/) und das Folgevorhaben BIP-2 sowie Tests in der französischen EPICUR-Anlage /STE 11/. Diese Anstrengungen demonstrieren, dass die Reaktion noch nicht zufriedenstellend verstanden und modelliert ist.
Im PHEBUS-Versuch FPT1 wurde die französische Farbe RIPOLIN eingesetzt, während den AIM-Modellen vorwiegend Versuche mit deutscher GEHOPON-Farbe zu Grunde liegen. Beide Farbanstriche gehören zur Klasse der Epoxidharze und sind chemisch relativ ähnlich. Dennoch könnten darin Abweichungen im Verhalten begründet sein, die bisher jedoch noch nicht quantifiziert wurden. Das Farbalter ist derzeit in den AIM-Modellen nicht explizit berücksichtigt. Die THAI-Versuche wurden vorwiegend mit Farbe, die künstlich auf 15 Jahre gealtert wurde, durchgeführt. Das Alter der Farbe am FPT1-Condenser ist nicht genau bekannt, dürfte aber wesentlich geringer sein.

Die Unsicherheitsbereiche wurden in grober Anlehnung an die typische Streuung der Versuchsergebnisse abgeschätzt.

- Parameter 73 I₂-Ablagerung auf Farbe, Referenzwert BAS1(4), logarithmische Gleichverteilung (0,25; 4,0), Faktor auf Referenzwert
- Parameter 74 I₂-Resuspension von Farbe, Referenzwert BAS1(62), logarithmisch Gleichverteilung (0,25; 4,0), Faktor auf Referenzwert
- Parameter 75 I₂-Resuspension auf Farbe bei Wandkondensation, logarithmische Referenzwert BAS2(62), Gleichverteilung (0,67; 1,5), Faktor auf Referenzwert
- Parameter 76 Bildung von chemisorbiertem Iod auf Farbe, Referenzwert BAS1(76), logarithmische Gleichverteilung (0,25; 4,0), Faktor auf Referenzwert
- Parameter 77 Bildung von chemisorbiertem lod auf Farbe bei Wandkondensation, Referenzwert BAS2(76), Gleichverteilung (0,25; 4,0), Faktor auf Referenzwert
- Parameter 78 I₂ Transport in den Sumpf, Referenzwert BAS2(44), logarithmisch Gleichverteilung (0,25; 4,0), Faktor auf Referenzwert
- Parameter 79 I⁻ Transport in den Sumpf, Referenzwert BAS2(9), logarithmisch Gleichverteilung (0,25; 4,0), Faktor auf Referenzwert
- Parameter 80 Thermische CH₃I Freisetzung aus I₂, Referenzwert BAS1(14), logarithmische Gleichverteilung (0,1; 10,0), Faktor auf Referenzwert

- Parameter 81 Radiolytische CH₃I Freisetzung aus I₂, Referenzwert BAS1(7), logarithmische Gleichverteilung (0,1; 10,0), Faktor auf Referenzwert
- Parameter 82 Thermische CH₃I Freisetzung aus chemisorbiertem Iod (ICHS), Referenzwert BAS1(68), logarithmische Gleichverteilung (0,1; 10,0), Faktor auf Referenzwert
- Parameter 83 Radiolytische CH₃I Freisetzung aus ICHS, Referenzwert BAS1(66), logarithmische Gleichverteilung (0,1; 10,0), Faktor auf Referenzwert

4.3.6.10 Iod/Stahl-Reaktion im Gas (Parameter 84 – 91)

In AIM ist die Iod/Stahl-Reaktion als dreistufiger Prozess modelliert. Abgelagertes I₂ reagiert mit dem Stahl zu FeI₂, das nicht flüchtig aber wasserlöslich ist. Mit Luftsauerstoff kann FeI₂ weiter zu sogenanntem fixed-I reagieren, das nicht flüchtig, nicht wasserlöslich und vergleichsweise fest an die Stahloberfläche gebunden ist. Die Geschwindigkeit dieser Reaktion hängt stark von der Feuchte ab. Diese Abhängigkeit wird durch den Parameter FSAT repräsentiert. Bei Wandkondensation können sowohl I₂ als auch FeI₂ abgewaschen und in den Sumpf transportiert werden.

Die Iod/Stahl-Reaktion wurde in 6 THAI-Iodversuchen detailliert gemessen. Weiter wurde die $I_2(g)$ -Ablagerung auf Coupon aus THAI-Stahl bei AECL im Rahmen des OECD BIP-Projekts untersucht. Das Iod/Stahl-Modell in AIM ist daher gut validiert.

Die Unsicherheit der Parameter 84 und 85 lässt sich grob aus der Streuung der Messwerte in der Untersuchung bei AECL ableiten (/BIP 11/, /SPE 12/). Berücksichtigt wird auch, dass der Behälterstahl des PHEBUS-Containments (AISI 316 L) in seiner Zusammensetzung von dem des THAI-Behälters (AISI 316 Ti) abweicht.

- Parameter 84 I₂-Ablagerung auf Stahl, Referenzwert BAS1(51), logarithmische Dreiecksverteilung (0,5; 1,0; 2.0), Faktor auf Referenzwert
- Parameter 85 I₂-Resuspension von Stahl, Referenzwert BAS1(63), logarithmische Dreiecksverteilung (0,2; 1,0; 5.0), Faktor auf Referenzwert

- Parameter 86 I₂-Ablagerung bei Wandkondensation auf Stahl, FeI₂-Bildung und Abwaschen in Sumpf, Referenzwert BAS1(52), logarithmische Dreiecksverteilung (0,67; 1,0; 1,5), Faktor auf Referenzwert
- Parameter 87 Bildung von chemisorbiertem Iod (ICHS) aus physisorbiertem I₂, Referenzwert BAS1(74), logarithmische Dreiecksverteilung (0,5; 1,0; 1,5), Faktor auf Referenzwert
- Parameter 88 Feuchteabhängigkeit der Bildung von ICHS aus physisorbiertem I₂, FSAT, logarithmische Dreiecksverteilung (0,67; 1,0; 1,33), Faktor auf Referenzwert

Die Unsicherheit der drei Parameter 89, 90 und 91 wurden anhand der Versuchsauswertungen in /SPE 12/ grob quantifiziert.

- Parameter 89 Rückreaktion zu Bildung von ICHS aus physisorbiertem I₂, BAS1(75),
 Gleichverteilung (2E-6; 1E-5), direkter Wert an Stelle des Referenzwerts
- Parameter 90 Abwaschen von physisorbiertem I₂ in den Sumpf, BAS2(84), logarithmische Gleichverteilung (0,2; 2,0), direkter Wert an Stelle des Referenzwerts
- Parameter 91 Abwaschen von Fel_2 als l⁻ in den Sumpf, BAS2(84), logarithmische Gleichverteilung (0,2; 2,0), direkter Wert an Stelle des Referenzwerts

4.3.6.11 Iod-Massentransfer zwischen Wasser und Gas (Parameter 92 und 93)

Der Massentransfer der flüchtigen Spezies I₂, CH₃I und organischen Substanzen (R) zwischen der Gasphase und dem Sumpf spielt in PHEBUS FPT1 eine wichtige Rolle, da einige Stunden nach Versuchsbeginn die Bildung und Freisetzung von I₂(g) aus dem Sumpf die dominante I₂-Quelle in der Gasphase darstellt. Die I₂-Freisetzung vom nassen Condenser spielt nur am Anfang des Versuchs in den Phasen mit Dampfkondensation eine Rolle. Im Modell beschreiben die Massentransferkoeffizienten KMTWAS und KMTGAS die Geschwindigkeit des Transfers und der Verteilungskoeffizient P das Konzentrationsgleichgewicht zwischen Gas- und Wasserphase.

Die Unsicherheit von KMTWAS und KMTGAS wurde bereits in Kapitel 4.3.5 (Iodmodul Parameter) festgelegt. Die Verteilungskoeffizienten, die von der Temperatur abhängen, sind aus einigen Messungen gut bekannt, z. B. /FUR 85/ und sind daher klein.

- Parameter 92 Verteilungskoeffizient für I₂ zwischen Gas- und Wasserphase, P(I₂), logarithmische Gleichverteilung (0,83; 1,2), direkter Wert an Stelle des Referenzwerts
- Parameter 93 Verteilungskoeffizient für CH₃I zwischen Gas- und Wasserphase, P(CH₃I), logarithmische Gleichverteilung (0,83; 1,2), direkter Wert an Stelle des Referenzwerts

4.4 Identifikation von Abhängigkeiten

Unter den unsicheren Parametern wurde eine einzige Abhängigkeit identifiziert. Sie betrifft die mittlere Partikelgröße der Aerosolkomponenten CsI, Silber, Silberoxid und Restaerosol. In der Referenzrechnung ist die massengemittelte Partikelgröße für alle 4 Aerosolkomponenten gleich mit 1,61 µm vorgegeben. Die FPT1-Messung zeigt, dass die Komponenten wegen der starken Agglomeration gut durchmischt waren.

Eine während des ganzen Versuches identische Entwicklung der mittleren Partikelgrößen, also eine vollständige Abhängigkeit, ist auszuschließen, da der Verlauf der Einspeiseraten wegen der unterschiedlichen Freisetzungszeiten ungleich ist. Eine vollständige Abhängigkeit der Partikelgrößen ist daher wenig wahrscheinlich. Es wurde daher eine Korrelationsmatrix mit einem einheitlichen Korrelationskoeffizienten von jeweils 0,5 erstellt:

- Mittlere Partikelgröße des eingespeisten CsI-Aerosols (Parameter 10)
- Mittlere Partikelgröße des eingespeisten Silber-Aerosols (Parameter 12)
- Mittlere Partikelgröße des eingespeisten Restaerosol-Aerosols (Parameter 15)

Silberoxidaerosol wurde in der Variationsrechnung nicht explizit erfasst, da die mittlere Partikelgröße praktisch die des Silberaerosols ist. Bei der Oxidation bildet sich nur eine dünne Oxidschicht auf den Silberpartikeln.

4.5 Zusammenfassung der unsicheren Parameter

Die oben ausführlich beschriebenen Angaben zu den unsicheren Parametern, die in den Stufen 1 und 2 der UaSA verwendet wurden, sind in Tab. 4-4 (thermohydraulische, Aerosol- und Iod-Modul-Parameter) und Tab. 4-5 (Reaktionskonstanten) übersichtlich zusammengefasst.

			Uncertain para	ameter	Reference	Uncertainty	Representation,	Correlation,	Uncertainty	Representation,
No) .		Description,	Name	value	distribution,	Step 1	Steps 1 and	distribution,	Step 2
			dimension			Step 1		2	Step 2	
	-	A	Thermal hydra	aulics						
				WALL1/TEMP2						
				WALL2/TEMP2						
1			Wall tempera-	WALL3/TEMP3	Table 110	triongular (additive to refer			
			ture of atmos-	WALL4/TEMP2	to 128 C	1.0, 0., +1.0)	ence value			
			pneric zone; C	WALL5/TEMP2		,				
				WALL6/TEMP2						
				WALL7/TEMP2						
2			Wall tempera- ture of sump zone, C	WALL8/TEMP2	Table	triangular (- 0.5, 0., +0.5)	additive			
3			Wall tempera-	WALL9/TEMP2	Table					
			ture of wet	WALL10/TEMP2	Table	triangular (-	additive			
			upper part, C	WALL11/TEMP2	Table	0.5, 0., 10.5)				
			Characteristic length of structure WALL1, left side, m	HLENG (WALL1), LEFT	0.01	discrete (0.01, 0.05, 0,5 / 0.1, 0.6, 0.3)	direct			
			Characteristic length of structure WALL1, right side, m	HLENG (WALL1), RIGHT	0.01	discrete (0.01, 0.05, 0,5 / 0.1, 0.6, 0.3)	direct			
				Same for WALL2	to WALL8					
4			Characteristic length of structure WALL9, left side, m	HLENG (WALL9), LEFT	0,05	discrete (0.01, 0.05, 0,5 / 0.1, 0.6, 0.3)	direct			
			Characteristic length of structure WALL9, right side, m	HLENG (WALL9), RIGHT	0.01	discrete (0.01, 0.05, 0,5 / 0.1, 0.6, 0.3)	direct			
			Characteristic length of structure WALL10, left side, m	HLENG (WALL10), LEFT	0.05	discrete (0.01, 0.05, 0,5 / 0.1, 0.6, 0.3)	direct			
			Characteristic length of structure WALL10, right	HLENG (WALL10), RIGHT	0.01	discrete (0.01, 0.05, 0,5 / 0.1,	direct			

Tab. 4-4Unsichere Parameter, Teil 1 thermohydraulische-, Aerosol- und IodmodulParameter

		Uncertain par	ameter	Reference	Uncertainty	Representation,	Correlation,	Uncertainty	Representation,
No.		Description, dimension	Name	value	distribution, Step 1	Step 1	Steps 1 and 2	distribution, Step 2	Step 2
		side, m			0.6, 0.3)				
		Characteristic length of structure WALL11, left side, m	HLENG (WALL11), LEFT	0.01	discrete (0.01, 0.05, 0,5 / 0.1, 0.6, 0.3)	direct			
5		Heat transfer coefficient, W/m2/K	ALCOND	table; 80 to 350	loguniform (0.83, 1.2)	factor			
6		Residual sil- ver concentra- tion in con- densate, kg/m3	CAERES	0.04	uniform (0.01, 0.08)	direct			
	В	Injections							
7		Steam injec- tion, mass flow rate, kg/s	STEAM_INJ CIJFLO	Table	loguniform (0.89, 1.12)	factor			
8		Steam injec- tion, enthalpy, kJ/kg	CIJENT	Table	uniform (-61, 0.)	additive			
9		CsI injection, kg/s	IINJ, CIJFLO	Table	logtriangular (0.91, 1., 1.1)	factor			
10	[a]	CsI particle size distribu- tion at inj., m	SWERT1 (CSI_SIZ)	1.61E-06	logtriangular (0.83, 1., 1.2)	factor	Correlation matrix be- tween [a], [b], and [c] corr.coeff.=0.5		
11		Silver aerosol injection, kg/s	AG_INJ, CIJFLO	Table	logtriangular (0.91, 1., 1.1)	factor			
12	[b]	Silver particle size distribu- tion at inj. , m	SWERT1	1.61E-06	logtriangular (0.83, 1., 1.2)	factor	corr. matrix		
13		Silver oxide init. conc. in sump	AGOX, SUMP	2.4E-4	logtriangular (0.91, 1., 1.1)	factor			
14		Residual aer- osol injection, kg/s	AER_INJ2, CIJFLO	Table	logtriangular (0.91, 1., 1.1)	factor			
15	[C]	Residual aer- osol particle size distribu- tion at inj., m	SWERT1	1.61E-06	logtriangular (0.83, 1., 1.2)	factor	corr.matrix		
16		l₂ injection, mol/s	I2_INJ, CIJFLO	Table	polygon (0., 1., 2. / 1., 1., 0.)	factor		logtriangular (0.5, 1., 2.0)	factor
	С	Aerosol	Parameters						
17		Diffusion boundary lay- er thickness, m	DELDIFF	1,0E-04	polygon (1.E-5, 1.E- 4, 2.E-4 / 1., 1., 0.)	direct			
18		Effective aer- osol density, kg/m ³	DENSTY	3.0E+03	uniform (3E3, 7E3)	direct			
19		Turbulent dis- sipation rate, m²/s³	TURBDS	1.00E-03	uniform (1.E- 3, 1.E-2)	direct			
20		Dynamic par- ticle shape factor	CHI	1.00E+00	triangular (1., 1., 1.3)	direct			
21		Agglomeration	GAMMA	1.00E+00	triangular	direct			

		Uncertain par	ameter	Reference	Uncertainty	Representation,	Correlation,	Uncertainty	Representation,
No.		Description, dimension	Name	value	distribution, Step 1	Step 1	Steps 1 and 2	distribution, Step 2	Step 2
		particle shape factor			(1., 1., 2.)				
22		Particle colli- sion efficiency	COLEFF	-1.00E+00	discrete (- 1.0, 0.0; 0.7, 0.3)	direct			
23		Average water film thickness, m	THFILM	3.40E-04	loguniform (0.4, 2.5)	factor			
	D	Dose rate							
24		Dose rate in the gas phase, kGy/h	DOSE_ATM, CIJRATE	Table	loguniform (0.77, 1.3)	factor			
25		Dose rate in the water phase, kGy/h	DOSE_SUMP, CIJRATE	Table	loguniform (0.77, 1.3)	factor			
	Е	lodine module	e parameters						
26			S	5,70E-03	triangular (5.7E-3, 5.7E-3, 0.3)	direct		triangular 2.8E-3, 5.7E-3, 2.3E-2)	direct
27		Minimum wall condensation rate for wet conditions, kg/(m²s)	ACOND	1.00E-04	triangular (1.E-4, 1.E- 4, 2.E-3)	direct			
28		Mass median diameter of IO3- primary particles, m	DIO3	2.00E-07	uniform (4.E- 8, 5.E-7)	direct			
29		Standard de- viation of log- normal IO3- particle size distribution	SIO3	2	polygon (1.5, 2., 3.; 1.,1., 0.)	direct			
30		Maximum available steel for chemisorp- tion	FEMAX	2.0E-05	loguniform (1.0E-5, 4.0E-4)				
31		Splitting factor for reaction 75	C75	0,54	triangular (0.15, 0.54, 0.54)	direct			
32		Gas side mass transfer coefficient, m/s	KMTGAS	1.4E-03	triangular (5.E-4, 1.4E- 3, 3.E-3)	direct			
33		Water side mass transfer coefficient, m/s	KMTWAS	1.0E-05	triangular (5.E-6, 1.E- 5, 5.E-5)	direct			
34		Fraction of deposited I2 washed down	F444	0.68	uniform (0.3, 0.8)	direct			
35		Stoichometric factor used for O3 destruc- tion by I2 oxi- dation	STOFAK	3.9	uniform (- 0.2, 0.2)	additive			
36		pH in the sump	PH	Table	uniform (- 0.2, +0.2)	additive			
37		Initial organic residue con- centration in sump, mol/l	R	1.0E-05	loguniform (0.1, 10.)	factor			

