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Abstract 

The codes d³f and r³t are well established for modelling density-driven flow and nuclide 

transport in the far field of repositories for hazardous material in deep geological for-

mations. While originally intended to be applied to the overburden of a salt dome they 

were adapted to alternative host media such as crystalline rock or mudstone by includ-

ing fractures into an otherwise porous medium. However, only discrete fractures or 

fracture networks with a rather limited number of fractures could be dealt with. Net-

works of smaller fractures – so-called background fractures – can easily consist of 

hundreds and thousands of significant individual fractures in a model domain and were 

therefore beyond the scope of d³f and r³t. One way to circumvent this problem is to re-

place a discrete fracture network with an equivalent porous medium. While this is a 

task in itself the codes had also numerically adapted to be to cope with the new meth-

ods. This report describes approaches and results of this work. 

In groundwater flow simulation fractures are usually modelled as lower dimensional ob-

jects. But especially in the case of density driven flow situations may occur where the 

validity of this assumption has to be proved. Here a special approach was developed 

and implemented that allows an adaptive resolution of the layers. Of central relevance 

in this respect is the development of local refinement or coarsening criteria, an adaptive 

discretisation that allows an adaptive transition from low-dimensional to equidimen-

sional modelling of the fractures, and an adaptive multigrid algorithm  

Furthermore, discretisation methods of higher order for the mixed parabolic-hyperbolic 

problems were developed. New filtering algebraic multigrid methods as efficient solvers 

for the large linear equation systems were implemented. The parallelisation was im-

proved by implementation of a parallel communication layer (pcl). 

For the estimation of parameters for these systems by inverse modelling, efficient nu-

merical procedures were developed and implemented. These procedures are based on 

Gauss-Newton techniques that are combined with multigrid methods. Again, implemen-

tation on parallel computers was done efficiently as the complexity of the inverse prob-

lems may easily exceed the complexity of the simulation itself by one order of magni-

tude. 
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Also investigated was the alternative to use reduced 1d-models based on large con-

nected fractures. Here it became clear that this method allows realistic estimations ei-

ther of breakthrough times or peak concentrations depending on the applied mixing 

mechanism.  

These developments were accompanied by a benchmarking exercise and the devel-

opment of a user interface for operating d³f and r³t that combines both visual and text-

based programming. The highly flexible graphical user interface permits numerical con-

trol as well as the input of physical parameters and other model data. It also provides 

an integrated visualisation. 
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Zusammenfassung 

Die Programme d³f und r³t wurden mit dem Ziel entwickelt, die dichtebeeinflusste 

Grundwasserströmung und den Transport von Nukliden und anderen Schadstoffen im 

Fernfeld von Endlagern in tiefen geologischen Formationen modellieren zu können. 

Standen bei der ursprünglichen Entwicklung ab 1995 Deckgebirge von Salzstöcken im 

Fokus, so dass ihr Einsatzbereich auf poröse Medien, gespannte Grundwasserleiter 

und geringe Temperatureinflüsse beschränkt war, wurden die Programme seither in 

erheblichem Maße weiterentwickelt. Sie können nun auch in Kluftgesteinen, in Gebie-

ten mit freier Grundwasseroberfläche und zur Modellierung des Wärmetransportes ein-

gesetzt werden. So hat sich ihr Einsatzgebiet über das Wirtsgestein Salz hinaus auch 

auf Endlager im Kristallingestein oder im Ton erweitert. In d³f und r³t werden Klüfte als 

niederdimensionale Objekte behandelt. Dabei werden Strömung und Transport nicht 

nur im Kluftnetzwerk selbst, sondern auch in der Gesteinsmatrix modelliert. 

Die gewählte Art der Kluftmodellierung wirft – insbesondere im Hinblick auf die Dich-

teströmung – die Fragestellung auf, bis zu welcher Öffnungsweite eine Kluft als nieder-

dimensionales Objekt dargestellt werden darf, und ab wann man zu einer äquidimensi-

onalen Representation übergehen muss. Diese Fragestellung wurde hier untersucht. 

Ein Kriterium für die Gültigkeit der niederdimensionalen Darstellung wurde entwickelt. 

In d³f und r³t wurden eine dimensionsadaptive Diskretisierung für Klüfte bzw. dünne 

Schichten und ein entsprechendes Mehrgitterverfahren implementiert, so dass wäh-

rend der Laufzeit automatisch – in Abhängigkeit von den Klufteigenschaften, dem Dich-

tegradienten, der aktuellen Strömungsbedingungen und der Feinheit des Rechengitters 

– zwischen der niederdimensionalen und der äquidimensionalen Kluftdarstellung um-

geschaltet werden kann.  

Eine der großen Herausforderungen in Kluftgesteinen stellt die Mehrskaligkeit der vor-

handenen Heterogenitäten dar. Die Matrix kann homogene und heterogene Teile, sehr 

große Einzelklüfte und Netzwerke von Hintergrundklüften enthalten. Auch bei wach-

sender Leistungsfähigkeit von Hard- und Software bleibt die explizite Modellierung auf 

Klüfte mit großer Öffnungsweite und Ausdehnung beschränkt: Nur eine begrenzte An-

zahl von Klüften bzw. nur eine sehr beschränkte Größe von Kluftnetzwerken kann ex-

plizit modelliert werden. Für die Hintergrundklüfte, deren Lage im Einzelnen gar nicht 

bekannt ist und deren Anzahl leicht in die Tausende gehen kann, müssen andere Stra-

tegien gefunden werden. 
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Ein Weg damit umzugehen ist das Ersetzen von Hintergrundkluftnetzwerken durch 

äquivalente poröse Ersatzmedien. Hier wird ausgenutzt, dass sich das Feld der loga-

rithmierten hydraulischen Leitfähigkeiten durch selbstaffine Eigenschaften beschreiben 

lässt. Die Skaleneffekte in heterogenen Medien lassen die longitudinale Dispersions-

länge mit der zurückgelegten Weglänge wachsen. Das zeitliche Verhalten unterschei-

det sich dabei in Medien mit unendlicher Korrelationslänge (fraktale Medien) entschei-

dend von dem in Medien mit endlicher Korrelationslänge: Während in letzteren eine 

ergodische Situation vorliegt und die Ensemble-Dispersionslänge gegen denselben 

Wert konvergiert wie die effektive Dispersionslänge, konvergiert bei ersteren die lon-

gitudinale Korrelationslänge überhaupt nicht. Effektive und Ensemble-Dispersionslänge 

stellen hier völlig verschiedene Größen dar. Dagegen verhält sich die transversale Dis-

persionslänge in beiden Medientypen quantitativ ähnlich, wenn auch die Zeitskalen er-

heblich voneinander abweichen. Die vorliegenden Untersuchungen liefern eine wis-

senschaftliche Begründung für die erheblich höhere Tortuosität und die wesentlich 

längere Rückhaltung von Schadstoffen in Medien mit fraktalen Eigenschaften. 

Die Dispersionseigenschaften von Modellen hängen vom verwendeten Rechengitter 

ab. Die Upscaling-Methode des Coarse Grainings erlaubt eine Quantifizierung dieses 

Effektes in Abhängigkeit von der lokalen Gitterauflösung. Für fraktale Medien konnte 

gezeigt werden, dass damit künstliche Dispersionseffekte insbesondere für die longitu-

dinale Ensemble-Dispersion stark reduziert werden konnten. 

Um die Programme effektiver und genauer zu machen, wurden für die zu lösenden 

gemischten parabolisch-hyperbolischen Differentialgleichungen Diskretisierungsme-

thoden höherer Ordnung entwickelt. Die Methode der filternden algebraischen Mehrgit-

terverfahren wurde weiterentwickelt und in d³f und r³t implementiert. Durch die Imple-

mentierung eines parallel communication layer (pcl) wurde die Parallelisierung der 

Codes vereinfacht sowie effektiver und flexibler gemacht. 

Effektive numerische Verfahren zur Parameterschätzung durch inverse Modellierung 

wurden wurden implementiert. Sie basieren auf Gauß-Newton-Techniken. Da die 

Komplexität des inversen Problems die des Ursprungsproblems leicht um eine Grö-

ßenordnung übersteigen kann, werden die resultierenden linearen Gleichungssysteme 

durch parallele algebraische Mehrgitterverfahren gelöst. 

Als eine schnelle Alternative wurden reduzierte 1d-Modelle untersucht. Es wird darge-

legt, dass der für eine realistische Abschätzung zu wählende Ansatz für die Dispersion 
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(effektiver oder Ensemble-Koeffizient) davon abhängt, ob Durchbruchskurven oder 

maximale Konzentrationen gefragt sind. 

Schnelle Voraussagen sind auch durch Particle-Tracking-Methoden möglich. Hier wur-

den Random-Walk-Particle-Tracking Methoden untersucht und ihre Ergebnisse mit 

FEM-Rechnungen verglichen. Zudem beinhaltet der vorliegende Bericht eine Reihe 

vorgeschlagener Benchmarks. 

Die VRL-basierte Benutzeroberfläche VRL-Studio wurde weiterentwickelt und an die 

Neuentwicklungen und den Bedarf der Benutzer angepasst. Auf Java-Basis erlaubt sie 

sowohl eine visuelle als auch eine textbasierte Programmierung. Auf diese Weise kön-

nen sowohl physikalische Modellparameter eingegeben als auch die numerischen Ver-

fahren gesteuert werden. Die Benutzeroberfläche wurde um eine integrierte Visualisie-

rungsmöglichkeit erweitert. Auch der Präprozessor PROMESH zum Einlesen und 

Aufbau von Modellgeometrien und zur Gittergenerierung wurde erweitert und verbes-

sert. 
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1 Introduction  

In Germany, radioactive waste is to be disposed in deep geological formations. Long 

term safety assessments form a part of the post-closure safety case. According to the 

German safety case requirements for heat-generating radioactive waste an assess-

ment period of one million years has to be regarded. The assessment is focussed on 

the proof of a safe containment of the waste in the so-called containment providing 

rock zone. Nevertheless, scenarios that lead to a nuclide mobilization have also to be 

addressed in a long-term safety assessment. 

In this context, modelling of groundwater flow and nuclide transport in the host rock as 

well as in the geological formations above play an important role. The performance of 

these long-term simulations for the different types of host rock regarded requires pow-

erful and qualified tools which need to be checked and verified and continuously 

adapted to the state-of-the-art of science and technology. 

In the period from October 1st, 1994 to August 31st, 1998 under the identification num-

ber 02 C 0254 6 (GSF) and later under the identification number 02 C 0465 0 (GRS) 

and from October 1st, 1998 to December 31st, 2003 under the identification number 02 

E 9148 2 both of the computer codes d³f (distributed density-driven flow) and r³t (radio-

nuclides, reaction, retardation, and transport) were developed /FEI 99/, /FEI 04/. From 

October 2006 to March 2010 these codes were substantially advanced (02 E 10336, 

/SCH 12/). These works were funded by the Federal Ministry of Education and Re-

search (BMBF) and by the Federal Ministry of Economics and Technology (BMWi), re-

spectively. By means of these two computer codes it became feasible to simulate den-

sity driven flow and pollutant transport in porous and fractured media, including heat 

transport as well as free surface flow. They enable to handle large models with com-

plex hydrogeological structures within convenient processing times. 

Both computer codes were successfully used in various qualification projects and sub-

sequently for different applications /BIR 00/, /SCH 04a/, /KEE 05/, /FEI 08/, /FLU 09/, 

/NOS 13/. Currently they are advanced under 02 E 11062A (H-DuR) and used in differ-

ent projects such as 02 E 10518 (WEIMAR), 02 E 10750 (URSEL), 02 E 10669 

(KOLLORADO), 02 E 10719 (ISIBEL) and 02 E 11213 (QUADER). 
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A comprehensive system understanding is crucial for the safety assessment of a final 

repository for radioactive waste or a subsurface disposal of chemo-toxic waste. Instru-

ments used in this context have to be capable of describing the flow and transport pro-

cesses in the geosphere over long time periods with the required accuracy. Thereby it 

has to be taken into account that the relevant processes take place on different scales 

in space and time, whereby scales may differ in some orders of magnitude. 

Initially, hard rock offers itself as a location for waste disposal due to its high resistance 

to being penetrated by any material. It has to be considered, though, that there may be 

fractures and whole fracture zones in rock formations, facilitating the rapid transport of 

contaminants. 

 

Fig. 1.1 Advective and dispersive transport processes in fractured-porous media 

/MAC 89/, modified by /NEU 03/ 

This is why the computer codes that are used should be capable of calculating flow and 

transport through sedimentary rock formations as well as through dense and fractured 

porous geological formations. 

At present, contaminant transport through dense rock formations is only modelled as a 

diffusion process in the integrated safety-analytical models of GRS; a possible advec-

tive transport of contaminants in fault or fracture zones is either considered separately 

by way of simplified models or not at all. There are so far no models available in inte-

grated safety analyses for describing the simultaneous transport processes. A further 

difficulty lies in the determination of the model parameters, which themselves depend 

on the type of conceptual model. 

source of pollutant 

water table 

flow

dispersive mass 
flux 

advective mass flux 
saturated zone 
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Modelling flow and transport in fractured porous media such as clay or crystalline rock 

is a major challenge as fractures exist on different scales and yet require a realistic rep-

resentation in the model. On the one hand the model must be able to describe local ef-

fects in the fractures and the steep pressure as well as concentration gradients at the 

interface between rock and fracture which may require an equi-dimensional resolution 

of the fractures and a higher degree of spatial resolution close to the fracture than fur-

ther away from it. On the other hand there is the need to coarsen the grid where possi-

ble to minimise the computational effort. The development of an adaptive multi-scale 

procedure and its implementation in d³f and r³t was therefore also subject of this pro-

ject. 

With an increasing degree of approximation towards the real, three-dimensional geo-

logical and hydrogeological conditions including all relevant processes, the modelling 

becomes more and more complex. This leads easily to inadmissibly long computing 

times for the analysis. In such a situation models of reduced dimensions could help. 

The highly-resolving, complex models serve for understanding the processes involved, 

while a structuring into compartments is carried out where possible. If these compart-

ments allow a reduction in dimension, the resulting models may be completely or at 

least in part one-dimensional allowing considerably faster calculations. 

For a concrete flow and transport problem concrete values for the corresponding hy-

drogeological parameters are of course required. Usually they have to be derived di-

rectly or indirectly from field data or field observations, and they have to be representa-

tive of the area to be modelled. This can be done by solving the inverse problem. Here, 

the sum oft the squares of the differences between measured and calculated data is 

minimised. As the complexity of the inverse problems generally exceeds the complexity 

of the simulation by far, an efficient implementation on parallel computers is particularly 

important here. 

With these extensions of d³f and r³t, the scope of application of the two computer codes 

is widened considerably, i. e. it is not restricted merely to the area of long-term safety 

analyses in porous formations and in individual fractures or small fracture networks but 

has also become applicable to safety analyses in large and complex porous/fractured 

formations.
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2 The project  

2.1 State of science and technology 

State-of-the-art fundamental priciples can be summarised to the topics flow and 

transport modelling, numerical procedures, model hierarchies and inverse modelling. 

These will be described in the following chapters: 

2.1.1 Flow and transport modelling 

There are in principle two different types of geological hard rock in which a repository 

could be built (Fig. 2.1). These are on the one hand sedimentary rock formations in 

whose pores spaces movements of water occur. Typical examples are sandstones and 

argillaceous types of rock. On the other hand, there are compact types of rock, such as 

granite. Here, the water can only circulate effectively in (microscopic) cracks, the asso-

ciated technical term being fractured rock. 

 

Fig. 2.1 Different types of media 

Generally, a large number of spatial scales can be identified in geological media which 

can be put down to the origin of the media and the different types of parent material. 

This involves the formation of areas of different characteristics, e. g. spacious geologi-

cal stratifications or fracture networks, which have a strong influence on the flow and 

transport through such media. 

sediment fractured rock 

pores fractures 
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2.1.2 Sedimentary rock 

Flow and transport models in sedimentary rock are derived from balance equations for 

mass and impulse and can be described as diffusion or advection/diffusion equations 

using the medium parameters storage coefficient, hydraulic conductivity or transmis-

sivity and dispersivity, which apply on the scale of a representative elementary volume 

(REV). In the case of density-driven flow, there also exist a system  of coupled equa-

tion for groundwater flow as well as salt and heat transport /DIE 05/. Sedimentary rocks 

such as clay are generally characterised by low hydraulic conductivity values and a 

high adsorption capacity. Sandstones, in contrast, show clearly higher hydraulic con-

ductivity values. 