No.	Uncertain	parameter	Name	Reac- tion no. (back	Refer- ence val-	Dimension	Uncertainty distribution	Represented by	Uncertainty distribution	Represented by
	Reaction / Process	Chem. formulation	reac- tion)		ue		Step 1	Step 1	Step 2	Step 2
+37	Water phase reactions									
	Inorganic iodine hydrolysis re	actions	•							
38	I2 hydrolysis (step 1of 2)	I2 (w) + H2O> HOI (w) + I- (w) + H+	BAS1	11 (12)	3.00E+00	1/s	loguniform (0.5,2.0)	factor		
39	Reverse of I2 hydrolysis (step 1of 2)		BAS1	12 (11)	calc.	1/(M·M·s)	loguniform (0.5,2.0)	factor on in- ternal variable		
40	I2 hydrolysis (step 2 of 2; HOI disproportionation ("Toth mod- el")	3 HOI (w)> IO3- (w) + 2 I- (w) + 3 H+	BAS1	13 (15)	calc.	1/(M·s)	loguniform (0.5,2.0)	factor on in- ternal variable		
41	Reverse of I2 hydrolysis (step 2of 2; "Dushman reaction"; Toth model)		BAS1	15 (13)	1.10E+05	1/(M·M·M** N15·s)	loguniform (0.5,2.0)	factor		
42	I- oxidation by dissolved O2	2 I- (w) + 1/2 O2 (w) + 2 H+ > I2 (w) + H2O	BAS1	16	1.00E-07	1/(M·s)	loguniform (0.5,2.0)	factor		
	Inorganic iodine radiolysis rea	actions	•	-						
43	Radiolytic I2 formation from I-	2 l-(w) + γ> l2(w)	BAS1	20 (21)	2.20E-05	1/(M**N20· kGy/h·s)	loguniform (0.5, 2.0)	factor	loguniform (0.25, 4.0)	factor
44	Reverse of radiolytic I2 for- mation from I-		BAS1	21 (20)	1.00E-04	1/s	loguniform (0.5, 2.0)	factor		
45	Radiolytic I2 formation from IO3-	IO3- (w) + γ> I2 (w)	BAS1	29 (34)	2.20E-05	1/(M**N29∙ kGy/h·s)	loguniform (0.5, 2.0)			
46	Reverse of radiolytic I2 for- mation with IO3-		BAS1	34 (29)	1.00E-04	1/s	loguniform (0.5, 2.0)	factor		

Tab. 4-5Unsichere Parameter, Teil 2 Reaktionskonstanten

No.	Uncertain	parameter	Name	Reac- tion no. (back	Refer- ence val-	Dimension	Uncertainty distribution	Represented by	Uncertainty distribution	Represented by
	Reaction / Process	Chem. formulation		reac- tion)	ue		Step 1	Step 1	Step 2	Step 2
	Silver / iodine reactions					-				
47	AgI formation from Ag + I2	I2 (w) + 2 Ag (w)> 2 AgI (w)	BAS1	28	2.00E-01	m /(M·s)	loguniform (0.1, 10.0)	factor		
48	AgI formation from AgOx + I-	AgOx (w) + I- (w)> AgI (w)	BAS1	56	2.00E+00	m /(M·s)	loguniform (0.1, 10.0)	factor		
49	Formation of AgOx by Ag oxi- dation	Ag(w) + O2> AgOx(w)	BAS1	73	8.70E-09	mol/(m2·s)	logtriangular (0.33, 3.0)	factor		
	Homogeneous organic iodine	reactions in the water phase								
50	Thermal CH3I formation from I2	l2 (w) + 2 CH3 (w)> 2 CH3I (w)	BAS1	22 (23)	1.5 E+00	1/(M·s)	loguniform (0.2, 5.0)	factor		
51	Thermal CH3I formation from HOI	HOI (w) + CH3 (w)> CH3I (w)	BAS1	40 (41)	1.0 E-01	1/(M·s)	loguniform (0.1, 10.0)	factor		
52	Radiolytic CH3I destruction	2 CH3I (w) + γ> I2 (w) + 2 CH3 (w)	BAS1	24 (25)	3.00E-04	1/(kGy/h·s)	loguniform (0.2, 5.0)	factor		
53	Hydrolysis of CH3I by H2O	CH3I (w) + H2O> I- (w) + CH3OH + H+	BAS1	30 (31)	1.50E-07	1/s	loguniform (0.2, 5.0)	factor		
54	Hydrolysis of CH3I by OH-	CH3I (w) + OH> I- (w) + CH3OH	BAS1	32 (33)	5.70E-05	1/s	loguniform (0.2, 5.0)	factor		
	lodine reactions with immerse	ed painted surfaces			-					
55	12 deposition on paint	I2(w)> I2(DEP,paint,w)	BAS1	17	2.00E-06	m/s	loguniform (0.2, 5.0)	factor		
56	12 dissolution from paint after 12 deposition	I2 (DEP,paint,w)> I2 (w)	BAS1, T ≤ 90 °C	38	4.16E-09	1/s	loguniform (0.2, 5.0)	factor		

No.	Uncertain	parameter	Name	Reac- tion no. (back	Refer- ence val-	Dimension	Uncertainty distribution	Represented by	Uncertainty distribution	Represented by
	Reaction / Process	Chem. formulation		reac- tion)	ue		Step 1	Step 1	Step 2	Step 2
57			BAS2, T > 90 °C		2.0E-6		loguniform (0.2, 5.0)			
58	I- dissolution from paint after I2 deposition	I2(DEP,paint,w)> I-(w)	BAS1	69	8.58E-07	1/s	loguniform (0.5, 2.0)	factor		
59	I- deposition on paint	I- (w)> I- (DEP,paint,w)	BAS1	37	calc. (calc.)	m/s	loguniform (0.5, 2.0)	factor on in- ternally calcu- lated reaction rate		
60	I- dissolution from paint after I- deposition	I- (DEP,paint,w)> I- (w)	BAS1	19	calc. (calc.)	1/s	loguniform (0.5, 2.0)	factor on in- ternally calcu- lated reaction rate		
61	Chemisorbed I- from phy- sisorbed I-	I- (DEP,paint,w)> ICHS (DEP,p,w)	BAS1	79 (80)	5.00E-06	1/s	loguniform (0.5, 2.0)	factor		
62	Thermal CH3I dissolution from paint	I2 (DEP,paint,w)> CH3I (w); I- (DEP,paint,w)> CH3I (w) ICHS (DEP,paint,w)> CH3I (w)	BAS1	39	1.50E-12	1/s∙(m²/mol) ^{g-1}	loguniform (0.1, 10.0)	factor		
63	Radiolytic CH3I dissolution from paint	I2 (DEP,paint,w) + γ> CH3I (w); I- (DEP,paint,w) + γ> CH3I (w)	-	18	3.60E-09	1/(kGy/h⋅s) · (m²/mol) ^{h-1}	uniform (0.1, 10.0)	factor on in- ternally calcu- lated reaction rate		

No.	Uncertain	parameter	Name	Reac- tion no. (back	Refer- ence val-	Dimension	Uncertainty distribution	Represented by	Uncertainty distribution	Represented by
	Reaction / Process	Chem. formulation		reac- tion)	ue		Step 1	Step 1	Step 2	Step 2
		ICHS (DEP,paint,w) + γ> CH3I (w)								
	lodine reactions with immerse	ed steel surfaces	-	•	•	•				
64	I2 conversion to I- at steel sur- face	I2 (w) + steel (w)> I- (w)	BAS1	55	1.25E-07	m/s	histogram (0.02, 0.8, 1.2,2.0; 0.3,0.5, 0.2)	factor		
	Gas phase reactions									
	Iodine/ozone reaction		-	-						
65	Formation of IO3-(g) by reac- tion of I2 and O3	I2 (g) + O3> IO3- (g)	BAS1	1	2.40E+03	1/(M·s)	uniform (1246, 4615)	direct		
66	Radiolytic destruction of IO3- (g)	2 IO3- (g) + γ> I2 (g)	BAS1	2	2.30E-06	1/(kGy/h·s)	uniform (1.1E- 6, 3.5E-6)	direct		
67	Radiolytic O3 formation	atmosphere + γ> O3 (g)	BAS1	71 (72)	4.70E-11	M/(kGy/h·s)	uniform (3.9E- 11, 5.5E-11)	direct		
68	Radiolytic O3 decay	O3 (g) + γ> O2	BAS1	72 (71)	4.30E-02	1/(kGy/h·s)	uniform (2.205E-2, 8.38E-2)	direct		
69	O3 decomposition on painted surfaces	O3 (g)> -	BAS1	82	1.27E-05	m/s	loguniform (0,64, 1.56)	factor		
70	O3 decomposition on steel surfaces	O3 (g)> -	BAS1	83	1.46E-05	m/s	loguniform (0,5, 2.0)	factor		
71	Thermal O3 decay	O3 (g)> O2	BAS1	78	3.00E-04	1/s	loguniform (0.64, 1.56)	factor		
	Homogeneous organic iodine	reactions in the gas phase								
72	Radiolytic CH3I decomposition	CH3I (g) + γ> ½ I2 (g) + CH3 (g)	BAS1	65 (67)	1.64E-04	1/(kGy/h·s)	loguniform (0.5, 2.0)	factor		

No.	Uncertain	parameter	Name	Reac- tion no. (back	Refer- ence val-	Dimension	Uncertainty distribution	Represented by	Uncertainty distribution	Represented by
	Reaction / Process	Chem. formulation		reac- tion)	ue		Step 1	Step 1	Step 2	Step 2
	lodine reactions with painted	surfaces exposed to the gas p	hase	_						
73	I2 deposition on <u>dry</u> and <u>wet</u> paint	I2 (g)> I2 (DEP,paint,g)	BAS1	4 (62)	4.00E-03	m/s	loguniform (0.25, 4.0)	factor		
74	l2 resuspension from <u>dry</u> and <u>wet</u> paint	I2 (DEP,paint,g)> I2 (g)	BAS1	62 (4)	5.00E-09	1/s	loguniform (0.25, 4.0)	factor		
75			BAS2		8.80E-08	1/s	loguniform (0.67, 1.5)	factor		
76	Physisorbed I2 into chemi- sorbed iodine	I2 (DEP,paint,g)> ICHS (DEP,p,g)	BAS1	76 (77)	1.00E-05	1/s	loguniform (0.25, 4.0)	factor		
77			BAS2		1.00E-05		loguniform (0.67, 1.5)	factor		
78	I2 transport to wet paint and subsequent wash-down to sump as I2	I2 (g)> I2 (DEP,paint,g)> I2 (w)	BAS2	44	3.10E-03	m/s	loguniform (0.25, 4.0)	factor		
79	Wash-down from paint to sump as I- in condensing con- ditions	I2 (DEP,paint,g)> I- (w)	BAS2	9	2.70E-07		loguniform (0.25, 4.0)	factor		
80	Thermal CH3I release from physisorbed iodine	l2 (DEP,paint,g)> CH3I (g)	BAS1	14	1.50E-12	1/s·(m²/mol) ^{g-1}	loguniform (0.1, 10.0)	factor		
81	Radiolytic CH3I release from physisorbed iodine	l2 (DEP,paint,g) + γ> CH3l (g)	BAS1	7	3.60E-09	1/(kGy/h⋅s) · (m²/mol) ^{h-1}	loguniform (0.1, 10.)	factor		
82	Thermal CH3I release from chemisorbed iodine	ICHS (DEP,paint,g)> CH3I (g)	BAS1	68	1.50E-12	1/s·(m²/mol) ^{g-1}	loguniform (0.1, 10.0)	factor		
83	Radiolytic CH3I release from chemisorbed iodine	ICHS (DEP,paint,g) + γ> CH3I (g)	BAS1	66	3.60E-09	1/(kGy/h·s) · (m²/mol) ^{h-1}	loguniform (0.1, 10.)	factor		

No.	Uncertain	parameter	Name	Reac- tion no. (back	Refer- ence val-	Dimension	Uncertainty distribution	Represented by	Uncertainty distribution	Represented by
	Reaction / Process	Chem. formulation		reac- tion)	ue		Step 1	Step 1	Step 2	Step 2
	lodine reactions with steel su	rfaces exposed to the gas pha	ase							
84	12 deposition on dry steel	I2 (g)> I2 (DEP,steel,g)	BAS1	51 (63)	2.6E-03 (0)	m/s	logtriangular (0.5, 1.0, 2.0)	factor		
85	Resuspension from dry steel	I2 (DEP,steel,g)> I2 (g)	BAS1	63 (51)	1.5E-04 (0)	1/s	logtriangular (0.2, 1.0, 5.0)	factor		
86	I2 deposition on wet steel, Fel2 formation, and wash- down to sump as I-	l2 (g)> l- (w)	BAS2	52	calc. (1.35E-03)	m/s	logtriangular (0.67, 1.0, 1.5)	factor		
87	Physisorbed I2 into chemi- sorbed iodine	I2 (DEP,s,g)> FEI2 (DEP,s,g)	BAS1	74 (75)	1.3E-04 (0)	1/s	logtriangular (0.5, 1.0, 1.5)	factor		
88			F.SAT		f(rh)		logtriangular (0.67, 1.0, 1.33)	factor		
89	Reverse of reaction 74 with two different ways	FEI2 (DEP,s,g)> I2 (g) ; FEI2 (DEP,s,g)> fixed-I	BAS1	75 (74)	4.60E-06	1/s	uniform (2.0E- 6, 1.0E-5)	direct		
90	Wash-down of I2 (DEP,steel,g) to sump as I- in condensing conditions	12 (DEP,s,g)> I- (w)	BAS2	84	1.00E-04	1/s	loguniform (0.2, 2.0)	factor		
91	Wash-down of FEI2 (DEP,steel,g) to sump as I- in condensing conditions	FEI2 (DEP,s,g)> I- (w)	BAS2	85	1.00E-04	1/s	loguniform (0.2, 2.0)	factor		

No.	Uncertain	parameter	Name	Reac- tion no. (back	Refer- ence val-	Dimension	Uncertainty distribution	Represented by	Uncertainty distribution	Represented by
	Reaction / Process	Chem. formulation		reac- tion)	ue		Step 1	Step 1	Step 2	Step 2
	Mass transfer between gas an	nd water phases		-	-	-				
92	I2 transfer through the inter- face sump - gas	l2 (w) <==> l2 (g)	P(I2)	35	calc.		loguniform (0.83, 1.2)	factor		
93	CH3I and CH3 transfer through the interface sump - gas	CH3I (w) <==> CH3I (g); CH3 (w) <==> CH3 (g)	P(CH 3I)	36	calc.		loguniform (0.83, 1.2)	factor		

4.6 Auswahl von Ergebnisvariablen

Die Ergebnisvariablen wurden im Wesentlichen nach ihrer Relevanz für den Iodquellterm ausgewählt. Dieser wird aus den luftgetragenen Iodspezies im Containment gebildet und hängt vom zeitlichen Verlauf des Leckage-Massenstroms ab. Da am PHEBUS-Containment keine Leckage auftrat, wird die maximal freisetzbare Iodmenge, das ist die gesamte luftgetragene Iodmenge, als zusätzliche Ergebnisvariable eingeführt. Die ausgewählten Variablen gliedern sich in:

- a) alle lodspezies, die im Containment luftgetragen sind (I₂, CH₃I, IOx und CsI)
- b) alle Spezies im Sumpf
- c) alle auf Oberflächen abgelagerten lodspezies
- d) einige Aerosolvariablen
- e) einige thermohydraulische Variablen
- f) maximal freisetzbare lodmenge (Berechnung s. unten)

Tab. 4-6 zeigt die ausgewählten Ergebnisvariablen. Die angegebene Priorität für die Auswertung entspricht weitgehend den Gruppen (a), (b) und (c)+(d)+(e). Im Schritt 1 der UaSA wurden nicht alle Variablen ausgewertet.

No.	Variable	Dim.	Zone	Location	Output/plot variable in COCOSYS-AIM output file	Priority	Step 1	Step 2
	lodine in gas phase)						
1	I ₂ concentration in gas	mol/l	JC45	mid of vessel	AFP 'AEICOZ(I2,JC45)'	1	x	x
2	CH ₃ I concentration in gas	mol/l	JC45	mid of vessel	AFP 'AEICOZ(CH3I,JC45)'	1	x	x
3	IOx concentration in gas	mol/l	JC45	mid of vessel	AFP 'AEICOZ(IOX,JC45)'	1	x	x
4	O₃ concentration in gas	mol/l	JC45	mid of vessel	AFP 'AEICOZ(O3,JC45)'	3	x	x
	Deposited iodine in	gas phas	Se la					
5	CsI concentration on wet condenser	mol/m ²	JCWET	wet conden- ser	AFP 'AEICOZ(CSI_PAINT,JCWET)'	3	x	x
6	I ₂ concentration on wet condenser	mol/m ²	JCWET	wet conden- ser	AFP 'AEICOZ(I2_PAINT,JCWET)'	3	x	x

Tab. 4-6	Ausgewählte Ergebnisvariablen für UaSA Step 1 und 2

No.	Variable	Dim.	Zone	Location	Output/plot variable in COCOSYS-AIM output file	Priority	Step 1	Step 2
7	CsI concentration on dry condenser	mol/m ²	JCDRY	dry conden- ser	AFP 'AEICOZ(CSI_PAINT,JDRY)'	3	x	х
8	I ₂ concentration on dry condenser	mol/m ²	JCDRY	dry conden- ser	AFP 'AEICOZ(I2_PAINT,JCDRY)'	3		х
9	I ₂ concentration on steel walls	mol/m ²	JC45	mid of vessel	AFP 'AEICOZ(FEI2,JC45)'	3		х
10	Fel ₂ concentration on steel walls	mol/m ²	JC45	mid of vessel	AFP 'AEICOZ(I2_STEEL,JC45)'	3		х
11	Fixed-I concentra- tion on steel walls	mol/m ³	JC45	mid of vessel	AFP 'AEICOZ(I2_FIXED,JC45)'	3		x
	lodine in Sump							
12	I ₂ concentration in sump	mol/l	JC9	sump	AFP 'AEICOS(I2,JC9)'	2	x	х
13	I ⁻ concentration in sump	mol/l	JC9	sump	AFP 'AEICOS(I-,JC9)'	2	x	х
14	HOI concentration in sump	mol/l	JC9	sump	AFP 'AEICOS(HOI,JC9)'	2		х
15	Ag mass in sump	mol	JC9	sump	AFP 'AEIMMS(AG,JC9)'	2	х	х
16	AgO _x mass in sump	mol	JC9	sump	AFP 'AEIMMS(AGOX,JC9)'	2	х	х
17	AgI mass in sump	mol	JC9	sump	AFP 'AEIMMS(AGI,JC9)'	2	х	х
18	Total iodine mass in sump	g	JC9	sump	AFP 'SUMIS(JC9)'	3		x
	Aerosol							
19	CsI aerosol con- centration	kg/m ³	C5	mid of vessel	AFP 'AECON(CSI,C5)'	2	x	х
20	CSI deposited on vertical walls	kg/m²	C5	mid of vessel	AFP 'DEARRY(CSI,VERT_WALLS, C5)'	3	x	x
21	Mass median di- ameter of total aer- osol	m	C5	mid of vessel	AFP 'DMM(C5)'	3	x	x
	Thermal hydraulics	1						
22	Gas temperature	°C	C5	mid of vessel	RALOC 'ZTEMP(GAS,C5)	3	х	х
23	Relative humidity	%	C5	mid of vessel	RALOC 'ZSATUR(GAS,C5)'	3	х	х
24	Gas velocity	m/s	Junction C5C7A	mid of vessel	ATMOS_JUN 'VELO(C5C7A)'	3	x	х
25	Sump water tem- perature	°C	C9	sump	RALOC 'ZTEMP(FLUID,C9)	3		х
26	Total pressure	bar	C5	mid of vessel	RALOC 'ZTOPRE(GAS,C5)'	3		х
27	Condensation rate on wet condenser	kg/s	Heat slab WALL10	wet conden- ser, lower part	RALOC 'HGCWAT(LEFT,WALL10)'	3		x
	Derived variable							
28	Maximum releasa- ble iodine	g	all		calculated	1		x

Die abgeleitete Ergebnisvariable Nr. 28 ist die maximal freisetzbare lodmenge I_{max} in Gramm. Sie berechnet sich aus den Konzentrationen der Spezies $I_2,$ CH₃I, IOx und der

CsI-Aerosolkonzentration in der Gasphase (Gl. 4-7). In der AIM-Rechnung wird generell nur die lodmasse bilanziert. Dies gilt auch für die Spezies CH₃I und IOx. Im CsI-Aerosol, das im Modul AERIKA berechnet wird, ist dagegen die Cs-Masse berücksichtigt.

$$I_{max} = V \left[I_2 \cdot M(I) \cdot 2 + CH_3 I \cdot M(I) + IOx \cdot M(I) + CsI \frac{M(I)}{M(Cs) + M(I)} \right] \quad \text{GI. 4-7}$$

M(I) und M(Cs) sind die molekularen Massen von Iod und Cäsium. V ist das Containment-Volumen.

4.7 Ergebnis des ersten Schritts der UaSA

Anhand der Angaben zu den unsicheren Parametern (Wahrscheinlichkeitsverteilungen und Abhängigkeiten) werden über Zufallsauswahl 208 alternative Vektoren von Parameterwerten gewonnen. Mit jedem dieser 208 Parametervektoren wird eine Rechnung mit COCOSYS-AIM durchgeführt. Die 208 Ergebnisdatensätze werden mit dem Programm SUSA für die in Tab. 4-6 aufgelisteten Ergebnisvariablen ausgewertet und die Ergebnisse graphisch dargestellt als

 alternative Verläufe aller 208 Rechnungen (Variationsrechnungen) und der Referenzrechnung

Die Ergebnisse der Sensitivitätsanalyse (Kapitel 4.1.2) zur Ermittlung der Rangfolge der einzelnen Parameterunsicherheiten zur Unsicherheit der jeweiligen Ergebnisvariablen umfassen die graphische Darstellung als

• zeitabhängige Sensitivitätsindizes (Rang-Korrelationskoeffizienten)

Von den 208 Rechenläufen bricht keiner ab, was auf eine gewisse numerische Robustheit von COCOSYS-AIM schließen lässt.

4.7.1 Iodquelltermrelevante Variable (UaSA, Schritt 1)

Die direkt für den lodquellterm relevanten Ergebnisvariablen sind die Konzentrationen von I₂, CH₃I, IOx und CsI in der Atmosphäre.

4.7.1.1 Molekulares lod im Gas

In Abb. 4-6 sind die 208 alternativen Verläufe und der Referenzlauf (rot) der $I_2(g)$ -Konzentration eingezeichnet. Die Ergebnisse streuen stark, vor allem in Richtung kleiner Konzentrationen. Die Streubreite aller Läufe zeigt maximale Abweichungen vom Referenzwert von (Faktoren 0,01 / 4,0). Die Abweichungen beginnen mit der Iod-Einspeisung und erstrecken sich über den ganzen Versuch.

Abb. 4-6 I₂-Konzentration im Gas, UaSA Schritt 1, Variationsläufe

Die Abb. 4-7 zeigt die gewonnenen Sensitivitätsindizes in Form des Rang-Korrelationskoeffizienten (RCC) für die $I_2(g)$ -Konzentration. In Tab. 4-7 sind die zugeordneten unsicheren Parameter und die Richtung des RCC angegeben. Ein positives Vorzeichen bedeutet, dass mit zu- oder abnehmenden Werten des unsicheren Parameters die Ergebnisgröße ebenfalls zu- oder abnimmt. Ein negatives Vorzeichen beteutet, dass sich diese Ausrichtung umdreht (siehe auch Kapitel 4.1.2)

Abb. 4-7 I₂ im Gas, UaSA Schritt 1, Sensitivitäten

Bei der Auswertung werden im Allgemeinen zwei Zeitabschnitte unterschieden (a) die Versuchsphasen vor dem Abwaschen bei ca. t = 2,5E5 s. Sie umfasst die Bündelzerstörung, die SP-Freisetzung und den Aerosolabbau und den ersten Teil der lodchemiephase mit relativ geringer lodkonzentration im Sumpf und (b) die lodchemiephase nach dem Abwaschen. In letzterer sind die lodkonzentration aber auch die Silber- und die Silberoxidkonzentration im Sumpf deutlich höher. In diesem zweiten Abschnitt haben daher die Reaktionen im Sumpf einen stärkeren Einfluss auf den Quellterm als im ersten Abschnitt.

Für zwei Sensitivitäten ist der Absolutwert mit RCC > 0,6 auffallend hoch:

- Par.-Nr. 16, die I₂-Einspeiserate und
- Par.-Nr. 26, die spezifische Oberfläche der Ag- bzw. AgOx-Partikel

Versuchs- teil	Parame- ter Nr. *	Unsicherer Parameter	RCC
Vor Abwa-	16	I ₂ -Einspeiserate	+
elliptischen Bodens	26	Spezifische Oberfläche der Silber- und Silberoxid- Partikeln im Sumpf, m²/g	-
(t = 0 bis 2,5E5 s)	65	Bildung von IOx(g) durch I ₂ /O ₃ -Reaktion	-
	73	I ₂ -Ablagerung auf trockene und nasse Farbe	-
	81	Radiolytische CH₃l Freisetzung aus physisorbier- tem lod auf Farbe	+
Nach Ab- waschen (t	26	Spezifische Oberfläche der Silber- und Silberoxid- Partikel im Sumpf, m²/g	-
> 2,5E5 s)	43	Radiolytische I ₂ -Bildung aus I ⁻ im Sumpf	+
	65	Bildung von IOx(g) durch I ₂ /O ₃ -Reaktion	-
	73	I ₂ Ablagerung auf trockene und nasse Farbe	-
*grau: RCC	> 0,6		

Tab. 4-7 Sensitivitäten der Ergebnisvariable I₂(g)-Konzentration

Die in der Tabelle dargestellten sensitiven Parameter werden nachfolgend diskutiert.

I₂-Einspeiserate (Parameter 16)

Die I_2 -Einspeiserate aus dem Circuit in das Containment hat von Beginn des Versuchs bis zum Abwaschen einen starken Einfluss auf die Unsicherheit von $I_2(g)$. Dieses Ergebnis überrascht, da bislang angenommen wurde, dass bereits kurz nach der Einspeisung die radiolytischen Prozesse im Sumpf die $I_2(g)$ -Konzentration bestimmen. Hier hat aber die Ungenauigkeit der Einspeiserate eine viel längere Wirkung auf die Ungenauigkeit des Iodquellterms (hier sind es 3 Tage) als erwartet.

Die zu Grunde liegende Wahrscheinlichkeitsverteilung für die I_2 -Einspeiserate enthält wegen der großen experimentellen Unsicherheit auch den Fall, dass überhaupt kein I_2 aus den Circuit in das Containment eingespeist wird (Kapitel 4.3.2.). Diese Annahme muss im Hinblick auf den langanhaltenden Einfluss der I_2 -Einspeiserate auf die quelltermrelevanten Ergebnisvariablen neu überdacht werden. Auch überdeckt der dominate Einfluss der unsicheren I_2 -Einspeiserate andere wichtige Einflüsse. Aus diesen Gründen werden für den Schritt 2 der UaSA die Unsicherheitsangaben der I_2 -Einspeiserate überarbeitet.

Spezifische Oberfläche der Ag- und AgOx-Partikel im Sumpf (Paramter 26)

Für die spezifische Silberoberfläche (S_{Ag}) ist RCC < 0. Das bedeutet, dass mit kleiner werdendem S_{Ag} die $I_2(g)$ -Konzentration im Containment ansteigt, da weniger lod mit Ag(w) im Sumpf reagiert und daher mehr I_2 in den Gasraum entweichen kann.

 S_{Ag} ist in der Zeit nach dem Abwaschen (t > 2,5E5 s) dominant und bestimmt die Unsicherheit von I₂(g) wesentlich. Durch das Abwaschen steigen die CsI-Menge und die Silbermenge im Sumpf stark an.

Die starke Abhängigkeit der $I_2(g)$ -Konzentration von S_{Ag} wird auch durch Parameterrechnungen mit COCOSYS-AIM zu PHEBUS FPT1 bestätigt. Die Größe der Silberpartikel wurde in PHEBUS nicht gemessen und die Abschätzungen schwanken stark (/KLE 10/ und /BOS 12/). Entsprechend weit wurde auch der Unsicherheitsbereich von S_{Ag} gewählt. In S_{Ag} ist implizit berücksichtigt, dass die Ag- und AgOx-Partikel schnell auf den Boden des Sumpfes sinken und S_{Ag} aus Geometriegründen und durch Agglomeration stark reduziert wird. In der ursprünglichen Wahrscheinlichkeitsverteilung sind diese Effekte nicht berücksichtigt. Anhand der neuen Ergebnisse scheint diese Annahme nicht mehr weiter gerechtfertigt. Die Quantifizierung der Unsicherheit von S_{Ag} wird daher im Schritt 2 der UaSA überarbeitet.

4.7.1.2 Organoiod im Gas

Für Organoiod (CH₃I) ist die Streuung der alternativen Konzentrationsverläufe (Abb. 4-8) qualitativ ähnlich wie für $I_2(g)$ und beträgt maximal (Faktoren 0,01 / 4,0). Das ist plausibel, da Organoiod vorwiegend aus auf Farbe abgelagertem I_2 gebildet wird. Das Ergebnis des Referenzlaufs wird öfter und stärker unterschätzt als überschätzt. Abb. 4-9 zeigt die Sensitivitätsindizes für die berechnete CH₃I-Konzentration und die entsprechenden unsicheren Eingabeparameter.

Abb. 4-8 CH₃I im Gas, UaSA Schritt 1, Variationsläufe

Abb. 4-9 CH₃I im Gas, UaSA Schritt 1, Sensitivitäten

80

Die I₂-Einspeiserate (Par. 16) hat vor dem Abwaschen, ähnlich wie für I₂(g), auch auf die Unsicherheit von $CH_3I(g)$ einen starken Einfluss. Gleiches gilt für S_{Ag} (Par. 26) nach dem Abwaschen. Dieser Zusammenhang ist plausibel, da CH_3I vorwiegend radiolytisch aus auf Farbe abgelagertem I₂ entsteht. Darüber hinaus tragen auch die unsicheren Parameter 73, 81 und 72 zur Unsicherheit der berechneten CH_3I -Konzentration stark bei.

Versuchs- phase	Para- meter Nr. *	Unsicherer Parameter	RCC
Vor Abwa- schen des	16	I ₂ -Einspeiserate	+
elliptischen	73	I ₂ -Ablagerung auf trockener und nasser Farbe	+
Bodens (t = 0 bis 2,5E5 s)	81	Radiolytische CH₃l-Freisetzung aus physisorbier- tem lod auf Farbe	+
Nach Ab- waschen (t	26	Spezifische Oberfläche der Silber- und Silberoxid- Partikel im Sumpf, m²/g	
> 2,5E5 \$)	72	Radiolytische CH₃I-Zersetzung	-
*grau: RCC	> 0,6		

Tab. 4-8	Sensitivitäten	der Ergebnisvariable	CH ₃ I-(g)-Konzentration
----------	----------------	----------------------	-------------------------------------

4.7.1.3 IOx-Aerosol im Gas

Für das feindisperse Aerosol IOx (AIM-intern auch als Iodat, $IO_3(g)$, bezeichnet) ist die Streuung der alternativen Konzentrationsverläufe (Abb. 4-10) ähnlich wie für $I_2(g)$ und CH₃I(g) und beträgt maximal (Faktoren 0,01 / 4,0). Dies ist plausibel, da IOx radiolytisch aus $I_2(g)$ gebildet wird. Abb. 4-11 zeigt die Sensitivitätsindizes für die berechnete CH₃I-Konzentration.

Abb. 4-10 IOx im Gas, UaSA Schritt 1, Variationsläufe

Abb. 4-11 IOx im Gas, UaSA Schritt 1, Sensitivitäten

Tab. 4-9 zeigt die für die Unsicherheit von IOx relevanten unsicheren Eingabeparameter. Die I₂-Einspeiserate (Par. 16) hat vor dem Abwaschen wie auf I₂(g) auch auf IOx einen starken Einfluss. Gleiches gilt für S_{Ag} (Par. 26) nach dem Abwaschen. IOx entsteht durch Oxidation von I₂ mit Ozon. In diese Reaktion gehen die Parameter 24 und 70 unmittelbar ein.

Versuchs- phase	Parame- ter Nr. *	Unsicherer Parameter	RCC
Bis Abwa-	16	I ₂ -Einspeiserate	+
liptischen Bodens	26	Spezifische Oberfläche von Silber- und Silber- oxid-Partikeln im Sumpf, m²/g	-
(t = 0 bis)	73	I ₂ -Ablagerung auf trockene und nasse Farbe	-
	81	Radiolytische CH₃l Freisetzung aus physisor- biertem Iod auf Farbe	+
Nach Abwa-	24	Dosisleistung in der Gasphase, kGy/h	+
2,5E5 s)	26	Spezifische Oberfläche der Silber- und Silber- oxid-Partikel im Sumpf, m²/g	-
	28	Massengemittelter Durchmesser der IO ₃ ⁻ - Pri- märpartikel, m	+
	43 Radiolytische I ₂ -Bildung aus I ⁻ im Sumpf		+
	70	O ₃ -Zersetzung an Stahloberflächen	
	73	I ₂ -Ablagerung auf trockene und nasse Farbe	-
* grau: IRCCI	$RCC > 0,\overline{6}$		

	• ··· ····		
Tab 4-9	Sensitivitäten	der Froebnisvariable	I()x(a)-Konzentration
100.10	Contractor	aor Ergobrilovariabio	

4.7.1.4 CsI-Aerosol im Gas

Die Streuung der alternativen Verläufe der berechneten CsI-Aerosolkonzentration ist erheblich geringer als jene der bisher diskutierten lodspezies in der Gasphase ($I_2(g)$, CH₃I(g) und IOx(g)). Abb. 4-12 zeigt die Ergebnisse der Variationsläufe. Bis zur Konzentration von 1,0E-7 kg/m³ beträgt die maximale Abweichung nur die Faktoren (0,5 / 2,0). Danach wird sie größer, doch trägt CsI dann nur noch unwesentlich zum Quellterm bei. In der Folge ist die IOx-Aerosolkonzentration deutlich höher.

Abb. 4-12 CsI-Aerosol, UaSA Schritt 1, Variationsläufe

Abb. 4-13 CsI-Aerosol, UaSA Schritt 1, Sensitivitäten

In Tab. 4-10 sind die unsicheren Eingabe- und Modellparameter mit dem größten Einfluss auf die Unsicherheit der CsI-Konzentration zusammengefasst. Die beiden Formfaktoren, die Grenzschichtdicke und die effektive Materialdichte sind Größen, die nicht direkt gemessen werden können und daher meist in Parameterrechnungen angepasst werden. Das Ergebnis überrascht daher nicht.

Die beiden Formfaktoren wurden bereits in einer früheren UaSA zu einer FIPLOC-Rechnung (Vorläufercode von COCOSYS) zum trockenen Aerosolverhalten im Versuch VANAM M2 als einflussreiche unsichere Parameter identifiziert /LAN 94/.

Tab. 4-10	Sensitivitäten der Ergebnisvariable CsI-Aerosolkonzentratio	'n
100.110		••

Versuchs- phase	Parame- ter Nr. *	Unsicherer Parameter	
Ganzer Ver-	17	Diffusionsgrenzschichtdicke	+
such	18	Effektive Aerosolmaterialdichte, kg/m ³	-
	20	Dynamischer Formfaktor	+
	21	Agglomerationsformfaktor	-
* grau: RCC >	> 0,6		

4.7.2 Weitere Variable (UaSA, Schritt 1)

Es wurden noch die folgenden Ergebnisvariablen analysiert:

- Molekulares lod im Sumpf, I₂(w)
- lodid im Sumpf, l⁻(w)
- Silberiodid im Sumpf, Agl(w)

Molekulares lod im Sumpf (Abb. 4-14, Abb. 4-15)

Die Streubreite der berechneten I₂(w)-Konzentration ist sehr groß (Abb. 4-14), vor allem unterhalb des Referenzlaufs. Dort erstreckt sich das Unsicherheitsband über bis zu 4 Größenordnungen. Über dem Referenzlauf beträgt die Unsicherheit maximal einen Faktor 1,5. Der wesentliche Einfluss kommt von Parameter 26, der spezifischen Oberfläche der Ag- und AgOx-Partikel. Einen geringeren Einfluss hat Parameter 33, der wasserseitige I₂-Massentransferkoeffizient.

UaSA of PHEBUS-FPT1 with COCOSYS-AIM (Step 1)

Abb. 4-14 I₂ im Sumpf, UaSA Schritt 1, Variationsläufe

Abb. 4-15 I₂ im Sumpf, UaSA Schritt 1, Sensitivitäten

lodid im Sumpf (Abb. 4-16, Abb. 4-17)

Die Streuung der alternativen Rechenergebnisse für $\Gamma(w)$ ist, ähnlich wie für $I_2(w)$, extrem groß und beträgt maximal 4 Größenordnungen. Nur unmittelbar nach der I_2 -Einspeisung und nach dem Abwaschen ist sie klein und nimmt dann kontinuierlich zu. Der Grund ist der Gleiche wie bereits für $I_2(w)$ beschrieben. Alle Verläufe liegen unterhalb des Referenzergebnisses, d. h. mit allen Parametervariationen werden nur kleinere $\Gamma(w)$ -Konzentrationen berechnet. Den größten Einfluss auf die Unsicherheit von $\Gamma(w)$ hat wieder Parameter 26, die spezifische Oberfläche der Silberpartikel, gefolgt von Parameter 33, dem wasserseitigen Massentransferkoeffizienten.

Abb. 4-16 I⁻ im Sumpf, UaSA Schritt 1, Variationsläufe

UaSA of PHEBUS-FPT1 with COCOSYS-AIM (Step 1) I- concentration in sump

Abb. 4-17 I⁻ im Sumpf, UaSA Schritt 1, Sensitivitäten

Silberiodid im Sumpf (Abb. 4-18, Abb. 4-19)

Die Streuung der alternativen Rechenergebnisse für AgI(w) ist außergewöhnlich. Alle Resultate der Variationsrechnung liegen mindestens einen Faktor 2 über dem des Referenzlaufs. Nach oben hin ist die AgI-Menge mit 2,2E-3 mol bzw. 6E-3 mol nach dem Abwaschen durch die gesamte zur Verfügung stehende lodmenge ($I^- + I_2$) im Sumpf begrenzt. In einige Rechnungen ist diese schon nach 4E4 s erreicht. In diesem Fall ist alles zur Verfügung stehendes lod in AgI umgesetzt. Den mit Abstand größten Einfluss auf die Unsicherheit von AgI(w) hat wieder Parameter 26, die spezifische Oberfläche der Silberpartikel. Es folgen Parameter 33, dem wasserseitigen Massentransferkoeffizienten, und die CsI-Einspeiserate (Parameter 9).