As geological media can vary on many spatial scales, reaching from pore space to aq-

uifer structures and reservoirs, what has to be done first is to define the scale of the 

model. Heterogeneities in the order of magnitude of the scale of the model have to be 

represented explicitly, e. g. spatial stratifications. The effect of subscale heterogeneities 

can be adequately expressed and modelled through so-called upscaling (/REN 97/, 

/ATT 03/, /HOR 96/) in the form of effective model parameters (see also 3.3). 

2.1.3 Fractured rock 

The flow and transport processes in fractured rock also develop on very different tem-

poral and spatial scales, reaching from the microscale and individual fractures and frac-

ture networks (centimetre and metre scale) to aquifer structures and reservoirs (hun-

dreds of metres and kilometres). Fractures or fracture zones are generally marked by 

relatively high humidity and little storage capacity. Thus they can be preferred flow 

paths that allow fast transport of dissolved contaminants. The surrounding rock matrix 

in contrast often shows very low hydraulic conductivity and a high storage capacity. 

Any penetrating contaminants can thus cause long-term contamination caused by the 

very slow migration through the matrix. or Up-to-date surveys of conceptual models for 

fractured rock types can be found e. g. in /KOS 06/ and /MCD 06/. Apart from the clas-

sic approaches to fracture hydraulics, such as the "cubic law" /WIT 80/, the focus has 

more recently been above all on the study of scale-dependencies of hydraulic and 

transport parameters like permeabilities and mixing properties in fractured and frac-

tured-porous media. Similarly as in the section above, the scale of the model has to be 

defined prior to the actual creation of the model. Subscale heterogeneities such as 
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small fracture systems (right in Fig. 2.1) are transferred with the help of homogenisa-

tion into effective single- or multi-continuum models /LON 82/, /LON 85/, /WOL 90/, 

/BAR 60/, /WAR 63/, /HUY 83a/, /KOE 00/, /NAR 82/, /HUY 83b/, /PRU 85/, /TEU 88/, 

/GER 93/, /BIR 94/, /JAN 99/. Heterogeneities in the order of magnitude of the model 

scale like the large and dominant fracture networks have to be modelled explicitly. In 

order to model large, hydrogeologically complex areas, the effect of smaller fractures 

has to be integrated in a continuum model as an effective rock matrix and coupled to 

the explicit fracture network. /THE 96/ have shown that the consideration of the effec-

tive matrix in fractured systems and an explicit description of the interactions between 

fracture and matrix is necessary also – and in particular – under unsaturated conditions 

because in this case the fractures may possibly act as barriers and the transport will 

mainly take place through the porous matrix. 

Under certain circumstances, fracture networks can also be strongly simplified with the 

help of fractal scaling methods and be described as effectively one-dimensional mod-

els. Effective hydraulic conductivity values were calculated for two- and three-

dimensional fracture networks depending on the size of the model area, the number of 

fractures, and the distribution of the fracture aperture widths /SNO 65/, /WIL 70/, 

/LON 82/, /LON 83/, /WOL 90/, /KOS 96/. Equivalent dispersivity values can be deter-

mined in a similar way for the transport within the fracture network. One current issue 

that is presently being debated rather controversially in the literature is the validity of 

Gaussian distributions for the dispersion models and the resulting non-Fick's transport 

models /DEN 03/, /BER 06/. For example, fractal Levy distributions (distributions with 

non-existent first and/or second momenta) will quite often ensue. Corresponding stud-

ies were carried out for two-dimensional areas, e. g. by /SCH 83/, /SMI 84/, /WOL 90/, 

/CAC 90a/, /CAC 90b/, /DEN 03/, /BER 06/. A structural analysis of fracture networks 

and the integration of these effects on the different scales in spacious fracture networks 

is proposed by /HES 90/, /BER 93/, /BOU 97/, /MAR 98/. 
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2.1.4 Numerical procederes 

2.1.4.1 Numerical procedures for the modelling of flow and transport through 

sedimentary rock 

The calculation codes d³f and r³t are based on the simulation system UG, /BAS 94/, 

/BAS 00a/, which as a general parallel and adaptive solver for coupled systems of par-

tial differential equations occupies an island position among the simulation codes to 

this day. The development of UG, which began as early as in 1990, triggered a number 

of further developments, among them /DEA 03/, /BAS 05/, and various others, but none 

of these has reached the level, functionality or scope and depth of application that UG 

has reached. The treatment of realistic models with adequately fine resolution requires 

grids with 109 or more unknown variables. These can only be used to any purposeful 

effect if all possibilities of complexity reduction and efficiency increase, especially mas-

sively parallel systems, are utilised. These include adaptive multiple-grid methods 

/BAS 94/ and their parallelisation. Most recent tests of UG benchmarks on massively 

parallel computers show the excellent scaling properties of the code system. For ex-

ample, a scale-up study yielded a scaling difference of 93 % at 2048 CPUs compared 

to 27 CPUs. Here, systems with more than 109 unknown variables were resolved 

/LAM 07/. UG thus sets standards. 

So far, finite-volume methods have been the standard procedures implemented in UG 

for discretisation. In recent years, new approaches to discretisation have been devel-

oped. These include above all the discontinuous Galerkin methods /ODE 98/. These of-

fer the possibility to handle the order of the initial functions flexibly and thus also to in-

clude them in an adaptive concept. Such methods have so far not yet been formulated 

for density flows and offer an interesting alternative for this as well as for the related 

transport problems. In this context, we have already done some preparatory work to-

wards fast solvers /JOH 06a/, /JOH 06b/. A combination of algebraic multi-grid proce-

dures is also of interest in this respect. 

2.1.4.2 Numerical procedures for the modelling of flow and transport through 

fracture networks 

Based on the data from the DFG-Project: “Festgesteins-Aquiferanalog: Experimente 

und Modellierung” /NEU 97/, /NEU 99/, /NEU 00/ carried out laboratory- and field-scale 
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simulations in order to be able to determine the effects of the fracture-matrix interaction 

on the physical processes. /LAN 95a/ and /LAN 95b/ carried out two-dimensional stud-

ies with fracture-matrix models to identify parameters for double-continuum models.  

Neunhäuser /NEU 03/ has developed a selection of suitable numerical discretisation 

methods for equidimensional as well as for low-dimensional formulations of a fracture-

matrix model and has studied the solution behaviour of the equidimensional model ap-

proach in comparison with the low-dimensional model approach. For the selection of 

numerical methods that are suitable for the discretisation of flow and transport pro-

cesses in fractured porous media with consideration of the predetermined conditions, 

Euler methods from the areas of finite volumes and finite elements were exclusively 

considered. For the discretisation of flow, the box method and the method of mixed hy-

brid finite elements was chosen. For the discretisation of transport, the box method was 

used, which fulfils the requirement of avoiding oscillations even on grids that have been 

unstructured at will, but is only of the first order and thus introduces numerical disper-

sion into the system. A determination of the upwinding parameter subject to the 

Courant and Peclet number and the flow direction (streamline orientation) was there-

fore established in order to enhance the order of the procedure in dominantly disper-

sive areas.  

In summary, Neunhäuser /NEU 03/ has found that the use of the equidimensional ap-

proach, especially in the case of slower systems with a fracture that runs transversal to 

the main flow direction, shows clear effects on the approximated solutions. The hybrid 

box method used for transport discretisation with process-dependent upwinding in the 

matrix and full upwinding in the fractures generates clearly steeper concentration fronts 

in the matrix area at only little additional calculatory effort. To obtain an improved ap-

proximation of the transport equation for the contaminant it is therefore necessary that 

more complex adaptive discretisation methods are utilised. These also include in par-

ticular methods with adaptive order. The heterogeneity of a complex fractured porous 

medium thus calls for adaptive multi-scale models. 

Among the numerical multi-scale models, some areas are already well introduced. This 

includes the multi-grid technique, which has been established for the design of fast 

solvers for large systems of equations /HAC 85/, /WES 92/. The d³f and r³t codes are 

also based on multi-grid solvers. Other multi-scale methods are wavelet procedures, 

which are used above all in image processing. Further, there continue to appear spe-
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cial developments attempting to combine analytical and numerical multi-scale methods. 

Noteworthy among these are in particular /NEU 95/, /NEU 01/, /ATT 02/. 

The inclusion of fractures in the model demands flexibility regarding the dimension of 

the discretisation. Fractures are typically not modelled as fully three-dimensional ob-

jects but are reduced to two- or one-dimensional objects. For multiphase flows, corre-

sponding discretisation methods have already been developed and implemented on 

the basis of UG /REI 04/. Here, the development of compatible finite-volume formula-

tions of differing dimensions was an essential factor. The current project is to involve 

the derivation and implementation of corresponding methods for density-driven flow 

(d³f) and transport (r³t). 

For the numerical simulation of multi-scale processes in fractured rock, hybrid methods 

are used increasingly alongside hierarchical ones. The combination of numerical and 

hierarchical methods has proved effective for the resolution of the extremely different 

spatial and time scales, e. g. of advective-dominated channelling effects in fractures 

and diffusion processes in the rock matrix (matrix diffusion or intra-particle diffusion). 

Moreover, hybrid approaches are highly suitable for fracture network models /MCD 07/. 

2.1.5 Model hierarchies 

The physical processes as well as the heterogeneities and material properties of frac-

tured and sedimentary rock on small scales influence the system behaviour on larger 

scales. If large complex formations are to be modelled, this can generally not be done 

on the basis of detailed small-scale information since on the one hand the data are not 

or cannot usually be gathered to the amount that is necessary and on the other hand 

because the requisite calculation capacity and calculation time is also highly dispropor-

tionate to the result. To reduce the complexity of the system it is therefore necessary to 

identify the physically relevant parameters and processes on the different scales and 

describe subscale effects with the help of effective models and effective parameters. 

Examples are the effective hydraulic conductivity or the dispersion that describes the 

mass flow due to velocity fluctuations in the observation volume. Effective parameters 

are usually determined by performing an averaging process across the scale volume, 

with the scale volume having to be a representative elementary volume REV /BEA 72/ 

regarding the parameter or process to be studied. This averaging process across an 

REV also corresponds to an asymptotic scaling process. This volume averaging pro-
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cess is equivalent to homogenisation methods /PAP 78/ or stochastic averaging meth-

ods /GEL 83/, /DAG 84/. These yield the same effective parameters if there is a sepa-

ration of scales. This means that the scale across which the averaging process is car-

ried out is clearly separated from the large scale on which the effective models and 

parameters are to be valid. The prerequisite of scale separation is, however, a re-

striction that does not apply to many practically relevant problems. This is especially 

true in the vicinity of steep gradients of hydraulic pressure, e. g. near pumping wells or 

in the case of marked conductivity changes upon the transition from highly conductive 

to less conductive rock properties or vice versa and/or near steep concentration gradi-

ents as they may occur for transient concentration distributions in the vicinity of sources 

and/or as a result of marked conductivity contrasts. In these cases, the steep gradients 

in pressure and concentration have to be resolved locally, so that there is a directly en-

suing need for adaptive scaling methods. One scaling procedure that allows the possi-

bility of adaptivity is the so-called coarse-graining method. This method is based on the 

same idea as the method of large-eddy simulations. It represents a filter method that 

cuts off the high-frequent proportions of the solution in the frequency domain and pro-

jects – and thus considers – only their averaged effect on low-frequent proportions of 

the solution. The high flexibility of this method lies in the free choice of the cut-off fre-

quency which defines the high- and low-frequent proportions. A very small cut-off fre-

quency means that hardly anything is filtered out and the medium and the processes 

developing in it are still represented at fine resolution, while a high cut-off frequency 

means that the medium and the associated processes are shown very much coars-

ened or highly scaled /ATT 03/, /SCH 07a/, /BEC 02/. 

Multi-scale methods for discretisation have been developed above all for the equation 

of hydraulic pressure, e. g. the variation methods /ARB 02/ and /ARB 04/, the multi-

scale finite-element methods (MsFEM) /CHE 03/, /HOU 97/, the multi-scale finite vol-

ume methods (MsFVM) /JEN 03/, the equation-free computation method /KEV 03/ and 

the heterogeneous multi-scale method (HMM) /ENG 03/. MsFEM and MsFVM attempt 

efficiently to calculate a fine-scaled solution, albeit by calculating the solution on a 

coarser grid and then calculating the basic functions from the solution of a fine-scaled 

problem which then has the fine-scaled properties of the solution. The calculatory effort 

is similar to that of a fine-scale solver. (This also works for other methods.) HMM, on 

the other hand, is best comparable with a coarse-scale solver that presupposes scale 

separation. Small-scale information is taken into account by solution of small-scale cell 

problems and the consideration of their flows into the large scales. Numerical multi-
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scale models for the advection-dominated transport of contaminants are hardly devel-

oped at all. They only exist in the area of two-phase flows in which a pressure equation 

describes the development of the pressure of the phases, e. g. oil and water, and a 

transport equation describes the transport of the saturation of the phases. In principle, 

the pressure shows strongly dispersive properties, so that it can be represented on 

coarsened grids without any major errors. Advection-dominated transport of phases as 

well as of contaminants, however, is dominated by small-scale velocities for as long as 

non-traversal mixing "blurs" these fluctuations in the velocities. This, however, only oc-

curs in the borderline case of long transport times /ATT 99/, /DEN 00a/, /DEN 00b/, 

/DEN 02/. More recent approaches /AAR 06/ now try to calculate the pressure in a 

coarse-scaled and the velocities in a fine-scaled manner with mixed hybrid FEMs and 

to put this fine-scale information on the velocities to effective use in the transport simu-

lation. Effectively means in this case that the fine-scale information is only used in the 

vicinity of steep gradients. Apart from that, the transport is only calculated in a coarse-

scaled manner. Effective flow and transport parameters for the coarse-scaled propor-

tions are not calculated, though, as the work in /AAR 06/ is solely restricted to a purely 

advective two-phase problem. The effective model is in turn a purely advective two-

phase problem which always has steep gradients at the fronts, which are then calculat-

ed at fine resolution. However, an effective multi-scale model for the transport of con-

taminants requires the inclusion of fine-scaled mixing, which leads to strongly in-

creased mixing in flow direction for longer running times /ATT 99/, /DEN 00a/, 

/DEN 00b/, /DEN 02/ and therefore to the levelling of steep concentration gradients. 

Here, there is a need for the development of special subscale mixing models. Strong 

conductivity contrasts on the other side, as they occur in complex geological formations 

at the transition between sedimentary layers on the one hand and between rock matrix 

and fracture system on the other, may in turn generate so-called channelling effects 

and steep concentration gradients. The levelling and steepening of concentration gra-

dients brings about the need for new adaptive numerical multi-scale methods. 

What is decisive for the practical usability of these approaches is their linking to suita-

ble numerical solution procedures. Relevant techniques in this context are the adaptive 

methods that have been used for many years to overcome numerical scaling problems. 

These can be used directly as part of multi-scale approaches for discretisation, alt-

hough refinement criteria and error estimators have to be newly developed for a model 

hierarchy. Corresponding activities are currently underway within the framework of LES 

procedures for highly turbulent flows. 
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2.1.6 Inverse modelling 

The estimation of relevant parameters in the differential equation systems is of funda-

mental importance for the modelling and simulation. The use of fast methods for pa-

rameter estimation – as it is only now being developed within the framework of partial 

differential equations – is of utmost relevance for the practical usability of the models 

and software. For this purpose there exist a large number of algorithms. However, 

since inverse modelling brings with it a further level of complexity, common differential 

equations are typically used in this connection. Typical applications are optimal controls 

in process engineering, vehicle dynamics of motor vehicles etc. More recent develop-

ments that include inverse modelling in partial differential equations are e. g. the SQP 

multi-grid procedures described in /SCH 98b/, /LOG 01/, /WIT 03/, which are above all 

suitable for steady-state problems. With its help it was possible to solve the inverse 

problem with an effort required to solve three to five forward problems, which means an 

essential reduction in the effort usually required otherwise. A survey of the current sta-

tus of the research in this area is provided by /BOR 07/, /BOR 05/, /SCH 04b/, 

/SCH 07b/. 

In the case of discrete problems it is more advisable to combine Gauss-Newton meth-

ods with multiple-target methods. This was introduced in /HAZ 02/ for a multiphase flow 

in groundwater and implemented successfully. In /QUE 07/, this approach was used for 

the estimation of parameters of a model of signal processing in neurons. The inverse 

modelling for the flow problems in the current project was built on these methods. 