Abb. 4-18 Silberiodid im Sumpf, UaSA Schritt 1, Variationsläufe

Abb. 4-19 Silberiodid im Sumpf, UaSA Schritt 1, Sensitivitäten

Parame- ter Nr.	Unsicherer Parameter	Ergebnisvari- able *	RCC
9	CsI-Einspeiserate	Agl(w)	+
26	Spezifische Oberfläche von Silber- und	l ₂ (w)	-
	Silberoxid-Partikeln im Sumpf, m²/g	l⁻(w)	-
		Agl(w)	+
33	Wasserseitiger I ₂ -Massentransfer-	l ₂ (w)	-
	koeffizient	l⁻(w)	-
		Agl(w)	+
* grau: R	<i>CC</i> > 0,6		

Tab. 4-11 Sensitivitäten der Ergebnisvariablen $I_2(w)$, $I_2(w)$ und AgI(w)

4.7.3 Zusammenfassung und Konsequenz aus Schritt 1 der UaSA

In Tab. 4-12 sind alle identifizierten unsicheren Parameter, die eine Wirkung auf die für den Quellterm relevanten lodspezies haben, zusammengestellt. Die Ergebnisvariable CsI-Aerosol ist nicht aufgenommen, da seine Unsicherheit vergleichsweise gering ist. Ein unsicherer Parameter hat oft auf mehrere Ergebnisvariable Einfluss. Sehr ausgeprägt ist der Einfluss von **Parameter 26**, der spezifischen Oberfläche der Silberpartikel im Sumpf (S_{AG}). Von seiner Unsicherheit wird nicht nur die Unsicherheit von I₂(w), Γ (w) und AgI(w) im Sumpf, sondern auch die von I₂(g), CH₃I(g) und IOx(g) in der Gasphase stark beeinflusst. In der Referenzrechnung ist am Ende des Versuches ca. 1/5 des Iods als AgI gebunden. In vielen Variationsrechnungen ist dagegen das gesamte Iod bereits vorzeitig umgesetzt. Der Grund für diese beschleunigte AgI-Reaktion sind erheblich größere S_{Ag}-Werte als in der Referenzrechnung. Im zweiten Schritt der UaSA werden daher die Unsicherheitsangabe zum Parameter 26 (S_{Ag}) überarbeitet.

Auch **Parameter 16**, die I₂-Einspeiserate, zeigt einen starken Einfluss auf I₂(g), CH₃I(g) und IOx(g). Auffallend ist auch, dass die Unsicherheit der I₂-Einspeiserate einen langanhaltenden Einfluß auf die quelltermrelevanten Iod-Ergebnisvariablen hat. Dieser Einfluss reicht stets bis zur Washdown-Phase (Abb. 4-7 und Abb. 4-11) und im Fall von CH₃I(g) sogar bis an das Ende des Versuchs (Abb. 4-9). Bislang wurde davon

ausgegangen, dass das lodverhalten unter PHEBUS-Bedingungen bestenfalls in den ersten Stunden durch die I₂-Freisetzung aus dem Primärkreis bestimmt werden kann, dann aber von der I₂-Freisetzung aus dem Sumpf dominiert wird.

Überträgt man dieses neue Ergebnis auf Reaktorfälle, hat die I_2 -Freisetzung aus dem Primärkreislauf eine viel längere Wirkung auf den lodquellterm aus der Anlage als bisher vermutet. Der Genauigkeit der I_2 -Freisetzungsrate (in der Regel < 5% der gesamten lodfreisetzung) kommt daher nunmehr eine deutlich stärkere Bedeutung zu.

Wie im Kapitel 4.7.1.1 beschrieben, ist die Annahme einer geringen oder gar keiner I_2 -Freisetzung aus dem PHEBUS-Circuit im Hinblick auf das UaSA-Ergebnis (lang anhaltender Einfluss der I_2 -Einspeisung) ohne eine starke altenative I_2 -Quelle im Containment nicht länger zu rechtfertigen. Eine wirkungsvolle Quelle ist das am nassen Condenser radiolytisch gebildete I_2 (Abschnitt 4.3.2). Diese I_2 -Produktion ist aber mit den Modellen in COCOSYS-AIM derzeit nicht hinreichend genau zu beschreiben und stellt daher keine Modellalternative dar. Aus diesen Gründen wird im Schritt 2 der UaSA die Unsicherheit der I_2 -Einspeiserate überarbeitet.

Weiter haben die Parameter 73 (I_2 -Ablagerung auf trockener und nasser Farbe) und 81 (radiolytische I_2 -Bildung aus physisorbiertem Iod auf Farbe) einen deutlichen Einfluss auf die Unsicherheit die Iodspezies $I_2(g)$, $CH_3I(g)$ und IOx. Dieses Ergebnis ist nachvollziehbar und es besteht kein Grund, die Wahrscheinlichkeitsangaben für diese Parameter im Schritt 2 zu ändern.

Par. Nr.	Unsicherer Pa- rameter	Beeinflusste Er- gebnisvariable **	Modellteil	Anmerkungen
16	I ₂ -Einspeisung	l₂(g), CH₃l(g), IOx	AIM, Eingabe	
24	Dosisleistung im Gas	IOx	AIM, Eingabe	
28	Massengemittel- ter Durchmesser der IOx- Primärpartikel	IOx	AIM, Eingabe	
26	Spezifische Oberfläche der	I ₂ (g), CH ₃ I(g), IOx, I ₂ (w), I-(w), Ag(w),	AIM, Eingabe	lod/Silber-Reaktion im Sumpf

Tab. 4-12Unsichere Parameter mit Einfluss auf die quelltermrelevanten Spezies $I_2(g)$, RI(g), IOx (UaSA Schritt 1)

Par. Nr.	Unsicherer Pa- rameter	Beeinflusste Er- gebnisvariable **	Modellteil	Anmerkungen	
	Ag- und AgOx- Partikel im Sumpf	AgOx(w), AgI(w)			
43	Radiolytische l ₂ - Bildung aus l ⁻ im Sumpf	I₂(g) , I ₂ (w)	AIM, Reaktions- konstante	Radiolyse im Sumpf	
65	$IOx(g)$ -Bildung aus I_2 and O_3	l ₂ (g)	AIM, Reaktions- konstante	lodine/Ozon	
70	O₃-Zersetzung an Stahloberflä- chen	IOx	AIM, Reaktions- konstante	lodine/Ozon	
72	Radiolytische CH₃l- Zerset- zung	CH₃l(g)	AIM, Reaktions- konstante	Radiolyse im Gas	
73	I ₂ Ablagerung auf trockener und nasser Far- be	I₂(g), CH₃I(g), IOx , I₂(w)	AIM, Reaktions- konstante	Trockene und nasse I ₂ /Farbe-Reaktion	
81	Radiolytische CH₃l-Bildung aus physisor- biertem lod auf Farbe	l₂(g), CH₃l(g)	AIM, Reaktions- konstante	Radiolyse auf Farbe	
* grau: <i>RCC</i> > 0,6; ** fett direkt quelltermrelevante Variable					

4.7.4 Änderungen an den Unsicherheitsangaben für Schritt 2 der UaSA

Aus beschriebenen Gründen werden für den Schritt 2 der UaSA die Unsicherheitsangaben der beiden unsicheren Parameter geändert:

- I₂-Einspeisung, Parameter 16
- Spezifische Oberfläche der Silberpartikel, Parameter 26

Weiter wurden die Angaben zur Radiolyse im Sumpf modifiziert. Vier Reaktionen sind davon betroffen:

- Radiolytische I_2 -Bildung aus I^- im Sumpf, Parameter 43
- Rückreaktion zur radiolytischen I₂-Bildung aus I⁻ im Sumpf, Parameter 44
- Radiolytische I_2 -Bildung aus IO_3^- im Sumpf, Parameter 45

- Rückreaktion zur radiolytischen I_2 -Bildung aus IO_3^- im Sumpf, Parameter 46

Die geänderten Wahrscheinlichkeitsparameter sind in Tab. 4-4 bzw. in Tab. 4-5 eingetragen. Die Änderungen betreffen ausschließlich die angeführten Werte. Alle anderen Angaben werden aus Schritt 1 übernommen. Die Begründungen für diese Änderungen sind im Folgenden zusammengefasst.

I₂-Einspeisung (Parameter 16)

In PHEBUS FPT1 konnte kein I₂ in der Primärkreisleitung vor dem Eintritt ins Containment (Point G) gemessen werden. Für Containment-Rechnungen gibt es daher prinzipiell zwei Modellalternativen (a) Verwendung der Einspeiserate, die anhand des Containment-Inventars von IRSN abgeschätzt wurde. Das ist der herkömmliche Weg, der in fast allen Interpretationen von FPT1 und auch in der COCOSYS-AIM-Referenzrechnung verwendet wird. (b) Keine I₂-Einspeisung, dafür Berechnung der Freisetzung von radiolytisch gebildetem I₂ aus dem Wasserfilm am Condenser. Die Alternative (b) ist derzeit mit COCOSYS-AIM nicht möglich und sollte daher nicht, wie im Schritt 1 indirekt geschehen, in der Wahrscheinlichkeitsverteilung des Parameters 16 berücksichtigt werden.

Der Unsicherheitsbereich der I_2 -Einspeisrate wird daher im 2. Schritt der UaSA verringert. Es wird bezüglich der Herkunft des I_2 (circuit, wet condenser) nicht mehr unterschieden.

Spezifische Oberfläche der Silberpartikel (Parameter 26)

Im Schritt 1 der UaSA schloss die Unsicherheitsverteilung für den Parameter 26 den Default-Wert für das französische Iodmodell IODE ein. Dieser Wert (0,3 m²/g) ist wesentlich größer als der AIM-Wert (5,7E-3 m²/g). Es gibt für S_{Ag} generell keine Messungen. S_{Ag} kann daher nur vage abgeschätzt werden. Es hat aber einen starken Einfluss auf $I_2(w)$ und damit auf $I_2(g)$.

Die Default-Werte für AIM und IODE sind codespezifisch, da sie auf das jeweilige Modell abgestimmt sind. Es macht daher keinen Sinn, den S_{Ag} -Wert aus IODE auch in der Unsicherheit des Parameters 26 zu berücksichtigen. D. h. die Unsicherheitsverteilung von S_{Ag} wird im 2. Schritt entsprechend verringert.

Radiolytische I₂-Bildung aus I⁻ im Sumpf (Parameter 43 - 46)

Die AIM-Reaktion Nr. 20 (radiolytische I₂-Bildung aus I⁻) beschreibt die Hauptquelle von I₂ im Sumpf. Sie hängt unter anderem vom pH-Wert bzw. der Wasserstoffionenkonzentration H⁺ ab (H⁺)^{N20}. Die Unsicherheit des Exponenten N20 ist bislang nicht im Parameter 43 berücksichtigt.

N20 (und auch N29) wurde vor einigen Jahren von 0.5 auf 0.2 reduziert, da $I_2(g)$ im Internationalen Standardproblem ISP-41 Follow up/Phase2 mit AIM systematisch überschätzt wurde. Die Wirkung dieser Änderung auf die I_2 -Bildung ist vom pH-Wert abhängig. Die berechnete radiolytische Bildungsrate wird durch die oben genannte Änderung reduziert: bei pH = 6 um den Faktor 0,5, bei pH = 5 um den Faktor 0,25 und bei pH = 4 um den Faktor 0,125. Diese Modifikation erfolgte in der Version AIM F-1. Unklar ist, ob sie in AIM-3 wegen anderer Änderungen noch in vollem Umfang gerechtfertigt ist. Daher wird die Unsicherheit des Parameters 43 von loguniform (Faktoren 0,5 / 2,0) auf loguniform (Faktoren 0,25 / 4,0) vergrößert (Details s. Tab. 4-5).

Die Wahrscheinlichkeitsverteilungen der **Parameter 44, 45 und 46** werden aus dem gleichen Grund wie für Parameter 43 angepasst.

4.8 Ergebnis des zweiten Schritts der UaSA

Im Schritt 2 der UaSA wurden die Angaben von 6 der 93 unsicheren Parameter aus Schritt 1 wie beschrieben revidiert. Über Zufallsauswahl wurden wieder 208 alternative Vektoren von Parameterwerten gewonnen und damit je eine Rechnung mit COCOSYS-AIM durchgeführt. Drei der Läufe brachen wegen numerischer Probleme vorzeitig ab. Sie konnten nachgeholt werden, nachdem lediglich der maximale Systemzeitschritt (HMM) von 50 s auf 10 s reduziert wurde. Modelländerungen waren nicht erforderlich. Auch hier erwies sich COCOSYS-AIM-3 als numerisch robust.

Die 208 Ergebnisdatensätze enthalten die Resultate der in Tab. 4-6 (Schritt 2) aufgelisteten Ergebnisvariablen. Die Ergebnisse der Analyse sind wieder graphisch dargestellt als alternative Rechenergebnisse, zweiseitige statistische (95%/95%)-Toleranzgrenzen und zeitabgängige Sensitivitätsindizes.
4.8.1 Relevante Variablen für den lodquellterm

I₂(g), CH₃I(g), IOx(g) und CsI sind die für den Iodquellterm relevanten Ergebnisvariablen. Sie werden im Folgenden ausführlich diskutiert. Zusätzlich wurde die maximal freisetzbare Iodmenge (Variable 28), die in Kapitel 4.6 näher beschrieben ist, ausgewertet.

4.8.1.1 Molekulares lod im Gas

In Abb. 4-20 sind die 208 alternativen Verläufe der $I_2(g)$ -Konzentration mit dem Referenzlauf (rot) dargestellt. Die Streuung (Faktoren 0,17 / 5,0) ist jetzt, vor allem zu kleinen Werten hin, deutlich geringer als im Schritt 1 der UaSA, in dem sie (Faktoren 0,01 / 4,0) betrug. Siehe dazu auch Abb. 4-6. Wie die Toleranzgrenzen (Abb. 4-21) zeigen, streuen die Verläufe weitgehend symmetrisch um die Referenzkurve. Diese Veränderung ist im Wesentlichen auf die modifizierte Wahrscheinlichkeitsverteilung der Parameter 16 (I₂-Einspeisung) und 26 (Spez. Oberfläche der Silberpartikel) zurückzuführen. Die Abweichungen zum Referenzlauf treten unmittelbar nach der Einspeisung auf und bleiben dann bis zum Ende des Versuchs nahezu konstant, d. h. im Plot laufen die I₂-Konzentrationskurven parallel. Es stellt sich zwischen dem gasförmigen I₂, dem abgelagerten I₂ und dem im Sumpf gelösten I₂ ein Konzentrations-Gleichgewicht ein.

Abb. 4-20 I₂-Konzentration im Gas, UaSA Schritt 2, Variationsläufe

Abb. 4-21 I₂-Konzentration im Gas, UaSA Schritt 2, Toleranzgrenzen

Die Abb. 4-22 zeigt die berechneten Sensitivitätsindizes in Form des Rang-Korrelationskoeffizienten (RCC) für die $I_2(g)$ -Konzentration.

In Tab. 4-13 sind die den Sensitivitätsindizes zugeordneten unsicheren Parameter und die Richtung des RCC angegeben. Die größten Absolutbeträge des RCC haben Parameter 43 (radiolytische Bildung von I₂ aus I⁻ im Sumpf) und 73 (I₂-Ablagerung auf trockener und nasser Farbe). Beide Resultate sind plausibel. Für Parameter 43 wurde die Unsicherheit im Schritt 2 der UaSA vergrößert (Kapitel 4.7.4). Der Einfluss der Unsicherheit von Parameter 43 steigt im Verlauf des Tests allmählich an, da die Konzentration des eingespeisten (und nicht radiolytisch gebildeten) I₂ durch Ablagerung und andere Reaktionen zurückgeht. Parameter 73 ist während der Einspeisung und bis etwa t = 1,5E5 s sowie nach dem Abwaschen relevant, also zu jenen Zeiten, in denen in Sumpf und in der Gasphase die I₂-Konzentration erhöht ist.

Der Parameter 33 (wasserseitiger I₂-Massentransferkoeffizient) beschreibt die Geschwindigkeit, mit der I₂ aus dem Wasser in die Gasphase übergeht und umgekehrt. Parameter 65 (Bildung von IOx durch I₂/O₃-Reaktion) beschreibt die Oxidation von I₂(g) zu IOx. Mit zunehmender Reaktionsgeschwindigkeit sinkt die I₂(g)-Konzentration (Parameter 65). Der positive RCC für den Parameter 81 (radiolytische CH₃I-Freisetzung aus physisorbiertem Iod auf Farbe) unmittelbar nach der Einspeisung lässt sich wie folgt erklären. Bei trockenen Verhältnissen erhöht eine schnelle CH₃I-Freisetzung aus der Farbe die Menge an CH₃I im Gas. Über eine radiolytische Reaktion (Tang und Castleman) entsteht aus CH₃I wieder I₂. Der RCC ist daher positiv. Bei nassen Verhältnissen ist die Situation ähnlich, nur wird zusätzlich physisorbiertes I₂ von der Wand in den Sumpf abgewaschen.

Abb. 4-22 I₂-Konzentration im Gas, UaSA Schritt 2, Sensitivitäten

Tah 1-13	Sonsitivitäton	der Ergebnisvaria	able I. (a)-Konzentra	tion 112SA Schritt 2
1au. 4-13	Sensitivitaten		able 12(y)-Nonzenita	1000, 000 Summer 2

Versuchs- teil	Parame- ter Nr. *	Unsicherer Parameter	RCC
Vor Abwa- schen des elliptischen Bodens (t = 0 bis 2,5E5 s)	33	Wasserseitiger I2-Massentransferkoeffizient	
	43	Radiolytische I ₂ -Bildung aus I ⁻ im Sumpf	
	65	Bildung von IOx durch I ₂ /O ₃ -Reaktion	-
	73	I ₂ Ablagerung auf trockene und nasse Farbe	-
	81	Radiolytische CH ₃ I Freisetzung aus physisorbier- tem lod auf Farbe	+

Versuchs- teil	Parame- ter Nr. *	Unsicherer Parameter	RCC			
Nach Ab- waschen (t > 2,5E5 s)	33	Wasserseitiger I2-Massentransferkoeffizient	+			
	43	Radiolytische I ₂ -Bildung aus I ⁻ im Sumpf	+			
	73	I ₂ Ablagerung auf trockener und nasse Farbe	-			
* grau: IRCC	* grau: RCC > 0,6					

4.8.1.2 Organoiod im Gas

Die alternativen Verläufe der berechneten CH₃I-Konzentration in der Gasphase streuen etwas weiter als die für I₂(g) (Abb. 4-23). Die Toleranzgrenzen (Abb. 4-24) haben vor dem Abwaschen des elliptischen Bodens eine maximale Abweichung von (Faktoren 0,17 / 20) und danach (Faktoren 0,14 / 7,0) von der Referenzkurve. Wie bei der I₂(g)-Konzentration verläuft die Mehrzahl der Kurven parallel, was auf einen geringen oder gar keinen Abbau hinweist. Nur etwa 15 Ergebniskurven zeigen nach der Iod-Einspeisung einen starken CH₃I Abbau. Dieser ist offensichtlich die Folge von radiolytischer Zersetzung. Diese Reaktion ist die einzige in AIM-3 modellierte CH₃I-Abbaureaktion.