Multi-grid procedures are well in place as numerical multi-scale solvers. As they use 

multi-scale techniques themselves, the can be well combined with multi-scale ap-

proaches in modelling and discretisation. 

Corresponding work at the SiT Chair has yielded a number of studies /NEU 95/, 

/NEU 01/, /ATT 02/, /EBE 04/, /EBE 05/. These deal above all with the design of 

coarse-grid operators for strongly heterogeneous problems and the design of corre-

sponding multi-grid methods. With the exception of the work referred to above, the 

combination of these methods has not yet been described in the literature. This has 

been changed with the current project. 
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2.2 Overall objective 

The overall goal of the project was the development of software tools for the multi-scale 

simulation of flow and advective-dispersive contaminant transport in heterogeneous po-

rous media. Special approaches were developed for thin layers and fractures running 

through hard rock or clay to allow an adaptive resolution of the layers. Of central rele-

vance in this respect were local dimension-adaptive elements that allow an adaptive 

transition from low-dimensional to equidimensional modelling of the layers or fractures. 

Furthermore, discretisation methods of a higher order were developed for the mixed 

parabolic-hyperbolic problems and implemented in the simulation software. This was 

done on the basis of discrete Galerkin methods or finite-volume methods. For the sys-

tems thus generated, fast solution methods were developed on the basis of multiple-

grid methods. What was furthermore decisive was the efficient implementation of the 

methods on massively parallel computers. The basis of the implementation were the 

software tools d³f and r³t. 

For the estimation of parameters for these systems, efficient numerical procedures 

were developed and implemented. These procedures build on the Gauss-Newton 

techniques that are combined with multi-grid methods. Here, too, it was decisive that 

the implementation on parallel computers was done efficiently as the complexity of the 

inverse problems may easily exceed the complexity of the simulation itself by one order 

of magnitude. 

On the basis of the detailed models, reduced models were furthermore prepared allow-

ing a fast, coarse calculation of the problem. For this purpose, compartmentalisation 

methods were applied. Where possible, it was attempted to speed up the simulation 

models by reducing their dimensions. 

Individual targets: 

 Preparation of a multi-scale reference model 

 Modelling of flow and transport on the fine fracture network 

 Scaling of flow and transport on the fine fracture network 

 Numerical solver for flow and transport on the fine fracture network 

 Development of a numerical solver for the reference model 
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 Discretisation with finite-volume or discrete Galerkin methods of variable order 

 Multi-grid solver for the systems considered 

 Parallelisation for massively parallel computers 

 Concepts and criteria for multi-scale adaptivity 

 Adaptive numerical multi-scale solver for the overall system and implementation in 

d³f and r³t 

 Development of reduced models for coarse simulation 

 Algorithms and software tools for the inverse modelling and estimation of the rele-

vant parameters of the flow problem 

 Uncertainty analysis, benchmarking and comparative calculations 

 Development and realisation of a user interface for operating d³f and r³t 

These methods are to be implemented for d³f and r³t. 
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3 Meso-scale reference model 

3.1 Motivation  

Solute transport through heterogeneous geological formations is an important research 

area in hydrology and environmental engineering. An exact quantification of mixing is 

of particular interest in modelling the fate and transport behaviour of contaminants in 

the subsurface. The spreading of the solute is strongly influenced by the heterogenei-

ties of the medium through which the groundwater flows.  

One of the main challenges in modelling the heterogeneities is how to deal with the dif-

ferent scales of the heterogeneities: the rock matrix can be represented using a contin-

uum model (region A in Fig. 3.1). Large fractures in combination with the surrounding 

rock matrix (region C in Fig. 3.1) can be modelled in detail using a discrete fracture 

model combined with a continuum model. An open question is how to model the count-

less tiny fissures (region B in Fig. 3.1) in which a remarkable part of the water phase 

flow takes place. Not all the tiny fissures can be modelled in detail because this would 

be too complex and too time-consuming. A possibility how to treat those fissures would 

also enable one to handle different scales of heterogeneities (region D in Fig. 3.1). The 

aim of this study is to model such a situation consisting of tiny fissures and large frac-

tures which would represent a reference model on the fine scale.  

 

Fig. 3.1  Different scales of the heterogeneities in geologic formations /KRO 91/ 
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In such situations, the background consisting of the tiny fissures can be modelled using 

a continuum model with correlation lengths which tend to be infinite. But due to compu-

tational restrictions, a cutoff-function in the correlation lengths has to be inserted to 

make sure that the correlation lengths are finite. Large cutoff-values correspond to sit-

uations with finite correlations lengths of the heterogeneities in which the different 

scales are clearly separated whereas small cutoff-values indicate situations with large 

correlations lengths. The smaller the cutoff-values are, the longer the correlation 

lengths. Situations, in which the cutoff-value vanishes, correspond to situations with in-

finite correlation lengths of the heterogeneities which are used to describe media with a 

“fractal” structure, e. g. /FIO 01/, /NEU 90/, /NEU 95/, /NEU 05/, /ZHA 96a/. 

According to /NEU 90/, heterogeneities in natural geological formations are character-

ised by a complex hierarchy of scales. Whether such a hierarchy is infinite is difficult to 

assess experimentally. /NEU 90/ argued that with increasing lags, larger scales have to 

be considered and therefore the semi-variogram of the log hydraulic conductivity in-

creases. Media with this property can be described by applying a scaling assumption 

/NEU 90/, /BEL 96/. There is no longer a preferential (finite) scale since these media 

are characterised by “evolving scales” (e. g. /BEL 96/, /FIO 01/, /NEU 95/, /SPO 86/, 

/ZHA 96a/) due to the absence of clearly separated scales of the heterogeneities. This 

effect can be compared with a high tortuosity in heterogeneous porous media, where 

solute particles have to follow longer and branched pathways due to tiny spatial heter-

ogeneities.  

The classical dispersion theory on the laboratory scale reveals that homogeneous me-

dia dispersivities are constants related to the porous media geometries /SDG 54/, 

/BEA 72/. Physical heterogeneities include spatial variations in porosity and hydraulic 

conductivity. Following /ZHA 96a/ porosity variations are treated as a secondary effect 

and neglected in this study. A spatial variability of hydraulic conductivity is represented 

by a continuous hierarchy of scales as studied and described e. g. by /PIC 81/, 

/GEL 86/, /NEU 90/, /NEU 05/, /KEM 94/, /DAG 94/, /DES 94a/, /BEL 96/, /FIO 01/ or 

/KIM 04/. In the following, fractal media are understood as inhomogeneous fractured 

media characterized by an infinite correlation length of the heterogeneities which 

should be modelled with evolving scales. 

The dispersion depends not only on the scale, but also on the flow direction. In the fol-

lowing, two directions of the flow are distinguished: The longitudinal component D11 fol-
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lowing the main flow direction and the transverse one D22 in the mutually perpendicular 

directions. 

In order to model the tiny fissures as background medium, the idea of this study is to 

combine these fissures and treat them as a continuum which is substituted in the con-

text of a multi-Gaussian approach by effective parameters (section 3.3). In this chapter, 

first the method of generating the subscale heterogeneities is represented using cutoff-

functions. Afterwards, the model with special respect to fractal media is described in 

which the tiny fissures are represented by effective transport parameters. Then, the re-

sults are shown and compared with heterogeneous porous media characterised by 

clearly separated scales and a finite correlation length of the heterogeneities. In the fol-

lowing, vector and tensor quantities are indicated by boldface characters. 

3.2 Generation of the random fields 

In this section, the role of the variogram will be explained and the derivation of the trun-

cated power-law will be described according to /HES 13/. In addition, the numerical 

methods used for the generation of random fields are described and compared. 

3.2.1 Random fields 

Due to the intrinsic complexity of fractured media and the uncertainty of field studies, it 

is common to use stochastic quantities in order to describe certain geological proper-

ties. These quantities are called random fields which are basically spatially-dependent 

random variables. As a result, they can mathematically be described as a set 

ሼuሺܠሻ|ܠ ∈ Ωሽ. In this context, Ω is the support of u, i. e. the spatial region Ω ⊆ R୬ over 

which u is defined, with ݊ being the spatial dimension (݊ = 1, 2, 3). In the following 

mathematical description, random fields and stochastic processes are very similar. 

Since a stochastic process is a time-dependent random variable, the main difference is 

the support which is a time interval T ⊆ R instead of a spatial region Ω. The mathemati-

cal notation, however, for both random fields and stochastic processes is identical. In 

this context, they can therefore be considered synonymous. 

In order to fully describe random fields, it has to be distinguished between one-point 

and two-point spatial characteristics. One-point characteristics are the expectation and 

the variance. These quantities are defined point-wise for every ܠ ∈ Ω in full analogy to 
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plain random variables. Two-point characteristics describe the stochastic relationship of 

the random field at two points ܠ, ܠ ∈ Ω. These functions are the covariance function, 

the correlation function and the (semi)variogram. They are defined in the following.  

The covariance function describes the degree of variation of a random field u(x) be-

tween two points ܠ and ܠ: 

Cov൫uሺܠሻ, uሺܠሻ൯ ൌ Eሾሺuሺܠሻ െ Eሾuሺܠሻሿሻሺuሺܠሻ െ Eሾuሺܠሻሿሻሿ . (3.1)

The correlation function describes the degree of correlation of a random field u(x) be-

tween two points ܠ and ܠ which is defined as the covariance between these points 

normalised by the point-wise variance:  

R൫uሺܠሻ, uሺܠሻ൯ ൌ
Cov൫uሺܠሻ, uሺܠሻ൯

Var൫uሺܠሻ൯Var൫uሺܠሻ൯
. (3.2)

The variogram (more precisely semivariogram or structure function according to e. g. 

/MAJ 99/, /CAM 03/, /KRA 07/) is a function that describes the spatial variability of the 

random field u(x) between two points ܠ and ܠ: 

γ൫uሺܠሻ, uሺܠሻ൯ ൌ
1
2
E ቂ൫uሺܠሻ െ uሺܠሻ൯

ଶ
ቃ . (3.3)

All the characteristics described above contain the same information in different forms, 

i. e. the degree of spatial dependency of a random field u(x) between the points ܠ and 

 . It is therefore sufficient to describe only one of these in order to have a full statisticܠ

characterisation of a random field. 

3.2.2 Variograms and associated spectra of random fields 

Hereafter, the variograms will be introduced and the associated spectra of the random 

fields according to /HES 13/. Special attention will be given to the derivation and de-

scription of the truncated power-law due to its central role. 

3.2.2.1 Classic variograms and spectra 

In geostatistical analysis, a variogram for a specific geologic material is usually ac-

quired by estimation from a sample according to (3.3) and subsequent fitting to a con-
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ceptual model function. Typically, such model functions include the exponential vario-

gram 

γሺh, λሻ ൌ σଶ 1 െ eି
|୦|
 ൨ 							with Sሺܓ, λሻ ൌ σଶλୢ

Γ ቂ
d  1
2 ቃ

൫πሺ1  ଶλଶሻ൯ܓ
ୢାଵ
ଶ

 (3.4)

or the Gaussian variogram 

γሺh, λሻ ൌ σଶ 1 െ e
ି

ସ൬
୦
൰

మ

൩ 								 with Sሺܓ, λሻ ൌ σଶ ൬
λ
π
൰
ୢ

eି
ଵ
ሺܓሻ

మ
	. (3.5)

Both models assume a single characteristic length scale λ on which the observed het-

erogeneities appear. This condition is not met by many porous and fractured materials 

/RIT 04/. /NEU 08/ argue that the apparent ability of these models to characterise a 

wide range of porous materials can be seen as an artefact of the finite nature of the 

sampling process itself. 

3.2.2.2 Power-law variogram and spectrum 

Exponential and Gaussian variograms assume the existence of a single length scale 

for the variations of geological media. However, if the estimated correlation lengths ߣ 

obtained from sampled variograms on different length scales are compared, a clear 

scale dependency will be often visible /DIF 97/. If the estimated ߣ is plotted in these 

cases versus the length scale of the measuring process, many data will show a linear 

increase in a logarithmic scale. Such a linear behaviour indicates a power-law for the 

variogram and the spectrum of the underlying medium 

γሺhሻ ൌ C|h|ଶୌ with		Sሺܓሻ ൌ
Γሾ1  2HሿsinሺπHሻ

π
C|ܓ|ି

ሺଵାଶୌሻ; 0 ൏ ܪ ൏ 1	 (3.6)

In this context, C0 is a constant and H the Hurst coefficient. No characteristic length 

scales appear in (3.6) indicating that a random field with such a variogram and spec-

trum is a self-similar fractal field. /DIF 97/ could show that (3.6) can be decomposed in-

to an integral representation with weighted modes consisting of either Gaussian or ex-

ponential functions 

γሺhሻ ൌ Cන
γሺh, nሻ

nଶୌାଵ

ஶ



dn													with Sሺܓሻ ൌ Cන
Sሺܓ, nሻ

nଶୌାଵ

ஶ



dn .  (3.7)
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The parameter ݊ ൌ 1 ⁄ߣ   denotes the wave number, i. e. the inverse correlation length 

and C is a constant with the dimensions [L−1−2H]. The power-law resulting from (3.7) for 

the case of exponential modes will then follow from (3.6) with 

C ൌ C
Γሾ1 െ 2Hሿ

2H
	,															0 ൏ H ൏ 1 2⁄ , (3.8)

and for the case of Gaussian modes respectively (in both cases the variance of the 

single modes is assumed to be unity i. e. σଶ ൌ 1) 

C ൌ C
Γሾ1 െ Hሿ

2H
ቀ
π
4
ቁ
ୌ
		,													 0 ൏ H ൏ 1. (3.9)

This decomposition can be interpreted such that fractal geological media are com-

posed of an infinite hierarchy of scales, each of which represented by a classic vario-

gram (see Fig. 3.2 for a schematic representation). The weighted superposition of 

these modes according to (3.7) is resulting in truly fractal media. The major shortcom-

ing of this approach is the fact that any real medium has an upper length scale ߣ௨ con-

fining the fractal behaviour within an interval of scales. Such a finite-size effect can, 

however, be implemented by truncating the integral in (3.7), which will result in a so-

called truncated power-law variogram. 

 

Fig. 3.2  Schematic representation of different scales in multi-scale fractured media 

/HES 13/ 

3.2.2.3 Truncated power-law variograms and spectra 

The truncated power-law variograms and spectra derived by /DIF 97/ result from trun-

cating the integral from (3.7) at a lower wave number ݊ℓ ൌ 1 ⁄௨ߣ   
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γ୬ℓ ൌ C න
γሺh, nሻ

nଵାଶୌ
dn

ஶ

୬ℓ

															with S୬ℓሺܓሻ ൌ C න
Sሺܓ, nሻ

nଵାଶୌ
dn

ஶ

୬ℓ

.  (3.10)

Unlike in the case of (3.7), where both exponential and Gaussian modes yielded the 

same expression, the resulting truncated power-law is different for the two types. 

In case of exponential modes, i. e. (3.4) are introduced into (3.10) and the resulting 

variogram and spectrum have the form: 

γ୬ℓ ൌ σଶ ቂ1 െ eି|୦|୬ℓ  ሺhnℓሻଶୌΓሾ1 െ 2H, |h|nℓሿቃ , (3.11)

S୬ℓሺܓሻ ൌ σଶ
2HΓ ቂ

d  1
2 ቃ

π
ୢାଵ
ଶ ሺd  2Hሻnℓdଶ

Fଵ ൦

d  1
2

d  2H
2

d  2  2H
2

;െ ൬
|ܓ|
nℓ
൰
ଶ

൪ . (3.12)

In this context, Γሺ∙,∙ሻ is the incomplete gamma function, F1 is known as the Gaussian 

hypergeometric function and the variance σ² is given as 

σଶ ൌ
C

nℓ
ଶୌ2H

	. (3.13)

In case of Gaussian modes, (3.5) is inserted into (3.10). Evaluating these integrals, the 

variogram and spectrum read 

γ୬ℓሺhሻ ൌ σଶ 1 െ eି

ସሺ୦୬ℓሻ

మ
 ቀ

π
4
ሺhnℓሻଶቁ

ୌ
Γ ቂ1 െ H,

π
4
ሺhnℓሻଶቃ൩ , (3.14)

S୬ℓሺܓሻ ൌ σଶ
Hnℓ

ଶୌπି
ୢ
ଶାୌ

|ܓ|
ଶ൬
ୢ
ଶାୌ൰

൭Γ 
d  2H
2

൨ െ Γ 
d  2H
2

,
1
π
ቆ
|ܓ|

nℓ
ቇ
ଶ

൩൱ . (3.15)

Comparing (3.11) and (3.14) shows a very similar behaviour for both expressions. Both 

exhibit a power-law term, which is important for small lengths (h ൏  ,In this region .(ߣ

both variograms are similar to a power-law (3.6) which is exemplified by a linear in-

crease in a log-log plot, with a slope of 2ܪ. Both expressions also exhibit an exponen-

tial and a Gaussian term, respectively. As a result the variograms are saturating for 

bigger lengths (h  -The incomplete gamma function is mediating the transition be .(ߣ

tween these two regimes. Despite similar variograms, the spectra of both models are 

very different as a comparison between (3.12) and (3.15) shows. 
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Double Truncation 

In the analysis above, the impact of an upper cut-off length λ୳ representing the finite 

size of real geological media was considered. In order to complete this description, a 

lower cut-off length	λℓ, also has to be considered which represents the finite resolution. 

The variograms and associated spectra are given by 

γ୬ℓ,	୬౫ሺhሻ ൌ C න
γሺh, nሻ

nଵାଶୌ
dn

୬౫

୬ℓ

ൌ γ୬ℓሺhሻ െ γ୬౫ሺhሻ (3.16)

S୬ℓ,	୬౫ሺܓሻ ൌ C න
Sሺܓ, nሻ

nଵାଶୌ
dn ൌ

୬౫

୬ℓ

S୬ℓሺܓሻ െ S୬౫ሺܓሻ , (3.17)

with the variance given as 

σ୬ℓ,	୬౫
ଶ ൌ σ୬ℓ

ଶ െ σ୬౫
ଶ ൌ

C

൫nℓ
ଶୌ െ n୳ଶୌ൯2H

 (3.18)

completing the description for the double-truncated power-law variograms and spectra. 

 

Fig. 3.3  Double-truncated power-law variograms  

with Gaussian & exponential modes vs. a power-law variogram (parameters: 	λ୪ ൌ 10ିହ,

λ୳ ൌ 1, H ൌ 0.25) /HES 13/. 

The double-truncated power-law variograms show for high values of h a similar behav-

iour as described above. For small values of h, it is visible that the double-truncated 
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power-law is diverting again significantly from the power-law variogram. This exempli-

fies how the power-law behaviour is confined within λℓ ≲ h ≲ λ୳ (Fig. 3.3). 

3.2.3 Numerical generation of random fields 

According to /HES 13/, the different numerical methods used in this study are covered 

to generate random fields: The Fourier method, the Randomisation method, the Hybrid 

method and the Fourier-Wavelet method. The derivation of these methods will be laid 

out for one-dimensional media only. The starting point for the description of these 

methods must be a mathematic representation of a random field. According to 

/KRA 07/, a Gaussian random field uሺܠሻ can be represented by a stochastic Fourier in-

tegral 

uሺܠሻ ൌ න eିଶ୧ܠܓඥSሺܓሻ	dWሺܓሻ

ஶ

ିஶ

. (3.19)

In this context, dWሺܓሻ is a complex-valued white noise random measure. This expres-

sion can be rewritten into  

uሺܠሻ ൌ න cosሺ2πܠܓሻඥSሺܓሻdWሺܓሻ  i

ஶ

ିஶ

න sinሺ2πܠܓሻඥSሺܓሻdWሺܓሻ

ஶ

ିஶ

. (3.20)

Since the spectrum Sሺܓሻ is the Fourier transform of the covariance function Cov(h) of 

uሺܠሻ, which is an even function,	Sሺܓሻ is even, too. As a result, 	Wሺെܓሻ ൌ െWሺܓሻതതതതതതതതതതതതതത holds 

for the Wiener process. Hence, (3.20) can be rewritten as 

uሺܠሻ ൌ ඥ2σଶ ቌන cosሺ2πܓ ∙ ሻܓඥEሺ	ሻܠ dWଵሺܓሻ

ஶ



න sinሺ2πܓ ∙ ሻܠ ඥEሺܓሻ dWଶሺܓሻ

ஶ



ቍ . 

(3.21)

Wଵሺܓሻ and Wଶሺܓሻ are two independent real-valued Wiener processes and Eሺܓሻ ൌ

Sሺܓሻ/σଶ is the normalised spectrum or spectral density function. In the following, the fi-

nal form (3.21) is used. A numerical implementation of (3.21) is hampered by two main 

challenges: (i) The quadrature of the integral and (ii) the numerical representation of 

the white noise. In the following, it will be laid out how the four considered different 

methods solve these two problems. 
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3.2.3.1 The Fourier method 

The Fourier method is the simplest and most robust discretisation scheme considered 

in this study. It can be understood as a Riemann sum discretisation of (3.21) It is easy 

to implement, but suffers from several flaws /ELL 97/ which will be highlighted in the 

following. The basic idea behind the method is the truncation and discretisation of the 

integral according to the mid-point rule with equispaced grid points. Using a finite sym-

metric partition of N intervals having equal widths ∆k for the truncation and inserting 

this into (3.21) gives the following approximation: 

uሺܠሻ ൎ ඥ2σଶඥEሺk୧ሻ


୧ୀଵ

൫cosሺ2πk୧ ∙ ሻ∆W୧ܠ
ଵ  sinሺ2πk୧ ∙ ሻ∆W୧ܠ

ଶ൯ (3.22)

yielding a discrete Fourier integral. The calculation of (3.22) is rather straight forward 

except for the determination of the discretised white noise 

∆W୧
୬ ൌ Z୧

୬√∆(3.23) , ܓ

where Z୧
୬ are independent normal random variables. Introducing this relationship into 

(3.22), finally gives the representation of (3.21) according to the Fourier method 

uሺܠሻ୭୳୰ ൌ ඥ2σଶඥEሺk୧ሻ


୧ୀଵ

൫Z୧
ଵcosሺ2πk୧ ∙ ሻ∆W୧ܠ

ଵ

 Z୧
ଶsinሺ2πk୧ ∙ ሻ∆W୧ܠ

ଶ൯√∆ܓ . 
(3.24)

One of the important drawbacks of the Fourier method is the artificially introduced peri-

odicity with length (∆k)-1. This artifact is due to the finite resolution of the scheme in the 

Fourier domain and cannot be directly avoided. A workaround would be to simulate a 

larger domain of which subsequently a smaller part is used. Another problem concerns 

the applicability of such a truncation of the integral in (3.21) in general. To that end, the 

integrand has to be zero (or almost zero) outside this interval.  

The Randomisation method has been developed by Sabelfeld and his coworkers 

/KRA 07/. It can be regarded as a modification of the aforementioned Fourier method, 

whereby the equidistant approximation of the stochastic integral in (3.19) is replaced by 

a random discretisation. Starting again with (3.21), both terms are treated separately 

and the first term can be written as 
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uଵሺܠሻ ൌ ඥ2σଶ න cosሺ2πܓ ∙ ሻܓሻඥEሺܠ dWଵሺܓሻ

ஶ



, (3.25)

which is again a random field with zero mean and the variance 

Var	൫uଵሺܠሻ൯ ൌ 〈|uଵሺܠሻ|ଶ〉 ൌ 2σଶ න cosሺ2πܓ ∙ ሻܓሻdሺܓሻEሺܠ

ஶ



. (3.26)

This integral can be approximated by means of a Monte-Carlo integration resulting in 

the following sum 

Var	൫uଵሺܠሻ൯ ൎ 2
σଶ

N
cosଶሺ2πk୧ ∙ ሻܠ


୧ୀଵ

. (3.27)

k୧ are random numbers following the density distribution function defined by E(k). By 

virtue of this relationship, (3.25) can be approximated according to 

uଵሺܠሻ ൎ ඨ2
σଶ

N
Z୧

ଵcosሺ2πk୧ ∙ ሻܠ


୧ୀଵ

, (3.28)

where the Z୧
ଵ are again independent Gaussian random variables. If the same procedure 

is applied to the second term in (3.21), the Randomisation method results 

uሺܠሻୖୟ୬ୢ ൌ ඨ2
σଶ

N
ቀZ୧

ଵcosሺ2πk୧ܠሻ  Z୧
ଶsinሺ2πk୧ ∙ ሻቁܠ



୧ୀଵ

. (3.29)

(3.29) is similar to (3.24), but with another manner how the k୧ are determined. 

In the Fourier method, these equidistant points k୧ were sampling the finite interval 

ሾ0, 	k୫ୟ୶ሿ with N partitions having the width ∆ܓ (Fig. 3.4 a). For a spectrum with long 

tails, such a procedure can be disadvantageous, because 	k୫ୟ୶ must be very big to 

sample a sufficiently large portion of the spectrum. By randomly choosing the sampling 

points k୧	, the Randomisation method can circumvent this problem (Fig. 3.4 b).  
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a) The Fourier method   b) The Randomisation method       c) The Hybrid method 

Fig. 3.4  Schematic of the sampling procedure in the different methods /HES 13/ 

As a result, the interval being sampled is not confined by a finite		k୫ୟ୶ , but is (poten-

tially) the whole support of the spectral density function E(k). For the definitions given 

above this is the whole domain [0, ∞). Higher regions of the Fourier domain are certain-

ly less likely to be sampled but not discarded completely as in case of the Fourier 

method. 

3.2.3.2 The Hybrid method 

The Hybrid method can be understood as a combination of the concepts of the Fourier 

method (deterministic sampling of the Fourier domain) and the Randomisation method 

(random sampling of the Fourier domain) by applying a stratified sampling procedure to 

the latter. To that end, the Fourier domain is partitioned into N non-empty and non-

overlapping parts ⋃ P୨ ൌ ሾ0,∞ሻ.ౌ
୨ୀଵ 		Within each part P	୨, having the boundary values 

P୨ ൌ ቂkౠ,kౠశభቁ		a random sampling of N points k୧,୨	is applied according to the Randomi-

sation method. The probability density function (PDF) within every part P୨ naturally has 

to be adapted. It now reads 

E୨ሺܓሻ ൌ ቐ

2
σ୨
ଶ Eሺܓሻ	,			for		ܓ ∈ P୨	,

0	,					 															else	,
with σ୨

ଶ ൌ 2න Eሺܓሻdܓ
୩ౠ

୩ౠ

. (3.30)

When this partitioning is inserted into (3.29) for the Hybrid method follows 

uሺܠሻୌ୷ୠ ൌඨ2
σ୨
ଶ

N

ౌ

୨ୀଵ

ቀZ୧,୨
ଵ cos൫2πk୧,୨ܠ൯  Z୧,୨

ଶ sin൫2πk୧,୨ܠ൯ቁ



୧ୀଵ

. (3.31)
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The random numbers Z୧,୨
୬  are again independent standard Gaussian random variables. 

The main advantage of this stratified sampling technique is the possibility of sampling 

specific portions of the Fourier domain (usually those with high values of 	ܓ) with higher 

accuracy. This improves the advantages of the Randomisation method even further. 

The Fourier method had the drawback of a truncation of the stochastic integral for high 

values of 	ܓ (Fig. 3.4 a). This can be problematic for spectra having long tails. The 

Randomisation method could circumvent this problem because values from the whole 

Fourier domain would be sampled according to the PDF given by the respective spec-

tral density function (Fig. 3.4 b). This procedure is a clear improvement but still leaves 

regions with small values of E(k) with smaller sample size and therefore smaller accu-

racy. The Hybrid method is countering this tendency by sampling each part Pj with the 

same sample size (Fig. 3.4 c).The combination of Fourier and Randomisation method 

improves the representation and hence the overall quality of the sampling procedure. 

The crucial question for the application of the Hybrid method is the choice of the parti-

tioning procedure. According to a variety of performed test runs (not discussed here) 

and in accordance with the results of /KRA 07/ a logarithmic partitioning was found, 

with doubling interval lengths, gives best results. It is therefore set P1 = [0, 1) for the 

first part and kౠశభ ൌ 2kౠ for every successive interval boundary. It should be noted, 

that /KRA 07/ call this specific partitioning strategy for the Hybrid method the 'variant C 

of the Randomisation method' in their paper. 

3.2.3.3 The Fourier-Wavelet method 

The Fourier-Wavelet method has been developed by /ELL 97/. As the name implies, 

wavelets are applied for the discretisation of (3.19) in particular for the random meas-

ure dWሺܓሻ	. In contrast (3.23), the following approach is used for the representation of 

the increments of the Wiener process 

dWሺܓሻ ൌZ୧ϕ୧
୧

ሺܓሻdܓ	(3.32) .

Z୧ are again independent Gaussian random variables and the ϕ୧ must form an or-

thonormal basis. The main idea of /ELL 97/ is to use Fourier transformed Wavelets ψ୧ 

or more specifically Meyer Wavelets for ϕ୧ ൌ ࣠ሾψ୧ሿ	. The Fourier transform of the Mey-

er wavelet has the form 
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ϕሺܓሻ ൌ ࣠ሾψሿሺܓሻ ൌ െi	signሺܓሻe୧ܓbሺ|ܓ|ሻ , (3.33)

with bሺܓሻ defined as 

bሺܓሻ ൌ 	

ە
ۖ
۔

ۖ
ۓ sin ቆ

π
2
νሺ3k െ 1ሻቇ 	,		 if k ∈ ൬

1
3
,
2
3
൨ ,

cos ൭
π
2
ν ൬
3k
2
െ 1൰൱ 	,	 if k ∈ ൬

2
3
,
4
3
൨ ,

0 , 																										 else .

 (3.34)

νሺܓሻ must be a non-decreasing smooth function with the following properties 

νሺܓሻ ൌ 	 ൝
0	,			 																										 if k ൏ 0 ,

	1	,						 																										 if k  1 ,
νሺkሻ  νሺ1 െ kሻ ൌ 1 , else .

 (3.35)

/ELL 97/ or /CAM 03/ propose the use of spline functions with such properties. With the 

definition of the so-called mother wavelet Φ, this can be expanded into: 

ϕ୧,୨ሺܠሻ ൌ 2
୧
ଶψ൫2୧x െ j൯	,				with	 i, j ൌ 0,േ1,േ2,… (3.36)

This set of wavelets is forming an orthonormal basis, a property, which is preserved 

under the Fourier transform. Hence, a set of functions was found applicable for (3.32): 

dWሺܓሻ ൌ   Z୧,୨ϕ୧,୨

ஶ

୨ୀିஶ

ஶ

୧ୀିஶ

ሺܓሻdܓ . (3.37)

Inserting (3.37) into (3.19) and re-arranging leads to the following representation: 

uሺܠሻ ൌ ඥ2σଶ   Z୧,୨

ஶ

୨ୀିஶ

ஶ

୧ୀିஶ

	න eିଶ୩୶ඥEሺܓሻ ϕ୧,୨
ஶ

ିஶ
ሺܓሻd(3.38) ܓ

Expression (3.38) is not an approximation of (3.19), but a transformation into a different 

basis. In order to be used as a numerical algorithm, practical truncations have to be in-

troduced for both sums and a method for the calculation of the Fourier integral. 

In order to find an appropriate truncation for the index i, the length scales of uሺܠሻ have 

to be considered, which should be represented. With respect to the single-truncated 

power-law given by (3.11) and (3.14) as well as the double-truncated power-law given 

by (3.16) these length scales can be identified with the upper λ୳ and lower truncation 

length λℓ. By virtue of truncating N, the Fourier-Wavelet method provides a very precise 
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handle for the exact representation of the desired length-scale interval. For the trunca-

tion of the index j, the finite support of the wavelets are used. For the determination of a 

single value of the random field uሺܠሻ only the 2M terms need to be considered, for 

which |j - 2i x| < M holds. For the Fourier-Wavelet method, the finite double sum follows 

uሺܠሻ ൌ ඥ2σଶ  		  Z୧,୨



୨ୀଵି



୧ୀ

c୧,୨ሺܠሻ with c୧,୨ሺܠሻ ൌ ࣠ିଵൣ√EΦ୧,୨൧ሺܠሻ.	 (3.39)

In order to complete the derivation of the Fourier Wavelet method, a further elaboration 

on the functions 	c୧ሺܠሻ is needed given by the inverse Fourier transform of  √EΦ୧.  

3.2.4 Assessing the quality of numerically generated random fields 

In order to compare the considered different methods for the numerical generation of 

random fields the quality of the generated fields has to be investigated with respect to 

several criteria. The criterion for the one-point distribution will be the kurtosis and for 

the two-point distribution the variogram is used. Both of these criteria will furthermore 

be assessed with respect to a wide interval of decades. 