Abb. 4-25 zeigt die sensitiven Parameter von CH₃I(g). Am Anfang des Versuches und nach dem Abwaschen ist Parameter 81, das ist die radiolytische CH₃I-Freisetzung aus physisorbiertem Iod auf Farbe, dominant, da die Dosisleistung hoch ist und daher am farbbeschichteten Condenser viel CH₃I radiolytisch entsteht. Eine Vergrößerung der radiolytischen I₂-Bildung aus I⁻ im Sumpf und die I₂-Ablagerung auf trockener und nasser Farbe (Parameter 43 und 73) führen zu einem Anstieg der abgelagerten I₂-Menge und damit der CH₃I-Konzentration. Durch die radiolytische Zersetzung von CH₃I verringert sich die CH₃I-Konzentration (Parameter 72).

UaSA of PHEBUS-FPT1 with COCOSYS-AIM (Step 2)

Abb. 4-24 CH₃I-Konzentration im Gas, UaSA Schritt 2, Toleranzgrenzen

UaSA of PHEBUS-FPT1 with COCOSYS-AIM (Step 2) $\rm CH_3I$ concentration in gas

Abb. 4-25 CH₃I-Konzentration im Gas, UaSA Schritt 2, Sensitivitäten

Tab. 4-14 Sensitivitäten der Ergebnisvariable CH₃I(g)-Konzentration, UaSA Schritt 2

Versuchs- teil	Parame- ter Nr. *	Unsicherer Parameter	RCC
Vor und nach Ab- waschen des ellipti- schen Bo- dens	43	Radiolytische I ₂ -Bildung aus I ⁻ im Sumpf	+
	72	Radiolytische Zersetzung von CH ₃ I im Gas	-
	73	I ₂ -Ablagerung auf trockener und nasser Farbe	+
	81	Radiolytische CH₃I-Freisetzung aus physisorbier- tem lod auf Farbe	+
* grau: RCC	> 0,6		

4.8.1.3 IOx-Aerosol und Ozon im Gas

Die 208 alternativen Verläufe der IOx-Konzentration und die Toleranzgrenzen sind in Abb. 4-26 und Abb. 4-27 wiedergegeben. Das Toleranzband um den Referenzlauf ist nach oben hin schmäler als nach unten (Faktoren 0,1 / 5). Die Sensitivitäten (Abb. 4-28) sind in Tab. 4-15 zusammengefasst.

UaSA of PHEBUS-FPT1 with COCOSYS-AIM (Step 2) 209 selected run(s) of consequence no. 3 1e-081e-091e-101e-101e-111e-111e-121e-121e+05 2e+05 3e+05 4e+05

Abb. 4-27 IOx-Konzentration im Gas, UaSA Schritt 2, Toleranzgrenzen

UaSA of PHEBUS-FPT1 with COCOSYS-AIM (Step 2) IOx concentration in gas

IOx-Konzentration im Gas, UaSA Schritt 2, Sensitivitäten Abb. 4-28

IOx wird mit Ozon aus I₂(g) gebildet. Dies erklärt den starken Einfluss der Parameter 43 (wasserseitiger I2-Massentransferkoeffizient) und 70 (O3 Zersetzung an Stahloberflächen) auf die Unsicherheit der berechneten IOx-Konzentration. Plausibel ist auch der negative RCC für Parameter 73 (I₂ Ablagerung auf trockener und nasser Farbe). Das positive RCC-Vorzeichen von Parameter 81 (radiolytische CH₃I Freisetzung aus physisorbiertem lod auf Farbe) lässt sich analog zu l₂(g) in Kapitel 4.8.1.1 erklären. Über die Tang/Castleman-Reaktion entsteht aus CH₃I radiolytisch I₂(g) und daraus weiter IOx.

Die Streuung der alternativen Ergebnisse der Ozon-Konzentration (Abb. 4-29 und Abb. 4-30) ist mit (Faktoren 0,5 / 2.0) vergleichsweise eng. In Abb. 4-31 und Tab. 4-15 sind die Sensitivitäten dargestellt bzw. die Ergebnisse zusammengefasst. Parameter 70 (O₃-Zersetzung an Stahloberflächen) hat den stärksten Einfluss auf die Unsicherheit der berechneten O₃-Konzentration. Mit zunehmender Zersetzung sinkt die O₃-Konzentration (Tab. 4-15). Auch die Auswirkung der Unsicherheit der anderen drei Parameter 24 (Dosisleistung im Gas; pos. RCC), 67 (radiolytische O₃-Bildung; pos. RCC) und 68 (radiolytische O₃-Zersetzung; neg. RCC) auf die O₃-Konzentration ist plausibel.

Abb. 4-30 O₃-Konzentration im Gas, UaSA Schritt 2, Toleranzgrenzen

UaSA of PHEBUS-FPT1 with COCOSYS-AIM (Step 2) $\rm O_3$ concentration in gas

Abb. 4-31 O₃-Konzentration im Gas, UaSA Schritt 2, Sensitivitäten

Tab. 4-15 Sensitivitäten der Ergebnisvariablen IOx-Konzentration und O₃(g)-Konzentration, UaSA Schritt 2

Ergebnis- variable	Parame- ter Nr. *	Unsicherer Parameter	RCC
IOx-	17	Diffusionsgrenzschichtdicke	+
Konzentra- tion	43	Radiolytische I ₂ -Bildung aus I ⁻ im Sumpf	+
	70	O ₃ -Zersetzung an Stahloberflächen	-
	73	I ₂ -Ablagerung auf trockener und nasser Farbe	-
	81	Radiolytische CH₃I-Freisetzung aus physisorbier- tem lod auf Farbe	+
O ₃ -	24	Dosisleistung im Gas	+
tion	67	Radiolytische O ₃ -Bildung	+
	68	Radiolytische O ₃ -Zersetzung	-
	70	O ₃ -Zersetzung an Stahloberflächen	-
* grau: RCC	> 0,6		•

4.8.1.4 CsI-Aerosol und MMD im Gas

Die alternativen Verläufe der CsI-Konzentration sind in Abb. 4-32 und die Sensitivitäten in Abb. 4-33 dargestellt.

Das Unsicherheitsband der berechneten CsI-Aerosolkonzentration ist, verglichen mit jenen der lodvariablen, eng und asymmetrisch um den Referenzverlauf (Faktoren 0,5 / 1,7). Zu berücksichtigen ist, dass CsI-Konzentrationen < 1E-7 kg/m³ nur unwesentlich zum lodquellterm beitragen. Der massengemittelte Partikeldurchmesser (MMD) des gesamten Aerosols nimmt ab diesem Zeitpunkt ab (Abb. 7-1 im Anhang).

Die Parameter 18 (effektive Aerosolmaterialdichte) und 21 (Agglomerationsformfaktor der Partikel) haben den stärksten Einfluss auf die Unsicherheit der CsI-Aerosolkonzentration (Tab. 4-16). Die Materialdichte beeinflusst die Sedimentationsgeschwindigkeit und damit die Konzentration des luftgetragenen CsI. Der Agglomerations- und der dynamische Formfaktor beeinflussen das Partikelwachstum und damit auch Sedimentationsgeschwindigkeit und CsI-Konzentration. In der zweiten Versuchshälfte gewinnt zunehmend Parameter 17 (Diffusionsgrenzschichtdicke) an Bedeutung, doch ist die CsI-Konzentration bereits verschwindend niedrig.

Die Sensitivitäten des massengemittelten Durchmessers für das gesamte Aerosol sind in Abb. 7-2 dargestellt und in Tab. 4-16 zusammengefasst. Der MMD des gebildeten IOx-Primäraerosols (Parameter 28) bestimmt in der zweiten Versuchshälfte den MMD des gesamten Aerosols. Die eingegebene Aerosolmaterialdichte (Parameter 18) hat vor allem auf die Sedimentationsgeschwindigkeit Einfluss. In einem polydispersen Aerosol werden die großen Partikel schneller als die kleinen abgelagert. Dadurch verschiebt sich die Partikelgrößenverteilung zu kleineren Partikeln hin und der MMD wird kleiner. Bei einer hohen Materialdichte erfolgt die Verschiebung der Verteilung schneller als bei einer niedrigen. Dies erklärt den negativen Rang-Korrelationskoeffizienten für die Materialdichte (Parameter 18).

Abb. 4-32 CsI-Aerosolkonzentration im Gas, UaSA Schritt 2, Variationsläufe

Abb. 4-33 CsI-Aerosolkonzentration im Gas, UaSA Schritt 2, Sensitivitäten

Tab. 4-16Sensitivitäten der Ergebnisvariable CsI-Aerosolkonzentration und mittlererPartikeldurchmesser des gesamten Aerosols, UaSA Schritt 2

Ergebnis- variable	Parame- ter Nr. *	Unsicherer Parameter	RCC
Csl-	17	Diffusionsgrenzschichtdicke	+
tion	18	Effektive Aerosolmaterialdichte	-
	20	Dynamischer Formfaktor der Partikel	+
	21	Agglomerationsformfaktor der Partikel	-
MMD des gesamten Aerosols	18	Effektive Aerosolmaterialdichte	+
	28	Massengemittelter Durchmesser der IOx Primär- partikel	+
* grau: RCC	> 0,6		

4.8.1.5 Maximal freisetzbare lodmenge

Die maximal freisetzbare lodmenge aus dem Containment an die Umgebung (I_{max}) setzt sich aus den flüchtigen lodspezies I_2 und RI, dem feindispersen Aerosol IOx und dem Aerosol CsI zusammen. I_{max} stellt quasi den maximal möglichen lodquellterm aus der Anlage dar, der natürlich rein theoretisch ist, da das PHEBUS-Containment dicht war. Abb. 4-34 zeigt die alternativen Resultate um den Referenzlauf. Am ersten Tag bis ca. t = 8E4 s setzt sich I_{max} praktisch nur aus CsI zusammen. Der höchste Wert beträgt 0,4 g lod, etwa die Hälfte der insgesamt ins Containment freigesetzten Menge (0,72 g). Erst später, wenn sich das CsI-Aerosol weitgehend abgelagert hat, wird I_{max} aus I_2 , CH₃I und IOx gebildet. I_{max} ist jetzt mit Werten um 1 mg deutlich niedriger.

Abb. 4-34 Maximal freisetzbare lodmenge, UaSA Schritt 2, Variationsläufe

Die zweiseitigen statistischen (95%,95%)-Toleranzgrenzen für I_{max} sind in Abb. 4-35 dargestellt. Die Unsicherheit es Ergebnisses ist stark von der Zeit abhängig. Am ersten Tag ist nur das CsI-Aerosol relevant. Die Rechenergebnisse weisen eine geringe und asymmetrische Streuung auf. Bei t = 2E4 s (5,5 h) beträgt sie (Faktoren 0,3 / 1,3). Nach dem Übergang zu den anderen lodspezies wird die Streuung von I_{max} erheblich größer. Bei 2E5 s (55 h) beträgt sie (Faktoren 0,14 / 3,5). Nach dem Abwaschen des elliptischen Bodens ändern sich die Toleranzgrenzen etwas. Sie liegen bei t = 3,2E5 s (89 h) mit (Faktoren 0,16 / 5,3) um den Referenzwert.

Abb. 4-35 Maximal freisetzbare lodmenge, UaSA Schritt 2, Toleranzgrenzen

In Abb. 4-36 sind die Sensitivitätsindizes für die maximal freisetzbare lodmenge dargestellt und in Tab. 4-17 sind die wichtigsten unsicheren Parameter und das Vorzeichen des Rang-Korrelationskoeffizienten (RRC) aufgelistet. In der sogenannten Aerosolphase haben naturgemäß unsichere Parameter der Aerosolrechnung den stärksten Einfluss auf die Unsicherheit der maximal freisetzbaren lodmasse. Es sind dies der dynamische Formfaktor (Parameter 20) und der Agglomerationsformfaktor (Parameter 21). Ein steigender dynamischer Formfaktor reduziert die Sedimentationsgeschwindigkeit und verstärkt I_{max}, der RCC ist daher positiv. Ein steigender Agglomerationsformfaktor bzw. eine steigende Kollisionseffizienz (Parameter 22) verstärken die Agglomeration und damit die Sedimentation der Partikel, I_{max} wird reduziert. Am Anfang der Aerosolphase haben auch die Unsicherheiten der Einspeiserate (Parameter 9), der mittleren Partikelgröße des eingespeisten Aerosols (Parameter 10) und der Diffusionsgrenzschichtdicke (Parameter 18) vorübergehend Einfluss auf I_{max}.

In der Phase des flüchtigen lods hat vor allem die Unsicherheit von Parameter 43, (radiolytische I₂-Bildung aus I⁻ im Sumpf) Einfluss auf die Unsicherheit von I_{max}. Das im Sumpf gebildete I₂ gelangt über Massentransfer in die Gasphase und erhöht I_{max}. Der I₂-Massentransfer wird in AIM durch das sogenannte 2-Film-Modell mit dem wasserseitigen I₂-Massentranferkoeffizienten (Parameter 33) beschrieben, der auch einen Einfluss auf I_{max} hat. Gleiches gilt für die I₂-Einspeiserate aus dem Circuit (Parameter 16), die bis zur Mitte des Versuches (t = 2E5 s) Einfluss auf I_{max} hat. Wie bereits erwähnt, ist die lange Dauer des Einflusses erstaunlich, umso mehr als im Schritt 2 der UaSA die Unsicherheitsverteilung der Einspeiserate aus Schritt 1 reduziert wurde.

Mit dem Abwaschen des elliptischen Bodens ändern sich die Sensitivitäten von I_{max} wenig. Die I₂-Einspeiserate spielt keine Rolle mehr, stattdessen gewinnt Parameter 64, die I₂(w)-Konversion zu I⁻(w) an der Stahloberfläche im Sumpf, an Bedeutung. Mit verstärkter Konversionsgeschwindigkeit nimmt I₂(g) und damit I₂ in der Gasphase und I_{max} ab, der RCC ist daher negativ. In einer realen Anlage mit Druckwasserreaktoren (DWR) sind nur kleine Stahlflächen in Kontakt mit dem Reaktorsumpf, da er im Wesentlichen durch mit Farbe bestrichene Betonstrukturen begrenzt ist. Die Unsicherheit der Konversionsgeschwindigkeit an Stahl spielt daher in DWR-Analysen von schweren Störfällen keine Rolle. Sie kann aber in Störfallrechnungen für Siedewasserreaktoren von Bedeutung sein, da deren Druckabbausystem große Stahloberflächen enthält. Im Sumpf eines DWR kann aber die Iod/Farbe-Reaktion eine Rolle spielen, die im Vesuch FPT1 nicht entsprechend vorkam, da nur ein relativ kleiner Farbcoupon (0,18 m²) installiert war.

Abb. 4-36 Maximal freisetzbare lodmenge, UaSA Schritt 2, Sensitivitäten

Tab. 4-17Sensitivitäten der Ergebnisvariable "Maximal freisetzbare lodmenge", Ua-
SA Schritt 2

Versuchsteil	Param. Nr. *	Unsicherer Parameter	RCC
Aerosolphase	9 **	CsI-Einspeiserate	+
(t = 0 bis 5E4 s)	10	Massengemittelter Partikeldurchmesser des CsI-Aerosols	-
	18	Diffusionsgrenzschichtdicke	-
	20	Dynamischer Formfaktor der Aerosolpartikel	+
	21	Agglomerationsformfaktor der Aerosolparti- kel	-
	22	Kollisionseffizienz der Partikel	-
	81	Radiolytische CH ₃ I Freisetzung aus phy- sisorbiertem lod auf Farbe in der Gasphase	+
Phase des flüchti-	16	I ₂ -Einspeiserate	+
gen lods vor Abwa-	33	Wasserseitiger I ₂ -Massentransferkoeffizient	+
Schen des eiliptischen	43	Radiolytische I ₂ -Bildung aus I ⁻ im Sumpf	+
(t = 5E4 bis 2,5E5 s)	81	Radiolytische CH ₃ I Freisetzung aus phy- sisorbiertem lod auf Farbe in der Gasphase	+
Phase des flüchti-	33	Wasserseitiger I2-Massentransferkoeffizient	+
gen lods nach Ab-	43	Radiolytische I ₂ -Bildung aus I ⁻ im Sumpf	+
waschen (l > 2,5E5 S)	64	I ₂ (w)-Konversion zu I ⁻ (w) an der Stahlober- fläche	-
	81	Radiolytische CH ₃ I Freisetzung aus phy- sisorbiertem lod auf Farbe in der Gasphase	+
* grau: <i>RCC</i> > 0,6; **	nur kurz z	u Versuchsbeginn einflussreich	

4.8.2 Weitere lodvariablen

Im Mittelpunkt der Auswertung stehen quelltermrelevante Iod-Ergebnisvariablen. Dennoch sind auch die Ergebnisse der abgelagerten und im Sumpf gelösten Iodspezies für die Modellentwicklung von Interesse. Abgelagertes und gelöstes Iod beeinflusst die Konzentration von flüchtigem Iod in der Gasphase über verschiedene Reaktionen. Es werden daher auch die folgenden Ergebnisvariablen analysiert:

- Abgelagerte lodspezies Csl und I₂ am trockenen und nassen Teil des farbbeschichteten Condensers
- Abgelagerte lodspezies I₂ und FeI₂ an den Stahlwänden des Behälters
- Csl an den vertikalen Behälterwänden
- Gelöste lodspezies I₂, I⁻, HOI im Sumpf

- Ungelöste Spezies Ag, AgOx, AgI und das Gesamtiod im Sumpf

Aus Gründen der Übersichtlichkeit sind alle Abbildungen zu diesen Ergebnisvariablen im Kapitel 7 "Weitere Abbildungen" am Ende des Berichts wiedergegeben.

4.8.2.1 Iod am Condenser

Das CsI-Aerosol wird in FPT1 durch Diffusiophorese in der kurzen Phase mit Wandkondensation am nassen Condenser abgelagert. Am trockenen Condenser erfolgt die Ablagerung durch Brown'sche Diffusion. Die trocken abgelagerte CsI-Menge beträgt nur etwa 2 % der nass abgelagerten Menge. Die Aerosolablagerungen werden in COCOSYS mit dem Aerosolmodell AERIKA gerechnet.

Die Unsicherheit der CsI-Konzentration am nassen Condenser beträgt vor dem Abwaschen bei t = 2,5E5 s maximal (Faktoren 0,05 / 4,0) und ist nach dem Abwaschen extrem breit (Faktoren < 0,01 / 20), (Abb. 7-3). Am trockenen Teil ist das Unsicherheitsband dagegen unterhalb der Referenzrechnung enger (Faktoren 0,4 / 5.0) (Abb. 7-5).

Der Parameter mit dem weitaus größten Einfluss auf die Unsicherheit der berechneten CsI-Konzentration am nassen Condenser ist die mittlere Wasserfilmdicke (Parameter 23), (Abb. 7-4 und Tab. 4-18). Mit abnehmender Dicke nimmt auch die abgelagerte (gelöste) CsI-Menge ab. Für die Ablagerung am trockenen Condenser ist der weitaus relevanteste Parameter die Diffusionsgrenzschichtdicke (Parameter 17), (Abb. 7-6). Eine Reduktion verstärkt die Ablagerung durch Diffusion, der RCC ist negativ. Diffusion ist auf trockenen vertikalen Wänden oder an der Decke der einzige wirksame Aerosol-Ablagerungsmechanismus.