3.2.4.1 Estimating the kurtosis 

The kurtosis G4 is commonly described as a measure for the peakedness or the slope 

of the PDF of the random variable. It can be used for assessing the Gaussianity of the 

one-point distribution of a random field. The kurtosis is defined as the fourth centralized 

moment μସ of the random variable X normalised by the square of the variance 

GସሺXሻ ൌ
μସሺXሻ

σସሺXሻ
	 . (3.40)

The kurtosis of a (one-dimensional) random field uሺܠሻ with distance h is defined as 

Gସሺhሻ ൌ
E ቂ൫uሺܠ  hሻ െ uሺܠሻ൯

ସ
ቃ

E ቂ൫uሺܠ  hሻ െ uሺܠሻ൯
ଶ
ቃ
ଶ . (3.41)

A simple method for the estimation of the kurtosis for a given sample of N realisations 

u୬ሺܠሻ	, is to estimate the second and fourth moment and using the ratio 
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Gഥସሺhሻ ൌ N
∑ u୬ସ

୬ୀଵ ሺhሻ

ቀ∑ u୬ଶ
୬ୀଵ ሺhሻቁ

ଶ	. (3.42)

Since the kurtosis of a Gaussian random variable is always GସሺXሻ ൌ 3	, this can be 

used as a measure for the assessment of the Gaussianity of the random fields. 

3.2.4.2 Estimating the variogram 

For the assessment of the two-point distribution of the generated random fields, the 

variogram defined in (3.3) is used. For a given sample of N realisations u୬ሺxሻ	, the vari-

ogram can be approximated by  

γതሺhሻ ൌ
1
N
|u୬ሺܠ  hሻ െ u୬ሺܠሻ|ଶ


୬ୀଵ

. (3.43)

It is clear that, due to the finite resolution of the u୬ሺܠሻ	, expression (3.43) can only pro-

vide estimates for γሺhሻ on a finite number of points. This is, however, not problematic 

because the high number of possible permutations between the different points in 

u୬ሺܠሻ allows a very fine spatial sampling of h. 

3.2.4.3 Estimation of reproduced decades 

The generated numerical fields are supposed to exhibit either truncated or double-

truncated power-law structures. This means, that the variogram and the kurtosis should 

be reproduced over a wide range of scales (Fig. 3.3). In order to quantify this state-

ment, the relative error between the expected γሺhሻ and the estimated variogram γതሺhሻ	 

ε ൌ
|γሺhሻ െ γതሺhሻ|

γሺhሻ
 (3.44)

can be used. In order to guarantee that γതሺhሻ	is close to the real variogram of the gener-

ated random fields, very high sampling sizes were used (several thousands of realisa-

tions). For the derivation of the reproduced number of decades the set hக now has to 

be determined for which the relative error is smaller than a maximally acceptable 

threshold ε୫ୟ୶. Within this study, this threshold was set to 0.1 corresponding to a rela-

tive error of 10 %. The set of points, for which the estimated variogram is acceptable, is 

hence defined as 
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hக ൌ ሼh	|	εሺhሻ ൏ ε୫ୟ୶ሽ	. (3.45)

A contiguous interval Δh has to be determined with the upper boundary of simply 

h୫ୟ୶ ൌ max୦	hக. The lower boundary h୫୧୬ is defined such that a certain percentage p୦ 

of Δh actually belongs to hக (e. g. p୦ ൌ 90%). Having determined the boundaries of Δh , 

the number of reproduced decades dக can be computed according to 

dக ൌ logଵ
h୫ୟ୶
h୫୧୬

. (3.46)

This quantity can be used in two different ways, when comparing the different numeri-

cal methods: (i) For a single-truncated power-law, the maximum number of reproduced 

scales (potentially infinite) for a given numerical cost can be measured or (ii) in case of 

a double-truncated power-law, the minimum numerical cost for the reproduction of a 

given number of decades can be determined.  

 

Fig. 3.5  Schematic of the scales influencing the random field generation /HES 13/ 

It should be noted, that the latter issue involves the numerical framework, too. When 

deciding on the number of decades, which need to be reproduced by the numerical 

field generator two different confining frameworks have to be pondered: The geological 

and the numerical one (Fig. 3.5). As mentioned above, the length scales in any geolog-

ical medium are confined by the maximum size λ୳ (labelled Lgeo in Fig. 3.5) and the 

resolution of the medium itself λℓ (ℓୣ୭ in Fig. 3.5). The double-truncated power-law 

can explicitly account for this fact. In a numerical framework, there are also two confin-

ing length scales introduced: the size of the numerical domain (Lnum in Fig. 3.5) and the 

minimum grid resolution (ℓ୬୳୫ in Fig. 3.5). 

Under regular circumstances, the number of decades that are present in a numerical 

simulation is rather confined. For a simple finite-difference discretisation, a number of 
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four decades will result in 108 grid points in a 2d system and 1012 in a 3-D system. 

However, with the development of newer techniques this number can be much higher. 

Such techniques include adaptive grid refinement /TRA 02/ or multi-scale codes 

/JUT 08/, /NOR 09/. 

3.3  Modelling of the effective parameters 

In the following, explicit expressions for effective transport parameters in fractal media 

will be derived, e. g. the effective hydraulic conductivity or effective mixing coefficients. 

Since the former are already investigated e. g. by /TAR 00/, the focus in this study is on 

dispersion coefficients which are split in a longitudinal D11 and a transverse component 

D22. As mentioned in section 3.2, randomly distributed heterogeneous fields can be de-

scribed by the mean value, the variance and the correlation function of the distribution. 

This correlation function can either be described by a Gaussian function in cases with 

finite correlation lengths or by an algebraic function in cases where the correlation 

lengths tend to be infinite. The latter can be characterised by fractal fields, in which the 

correlation function is described by a power-law /FIO 01/. In the following, it is shown 

that fractal fields can be reduced to a superposition of Gaussian functions and hence, 

the results of /DEN 00a/, /DEN 00b/ and /DEN 02/ can be applied.  

3.3.1 The transport equation 

The temporal behaviour of a mobile solute is given by the standard advection-

dispersion equation e. g. in /DAG 89/ or /GEL 93/. The simplified transport model, 

where only the variations in the flow field are considered, is defined as 

∂
∂t
cሺܠ, tሻ  ,ܠሻcሺܠሺܝ൫ tሻ൯ െ ,ܠcሺሻܠ۲ሺ tሻ ൌ ρሺܠሻδሺtሻ  (3.47)

where c [kg m-3] denotes the solute concentration, u [m s-1] the heterogeneous Darcy 

velocity, the dispersion tensor is indicated by D [m² s-1] and the density by ρ [kg m-3] . 

The right-hand side of this equation gives the initial distribution of the solute 

cሺܠ, t ൌ 0ሻ ൌ ρሺܠሻ (3.48)

and a vanishing concentration is assumed as boundary condition. The dispersion ten-

sor D is assumed to be diagonal in a Cartesian coordinate system and composed of 
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the molecular diffusion coefficient Dm and the product α୧୧|vሬറ|, i ൌ 1, … , d of the dispersivi-

ties and the absolute velocity |vሬറ|:  

۲ ൌ ൭
D୫  αଵଵ|ܞ| 0 0

0 D୫  αଶଶ|ܞ| 0
0 0 D୫  αଷଷ|ܞ|

൱ . (3.49)

The groundwater velocity	ܞ ൌ  ϕ is given with u [m s-1] as the Darcy velocity and/ܝ

ϕ [%] as the porosity. 

3.3.2 The Darcy equation 

According to /BEA 72/, the flow velocity in a saturated macroscopic porous medium is 

represented by the Darcy equation 

ሻܠሺܝ ൌ െKሺܠሻhሺܠሻ	. (3.50)

h(x) [m m-1] denotes the hydraulic gradient. Within the stochastic framework, the hy-

draulic conductivity K(x) [m s-1] is assumed to be a translational invariant random field 

and from geostatistical investigations it is proposed to be log-normally distributed 

/FRE 75/, /SUD 86/, /DEN 00a/. 

3.3.3 The stochastic approach 

The fluctuating Darcy velocity is split into a deterministic and a random contribution 

ሻܠሺܝ ൌ ഥܝ െ , (3.51)	ሻܠᇱሺܝ

where ܝഥ is the averaged Darcy velocity. The field ܝᇱሺܠሻ	 denotes the fluctuation around 

the mean value. The corresponding velocity auto-correlation functions are denoted by  

uనᇱሺܠሻuᇱሺܠ′ሻതതതതതതതതതതതതതത ൌ C୧୨
୳୳ሺܠ െ ሻ (3.52)′ܠ

where u୧
ᇱሺܠሻ is the i-th component of the d-dimensional field ܝᇱሺܠሻ, i ൌ 1,… , d. Without 

restriction of generality, the mean flow vector ܝഥ is aligned with the 1-direction of the co-

ordinate system. 
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3.3.4 Correlation functions for fluctuations with finite and infinite correla-

tion lengths 

There are two possibilities to express the correlations of the fluctuations u’(x) in a het-

erogeneous medium: In media with finite correlation lengths, Gauss-shaped functions 

are an appropriate choice found in the literature (e. g. /DAG 90/, /GEL 93/), whereas in 

fractal media characterised by infinite correlation lengths algebraic functions are used 

(e. g. /ZHA 96a/, /NEU 95/, /FIO 01/). According to /DAG 88/, /GEL 93/, /DEN 00a/, the 

Gauss-shaped correlation functions of the velocity fluctuations ሚᇱሺܠሻ have the form: 

fሚ′ሺܠሻfሚ′ሺܠ′ሻതതതതതതതതതതതത ൌ Cሺx െ x′ሻ ൌ σ
	ଶ	expቌെ

ሺx୧ െ x′୧ሻଶ

2 ℓ୧
ଶ

ୢ

୧ୀଵ

ቍ . (3.53)

The ℓ୧ indicate the correlation lengths of the flow field in direction i (with i = 1, …, d in a 

d-dimensional system) and σ
	ଶ is the variance of f’(x) /DEN 00a/. 

3.3.4.1 Algebraic correlation functions in fractal porous media  

According to /BEL 96/, the transport in fractal media is characterised by a heterogenei-

ty of “evolving scales” /SPO 86/. This conceptual approach has been applied by 

/NEU 95/ and /ZHA 96a/. Since the correlation length is no longer finite, the correlation 

function has to be adapted accordingly. Quantities, which are related to fractal porous 

media with infinite correlation lengths, are denoted in the following by a hat.  

A possible model for the log-hydraulic conductivity f ൌ lnሺKሻ is a fractional Gaussian 

noise (fGn, see /MAN 68/, /MOL 97/).The following isotropic power-law covariance 

function is adopted:  

C  ሺܠሻ ൌ σ	
ଶ zିஒ, 				0  β  1 (3.54)

with the power-law semi-variogram 

z ൌ ቆ1 
∑ x୧

ଶୢ
୧ୀଵ

ℓ²
ቇ
ଵ/ଶ

.				 (3.55)

x denotes the spatial vector in i directions and ℓ is a physically relevant length scale of 

the transport problem, for instance the aquifer thickness. Furthermore, there is always 

a maximum length scale ℓ୫ୟ୶ ൏ ∞ while investigating natural formations/ZHA 96a/. 
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Although geological formations can be separated into a discrete hierarchy of geological 

units, in the following a continuous hierarchy and infinite ranges of scales are applied 

(see /NEU 90/). In particular, the summation in (3.55) is replaced by an infinite integral 

as performed by /PHI 86/ for the Lagrangian correlation function of velocities in the time 

domain. Such correlation models are often preferred to the exact fGn model (/DAG 94/, 

/SCU 10/), because their behaviour for large distances with |x| / ℓ >> 1 is similar to that 

of fGn. In other words, the isotropic correlation function is characterised by a power-law 

C  ሺܠሻ ~ (|x| / ℓ)-β that avoids the singularity at |x| = 0. 

The exponent β is the same as in /SCU 10/ except of the sign. The model used in this 

study is equal to 1 + |x| / ℓ. This corresponds to െβ in /DAG 94/, /BEL 96/ and /FIO 01/, 

where β is in the super-diffusion range 0 ≤ β ≤ 1. For 1 ≤ β ≤ 2 there will be a superpo-

sition of sub-diffusion and normal diffusion and for β ൌ 1  a t ln(t) time behaviour of the 

ensemble coefficients /SCU 10/. The parameter	β is related to the Hurst coefficient as 

defined in /PEI 88/ and indicates the fractal dimension d: 

d ൌ d  1 െ β (3.56)

with d denoting the Euclidean dimension. Small values of β indicate a larger degree of 

fractality. A typical range for the value of β is 0 ൏ ߚ ൏ 1 according to /PEI 88/. In order 

to obtain an appropriate correlation function of the log-hydraulic conductivity field fሺܠሻ 

for fractal media, (3.55) has to be inserted in (7.3). The resulting expression can be re-

drafted according to /GRA 07/ (p.370, expression 3.478(1.)): 

C  ሺܠሻ

σ
ଶ ൌ zିஒ 	ൌ

2

Γ ൬
β
2൰
න dλ		λஒିଵ
ஶ



expሺെzଶλଶሻ

ൌ 	
2

Γ ൬
β
2൰
න dλ		λஒିଵ
ஶ



exp ቈെቆ1 
∑ x୧

ଶୢ
୧ୀଵ

ℓ²
ቇ λଶ

ൌ
2

Γ ൬
β
2൰
න dλ		λஒିଵ
ஶ



expሺെλଶሻexp ቆെ
∑ x୧

ଶୢ
୧ୀଵ

ℓ²
λଶቇ

ൌ
2

Γ ൬
β
2൰
න dλ		λஒିଵ
ஶ



expሺെλଶሻexp൮െ
1
2

∑ x୧
ଶୢ

୧ୀଵ

1
2
ℓଶ
λଶ

൲

ൌ
2

Γ ൬
β
2൰
න dλ		λஒିଵ
ஶ



expሺെλଶሻexp ቆെ
1
2

∑ x୧
ଶୢ

୧ୀଵ

Lଶ
ቇ	.	 

(3.57)
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L contains the integration variable λ and represents the new correlation length of the 

heterogeneities which tends to be infinite. It has the form: 

L ൌ
ℓ

√2	λ
		 (3.58)

Inserting the notation of መࣦ in the integral length in xଵ-direction gives: 

	න dxଵ
1

൬1 
xଵ
ଶ

ℓଶ൰
ஒ/ଶ 	ൌ

2

Γ ൬
β
2൰
න dλ λஒିଵ
ஶ



expሺെλଶሻන dxଵ

ଡ଼



exp ቆെλଶ
xଵ
ଶ

ℓ²
ቇ

ൌ
2

Γ ൬
β
2൰
න dλ	λஒିଵ
ஶ



expሺെλଶሻ
√π
2
ℓ
λ
erf ൬

λX
ℓ
൰	. 

(3.59)

Using these notations, the correlation function of f ൌ lnሺKሻ can be written as a superpo-

sition of Gaussian functions. It is now possible to express the dispersion coefficients 

with power-law correlations of the form (7.3) as linear combinations of the coefficients 

obtained by /DEN 00a/ for Gaussian correlated fields with finite correlation lengths. 

3.4 The methods 

For the following steps it has some technical advantages to transform the variables into 

Fourier space. The Fourier transformed functions are marked by a tilde. 

3.4.1 Fourier transforms 

The Fourier transform with respect to the spatial variable x has the form: 

cሺܓ, tሻ ൌ නdୢܠ cሺܠ, tሻ 	expሺi	ܓ ∙ ሻ, (3.60)ܠ

cሺܠ, tሻ ൌ න 		cሺܓ, tሻ	expሺെi	ܓ ∙ ሻܠ
ܓ

. (3.61)

k and x indicate d-dimensional vectors, and k∙x is the corresponding scalar product., 

For the d-dimensional k-integration over the whole space the shorthand notation  

න …
୩

≡ න
dୢܓ
ሺ2πሻୢ

…	 (3.62)
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is used according to /DEN 00a/. The transport equation (3.47) then has the form 

∂
∂t
cሺܓ, tሻ  ሺെiܝഥ ∙ ܓ  ,ܓሻcሺܓ۲ܓ tሻ

ൌ δሺtሻρሺܓሻ  න R′ሺܓ, ,ᇱܓ tሻ
୩ᇱ

cሺܓ െ ,′ܓ tሻ 
(3.63)

with the initial concentration distribution  

ρሺܓሻ ൌ 	නdୢܠ	ρሺܠሻ expሺi	ܓ ∙ ሻܠ . (3.64)

The incompressibility condition ܓ ∙ ሻܓᇱሺܝ ൌ 0 is used to write the operator R’ሺk,	k’,	tሻ as 

R′ሺܓ, ,ᇱܓ tሻ ≡ െi ܓ ∙ . (3.65)	ሻ′ܓᇱሺܝ

3.4.2 Fourier-transformed velocity fluctuations 

Since there is no closed solution for the equation of the hydraulic head derived from the 

Darcy equation that reflects all the different boundary conditions, approximative solu-

tions can be constructed by an expansion with respect to the fluctuations of the log-

hydraulic conductivity f’(x) /DEN 00a/: 

u୧ሺܠሻ ൌ uത	δ୧ଵ  uത 	න expሺi	ܓ ∙ ሻܠ p୧ሺܓሻ f′෩ሺܓሻ .
୩

 (3.66)

According to /DEN 00a/, the functions p୧ሺܓሻ are projectors which ensure the incom-

pressibility of the flow. In a d-dimensional system (d ≥ 2) they are defined as: 

p୧ሺܓሻ ൌ ൬δଵ୧ െ
kଵk୧
ଶܓ

൰ ,			i ൌ 1, … , d . (3.67)

According to /ATT 99/, /DEN 00a/ and expression (3.51), the perturbative approxima-

tion of the Darcy flow field yields a linear relation between u(x) and the fluctuations of 

the log-hydraulic conductivity f’(x). Hence, the flow field u(x) is also a stochastically 

translation invariant Gaussian random field. Therefore, the correlation functions ܝ′ሺܓሻ	 

have the form:  

uనᇱሺܓሻuᇱሺܓ′ሻതതതതതതതതതതതതതതത ൌ ሺ2πሻୢδୢሺܓ  ሻC෨ܓሻp୨ሺܓሻuതଶp୧ሺ′ܓ
 ሺܓሻ . (3.68)

The structure of the correlation functions specifies the respective flow model and the 

delta-function follows from the translation invariance in space.  
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3.4.3 Dispersion coefficients 

The spreading of the solute cloud can be quantified by dispersion coefficients. The 

available methods include stochastic theory /GEL 83/ and /GEL 86/, spatial moments 

/DAG 88/, /KIT 88/, /DEN 00a/, /DEN 00b/, /DEN 02/ and homogenisation theory 

/HEL 05/, /MUS 11b/. In this study, the spatial moments are used and according to 

/ATT 99/ and /DEN 00a/ two quantities characterising the dispersion are distinguished:  

 The ensemble dispersion Dens represents the dispersion characteristics of the 

whole ensemble of aquifer realisations. This quantity generally overestimates the 

dispersion typically found in one realisation of the medium because it takes into ac-

count an artificial mixing effect caused by fluctuations of the centre-of-mass posi-

tions of the solute clouds in different realisations of the inhomogeneous medium.  

 This effect is suppressed in the effective dispersion Deff, derived from the average 

over the centered second moments of the spatial concentration distributions in eve-

ry realisation. This quantity characterizes the dispersion in a typical realisation of 

the medium as a function of time and the characteristic transport properties of the 

medium fluctuate only weakly around the corresponding ensemble averages. 

Therefore, this quantity represents indeed “effective” large-scale properties which 

are characteristic for the single aquifer and are observable experimentally. 

 

Fig. 3.6  Schematic representation of the ensemble and effective dispersion coeffi-

cients 

Fig. 3.6 shows the difference between the ensemble and the effective dispersion coef-

ficient schematically and the corresponding legend below the timescale. At the begin-
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ning of the injection, a solute cloud consists of single point-like particles which are indi-

cated by the red circles at t = 0. They are moving through the heterogeneous porous 

and fractured medium and cover with increasing time more and more heterogeneities. 

These heterogeneities cause the solute particles to spread, therefore the originally 

point-like particles become more and more the shape of ellipses (indicated in Fig. 3.6 

at t = 50 000). With increasing time, these ellipses spread due to more and more heter-

ogeneities which they have covered. 

Both quantities are characterised by a longitudinal (named by D11) and a transverse 

component (D22). The longitudinal component follows the mean-flow direction and is in 

general larger than the transverse component in the perpendicular direction. In Fig. 3.6 

the ensemble quantity is denoted by the dark red dashed arrows around t = 100 000. 

The longitudinal ensemble dispersion coefficient denotes the whole extension in longi-

tudinal direction which all the single particles cover and the transverse ensemble quan-

tities indicates the extension of all the single particles in transverse direction. On the 

other hand, the effective dispersion coefficient denotes only the mean extension of the 

single particles indicated by the black solid arrows within the red ellipses. This quantity 

is again distinguished in a longitudinal and a transverse component. In the graphs in 

the results part the ensemble quantities are denoted again by dashed curves, whereas 

the effective quantities are indicated by solid ones. 

The conceptual difference between the two quantities is well known in the literature for 

quite some time, see e. g. the discussion by /BAT 49/ and /BAT 52/ for the case of dif-

fusion in turbulent flows. The corresponding definitions for static random flow fields are 

investigated by /KIT 88/, /DAG 90/, /DAG 91/, /RAJ 93a/, /RAJ 93b/, /ZHA 96b/, 

/ZHA 97/. The two quantities are identical only in the asymptotic limit of infinite times 

and in media with a finite correlation length of the heterogeneities /MET 99/. 

3.4.4 Transport parameters 

In uniform flows, the centre-of-mass velocity u୧ሺtሻ and dispersion coefficients D୧୨ሺtሻ are 

given by  

u୧ሺtሻ ൌ
d
dt
m୧
ሺଵሻሺtሻ 

(3.69)

D୧୨ሺtሻ ൌ
1
2
d
dt
ቄm୧୨

ሺଶሻሺtሻ െ m୧
ሺଵሻሺtሻ m୨

ሺଵሻሺtሻቅ 
(3.70)
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where  

m୧
ሺଵሻሺtሻ ൌ නdୢܠ x୧cሺܠ, tሻ 

(3.71)

m୧୨
ሺଶሻሺtሻ ൌ නdୢܠ x୧	x୨cሺܠ, tሻ 

(3.72)

are the first two moments of the properly normalised spatial concentration distribution 

in d dimensions. Corresponding to these equations, the large-scale solute plume now 

is characterised by 

u୧
ୣሺtሻ ൌ

d
dt
mన
ሺଵሻሺtሻതതതതതതതതത	, 

(3.73)

D୧୨
ୣሺtሻ ൌ

1
2
d
dt
ቄmన

ሺଶሻሺtሻ െ mన
ሺଵሻሺtሻ m

ሺଵሻሺtሻቅ
തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത

. 
(3.74)

The over-bar denotes the average over the ensemble of aquifer realisations. The effec-

tive dispersion coefficient (3.74) is different from the ensemble dispersion coefficient 

D୧୨
ୣ୬ୱሺtሻ defined as  

D୧୨
ୣ୬ୱሺtሻ ൌ

1
2
d
dt
ቄmన

ሺଶሻሺtሻതതതതതതതതത െ mన
ሺଵሻሺtሻ m

ሺଵሻሺtሻതതതതതതതതതതതതതതതതതതതቅ . (3.75)

The ensemble averaged quantities can be expressed with aid of generating functions 

u୧
ୣሺtሻ ൌ

d
dt
൫െi ∂୩൯ሼln cሺܓ, tሻሽ

തതതതതതതതതതതതത|ܓ ൌ 0  (3.76)

D୧୨
ୣሺtሻ ൌ

1
2
d
dt
൫െi ∂୩൯ ቀെi ∂୩ౠቁ ሼln cሺܓ, tሻሽ

തതതതതതതതതതതതത|ܓ ൌ 0  (3.77)

D୧୨
ୣ୬ୱሺtሻ ൌ

1
2
d
dt
൫െi ∂୩൯ ቀെi ∂୩ౠቁ lnሼcሺܓ, tሻሽ

തതതതതതതതതത|ܓ ൌ 0  (3.78)

∂୩ denotes the partial derivative with respect to the k-component in the i-th direction. 

The difference in these definitions is that for the effective quantities the average is per-

formed over the logarithm of the distribution	cሺܠ, tሻ, whereas for the ensemble quantities 

first the average is performed over the distribution and afterwards the logarithm is eval-

uated.  



43 

3.4.5 The perturbation theory 

In order to solve the transport equation approximately by a second-order perturbation 

expansion, the transport equation (3.63) is transformed into an equivalent integral ex-

pression: 

cሺܓ, tሻ ൌ cሺܓ, tሻρሺܓሻ െ න
ᇱܓ

	න dt′
ஶ

ିஶ
cሺܓ, t െ t′ሻ Rᇱሺܓ, ,ᇱܓ t′ሻ cሺܓ െ ,′ܓ tሻ. (3.79)

ρሺܓሻ denotes the Fourier transformation of the initial concentration distribution given in 

(3.64) and the operator R’ is defined in (3.65). The Green-function cሺܓ, tሻ solves the 

“unperturbed” problem for the case of a point-like source injection meaning ρሺܓሻ ൌ 1 

and െiܓ ∙ ሻ′ܓ′ሺܝ ≡ 0 

cሺܓ, tሻ ൌ θሺtሻ	expሺെܓ۲ܓt  iuതkଵtሻ, (3.80)

where θሺtሻ	is the usual Heaviside-step function. Iterating this equation generates the 

following series expansion 

cሺܓ, tሻ ൌ cሺܓ, tሻρሺܓሻ െ න න dt′
ஶ

ିஶ
cሺܓ, t െ t′ሻ Rᇱሺܓ, ,ᇱܓ t′ሻ cሺܓ െ ,′ܓ tሻ

ᇱܓ
	

 න න න dt′
ஶ

ିஶ
න dt′′
ஶ

ିஶ
cሺܓ, t െ t′ሻ	Rᇱሺܓ, ,ᇱܓ t′ሻ	cሺܓ

ᇱܓᇱᇱܓ
െ ,ᇱܓ tᇱ െ t′′ሻ	Rᇱሺܓ െ ,ᇱܓ ,ᇱᇱܓ t′′ሻ cሺܓ െ ᇱܓ െ ,′′ܓ t′′ሻ  ⋯	 

(3.81)

According to /DEN 00a/ this series, truncated after the second order in R’ defined in 

(3.65), is the basis of the given treatment. 

3.5 Contributions due to the heterogeneities in the velocity field 

The perturbation theory approach of the problem has been investigated in the literature 

in detail as summarised by /DEN 00a/. The asymptotic long-time values of the ensem-

ble dispersion coefficient in media with Gaussian correlation functions in the limit t → ∞ 

have been studied e. g. by /GEL 83/ or /DAG 94/. The relevance of the pre-asymptotic 

behaviour of transport properties is emphasized by /KIT 88/ and /DAG 88/. /DAG 91/ 

investigated the conceptual difference between ensemble and effective dispersion co-

efficients using a Lagrangian approach and neglecting the effect of local dispersion cor-

responding to D ≡ 0 in (3.47). The results demonstrate clearly that the two dispersion 

quantities in general are not equivalent and they get considerably modified when taking 
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into account the transversal mixing due to the local dispersion. These findings were 

verified quantitatively by /DEN 00a/ for media with clearly separated scales and they 

are now extended to fractal media.  

3.5.1 The flow situation: Contributions due to the centre-of-mass velocity 

Applying the perturbation series as introduced in section 3.4.5 shows, that there are no 

flow-field-induced disorder contributions to the centre-of-mass velocity (3.73). 

δ୳୳൛u୨
ୣൟሺtሻ ≡ 0 , 																				j ൌ 1,⋯ , d. (3.82)

This result follows from the incompressibility and the stochastic translation invariance 

of the fluctuating flow field u’(x). It is valid for all orders in the perturbation theory 

/DEN 97/ and generalises a result by /DAG 84/. 

3.5.2 The transport situation: Contributions by the dispersion coefficients 

Performing the steps mentioned above, the solute cloud can be characterised by the 

following integral expressions that contain the contributions due to the dispersion coef-

ficients generated by the heterogeneities in the flow field: 

δ୳୳൛D୧୧
ୣ୬ୱൟሺtሻ ൌ

2

Γ ൬
β
2൰
න dλ	λஒିଵ
ஶ



expሺെλଶሻ 

∙ ቄuതଶ   dtᇱ
ஶ
		ିஶܓᇲவ௸ cሺെܓᇱ, t െ tᇱሻ p୧ሺܓ′ሻ p୨ሺܓ′ሻ C෨  ሺܓᇱሻቅ ,

(3.83)

δ୳୳൛D୧୧
ୣൟሺtሻ ൌ δ୳୳൛D୧୧

ୣ୬ୱൟሺtሻ െ
2

Γ ൬
β
2൰
න dλ λஒିଵ
ஶ



expሺെλଶሻ 

∙ ቐuതଶ න න dtᇱ
ஶ

ିஶܓᇲவ௸

cሺെܓᇱ, tሻp୧ሺܓ′ሻ p୨ሺܓ′ሻ C෨  ሺܓᇱሻcሺെܓᇱ, tᇱሻ ቑ. 

(3.84)

These quantities are determined by the autocorrelation function C෨ ሺܓሻ of the velocity 

fluctuations in fractal porous media defined according to (3.57) as: 

C෨ ሺܓሻ ൌ
ଶ

ቀ
ಊ
మ
ቁ
 dλ	λஒିଵ
ஶ
 expሺെλଶሻ ቊσ

ଶ ൫2π Lଵ
ଶ൯

ౚ
మ exp ቀെ

ଵ

ଶ
∑ k୧

ଶୢ
୧ୀଵ L୧

ଶቁቋ . (3.85)
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Lଵ  denotes the correlation length of the flow field in the mean flow and L୧ ൌ ℓ୧/൫√2	λ൯ 

are the corresponding transverse ones in the d-1 remaining directions. By substituting 

L in the integral length in xଵ-direction according to (3.59), the advective timescale in 

fractal porous media can be derived:  

	න dxଵ
1

൬1 
xଵ
ଶ

ℓଶ൰
ஒ/ଶ 	ൌ

2

Γ ൬
β
2൰
න dλ λஒିଵ
ஶ



expሺെλଶሻන dxଵ

ଡ଼



exp ቆെλଶ
xଵ
ଶ

ℓ²
ቇ (3.86)

ൌ
2

Γ ൬
β
2൰
න dλ λஒିଵ
ஶ



expሺെλଶሻ
√π
2
ℓ
λ
erf ൬

λX
ℓ
൰ 										

ൌ
2

Γ ൬
β
2൰
න dλ λஒିଵ
ஶ



expሺെλଶሻ
√π
2
ℓ
λ
erf ൬

λuതt
ℓ
൰ 										

ൌ
ℓ√π

Γ ൬
β
2൰
න dλ λஒିଵ
ஶ



expሺെλଶሻerf ൬
1

√2

t
τො୳
൰. 										

The adapted advective and dispersive timescales according to /ATT 99/ read 

τො୳ ൌ
ℓଵ

uത√2	λ
ൌ
Lଵ
uത
	 (3.87)

τොୈ
ሺଵሻ ൌ

ℓଵ
ଶ

D2	λଶ
ൌ
Lଵ
ଶ

D
			respectively τොୈ

ሺ୧ሻ ൌ
ℓ୧
ଶ

D2 λଶ
ൌ
L୧
ଶ

D
, for i ൌ 2,… , d (3.88)

ϵො୧ ൌ
τො୳

τොୈ
ሺ୧ሻ ൌ

D୧୧
uത	L୧

Lଵ
L୧
ൌ

1
Pe
,					for		i ൌ 2,… , d .  (3.89)

The physical interpretation of these characteristic timescales is: Within the advective 

timescale τ୳ the solute is transported advectively over the distance of one longitudinal 

disorder correlation length. During the dispersive scale	τොୈ
ሺ୧ሻ the solute spreads – in-

duced by the local dispersion D – over a distance of the corresponding correlation 

length. In fractal media characterised by infinite correlation lengths, the flowpaths of the 

solute particles are very long due to the tiny fissures which build up a branched net-

work of connected pathways. Accordingly, the travel times of the solute particles are 

also very long. The ratio ϵො୧ between the two timescales defines the inverse Peclet 

number as given in (3.89). For a realistic aquifer situation, the two timescales are ex-

pected to be well separated meaning τොୈ ≫ τො୳ according to /GEL 83/. In other words, 

the dispersive timescale is much larger than the advective one resulting in a small in-
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verse Peclet number 
ଵ

ୣ
≪ 1. In porous media, this is the case e. g. in situations with a 

small local dispersion D ൎ 0.01
୫మ

ୢ
. Since the focus of this study is on groundwater aqui-

fers, the usual scale is m² / d. The local dispersion D represents the physical mecha-

nism that causes the solute to spread and is given in (3.49).  