Die Unsicherheit der I_2 -Konzentration am nassen Condenser beträgt vor dem Abwaschen maximal (Faktoren < 0,001 / 7,0) und nach dem Abwaschen (Faktoren 0,02 / 7,0), (Abb. 7-7). Am trockenen Teil ist das Unsicherheitsband sehr ähnlich (Abb. 7-9), da die Ablagerungsgeschwindigkeit auf trockener and nasser Farbe gleich groß ist und abgelagertes I_2 nur für kurze Zeit abgewaschen wird.

Die Parameter mit dem größten Einfluss auf die Unsicherheit der berechneten abgelagerte I₂-Menge am nassen und trockenen Condenser sind die gleichen (Abb. 7-8, Abb. 7-10 und Tab. 4-18). Es sind die radiolytische I₂-Bildung aus I⁻ im Sumpf (Parameter 43), die I₂-Ablagerung auf trockener und nasser Farbe (Parameter 73) und die radiolytische CH₃I-Freisetzung aus physisorbiertem Iod auf Farbe (Parameter 81). Der Zusammenhang der ersten beiden Parameter mit der abgelagerten I₂-Menge ist naheliegend. Beim Prozess der CH₃I-Freisetzung ist der Vorgang komplexer. Abgelagertes I₂ steht gewöhnlich mit dem luftgetragenen im Gleichgewicht. Wird abgelagertes I₂ durch die Reaktion mit organischem Material "verbraucht", steht insgesamt weniger I₂ zur Verfügung und auch die Menge des abgelagerten I₂ geht zurück.

Tab. 4-18	Sensitivitäten der Ergebnisvariablen CsI und I_2 am nassen und trockenen
	Condenser, UaSA Schritt 2

Ergebnisvariable	Parame- ter Nr. *	Unsicherer Parameter	RCC
CsI-Konzentration	23	Mittlere Wasserfilmdicke	+
denser	53	Hydrolyse von CH ₃ I durch H ₂ O	+
CsI-Konzentration am trockenen	17	Diffusionsgrenzschichtdicke	-
Condenser	21	Agglomerationsformfaktor	-
I ₂ -Konzentration am nassen Con- denser	43	Radiolytische I ₂ -Bildung aus I ⁻ im Sumpf	+
	73	I ₂₋ Ablagerung auf trockene und nasse Farbe	+
	81	Radiolytische CH₃l Freisetzung aus phy- sisorbiertem lod auf Farbe	-
I ₂ -Konzentration	43	Radiolytische I ₂ -Bildung aus I ⁻ im Sumpf	+
Condenser	73	l ₂ -Ablagerung auf trockener und nasser Farbe	+
	81	Radiolytische CH ₃ I-Freisetzung aus phy- sisorbiertem lod auf Farbe	-
* grau: RCC > 0,6			

4.8.2.1.1 I₂, FeI₂ und fixed-I an der Stahlwand und CsI-Aerosol an vertikalen Wänden

Die alternativen Verläufe des adsorbierten molekularen lods auf Stahl, $I_2(ads,st)$, streuen mit (Faktoren 0,12 / 8,0) um den Referenzwert (Abb. 7-11). Die Breite der Streuung ist vor und nach dem Abwaschen des elliptischen Bodens ähnlich. Die Verteilung der alternativen Ergebniskurven für Fel₂ auf Stahl ist dagegen oberhalb des Referenzverlaufs deutlich breiter als darunter (Faktoren 0,5 / 30), (Abb. 7-13). Eine ähnliche asymmetrische Verteilung um den Referenzwert bilden die fixed-I-Resultate (Faktoren 0.3 / 10). Fixed-I kann nicht abgebaut, sondern nur aufgebaut werden. Die fixed-I-Konzentration am Stahl steigt daher kontinuierlich an.

Die Unsicherheit von $I_2(ads,st)$ wird vor allem durch die unsicheren Parameter Ablagerungs- und Resuspensionsrate von I_2 auf Stahl (Parameter 84 und 85) hervorgerufen, wobei letztere einen stärkeren Einfluss hat. Weiter spielt bei der Berechnung von $I_2(ads,st)$ die I_2 -Konzentration im Gas eine Rolle, die von der radiolytischen I_2 -Bildung im Sumpf aufgebaut (Parameter 43) wird und bei der IOx-Bildung (Parameter 65) abgebaut wird (Abb. 7-12, Tab. 4-19).

Die zur Verfügung stehende Menge an reaktionsfähigem Eisen auf der Stahloberfläche (Parameter 30) hat den größten Einfluss auf die Unsicherheit der Fel₂ und fixed-I-Konzentration. Durch Verschmutzung, Rost etc. können Teile der Oberfläche passiviert werden. Diese stehen dann für Chemisorption nicht mehr zur Verfügung. Für fixed-I ist zusätzlich der Parameter 89, das ist die Reaktion von Fel₂ mit Luftsauerstoff, von Bedeutung (Abb. 7-14, Abb. 7-16, Tab. 4-19).

Die Aerosolablagerung an vertikalen Wänden erfolgt im trockenen Fall nur durch Diffusion. Die Unsicherheit der Diffusionsgrenzschichtdicke (Parameter 17) hat daher den größten Einfluss auf die Unsicherheit der berechneten Ablagerung (Tab. 4-19). Dazu kommt der Agglomerationsformfaktor, der Einfluss auf die Partikelgrößenverteilung und damit auf den Anteil kleiner Partikel hat (vgl. Tab. 4-10). Durch Diffusion werden vor allem kleine Partikel (Abb. 7-18, Tab. 4-19) abgelagert.

Ergebnisvariable	Parame- ter Nr. *	Unsicherer Parameter	RCC
I ₂ -Konzentration	43	Radiolytische I ₂ -Bildung aus I ⁻ im Sumpf	+
am Stani	65	IOx-Bildung aus $I_2(g)$ and O_3	-
	84	I ₂ -Ablagerung auf trockenem Stahl	+
	85	I ₂ -Resuspension von trockenem Stahl	-
Fel ₂ -Konzentration am Stahl	30	Zur Chemisorption verfügbare Stahlmenge an der Oberfläche	+
Fixed-I-	30	Zur Chemisorption verfügbare Stahlmenge an der Oberfläche	+

Tab. 4-19Sensitivitäten der Ergebnisvariablen I2-, FeI2-, fixed-I und CsI-Ablagerungauf Stahlwänden

Ergebnisvariable	Parame- ter Nr. *	Unsicherer Parameter	RCC
Konzentration am Stahl	89	Reaktion von chemisorbiertem I_2 zu physisorbiertem I_2 und fixed-I	+
Csl-	21	Agglomerationsformfaktor	-
tion an vertikalen Wänden	17	Diffusionsgrenzschichtdicke	-
* grau: RCC > 0,6			

4.8.2.2 I₂-, I⁻-, HOI-Konzentration im Sumpf

Von Interesse sind hier vor allem die drei löslichen lodspezies $I_2(w)$, $I^{-}(w)$ und HOI(w) im Sumpf. Die alternativen Verläufe dieser drei Ergebnisvariablen zeigen ein unterschiedliches Bild. $I_2(w)$ wird im Sumpf durch verschiede Reaktionen auf- und aber auch abgebaut. Weiter stellt sich zwischen $I_2(w)$ und anderen Spezies ein Konzentrationsgleichgewicht ein. Dieses wird beim Abwaschen durch den Eintrag von CsI-Aerosol, das schnell zu I⁻ und Cs⁺ dissoziiert, gestört. Das Unsicherheitsband der Rechenergebnisse um den Referenzwert liegt bei (Faktoren 0,05 / 4,0), (Abb. 7-19). Für HOI(w) ist die Situation ähnlich, nur dass die HOI(w)-Konzentration durch die kontinuierliche Abnahme des pH-Werts von 5,6 am Anfang des Versuchs auf 4,5 am Ende zurückgeht (Faktor 0,125 / 6,0), (Abb. 7-23).

Durch chemische Reaktion wird $\Gamma(w)$ nur abgebaut, vor allem durch die Reaktion mit Silber. Die Unsicherheit der berechneten Γ -Konzentration nimmt daher mit der Zeit zu. Vor dem Abwaschen auf maximal (Faktoren 0,1 / 1,05) und nach dem Abwaschen, bei dem wieder viel neues Γ (über CsI-Abwaschen) in den Sumpf gelangt, auf (Faktoren 0.2 / 1,05), (Abb. 7-21).

Den größten Einfluss auf die Unsicherheit der $I_2(w)$ -Konzentration hat die radiolytische I_2 -Bildung aus I⁻ im Sumpf und die Rückreaktion (Parameter 43 und 44), (Abb. 7-20). Weiter haben zwei Abbaureaktionen einen mäßigen Einfluss (|RCC| < 0,3). Die spezifische Oberfläche der Silberpartikel (Parameter 26) spielt, wie bereits im Schritt 1 der UaSA, noch immer eine Rolle, obwohl sie für den Schritt 2 reduziert wurde. Die $I_2(w)$ -Konversion an der Stahloberfläche zu I⁻(Parameter 64) hat ebenso einen Einfluss auf $I_2(w)$. Mit steigender Konversionsgeschwindigkeit nimmt die $I_2(w)$ -Konzentration ab.

Vor allem die Silber/Iod-Reaktion trägt zur Unsicherheit von I-(w) bei. Die Reaktionsrate wächst mit steigender Oberfläche der Silberpartikel (Parameter 26) und mit dem wasserseitigen Massentransferkoeffizienten (KMTWAS, Parameter 33). Der KMTWAS beschreibt den I₂-Transport durch die Wasserschicht um die Silberpartikel und ist Teil der Formel für die Silber/Iod-Reaktionsrate.

HOI(w) entsteht durch Hydrolyse aus $I_2(w)$ im Sumpf. Die Unsicherheit von HOI hängt im Wesentlichen von der Unsicherheit der Parameter 36, 43, 44 und 64 ab (Abb. 7-24). Zusätzlich hat die Rückreaktion der radiolytischen I_2 -Bildung aus I- im Sumpf (Parameter 39) einen Einfluss auf das HOI(w)-Ergebnis.

4.8.2.3 Ag-, AgOx- und AgI-Konzentration im Sumpf

Die Streubreite der berechneten Ag(w)-Masse im Sumpf ist bereits vor dem Abwaschen gering (Faktoren 0,2 /1,4), da nur ein kleiner Teil der gesamten Ag-Masse zu AgOx bzw. weiter zu AgI reagiert. Nach dem Abwaschen ist sie noch etwas geringer (Abb. 7-25).

Auch die Streubreite der berechneten AgOx-Masse ist mit (Faktoren 0,77 / 1,3) vergleichsweise gering (Abb. 7-27).

Für Agl(w) streuen die alternativen Verläufe oberhalb des Referenzlaufs stärker als die unterhalb (Faktoren 0,77 / 5,0). Das liegt vor allem an der asymmetrischen Unsicherheitsverteilung der beiden wichtigsten Parameter (26 Spezifische Oberfläche der Silberpartikel und 33 Wasserseitiger Massentransferkoeffizient), deren Werte öfter über als unter den Referenzwerten liegen.

4.8.2.4 Gesamte lodmenge im Sumpf

Die gesamte lodmenge im Sumpf besteht aus der gesamten eingespeisten lodmenge (0,72 g) minus dem luftgetragenen und abgelagerten lod im Gasraum. Die lodmenge im Gasraum ist vergleichsweise klein. Die Streuung der alternativen Rechenergebnisse für die gesamte lodmenge im Sumpf ist daher gering (Abb. 7-31).

Auf die Unsicherheit des Ergebnisses haben vor allem die unsichere CsI-Einspeiserate (Parameter 9) und die unsichere Dampfeinspeiserate (Parameter 7) Einfluss (Abb.

7-32). Die Dampfeinspeiserate kontrolliert das Abwaschen von abgelagertem CsI am Condenser in den Containmentsumpf.

Tab. 4-20Sensitivitäten der Ergebnisvariablen I2(w), I⁻(w), HOI(w), Ag(w), AgOx,AgI(w) und des gesamten lods im Sumpf, UaSA Schritt 2

Ergebnisvariable	Parame- ter Nr. *	Unsicherer Parameter	RCC
I ₂ -Konzentration im Sumpf	26	Spezifische Oberfläche der Silberpartikel im Sumpf	-
	43	Radiolytische I ₂ -Bildung aus I ⁻ im Sumpf	+
	44	Rückreaktion der radiolytischen I ₂ -Bildung aus I ⁻ im Sumpf	-
	64	I ₂ (w)-Konversion zu I ⁻ (w) an der Stahlober- fläche	-
I ⁻ -Konzentration im	9	CsI-Einspeisung	+
Sumpr	26	Spezifische Oberfläche der Silberpartikel im Sumpf	-
	33	Wasserseitiger Massentransferkoeffizient	-
HOI-Konzentration	36	pH-Wert im Sumpf	+
im Sumpi	43	Radiolytische I ₂ -Bildung aus I ⁻ im Sumpf	+
	39	Rückreaktion der I ₂ -Hydrolyse im Sumpf (Schritt 1 von 2)	-
	44	Rückreaktion der radiolytischen I ₂ -Bildung aus I ⁻ im Sumpf	-
	64	I_2 -Konversion aus I^{-} an der Stahloberfläche	-
Ag-Konzentration	7	Dampfeinspeiserate	
im Sumpt	11	Ag-Einspeiserate	+
	18	Effektive Aerosolmaterialdichte	+
	21	Agglomerationsformfaktor	+
AgOx- Konzentration im Sumpf	13	AgOx-Einspeiserate	+
AgI-Konzentration im Sumpf	26	Spezifische Oberfläche der Silberpartikel im Sumpf	+
	33	Wasserseitiger Massentransferkoeffizient	+
	48	Agl-Bildung aus AgOx + I ⁻	+
Gesamte lodmen-	7	Dampfeinspeiserate	+
ge im Sumpt	9	CsI-Einspeiserate	+

Ergebnisvariable	Parame- ter Nr. *	Unsicherer Parameter	
	10	Mittlere Partikelgröße des eingespeisten CsI-Aerosols	-
	23	Mittlere Wasserfilmdicke	
	28	Mittlere Partikelgröße des IOx-Primär- aerosols	-
* grau: RCC > 0,6			

4.8.3 Thermohydraulische Variable

Die Thermohydraulik im PHEBUS-Versuch FPT1 ist vergleichsweise einfach, da die Atmosphäre des 10 m³ großen Containments stets homogen durchmischt ist und die Behälterwände, der Condenser und der Sumpf auf bestimmten Temperaturen gehalten werden. Die ermittelten relativ kleinen Unsicherheiten der thermohydraulischen Variablen sind daher PHEBUS-spezifisch und können nicht verallgemeinert werden.

Dennoch ist der Verlauf der alternativen Resultate für die folgenden Ergebnisvariablen graphisch dargestellt:

- Gastemperatur (Abb. 7-33)
- Relative Feuchte (Abb. 7-34)
- Gasgeschwindigkeit (Abb. 7-35)
- Sumpfwassertemperatur (Abb. 7-36)
- Gesamtdruck (Abb. 7-37)
- Kondensationsrate am Condenser (Abb. 7-38)

Für alle Variablen streuen die alternativen Resultate nur geringfügig um den Referenzwert. Z. B. ist die Streuung der Gastemperatur die meiste Zeit (- 1,3 °C / + 0,2 °C), nur unmittelbar vor dem Abwaschen bei t = 2,5E5 s beträgt sie (- 3,5 °C / + 0,2 °C).

Auf die Auswertung der Sensitivitäten für die thermohydraulischen Ergebnisvariablen wird verzichtet, da die Streuung der Daten sehr gering ist, die Erfassung der thermohydraulischen unsicheren Parameter wegen der Aufgabenstellung (lodverhalten) unvollständig ist und die Ergebnisse aufgrund der thermohydraulischen Besonderheiten des Versuches nicht direkt auf Unfallrechnungen für reale Anlagen übertragbar sind.

4.8.4 Überblick über die Ergebnisse der UaSA, Schritt 2

Tab. 4-21 gibt einen Überblick über die in Schritt 2 der UaSA gewonnenen Unsicherheitsaussagen in Form der (95%,95%)-Toleranzgrenzen. Die angegebenen Quotienten und Faktoren sind nur ein grobes Maß für die Toleranzgrenzen unterhalb und oberhalb der Referenzkurve. Sie sind Mittelwerte über den Versuchszeitraum und dienen einem schnellen qualitativen Vergleich der Unsicherheiten.

Bis auf das CsI-Aerosol haben alle quelltermrelevanten lodspezies in der Gasphase einen relativ großen Unsicherheitsbereich. Für die mit COCOSYS-AIM berechneten Konzentrationen der quelltermrelevanten lodspezies außer CsI wird der Bereich durch einen Quotienten bzw. Faktor 7,0 um das Referenzergebnis markiert. Kleiner ist nur der Unsicherheitsbereich für die berechnete CsI-Konzentration im Containment.

Noch größer sind die Unsicherheitsbereiche für abgelagertes I_2 und CsI am nassen Condenser. Ebenfalls groß ist die Unsicherheit von I_2 und I^- im Sumpf. Einen relativ kleinen Unsicherheitsbereich weisen Ag, AgOx und AgI im Sumpf auf.

Die Größe des Unsicherheitsbereichs für die maximal freisetzbare lodmenge (I_{max}) ändert sich mit der Zeit. In der Anfangsphase besteht I_{max} im Wesentlichen aus Csl-Aerosol und der Unsicherheitsbereich von I_{max} ist vergleichsweise schmal. Später, wenn die flüchtigen lodspezies I_{max} dominieren, wächst der Unsicherheitsbereich von I_{max} an.

I_{max} repräsentiert den potentiellen lodquellterm aus der Anlage. Die typische Unsicherheit des mit AIM berechneten lodquellterms mit vorwiegend flüchtigen lodspezies liegt daher bei (Quotient 7 / Faktor 5) um den Referenzwert. Bei einem Quellterm mit viel CsI-Aerosol, das in COCOSYS mit dem Modell AERIKA gerechnet wird, ist der Unsicherheitsbereich mit (Quotient 3,1 / Faktor 1,3) erwartungsgemäß deutlich schmäler. Tab. 4-21Typischer Unsicherheitsbereich der 208 alternativen Verläufe von Ergeb-
nisparametern für den Schritt 2 der UaSA

Phase / Ort	Ergebnisvariable	(95%, 95%)-Toleranzgrenzen Quotient / Faktor zum Referenzwert *		Anmerkun- gen
		Vor Abwaschen t < 2,5E5 s	Nach Abwaschen t ≥ 2,5 E5 s	
Im Gas	I ₂ (g)	6,0 / 5,0		Direkt quell-
	CH ₃ I(g)	6,0 / 20	7,0 / 7,0	termrelevan- te Spezies
	IOx	10,0 / 4,0		
	Csl-Aerosol	2,0 / 1,7		
	Max. freisetzbare Iodmenge, I _{max}	Aerosolphase 3,1 / 1,3 Phase mit flüchti- gem lod 7 / 3,5	6 / 5,3	Vergleichbar mit dem Iod- quellterm in Reaktorana- lysen
	O ₃ (g)	2,0 / 2,0		
Am Con- denser	CsI-Condenser nass	20,0 / 4,0	>100 / 20	Große Unsi- cherheit
	CsI-Condenser tro- cken	2,5 / 5,0		
	I ₂ -Condenser nass	> 1000 / 7,0	50 / 7,0	Große Unsi- cherheit
	I ₂ -Condenser trocken	> 1000 / 7,0	50 / 7,0	Große Unsi- cherheit
An der	I ₂ (ads)-Stahl	8,0 / 8,0		
Stahlwand	Fel ₂	2,0 / 30		
	fixed-I	3,0 / 10		
Im Sumpf	l ₂ (w)	10,0 / 3,0		
	l⁻(w)	10,0 / 1,05	5,0 / 1,05	Unsicherheit kontinuierlich zunehmend
	HOI(w)	0,125 / 6,0		
	Ag(w)	5,0 / 1,4		
	AgOx	1,3 / 1,3		
	Agl(w)	1,3 / 5,0		
*) untere Gren	ze = Referenzwert / Q; o	bere Grenze = Refere	nzwert * F	1

In Tab. 4-22 sind alle unsicheren Parameter zusammengefasst, die einen Einfluss auf die Unsicherheit der verschiedenen Ergebnisvariablen haben. Die quelltermrelevanten Variablen sind gekennzeichnet. Auch die Variable "Maximal freisetzbare Iodmenge" (I_{max}) ist eingetragen. Ebenso sind die Module angegeben, in denen die unsicheren Parameter Verwendung finden. THY ist das Thermohydraulikmodul und AERIKA das Aerosolmodell im Aerosol-und Spaltprodukt-Modul AFP.

Mit Ausnahme von Variable 16 (I_2 -Einspeiserate) werden alle unsicheren Parameter von 1 bis 23 im Aerosolmodell AERIKA verwendet und haben daher nur Einfluss auf die gerechneten Aerosolkonzentrationen im Containment. Nur der Rang-Korrelationskoeffizient (RCC) des Parameters 21 (Agglomerationsformfaktor der Aerosolpartikel) hat temporär einen Wert RCC > 0,6.

Von den im eigentlichen Iodmodell AIM verwendeten unsicheren Parametern haben nur 9 einen direkten Einfluss auf die Unsicherheit von mindestens einer quelltermrelevanten Ergebnisvariablen. Nur 3 davon haben einen Rang-Korrelationskoeffizienten, der temporär einen Wert |RCC| > 0,6 hat (Parameter 43, 73 und 81). Der Einfluss der Parameterunsicherheiten auf die Unsicherheit der berechneten Iodspezies und die des fiktiven Quellterms I_{max} ist etwas unterschiedlich. So haben einige Parameter, die für einzelne Iodspezies wichtig sind, auf die Unsicherheit von I_{max} keinen nennenswerten Einfluss. Das sind die Parameter 65, 70 und 72. Parameter 73 würde formal auch dazugehören, hat aber eine Sonderstellung.

Wie in den Abb. 4-22 und Abb. 4-28 zu erkennen ist, hat der unsichere Parameter 73 am Anfang des Versuches einen erheblichen Einfluss auf die Unsicherheit der berechneten I₂(g)- und IOx-Konzentrationen. In beiden Fällen ist |RCC| > 0,6. Dieser temporäre Einfluss ist verständlich, da das ins Containment freigesetzte I₂ schnell auf den trockenen und nassen Farboberflächen abgelagert wird. Zu dieser Zeit wird aber I_{max} vom CsI-Aerosol dominiert und Parameter 73 scheint sich daher nicht als unsicherer Parameter von I_{max} bezüglich der Modellunsicherheit auszuwirken. Da sich in anderen Szenarien der Zeitablauf und damit die Zusammensetzung von I_{max} verändern kann, ist es sinnvoll, Parameter 73 in der Liste wichtiger unsicherer Parameter zu belassen. Tab. 4-22Alle unsicheren Parameter mit Einfluss auf die Unsicherheit der Ergebnis-
variablen in der UaSA, Schritt 2

Par. Nr. *	Unsicherer Parameter	Beeinflusste Er- gebnisvariable **	Modul
7	Dampf-Einspeiserate	Ag(w)	THY
9	CsI-Einspeisung	l⁻(w), I _{max}	AFP/ AERIKA
10	Massengemittelter Partikeldurch- messer des CsI-Aerosols	I _{max}	AFP/ AERIKA
11	Ag-Einspeiserate	Ag(w)	AFP/ AERIKA
13	AgOx-Einspeiserate	AgOx(w)	AFP/ AERIKA
16	I ₂ -Einspeiserate	I _{max}	AIM
17	Diffusionsgrenzschichtdicke	IOx , Csl(ae) , Csl- Wd	AFP/ AERIKA
18	Effektive Aerosolmaterialdichte	Csl(ae) , Csl-trCd, Ag(w), I _{max}	AFP/ AERIKA
20	Dynamischer Formfaktor der Partikel	Csl(ae), I _{max}	AFP/ AERIKA
21	Agglomerationsformfaktor der Parti- kel	Csl(ae) , Csl-trCd, Csl-Wd, Ag(w), I _{max}	AFP/ AERIKA
22	Kollisionseffizienz der Partikel	I _{max}	AFP/AERIKA
23	Mittlere Wasserfilmdicke	Csl-naCd	AFP/ AERIKA
24	Dosisleistung im Gas	O ₃ (g)	AIM
26	Spezifische Oberfläche der Silber- partikel im Sumpf	l₂(w), l⁻(w), Agl(w)	AIM
30	Zur Chemisorption verfügbare Stahlmenge an der Oberfläche	Fel ₂ , fixed-I	AIM
33	Wasserseitiger I ₂ - Massentransferkoeffizient	l₂(g), l⁻(w), Agl(w), I _{max}	AIM
39	Rückreaktion der I ₂ -Hydrolyse im Sumpf (Schritt 1 von 2)	HOI(w),	AIM
43	Radiolytische I ₂ -Bildung aus I ⁻ im Sumpf	I₂(g), CH ₃ I(g), IOx , I ₂ -trCd, I ₂ -naCd, I ₂ - St, I ₂ (w), HOI(w), I _{max}	AIM
44	Rückreaktion der radiolytischen I ₂ - Bildung aus I ⁻ im Sumpf	l ₂ (w), HOI(w),	AIM
48	AgI-Bildung aus AgOx + I ⁻	Agl(w)	AIM
53	Hydrolyse von CH ₃ I durch H ₂ O	Csl-naCd	AIM

Par. Nr. *	Unsicherer Parameter	Beeinflusste Er- gebnisvariable **	Modul	
64	l₂(w)-Konversion zu l⁻(w) an der Stahloberfläche	I ₂ (w), HOI(w), I _{max}	AIM	
65	Bildung von IOx(g) aus I_2 and O_3	I ₂ (g), I ₂ -St	AIM	
67	Radiolytische O ₃ -Bildung	O ₃ (g)	AIM	
68	Radiolytische O ₃ -Zersetzung	O ₃ (g)	AIM	
70	O ₃ -Zersetzung an Stahloberflächen	IOx , O ₃ (g)	AIM	
72	Radiolytische CH ₃ I- Zersetzung	CH₃I(g)	AIM	
73	I ₂ -Ablagerung auf trockener und nasser Farbe	l₂(g) , IOx , l₂-trCd, l₂- naCd	AIM	
81	Radiolytische CH ₃ I-Bildung aus phy- sisorbiertem lod auf Farbe	I₂(g) , CH₃I(g) , I₂-trCd, I₂-naCd, I _{max}	AIM	
84	I ₂ -Ablagerung auf trockenem Stahl	I ₂ -St	AIM	
85	I ₂ -Resuspension von trockenem Stahl	I ₂ -St	AIM	
89	Reaktion von chemisorbiertem I_2 zu physisorbiertem I_2 und fixed-I	Fixed-I	AIM	
* grau: RCC > 0,6; ** fett direkt quelltermrelevante Ergebnisvariable				

5 Zusammenfassung und Schlussfolgerungen

Es wurde eine Unsicherheits- und Sensitivitätsanalyse (UaSA) zur Simulation des Iodverhaltens im Containment unter Unfallbedingungen in 2 Schritten durchgeführt. Als Referenzlauf diente eine COCOSYS-AIM-Nachrechnung des PHEBUS-Versuchs FPT1. Von den insgesamt 93 berücksichtigten unsicheren Parametern sind 56 Iod-Reaktionskonstante. Eine vergleichbare Studie ist auch mit anderen Iodmodellen nicht bekannt.

Die 208 Variationsrechenläufe für die Studie konnten ohne nennenswerte Schwierigkeiten durchgeführt werden. Lediglich bei 3 Läufen musste der Systemzeitschritt reduziert werden. Dies zeugt von einer hohen numerischen Robustheit von COCOSYS-AIM, da viele Iod-Eingabe- und Modellparameter in einem weiten Bereich variiert wurden. Das chemisch-physikalische Ergebnis aller Rechenläufe ist plausibel.

Die Studie wurde in zwei Schritten durchgeführt. Im ersten Schritt wurden die Unsicherheiten der quelltermrelevanten Ergebnisvariablen vor allem durch zwei unsichere Parameter dominiert: (1) die $I_2(g)$ -Einspeiserate vom Kühlkreislauf ins Containment und (2) die spezifische Oberfläche der Silberpartikel im Sumpf (S_{Ag}), ein Parameter des Iod/Silber-Modelles. Für den zweiten Schritt wurden daher die Unsicherheitsbereiche für die $I_2(g)$ -Einspeiserate und S_{Ag} reduziert und für vier Parameter des Radiolysemodells im Sumpf erweitert. Auf diese Weise konnten weitere unsichere Parameter mit deutlichem Einfluss auf die Unsicherheit des Iodquellterms erfasst werden.

Die Ergebnisvariable "Maximal freisetzbare lodmenge" (I_{max}) umfasst die flüchtigen lodspezies I_2 und RI, das feindisperse Aerosol IOx und das Aerosol CsI. I_{max} stellt ein Maß für den potentiellen lodquellterm aus der Anlage dar. Die typische Unsicherheit des mit AIM berechneten späten lodquellterms mit vorwiegend flüchtigen lodspezies liegt bei (Quotient 7,0 / Faktor 5,0) um den Referenzwert. Bei einem frühen lodquellterm mit viel CsI-Aerosol, das in COCOSYS mit dem Modell AERIKA gerechnet wird, ist der Unsicherheitsbereich mit (Quotient 3,1 / Faktor 1,3) erwartungsgemäß schmäler.

Generell sind die ermittelten Unsicherheiten für die quelltermrelevanten lodspezies deutlich größer als die der thermohydraulischen und Aerosolergebnisvariablen. Die gewonnenen Unsicherheitsaussagen beziehen sich auf das lodmodell, die Wechselwirkung mit anderen COCOSYS-Modellen (Thermohydraulik, Aerosolverhalten) aber auch die Unsicherheit von Messgrößen, die in der Rechnung verwendet wurden. Nicht erfasst ist die Rückhaltung der Iodspezies auf einem Leckagepfad und in den Filtern einer Venting-Strecke, da das PHEBUS-Containment dicht war. Die selektive Rückhaltung der Iodspezies auf einem Pfad bzw. in den Filtern einer Venting-Strecke kann die Unsicherheiten und Sensitivitäten eines potentiellen Quellterms ändern.

Zu berücksichtigen ist, dass einige Ergebnisse der COCOSYS-AIM-Referenzrechnung bereits deutlich von den Messergebnissen abweichen. So wurde die gemessenen $I_2(g)$ -Konzentration um einen Faktor 0.2 unterschätzt und liegt somit außerhalb des ermittelten (95%/95%)-Toleranzbereichs für $I_2(g)$, (vgl. Abb. 3-3 und Abb. 4-21). Ein möglicher Grund ist eine im Modell und daher auch in der UaSA nicht erfasste Reaktion. In Frage kommt die radiolytische Zersetzung von abgelagertem CsI-Aerosol in flüchtiges $I_2(g)$ und CsOH. Diese Reaktion wurde erstmals im OECD STEM Projekt /STE 11/ gemessen. Details liegen noch nicht vor. Die Messergebnisse aller anderen quelltermrelevanten lodspezies liegen innerhalb der ermittelten Toleranzbereiche.

Die Sensitivitätsaussagen zeigen, dass nur wenige unsichere Parameter zur Unsicherheit der wesentlichen Ergebnisvariablen beitragen. Auf die iodquelltermrelevanten Ergebnisvariablen $I_2(g)$, CH_3I , IOx-Aerosol und I_{max} , aber ohne Berücksichtigung des CsI-Aerosols, haben insgesamt sieben unsichere Parameter aus AIM einen Einfluss. Davon haben nur drei ein hohes Sensitivitätsmaß (Rang-Korrelationskoeffizient > 0,6). Dazu kommen zwei Parameter, die das Sensitivitätsergebnis im Schritt 1 der UaSA dominierten. Die wesentlichen unsicheren Parameter des Iodmodells AIM sind daher:

- Reaktionskonstante für die radiolytische I₂-Bildung aus I⁻ im Sumpf
- Reaktionskonstante für die I₂-Ablagerung auf trockener und nasser Farbe
- Reaktionskonstante f
 ür die radiolytische CH₃I-Bildung aus physisorbiertem lod auf Farbe
- Spezifische Oberfläche der Ag- und AgOx-Partikel im Sumpf (aus Schritt 1)
- I₂-Einspeiserate aus dem Kühlkreislauf ins Containment (aus Schritt 1).

Die I₂-Einspeiserate ins Containment ist eine AIM-Eingabegröße, die aus FPT1-Messwerten abgeleitet wurde. Die I₂-Einspeiserate hat in den Variationsrechnungen einen unerwartet langen (fast 3 Tage) Einfluss auf die Unsicherheit den lodquellterms. Dies hat auch auf Unfallanalysen von realen Anlagen Konsequenzen. Die lod-Freisetzung wird dort von Kernzerstörungscodes, wie z. B. ATHLET-CD, gerechnet. Das bedeutet, dass die Speziation des freigesetzten lods mit gas- und aerosolförmigen Anteilen sehr genau gerechnet werden muss. Die Bedeutung der I_2 -Einspeiserate ins Containment für den Quellterm wird bei Reaktoranwendungen noch stärker werden, wenn der Anteil an gasförmigem Iod über dem in PHEBUS FPT1 (1,25 %) liegt, wie z. B. in FPT3 (bis 80%), der mit einem anderen Steuerstabmaterial gefahren wurde.

Die auffälligsten unsicheren Parameter des Aerosolmodells AERIKA sind:

- Agglomerations- und dynamischer Formfaktor der Aerosolpartikel
- Kollisionseffizienz der Aerosolpartikel.

Da die Unsicherheit des berechneten Aerosolverhaltens in Containment und des Aerosoliods im potentiellen Quellterm verhältnismäßig klein ist, sind unmittelbar keine Modellverbesserungen an AERIKA notwendig.

Alle anderen Parameter sind Bestandteile von Iod-Einzelmodellen in AIM. Zur Verbesserung der Aussagefähigkeit muss daher in der Regel das ganze Einzelmodell überarbeitet werden. Im Fall der radiolytischen I₂-Bildung im Sumpf müssen z. B. auch die pH-Abhängigkeit sowie die Rückreaktion in die Modellverbesserung mit einbezogen werden.

In FPT1 wurde das lodverhalten unter realitätsnahen Bedingungen aber mit vereinfachter Geometrie und Thermohydraulik gemessen. Wesentliche Parameter des PHEBUS-Containments, wie das Gas- und Sumpfvolumen oder die Farboberfläche, sind nach einem französischen 900 MWe DWR skaliert. Bei der Simulation des lodverhaltens für andere vergleichbare Anlagen ist daher mit ähnlichen Ergebnissen zu rechnen, nur werden die Unsicherheiten einiger thermohydraulischer Parameter (Temperatur, relative Feuchte, atmosphärische Massenströme) einen stärkeren Einfluss auf das lodergebnis haben. In einem Benchmark, der im Rahmen von SARNET2 zu den THAI-Mehrraumversuchen lod-11 und lod-12 durchgeführt wurde, hatten vor allem die lokal unterschiedliche relative Feuchte und die Atmosphärenströme zwischen den Räumen und damit indirekt die Wahl der Containment-Nodalisierung einen ausgeprägten Einfluss auf das lodergebnis gezeigt /WEB 12/.

Für einen gezielten Abbau der Unsicherheiten im Iodmodell AIM ist es erforderlich, die folgenden Teilmodelle zu überarbeiten:

1. Iod/Silber-Reaktion im Sumpf inklusive der spezifischen Oberfläche der Ag- und AgOx-Partikel, die sich mit dem Absetzverhalten der Silberpartikel ändert.

- 2. Radiolytische I₂-Bildung aus I⁻ im Sumpf inklusive pH-Abhängigkeit und Rückreaktion unter Einbeziehung der I₂-Bildung aus IO₃⁻(w).
- 3. I₂-Ablagerung auf / Resuspension von trockener Farbe und auf Farbe bei Wandkondensation inklusive Abwaschen in den Sumpf.
- 4. Radiolytische CH₃I-Bildung aus physisorbiertem Iod auf Farbe unter trockenen und nassen Bedingungen unter Einbeziehung der Bildung aus chemisorbiertem Iod.

Prinzipiell besteht auch ein hoher Einfluss durch I₂-Einspeiserate vom Kühlkreislauf ins Containment. Diese wird in Anwendungsrechnungen von Codes wie z. B. ATHLET-CD berechnet und ist kein Bestandteil des Iodmodells AIM.

Eine Voraussetzung für eine erfolgreiche Überarbeitung dieser Teilmodelle sind zudem neue, belastbare experimentelle Daten.

Da die **lod/Silber-Reaktion im Sumpf** weitgehend unabhängig von radioaktiver Strahlung im Sumpf ist, kann die Reaktion unter realistischen Bedingungen in der THAI-Anlage untersucht werden. Darüber hinaus spielt auch eine belastbare Beschreibung des Aerosoltransports im Primärsystem und im Containment (z. B. Abwaschen von Ag-Partikeln von Wänden und Böden sowie die Rückhaltung in Pfützen) eine Rolle. Abwaschversuche wurden in der THAI-Anlage bereits durchgeführt, weitere mit Silber sind geplant.

Zur **radiolytischen I₂-Bildung aus I**⁻ **im Sumpf** existieren Daten aus aktuellen EPICUR-Experimenten, aber auch aus älteren Versuchen, wie z. B. von AEA, die mit AIM noch genauer ausgewertet werden. Auch ein Vergleich der Radiolyse-Ergebnisse mit Resultaten der mechanistischen Codes LIRIC oder INSPECT wäre zielführend.

Zur I₂-Ablagerung auf / Resuspension von trockener Farbe und zur radiolytischen CH₃I-Bildung aus physisorbiertem Iod auf Farbe sind neue Daten aus Experimenten der OECD-Vorhaben BIP-2 (Behaviour of Iodine Project) und STEM (Source Term Evaluation and Mitigation) zu erwarten. Für die I₂-Ablagerung bei Wandkondensation wurde anhand von THAI-Versuchen ein neues Modell entwickelt, das in COCOSYS-AIM integriert werden soll.