By inserting (3.80) and rescaling the time integrations by τ୳ and the kj-integrations by 

the correlation lengths L୧ ൌ ℓ୧/൫√2	λ൯, the expressions for the dispersion coefficients 

(3.83) and (3.84) can be rewritten in the form accoding to /DEN 00a/:  

δ୳୳൛D୧୧
ୣ୬ୱൟሺtሻ ൌ

2

Γ ൬
β
2൰
න dλ	λஒିଵ
ஶ



expሺെλଶሻ ൜uത LଵM ୧
ି ൬

t
τො୳
, 0, 0൰ൠ , (3.90)

δ୳୳൛D୧୧
ୣൟሺtሻ ൌ δ୳୳൛D୧୧

ୣ୬ୱൟሺtሻ

െ
2

Γ ൬
β
2൰
න dλ	λஒିଵ
ஶ



expሺെλଶሻ ൜uത	LଵM ୧
ା ൬

t
τො୳
, bଵ … , bୢ	൰ൠ (3.91)

with the auxiliary functions M୧
േ according to /DEN 00a/ in a d-dimensional system: 

M୧
േ ൬

t
τො୳
, bଵ … , bୢ൰

ൌ ቌෑ
1

L୧

ୢ

୧ୀଵ

ቍන නdt



ܓ

expቌെk୧
ଶ

ୢ

୧ୀଵ

b୧ቍ

∙ expቌϵො୧k୧
ଶt െ ikଵt

ୢ

୧ୀଵ

ቍ ൬δଵ୧ െ
kଵk୧
ଶܓ

൰
ଶ

C෨ ሺܓሻ	 

(3.92)

with C෨ ሺܓሻ defined in (3.85), ϵො୧ in (3.89) and  

b୧ ൌ
2t

τොୈ
ሺ୧ሻ ,									for 										i ൌ 1, … , d .  

(3.93)

3.6 Results for transport coefficients in fractal porous media 

The results are presented for the simplified case of a model with isotropic disorder cor-

relation functions (Lଵ ൌ Lଶ ൌ ⋯ ൌ Lୢ ≡ L) and an isotropic dispersion tensor ሺD ൌ

D ≡ Dሻ. In this case, the complicated perturbation theory expressions for the disper-
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sion coefficients can be evaluated explicitly with a computer algebra software like 

MAPLE as demonstrated by /DEN 00a/. The integrations are performed using the for-

mulae given by /ABS 84/ and /GRA 07/. The influence on the dispersion coefficients 

due to variations in the different physical variables was also studied. Since in ground-

water aquifers which are considered in this study, the typical groundwater velocity is in 

metre per day, the results are presented in this units and all the expressions are evalu-

ated with a mean groundwater velocity of uത ൌ 1
୫

ୢ
.  

Nearly all geologic formations at the regional scale consist of horizontal dimensions 

which are much larger than the aquifer thickness. For a realistic description, they 

should be modelled by an anisotropic model containing infinite correlation lengths of 

the heterogeneities in the horizontal direction, but finite ones in the vertical direction. 

Situations which correspond to the simplified isotropic model – which is presented in 

this study – can be found in three-dimensional geologic formations in deep layers 

where the considered horizons may have thicknesses up to several hectometers as 

discussed e. g. in /BRU 06/. These layers are of utmost interest e. g. in modelling stor-

age investigations in deep formations. 

In the following, the results for the transport coefficients in fractal porous media are 

presented in which single fractures are neglected. Such a situation can be modelled 

with a continuum approach using an equidistant grid. The coefficients are evaluated for 

both the ensemble and effective coefficients according to /ATT 99/ and /DEN 00a/ and 

both quantities are distinguished between the longitudinal and the transverse compo-

nent. The situation with embedded large fractures is presented in chapter 1. 
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3.6.1 General explicit expressions for the dispersion coefficients 

Combing (3.90) to (3.92) with (3.57), the explicit expressions for the dispersion coeffi-

cients in fractal porous media can be derived:  

δ୳୳൛ ࣞ୧୧
ୣ୬ୱൟሺtሻ ൌ

2

Γ ൬
β
2൰
න dλ		λஒିଵ
ஶ



expሺെλଶሻ൛uത Lଵ ࣧ୧
ି൫T, 0, 0൯ൟ 										 (3.94)

δ୳୳൛ ࣞ୧୧
ୣൟሺtሻ

ൌ δ୳୳൛ ࣞ୧୧
ୣ୬ୱൟሺtሻ

െ
2

Γ ൬
β
2൰
න dλ		λஒିଵ
ஶ



expሺെλଶሻ൛uത	Lଵ ࣧ୧
ା൫T, b, b൯ൟ																					 (3.95)

with 

T ൌ
t
τො୳

ൌ
t	uത	√2 λ

	ℓ
ൌ
t	uത

L
;												 b ൌ

4 t λଶ D
Lଶ

ൌ
2 t
τොୈ

. (3.96)

In the ensemble quantities, the parameter b vanishes. In order to obtain the explicit ex-

pressions for the effective coefficients in fractal media, the same method as used by 

/DEN 00a/, /DEN 00b/ and /DEN 02/ for the dispersion coefficients in media with finite 

correlation lengths is applied, that means a contribution owing to the dispersive time-

scale is subtracted from the corresponding ensemble quantities. The auxiliary functions 

in a three-dimensional system in isotropic fractal media are defined as: 

ࣧ
ଵ
േ൫T, b, b൯ ൌ ∓σ

ଶ 	ට
π
2
	

1

൫1  2b൯
ଶ ቊerf ቀg൫∓T൯ቁ


1

√π
exp ቀെgଶ൫∓T൯ቁ ቈ

1

g൫∓T൯

4φෝଶw൫T൯

gଶ൫∓T൯
െ

3

2gଷ൫∓T൯


 erf ቀg൫∓T൯ቁ ቈ
4φෝଶw൫T൯

g൫∓T൯

8φෝସw൫T൯

g൫∓T൯
െ

1

gଶ൫∓T൯
െ
2φෝଶw൫T൯

gଷ൫∓T൯


3

4gସ൫∓T൯
 െ 8φෝସexp ൬

1
2φෝଶ

൰ ቈerfc ቆ
1

√2φෝ
ቇ െ erfc ቀw൫T൯ቁ

െ
4√8

3√π
φෝ െ

4√8

√π
φෝଷቋ 

(3.97)
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ࣧ
ଶ
േ൫T, b, b൯ ൌ ࣧ

ଷ
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(3.98)

with σ
ଶ  denoting the variance of the log-hydraulic conductivity and 

w൫T൯ ൌ
1

√2

൫1  2b൯
1
ϵො 

t
τො୳

ට1  2b 
2t
τොୈ

; 	g൫∓T൯ ൌ
1

√2

∓
t
τො୳

ට1  2b 
2t
τොୈ

; φෝ ൌ
ϵො

ඥ1  2b
	.	 (3.99)

The advective timescale τො୳	is given in (3.87), the dispersive timescale τොୈ	in (3.88),		ϵො in 

(3.89) and b in (3.96). In order to reproduce the results of /DEN 00a/ and /DEN 02/, two 

slight changes in the auxiliary functions ࣧଵ
ା൫T, b, b൯ and ࣧଶ

ା൫T, b, b൯	had to be done: 

 The sign of w൫T൯ had to be changed (instead of w൫െT൯) to ensure that the erfc-

terms vanish for large times t >> τොୈ	and 

 The exponent in the pre-coefficient ൫1  2b൯
ିଶ

 had to be set to “ - 2” (instead of  

“ - 1”) to make sure that the effective quantities do not reach the asymptotic limit 

too early for various values of the local dispersion coefficient D.  

3.6.2 The longitudinal ensemble dispersion coefficient 

The explicit expression of the longitudinal ensemble dispersion coefficient reads: 
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δ୳୳൛ ࣞଵଵ
ୣ୬ୱൟሺtሻ ൌ
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Γ ൬
β
2൰
න dλ		λஒିଵ
ஶ



expሺെλଶሻ൛uത L ࣧଵ
ି൫T, 0, 0൯ൟ  (3.100)

with 	 ࣧଵ
ି as defined in (3.97). 

Hypothetical situation with no local dispersion in ઼ܝܝ൛ऎ
 ሻܜൟሺܛܖ܍

In the hypothetical situation with no local dispersion at all (D = 0), the value of the dis-

persive timescale τොୈ vanishes and thus the inverse Peclet number (ϵො = 0) because 

there is no physical mechanism which causes the plume to spread. In such a situation, 

the solute is transported only advectively within the groundwater flow and the longitudi-

nal component of the ensemble dispersion coefficient reduces to: 
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(3.101)

with A denoting a function relating to the advective time 

A ൌ
uത	λ	t
ℓ
	. (3.102)

Situation for infinite times t → ∞ in ઼ܝܝ൛ऎ
 ሻܜൟሺܛܖ܍

With increasing time, the longitudinal ensemble dispersion coefficient increases as well 

and there is no constant long-time value as it is the case in heterogeneous media with 

finite correlation lengths. The divergence of the longitudinal ensemble component in 

fractal media can be explained with the fact that the correlation length L given in (3.58), 

which tends to be infinite, is the dominating parameter in this quantity. Furthermore, the 

temporal behaviour of the longitudinal ensemble dispersion coefficient can be de-

scribed by a power-law: 

δ୳୳൛ ࣞଵଵ
ୣ୬ୱൟሺtሻ ൌ c ∙ tଵିஒ (3.103)

with an appropriately chosen constant c. This is the same result as found by /FIO 01/ 

with the difference that in the model applied in this study the projector defined in (3.67) 

is taken into account. This function ensures that the flow field is represented by an in-
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compressible random Gaussian field. As shown by /DEN 03/, in such a field there is a 

finite probability for closed streamlines which influence the transport behaviour. In the 

hypothetical case with no local dispersion, the longitudinal spreading is characterised 

by a longitudinal dispersion coefficient which grows linearly with increasing time. If the 

projector is neglected, this behaviour cannot be detected because of numerical inaccu-

racies. In such a flow field, the investigation of transport points out the importance of an 

exact numerical description of the streamlines in order to properly represent the effect 

on the transport behaviour in advection-dominated situations /DEN 03/. In fractal me-

dia, the effect of the projector is even stronger, especially in the ensemble quantities. 

3.6.3 The longitudinal effective dispersion coefficient 

The explicit expression of the longitudinal effective dispersion coefficient has the form: 

δ୳୳൛ ࣞଵଵ
ୣൟሺtሻ ൌ δ୳୳൛ ࣞଵଵ

ୣ୬ୱൟሺtሻ െ
2

Γ ൬
β
2൰
න dλ λஒିଵ
ஶ



expሺെλଶሻ൛uത L ࣧଵ
ା൫T, b, b൯ൟ (3.104)

with δ୳୳൛ ࣞଵଵ
ୣ୬ୱൟሺtሻ defined in (3.100) and ࣧଵ

ା in (3.97). 

Hypothetical situation with no local dispersion in ઼ܝܝ൛ऎ
 ሻܜൟሺ܍

In the hypothetical situation with no local dispersion (D = 0 and hence	ϵො = 0), the longi-

tudinal effective dispersion coefficient vanishes, because there is no physical mecha-

nism which causes the spreading of the solute. This is the same result as in media with 

finite correlation lengths. It can be seen that the local dispersion is the dominant factor 

of the effective quantities. It is contained in the quantity b given in (3.96) which occurs 

in each of the terms w൫T൯, g൫െT൯ and φෝ defined in (3.99). 
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Results for the limiting case of small but finite inverse Peclet numbers ො ≪   

The longitudinal effective dispersion coefficient has the following form containing only 

first-order contributions for t ≫ τො୳ and a small inverse Peclet number ϵො ൌ D/uത	L ≪ 1 

δ୳୳൛ ࣞଵଵ
ୣൟሺtሻ ൌ

2

Γ ൬
β
2൰
න dλ	λஒିଵ
ஶ



expሺെλଶሻ
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ൌ
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β
2൰
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expሺെλଶሻ ൝uത	L	σ
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π
2
1 െ

1

൫1  2b൯
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(3.105)

Equation (3.104) is a proof for the change of the exponent in the pre-coefficient of the 

effective expressions as described after (3.99).  

Situation for infinite times t → ∞ in ઼ܝܝ൛ऎ
 ሻܜൟሺ܍

For infinite times the longitudinal effective dispersion coefficient increases as well. The 

coefficient is characterised by the power-law: 

δ୳୳൛ ࣞଵଵ
ୣൟሺtሻ ൌ c ∙ t

ଵିஒ
ଶ  

(3.106)

with an appropriately chosen constant pre-coefficient c. This result is the same as 

found by /FIO 01/.  

3.6.4 Temporal behaviour of the longitudinal components D11 

Fig. 3.7 shows the temporal behaviour of the longitudinal ensemble and effective dis-

persion coefficient given in (3.100) and (3.104) for different degrees of fractality and a 

local dispersion D = 0.01 m² / d. It is emphasized, that the scale of the ordinate in me-

dia with a high degree of fractality (Fig. 3.7 a) is two orders of magnitude larger than in 

weakly fractal media (Fig. 3.7 b). It is visible, that the dispersion values are larger for 

high degrees of fractality. Furthermore, the ensemble coefficient is larger than the ef-

fective at any value of β at all times, this implies that the longitudinal ensemble disper-

sion overestimates the true dispersion. Therefore, the longitudinal effective quantity 

should be applied in order to give a more realistic description of the transport situation. 
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A closer look at the effective longitudinal dispersion coefficient (Fig. 3.8) indicates that 

the quantities are larger in media with a high degree of fractality (Fig. 3.8 a) than in 

weakly fractal media (Fig. 3.8 b) and increase with a higher degree of fractality.  

 

a) ࣞଵଵ for 0 < β < 1       b) ࣞଵଵ for 1 < β < 2 

Fig. 3.7  The longitudinal ensemble and effective dispersion coefficients in fractal 

media  

In media with a finite correlation length, the ensemble and effective quantities reach the 

same asymptotic limit for infinite times as shown in Fig. 3.11 a and found /DEN 00a/ 

and /DEN 02/. However, such an ergodic situation cannot be found in fractal media be-

cause the quantities are characterised by different power-laws δ୳୳൛ ࣞଵଵ
ୣ୬ୱൟሺtሻ ൌ c ∙ tଵିஒ 

and δ୳୳൛ ࣞଵଵ
ୣൟሺtሻ ൌ c ∙ t

భషಊ
మ , a result already found by /FIO 01/.. This implies, that both 

quantities indeed describe two fundamentally different properties. 
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a) ࣞଵଵୣ for 0 < β < 1       b)  ࣞଵଵୣ for 1 < β < 2 

Fig. 3.8  The longitudinal effective dispersion coefficient in fractal media 

3.6.5 The transverse ensemble dispersion coefficient 

The transverse ensemble dispersion coefficient in fractal media reads 

δ୳୳൛ ࣞଶଶ
ୣ୬ୱൟሺtሻ ൌ

2

Γ ൬
β
2൰
න dλ		λஒିଵ
ஶ



expሺെλଶሻ൛uത L ࣧଶ
ି൫T, 0, 0൯ൟ  (3.107)

with 	 ࣧଶ
ି as defined in (3.98). 

Hypothetical situation with no local dispersion in ઼ܝܝ൛ऎ
 ሻܜൟሺܛܖ܍

In the hypothetical situation with no local dispersion (D = 0 and 	ϵො = 0), the transverse 

ensemble quantity reduces to the following expression with A as defined in (3.101): 

δ୳୳൛ ࣞଶଶ
ୣ୬ୱൟሺtሻ|ୈୀ ൌ
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4
Aସ൰൨ቋ . 