Für Unfallrechnungen mit COCOSYS kann die **I**₂-**Einspeiserate** ins Containment als Ergebnis von Kernzerstörungs- und Kühlkreislaufrechnungen vorgegeben werden. Bis-

herige Annahmen, wie z. B. < 5 % des lods sind gasförmig, reichen für Anwendungen im Reaktorfall nicht mehr aus. Vielmehr ist eine belastbare Präzisierung der I_{2} -Einspeiserate in das Containment erforderlich. Die zu erwartenden Ergebnisse aus den entsprechenden o. g. internationalen Untersuchungsprogrammen zur Bildung von flüchtigem lod im Primärsystem (z. B. CHIP (IRSN), und EXSI (VTT)) sind künftig in der Modellierung zu berücksichtigen.

Insgesamt bestätigt und quantifiziert die Unsicherheits- und Sensitivitätsstudie zum Iodmodell AIM in COCOSYS die anhand von Versuchsnachrechnungen und Parameterstudien schon lange vermuteten, noch bestehenden großen Ungenauigkeiten der Iod-Simulation im Containment und insbesondere der Berechnung des potentiellen Iodquellterms an die Umgebung. Die Studie zeigt aber auch, dass durch neue experimentelle Daten und einer gezielten Weiterentwicklung von wenigen Iod-Einzelmodellen diese Unsicherheiten effizient reduziert werden können.

6 Literatur

- /ALL 08/ Allelein, H.-J., Arndt, S., Klein-Hessling, W., Schwarz, S., Spengler, C., Weber, G.
 "COCOSYS Status of development and validation of the German containment code system", Nucl. Eng. Des., 238 (4), p. 872-889 (2008)
- /BIP 11/ OECD-NEA, "OECD/NEA Behaviour of Iodine Project", http://www.oecdnea.org/jointproj/bip.html (2011)
- /BOS 08/ Bosland, L., Funke, F., Girault, N., Langrock, G.
 "PARIS project Radiolytic oxidation of molecular iodine in containment during a nuclear reactor severe accident; Part 1. Formation and destruction of air radiolysis products - Experimental results and modelling", Nucl. Eng. and Des. 238 (2008) 3542-3550
- /BOS 12/ Bosland, L., Weber, G., Klein-Hessling, W., Girault, N., Clement, B. "Modelling and interpretation of iodine behaviour in PHEBUS FPT-1 containment with ASTEC and COCOSYS codes", Nuclear Technologies 177, 36-62 (Jan. 2012)
- /CHE 12/ Chevalier-Jabet, K., Cousin, F., Cantrel, L., Seropian, C.
 "Source term assessment with ASTEC and associated uncertainty analysis using SUNSET tool", 5th European Review Meeting on Severe Accident Research (ERMSAR-2012), Cologne (Germany), March 21-23, 2012
- /DIC 03/ Dickinson, S., Baston, G.M.N., Sims, H.E., Funke, F., Cripps, R., Bruchertseifer, H., Jäckel, B., Güntay, S., Glänneskog, H., Liljenzin, J.O., Cantrel, L., Kissane, M.P., Krausmann, E., Rydl, A.
 "ICHEMM Final Synthesis Report", 5th Euratom Framework Programme 1998-2002, Key Action Nuclear Fission, SAM-ICHEMM-D021 (March 2003)
- /FIS 12/ Fischer, K., Weber, G., Funke, F., Langrock, G. "Experimental Determination and Analysis of Iodine Mass Transfer Coefficients from THAI Test Iod-23", 5th European Review Meeting on Severe Accident Research (ERMSAR-2012), Cologne (Germany), March 21-23, 2012

/FUN 01/ Funke, F.

"Verbesserung und Erweiterung der Iod-Modellierung für IMPAIR und COCOSYS mit Stand 2001", FANP NT2/2001/183, AREVA Erlangen (April 2001)

- /FUN 08/ Funke, F.
 "Testing of the empirical inorganic iodine radiolysis model in AIM using data from the EPICUR tests S1-3, S1-4, S1-5 and S1-11", AREVA NP NTCR-G/2008/en/0154A (April 2008)
- /FUN 96/ Funke, F. et al.
 "Iodine-steel reactions under severe accident conditions in light-water reactors", Nucl. Eng. & Des. <u>166</u> (1996) 357-365

 /FUN 99a/ Funke, F., Zeh, P., Hellmann, S.
 "Radiolytic oxidation of molecular iodine in the containment atmosphere", OECD Workshop on Iodine Aspects of Severe Accident Management, Vantaa, Finland, May 18 – 20, 1999,

- /FUN 99b/ Funke, F., Zeh, P., Greger, G.-U., Hellmann, S.
 "Theoretische und experimentelle Untersuchungen zum Verhalten des lods bei auslegungsüberschreitenden Ereignissen Flüchtiges lod", Final Report of a project funded by the Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) in the frame of the Reactor Safety Research program under no. 1501023 (Aug. 1999)
- /FUR 85/ Furrer, M., Cripps, R.C., Gubler, R. "Measurement of the Iodine Partition Coefficient", Nucl. Technol., 70, 290-293 (1985)
- /GIR 04/ Girault, N. et al.
 PHEBUS FP containment interpretation circle; FPT-1 final interpretation report, IRSN Note technique DPAM/SEMIC/04-06 (Oct. 2004)
- /GLA 05/ Glaeser, H., Hora, A., Krzykacz-Hausmann, B., Skorek, T. "Aussagesicherheit von ATHLET-Rechenprogrammergebnissen für eine deutsche Referenz-DWR-Anlage mit 200%-Bruch im kalten Strang", GRS-A-3279 (Juli 2005)
- /GLA 08/ Glaeser, H., Krzykacz-Hausmann, B., Luther, W., Schwarz, S., Skorek, T. Methodenentwicklung und exemplarische Anwendungen zur Bestimmung der Aussagesicherheit von Rechenprogrammergebnisse, GRS-A-3443 (November 2008)
- /GRE 95/ Greger, G.-U., Funke, F., Bleier, A., Hellmann, S., Beuerle, M.
 "Theoretische und experimentelle Untersuchungen zum Verhalten des lods bei auslegungsüberschreitenden Ereignissen Organoiod, Iod/Silber-Reaktion, Iod/Eisen-Reaktion. Teil 3 Iod/Silber-Reaktion", Abschlussbericht Forschungsprogramm Reaktorsicherheit Vorhaben BMFT 1500823 (September 1995)
- /GÜN 92/ Güntay, S., Cripps, R.
 "IMPAIR-3 A Computer Program to Analyze the Iodine Behaviour in Multicompartments of a LWR Containment", PSI-Bericht Nr. 128, Paul Scherrer Institut, Würenlingen, Switzerland (1992)
- /GUT 70/ Guttman, I. Statistical tolerance regions, classical and Bayesian. Griffin, London 1970
- /HEL 96/ Hellmann, S., Funke, F., Greger, G.-U., Bleier, A., Morell, W.
 "The reaction between iodine and organic coatings under severe PWR accident conditions - an experimental parameter study", OECD Workshop on the Chemistry of Iodine in Reactor Safety, PSI, Würenlingen, Switzerland, June 10 - 12, 1996
- /HOF 93/ Hofer, E."Probabilistische Unsicherheitsanalyse von Ergebnissen umfangreicher Rechenmodelle", GRS-A-2002 (Januar 1993)

/HOF 99/ Hofer, E.

"Sensitivity analysis in the context of uncertainty analysis for computationally intensive models", Computer Physics Communications 117 (1999) 21-34

- /IMA 85/ Iman, R.L., Shortencarier, M.J., Johnson, J.D.
 "A FORTRAN77 Program and User's Guide for the Calculation of Partial Correlation and Standardized Regression Coefficients", NUREG/CR-4122, SAND85-0044 (June 1985)
- /JAC 00/ Jacquemain, D., Bourdon, S., Bremaecker, A., Barrachin, M.
 "FPT-1 final report", CEA/IPSN/DRS/SEA/PEPF rapport SEA 1/100 Report PHEBUS FP IP/00/479 (2000)
- /KLE 10/ Klein-Heßling, W., Arndt, S., Erdmann, W., Luther, W., Nowack, H., Reinke, N., Schramm, B., Schwarz, S., Spengler, C., Stewering, J., Weber, G. "Gezielte Validierung von COCOSYS und ASTEC sowie generische Anwendungsrechnungen mit diesen Rechenprogrammen", GRS-A-3489 (2010)
- /KLE 12/ Klein-Heßling, W. et al.
 "COCOSYS V2.4 User's Manual", Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, Köln, Juli 2012
- /KLO 99/ Kloos, M., Hofer, E.
 "SUSA PC, A Personal Computer version of the program system for uncertainty and sensitivity analysis of results from computer models, Version 3.2, User's Guide and Tutorial", GRS, Garching, Germany (August 1999)
- /KRU 58/ Kruskal, W. H. Ordinal Measures of Association. J. Amer. Statist. Assoc. 53, Dec. 1958, 814-861
- /KRZ 01/ Krzykacz-Hausmann, B. "Epistemic Sensitivity Analysis based on the Concept of Entropy", Proceedings of SAMO 2001, Third International Symposium on Sensitivity Analysis of Model Output. Madrid, June 18-20, 2001

/KRZ 88/ Krzykacz, B.

"MEDUSA 01 – Ein Programm zur Generierung von "Simple Random"- und "Latin Hypercube" Stichproben für Unsicherheits- und Sensitivitätsanalysen von Ergebnissen umfangreicher Rechenmodelle; GRS-A-1496 (1988)

/KRZ 90a/ Krzykacz, B.

"EQUUS, A Computer Program for the Derivation of Empirical Uncertainty", Statements on Results from Large Computer Models, GRS-A-1720 (1990)

 /KRZ 90b/ Krzykacz, B.
 "SAMOS, A Computer Program for the Derivation of Sensitivity Measures of Results from Large Computer Models", GRS-A-1700 (1990)

 /KRZ 94/ Krzykacz, B., Hofer, E., Kloos, M.
 "A software system for probabilistic uncertainty and sensitivity analysis of results from computer models", Proceedings of PSAM-II, San Diego, California, U.S.A., March 20-25, 1994

- /LAN 94/ Langhans, J., Friederichs, H.G., Hofer, E., Krzykacz, B., Weber, G.
 "Unsicherheits- und Sensitivitätsanalyse zum Aerosolmodell im FIPLOC-M, Teil 1 Trockenes Aerosolverhalten im VANAM-Experiment M2", GRS-A-2183 (1994)
- /LAN 05/ Langrock, G. "PARIS - Overview of the experimental results", 1st meeting of the International Source Term Chemistry Interpretation Circle (ISTP-CHEMIC), Aix-en-Provence, October 20, 2005

/NEU 08/ Neumeister, M.
 "Iod-Ablagerung auf Farboberflächen in wässriger Phase", Diplomarbeit an der Georg-Simon-Ohm-Hochschule Nürnberg, März 2008

/PIN 05/ Pinkert, A. "Validierung und Verbesserung der Modellierung der Iod Radiolyse in schweren Kernkraftwerksstörfällen", Diplomarbeit an der Friedrich-Alexander-Universität Erlangen-Nürnberg, März 2008

- /SAL 00/ Saltelli, A., Chan, K., Scott, E. M. (eds) Sensitivity Analysis, J. Wiley & Sons (2000)
- /SPE 12/ Spengler, C., Arndt, S., Bakalov, I., Band, S., Eckel, J., Klein-Hessling, W., Nowack, H., Pelzer, M., Reinke, N., Sievers, J., Sonnenkalb, M., Weber, G. "Weiterentwicklung der Rechenprogramme COCOSYS und ASTEC", GRS-A- 3654 (2012)
- /STE 11/ OECD-NEA, "OECD/NEA Source Term Evaluation and Mitigation (STEM) Project", http://www.oecd-nea.org/jointproj/stem.html (2011)
- /WEB 05/ Weber, G.
 "Weiterentwicklung und Validierung des Iodmodells AIM-F2 in COCOSYS Intensivierte Validierung der Rechenprogramme COCOSYS und ASTEC", GRS-A-3299 (2005)
- /WEB 09a/ Weber, G., Funke, F. "Description of the iodine model AIM-3 in COCOSYS", GRS-A-3508 (2009)
- /WEB 09b/ Weber, G., Bosland, L., Glowa, G., Funke, F., Kanzleiter T.
 "ASTEC, COCOSYS, and LIRIC Interpretation of the Iodine Behaviour in the Large-Scale THAI Test Iod-9", ICONE-17, Brussels, Belgium, July 12-16, 2009
- /WEB 12/ Weber, G., Herranz, L.E., Bendiab, M., Fontanet, J., Funke, F., Gonfiotti, B., Ivanov, I., Krajewski, S., Manfredini, A., Paci, S., Pelzer, M., Sevón, T.
 "SARNET2 WP8 Benchmark on THAI multi-compartment iodine tests Results for test Iod-11", 5th European Review Meeting on Severe Accident Research (ERMSAR-2012), Cologne, Germany, March 21-23, 2012

7 Weitere Abbildungen

Abb. 7-1 Massengemittelter Partikeldurchmesser des gesamten Aerosols, UaSA Schritt 2, Variationsläufe

Abb. 7-2 Massengemittelter Partikeldurchmesser des gesamten Aerosols, UaSA Schritt 2, Sensitivitäten

Abb. 7-3 CsI-Aerosolkonzentration am nassen Condenser, UaSA Schritt 2, Variationsläufe

Abb. 7-4 CsI-Aerosolkonzentration am nassen Condenser, UaSA Schritt 2, Sensitivitäten

Abb. 7-5 CsI-Aerosolkonzentration am trockenen Condenser, UaSA Schritt 2, Variationsläufe

Abb. 7-6 CsI-Aerosolkonzentration am trockenen Condenser, UaSA Schritt 2, Sensitivitäten

Abb. 7-8 I₂-Aerosolkonzentration am nassen Condenser, UaSA Schritt 2, Sensitivitäten

Abb. 7-9 I₂-Aerosolkonzentration am trockenen Condenser, UaSA Schritt 2, Variationsläufe

Abb. 7-10 I₂-Aerosolkonzentration am trockenen Condenser, UaSA Schritt 2, Sensitivitäten

UaSA of PHEBUS-FPT1 with COCOSYS-AIM (Step 2)

Abb. 7-11 I₂-Konzentration an der Stahlwand, UaSA Schritt 2, Variationsläufe

Abb. 7-12 I₂-Konzentration an der Stahlwand, UaSA Schritt 2, Sensitivtäten

UaSA of PHEBUS-FPT1 with COCOSYS-AIM (Step 2)

Abb. 7-13 Fel₂-Konzentration an der Stahlwand, UaSA Schritt 2, Variationsläufe

Abb. 7-14 Fel₂-Konzentration an der Stahlwand, UaSA Schritt 2, Sensitivtäten

Abb. 7-15 Fixed-I-Konzentration an der Stahlwand, UaSA Schritt 2, Variationsläufe

Abb. 7-16 Fixed-I-Konzentration an der Stahlwand, UaSA Schritt 2, Sensitivtäten

Abb. 7-17 CsI-Konzentration an vertikalen Wänden, UaSA Schritt 2, Variationsläufe

Abb. 7-18 CsI-Konzentration an vertikalen Wänden, UaSA Schritt 2, Sensitivitäten

Abb. 7-19 I₂-Konzentration im Sumpf, UaSA Schritt 2, Variationsläufe

Abb. 7-20 I₂-Konzentration im Sumpf, UaSA Schritt 2, Sensitivitäten

Abb. 7-21 I-Konzentration im Sumpf, UaSA Schritt 2, Variationsläufe

Abb. 7-22 I-Konzentration im Sumpf, UaSA Schritt 2, Sensitivtäten

Abb. 7-23 HOI-Konzentration im Sumpf, UaSA Schritt 2, Variationsläufe

Abb. 7-24 HOI-Konzentration im Sumpf, UaSA Schritt 2, Sensitivitäten

Abb. 7-25 Ag-Masse im Sumpf, UaSA Schritt 2, Variationsläufe

Abb. 7-26 Ag-Masse im Sumpf, UaSA Schritt 2, Sensitivtäten

Abb. 7-27 AgOx-Masse im Sumpf, UaSA Schritt 2, Variationsläufe

Abb. 7-28 AgOx-Masse im Sumpf, UaSA Schritt 2, Sensitivitäten

Abb. 7-29 Agl-Masse im Sumpf, UaSA Schritt 2, Variationsläufe

Abb. 7-30 Agl-Masse im Sumpf, UaSA Schritt 2, Sensitivitäten

Abb. 7-31 Gesamte lodmasse im Sumpf, UaSA Schritt 2, Variationsläufe

Abb. 7-32 Gesamte lodmasse im Sumpf, UaSA Schritt 2, Sensitivitäten

Abb. 7-33 Gastemperatur, UaSA Schritt 2, Variationsläufe

Abb. 7-34 Relative Feuchte, UaSA Schritt 2, Variationsläufe

Abb. 7-35 Gasgeschwindigkeit, UaSA Schritt 2, Variationsläufe

Abb. 7-36 Sumpfwassertemperatur, UaSA Schritt 2, Variationsläufe

Abb. 7-37 Gesamtdruck, UaSA Schritt 2, Variationsläufe

Abb. 7-38 Kondensationsrate am nassen Condenser, UaSA Schritt 2, Variationsläufe

8 Verteiler

		Exemplare gedruckte Form	Exemplare pdf
BMWi			
Referat III B 4		1 x	
GRS-PT/B			
Internationale Verteilung	(FIZ)	40 x	
Projektbegleiter	(dre)	3 x	1 x
AREVA NP Erlangen			
Hr. Dr. Harald Dimmel- meier			1 x
Hr. Dr. Ing. Mohammed Bendaib			1 x
Hr. André Fargette			1 x
Hr. Dr. Jürgen Eyink			1 x
Hr. Dr. Volker Lansmann			1 x
Hr. Dr. Peter Volkholz			1 x
Hr. Dr. Gert Langrock			1 x
Hr. Dr. Friedhelm Funke (Autor)		3 x	1 x
Becker Technologies Eschborn			
Hr. Gerhard Poss		1 x	
Hr. Dr. Martin Freitag			1 x
Ruhr-Universität Bochum			
Hr. Prof. Dr. Marco Koch (LEE)		1 x	

		Exemplare gedruckte Form	Exemplare pdf
RWTH Aachen			
Hr. Prof. Dr. Hans-Josef Allelein (LRST)		1 x	
Fr. Sara Krajewski (LRST)			1 x
GRS			
Geschäftsführung	(stj, wfp)		je 1 x
Bereichsleiter	(erv, prg, rot, som, stc, ver, zir)		je 1 x
Abteilungsleiter	(som, luw)		je 1 x
Projektleiter	(klh)		1x
Projektbetreuung	(bar, bna)		je 1 x
Informationsverarbeitung	(nit)		1 x

(krb, weg)

(Köln)

Gesamtauflage

Autoren

Bibliothek

Exemplare

55

1 x + 3 x

1 x

je 1 x

Gesellschaft für Anlagenund Reaktorsicherheit (GRS) mbH

Schwertnergasse 1 50667 Köln Telefon +49 221 2068-0 Telefax +49 221 2068-888

Forschungszentrum **85748 Garching b. München** Telefon +49 89 32004-0 Telefax +49 89 32004-300

Kurfürstendamm 200 **10719 Berlin** Telefon +49 30 88589-0 Telefax +49 30 88589-111

Theodor-Heuss-Straße 4 **38122 Braunschweig** Telefon +49 531 8012-0 Telefax +49 531 8012-200

www.grs.de