(3.108)
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Situation for infinite times t → ∞  in ઼ܝܝ൛ऎ
 ሻܜൟሺܛܖ܍

With increasing time, the transverse ensemble dispersion coefficient reaches a con-

stant long-time value defined as: 

lim
୲→ஶ

δ୳୳൛ ࣞଶଶ
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൰ erfc ൬
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൰ ሺ16Bସ െ 2Bଶሻ൨ቋ dλ 

(3.109)

with B defining a function related to the dispersive time 

B ൌ
D	λ	
ℓ	uത

	. (3.110)

3.6.6 The transverse effective dispersion coefficient 

The expression of the transverse effective dispersion coefficient has the form:  

δ୳୳൛ ࣞଶଶ
ୣൟሺtሻ ൌ δ୳୳൛ ࣞଶଶ

ୣ୬ୱൟሺtሻ െ
2

Γ ൬
β
2൰
න dλ λஒିଵ
ஶ



expሺെλଶሻ൛uത L ࣧଶ
ା൫T, b, b൯ൟ (3.111)

with δ୳୳൛ ࣞଶଶ
ୣ୬ୱൟሺtሻ defined in (3.107) and ࣧଶ

ା in (3.98).  

Hypothetical situation with no local dispersion in ઼ܝܝ൛ऎ
 ሻܜൟሺ܍

The transverse effective quantity shows the characteristic vanishing temporal behav-

iour in the hypothetical situation with no local dispersion (D = 0 and 	ϵො = 0). This result 

is enforced by the vanishing parameter b given in (3.96) that occurs in the terms w൫T൯, 

g൫െT൯ and φෝ defined in (3.99). 

Situation for infinite times t → ∞ in ઼ܝܝ൛ऎ
 ሻܜൟሺ܍

With increasing time, the transverse effective dispersion reaches a constant long-time 

value which depends on the local dispersion D. It is the same value as for the ensem-
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ble quantity given in (3.108) implying that the transverse dispersion coefficients in frac-

tal media show an ergodic behaviour:  

δ୳୳൛Dଶଶ
ஶ ൟሺtሻ ≡ lim

୲→ஶ
δ୳୳൛Dଶଶ

ୣ୬ୱൟሺtሻ ൌ lim
୲→ஶ

δ୳୳൛Dଶଶ
ୣൟሺtሻ . (3.112)

3.6.7 Temporal behaviour of the transverse components D22 

In the transverse ensemble component, the not divergent flow field is the dominating 

factor. Therefore, there is a peak for small times, whereas for large times the disper-

sion drops down to a certain constant long-time value which depends on the local dis-

persion. This is the same finding as for media with finite correlation lengths (/DEN 02/, 

Fig. 3.10 b), but on a much larger timescale. The transverse effective dispersion coeffi-

cient slightly increases with time and reaches for infinite times the same constant long-

time value as the transverse ensemble component. This finding is given in (3.111). 

Fig. 3.8 shows the temporal evolutions of the transverse ensemble and effective coeffi-

cients in fractal media for small (Fig. 3.8 a) and large (Fig. 3.8 b) values of β and 

D = 0.01 m² / d. The difference between the transverse components vanishes for large 

times and the two quantities reach the same constant long-time value. It is reached at 

much larger times in more fractal media denoted by a small β. Both components show 

an ergodic behaviour. This temporal behaviour is similar to that of the transverse com-

ponent (Fig. 3.10 b) in media with finite correlation lengths /DEN 02/, but again with a 

remarkable difference in the timescales. In fractal media, the constant long-time value 

is reached at a timescale that is several orders of magnitude larger. This implies, that 

the natural attenuation of a solute cloud in a highly fractured medium is delayed due to 

more complex and branched pathways of the solute particles. The plume remains 

much longer in the considered medium than in media with finite correlation lengths. 
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a) ࣞଶଶ	  for 0 < β < 1      b) ࣞଶଶ	  for 1 < β < 2 

Fig. 3.9  The asymptotic behaviour of the transverse components ऎ
	 	in fractal me-

dia  

 

a) ࣞଶଶୣ for 0 < β < 1       b) ࣞଶଶୣ for 1 < β < 2 

Fig. 3.10  The transverse effective dispersion coefficient in fractal media 

Influence of the degree of fractality β 

Fig. 3.10 shows, that the transverse effective dispersion values are higher in more frac-

tal media (Fig. 3.10 a) than in media with a weak fractal structure (Fig. 3.10 b). In both 

media types the effective transverse dispersion first increases and than reaches a con-
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stant long-time value. This value depends on the degree of fractality and is larger in 

highly fractal media (small β) and it is reached at a later point of time (Fig. 3.10 a).  

The peak in the transverse component is also observed in media with finite correlation 

lengths (Fig. 3.10 b), although it persists for much smaller time periods in the advective 

time regime /DEN 02/. A closer view at the peak in the two types of media indicates, 

that in fractal media the height of the peak is a few orders of magnitude larger than in 

media with finite correlation lengths and it is reached at times that are also several or-

ders of magnitude larger. This behaviour can be explained with the fact that the sudden 

scattering of the solute particles is larger and remains longer in media without scale 

separation. This fact becomes more evident in media with a high degree of fractality. 

 

a) Dଵଵ for various D       b) Dଶଶ for various D 

Fig. 3.11  Constant long-time value for the dispersion coefficients in situations with fi-

nite correlation lengths found by /DEN 00a/and /DEN 02/ 

Behaviour for infinite times 

The constant long-time value is given in (3.108) and depends on the degree of fractality 

β: The smaller β, the larger is the value and the later it is reached (Fig. 3.8 and Fig. 

3.10). A closer view at the timescale indicates that the transverse ensemble quantity in 

fractal media reaches the constant long-time value at times that are several orders of 

magnitude larger than in media with finite correlation lengths and the value itself is 

larger in fractal media. This clearly demonstrates that the flowpaths in fractal media are 

much longer and accordingly the spatial and temporal varibilities are much higher.  
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Influence of the local dispersion D on the effective quantities 

Fig. 3.12 shows the influence of the local dispersion coefficient D on the effective dis-

persion quantities. As mentioned in section 3.6.1, the local dispersion coefficient D 

strongly influences the effective quantities and in the hypothetical situations with no lo-

cal dispersion at all there is no physical mechanism which causes the plume to spread. 

In such situations the effective dispersion coefficient reduces to zero, whereas the en-

semble quantities show a non-trivial behaviour even in this hypothetical dispersion-free 

case where the solute plume is only transported advectively. Although the dispersion 

values are much higher in the longitudinal component (Fig. 3.12a) is much larger than 

in the transverse one (Fig. 3.12 b), it is visible, that in both components a higher D 

causes larger dispersion values, because the effect that causes the spreading of the 

solute is stronger.  

 

   a) The longitudinal component b)    b) The transverse component 

Fig. 3.12  The effective dispersion coefficients in fractal media for β = 0.5  

and various D 

3.7 Summary 

For an appropriate representation of the natural heterogeneity of fractured aquifers, the 

proposition of /NEU 95/ is followed that there is a growing evidence to describe the log 

hydraulic conductivity field of such media with self-affine properties. The scale effects 

cause the longitudinal dispersion component to increase with growing travel distance 
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as the solute samples more and more heterogeneities. The temporal behaviour of the 

longitudinal component in fractal media is in contrast to media with finite correlation 

lengths: The latter are characterised by an ergodic situation and the ensemble and ef-

fective quantities reach the same constant long-time value for infinite times. In fractal 

media, the longitudinal dispersion quantities do not reach a constant limit because the 

infinite correlation length L dominates. Furthermore, the ensemble and effective quanti-

ties are different for all times. They are characterised by different power-laws given in 

(3.102) and (3.105) implying a non-ergodic temporal behaviour. This result agrees with 

/FIO 01/ and shows that the quantities describe two fundamentally different properties. 

A comparison of the power-laws describing the two quantities shows that the ensemble 

longitudinal component overestimates the dispersion values remarkably. Therefore, for 

realistic situations the effective quantity should be applied which describes the tem-

poral behaviour of the longitudinal dispersion more exactly. In the model of the present 

study, a projector p୧ሺܓሻ defined in (3.67) is taken into account to ensure the incom-

pressibility of the flow field /DEN 02/. The consideration of this projector allows the der-

ivation of explicit expressions of the transverse coefficients in fractal media as well.  

The behaviour of the transverse dispersion coefficients is similar to that in media with 

finite correlation lengths which was shown in e. g. /DAG 88/, /KIT 88/, /MUS 11a/ or 

/MUS 11b/ to first increase and then reduce with increasing travel distance. This fact is 

forced by the absence of divergence in the flow field and could imply a degradation of 

the contaminant. However, a remarkable difference between the temporal behaviour in 

the transverse dispersion coefficients in both media with finite and infinite correlation 

lengths is the much larger timescale in the latter. This fact is forced by more branched 

and much longer pathways of the solute particles caused by the tiny fissures that re-

move any preferential scales. It was shown that the timescale increases with the de-

gree of fractality. In other words, the smaller the value of the exponent β the longer are 

the flow pathways of the solute particles due to very tiny fissures. This corresponds to a 

high tortuosity and a much longer retention period of the contaminants in fractal media. 
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4 Numerical solver for the meso-scale reference model 

4.1 Higher Order Finite Volume Schemes 

Thermohaline flow is described by three conservation equations: the flow equation, ex-

pressing the conservation of the fluid-phase as a whole, the equation for the transport 

of salt, formulating the balance of mass of the brine, and the heat transport equation, 

which represents the balance of energy. Here, to simplify matters only the first two 

equations are regarded, given by /FEI 99/: 

߲
ݐ߲
൫	߶ߩ൯  ൫ߘ ൯ߩ ൌ , (4.1)ݏ

߲
ݐ߲
൫	߶ߩ߯௦൯  ߯௦ߩ	൫ߘ െ ௦൯߯ߘߩ௦ࡰ ൌ ௦, (4.2)ݏ

where 

 ൌ െ
ܭ
ߤ
	ሺߘ െ ሻ (4.3)ࢍߩ

is the Darcy velocity. An important aspect of these equations is the flux balance that 

becomes more obvious when the equations are written in integral form: 

߲
ݐ߲
න߶ߩܸ݀  න	ߩ	݀ܵ ൌ 	න ݏ ܸ݀

డ

 (4.4)

߲
ݐ߲
න߶ߩ߯௦	ܸ݀ 	 න	ߩ߯௦ െ ௦߯ߘߩ௦ࡰ ݀ܵ ൌ නݏ௦ ܸ݀.

డ

 (4.5)

Here, the integration volume ܤ is an arbitrary subset of the considered domain ߗ and is 

usually called control volume. Each integral equation expresses the fact that changes 

of quantities in the control volume are due to fluxes over the boundary or sinks/sources 

within the control volume. 

Since the conservation property of these equations arise from the underlying basic 

physical properties, a discretization scheme should ideally reflect these properties in 

the numerical scheme. In order to guarantee the discrete conservation property, a finite 
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volume scheme is used in d³f /FRO 96a/. A generalization of this type of discretization 

scheme has been implemented for the equations of d³f. 

4.1.1 Definition of a Finite Volume Scheme of Higher Order 

The generalization of the vertex-centered finite volume scheme has been proposed in 

/VOG 10/. It can be applied to conservation equations that are of the form: 

߲
ݐ߲
න ܿ	ܸ݀ 	 නࡲሺܿሻ	݀ܵ ൌ 	න݂ ܸ݀,

డ

 (4.6)

where c is some unknown solution, F is a flux function and f is some source term. 

In order to solve such type of equation numerically by a vertex-centered finite volume 

technique, two choices have to be made: The Ansatz space for the unknown solution 

has to be chosen, and the set of discrete control volume B, where the conservation law 

is fulfilled numerically, must be specified. 

The usual choice for the Ansatz functions in d3f is a set of linear trial functions, i. e. the 

unknown solution is represented by linear functions on each element of the mesh dis-

cretizing the domain. This approach requires only degrees of freedom that are located 

in the vertices of the mesh, see Fig. 4.1 (left) for an example. The generalization to 

higher orders can be achieved by using a polynomial representation for the unknown 

solution on each element that uses functions of order greater than one. Lagrange finite 

elements can be used for this purpose and result in degrees of freedom on vertices, 

edges, faces and volumes in order to ensure the continuity of the solution. A visualiza-

tion of the degrees of freedom for quadratic Ansatz functions is given in Fig. 4.1 (right). 
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a)           b)  

Fig. 4.1 A finite-element mesh (black lines) with the degrees of freedom (red dots) 

for linear Ansatz functions (a) and quadratic Ansatz functions (b) 

The blue lines show the discrete control volumes constructed by the barycentric method. 

For the set of control volumes several possibilities exist. In the software d3f the bary-

centric control volumes are used /FRO 96b/. These are constructed by taking the con-

vex hull of the following points: a vertex of the mesh, all barycenters of adjacent edges 

and faces of the vertex and all barycenters of the adjacent elements. An example of 

such a control volume is shown in Fig. 4.1 (left). The generalization of this construction 

is related to the chosen Ansatz space. The idea is to construct one control volume for 

each degree of freedom. This ensures that the resulting linear system remains quadrat-

ic. The procedure to construct such control volumes is as follows: For a given element 

of the mesh, subdivide the element virtually into smaller elements of the same type, 

such that the finer partition corresponds to a distribution of degrees of freedom equiva-

lent to the linear case, i. e. all virtual subelements carry exclusively degrees of freedom 

in their vertices. Now, the same barycentric construction procedure as used for the lin-

ear case can be applied to the virtually refined elements to produce control volumes re-

lated to the subelements. Fig. 4.2 visualizes this procedure for a triangle with quadratic 

(left) and cubic (right) Ansatz spaces. The result of such a refinement is demonstrated 

in Fig. 4.1 (right). 
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Fig. 4.2 A single triangle (black lines) is virtually subdivided into smaller triangles 

(red lines) such that the subtriangles have the same structure as linear el-

ements 

Applying the barycentric construction for linear control volumes results in control volumes as 

indicated by the blue lines. 

4.1.2 Application to the equation for density driven flow 

The finite volume scheme with Ansatz functions of higher order can be used to discre-

tize the equation modeling the density driven flow. 

Let ሼߔሺ࢞ሻሽୀଵ,…,ே be the set of Ansatz functions that are necessary to form a basis of 

the piecewise polynomial spaces described above, where ܰ is the total number of de-

grees of freedom. For both unknown solutions ߯௦,  the same Ansatz space, formed by 	

these functions, is used. Thus, numerical solutions are searched that represent the un-

known brine mass fraction by 

߯௦ሺ࢞, ሻݐ ൌ 	߯௦

ே

ୀଵ

ሺݐሻ	ߔሺ࢞ሻ (4.7)

and the unknown pressure by 

,࢞ሺ ሻݐ ൌ 	

ே

ୀଵ

ሺݐሻߔሺ࢞ሻ (4.8)
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Now, let ሼܤሽୀଵ,…,ே be the set of control volumes that are constructed based on the 

generalized barycentric control volume approach described above. The discretized 

form of the equations (4.4), (4.5) is given by: 

߲
ݐ߲

න߶ߩ	ܸ݀  න	ߩ	݀ܵ ൌ 	 න ݏ ܸ݀
డ

, for	all	݅ ൌ 1,… ,ܰ, (4.9)

߲
ݐ߲

න߶ߩ߯௦	ܸ݀ 	 න ߯௦ߩ	 െ ௦߯ߘߩ௦ࡰ ݀ܵ ൌ නݏ௦ ܸ݀, for	all	݅ ൌ 1,… ,ܰ.
డ

 (4.10)

Here, by ߯௦,  .the finite dimensional representations from (4.7), (4.8) are used 

4.1.3 Numerical test example 

In order to test the implementation using higher order Ansatz functions the scheme is 

applied to the Henry problem /HEN 64/.  

Tab. 4.1 Measurements of the approximation rate for different orders of Ansatz 

spaces used to discretize the density driven flow equations 

FVp (p=1,2,3) denotes the order of Ansatz function, N the number of degrees of freedom, ࢾ 

the difference between the computed solution and the reference solution. 

FV1 FV2 FV3 

N ߜ rate N ߜ rate N ߜ rate 

15 3,23e0 --- 45 2,58e0 --- 91 1,93e0 --- 

45 3,08e0 0,07 153 2,15e0 0,27 325 1,43e0 0,43 

153 2,62e0 0,23 561 1,52e0 0,50 1225 7,79e-1 0,88 

561 2,05e0 0,35 2145 7,93e-1 0,94 4753 2,96e-1 1,40 

2145 1,27e0 0,69 8385 3,18e-1 1,31 18721 7,64e-2 1,96 

8385 6,85e-1 0,88 33153 1,01e-1 1,65 74 305 1,30e-2 2,56 

33153 3,29e-1 1,06 131 841 2,67e-2 1,92    

131 841 1,56e-1 1,07       

The quality of the solutions, computed using different orders of Ansatz spaces, is com-

pared using a reference solution. This is a numerical solution of the problem at time 

step t = 120 s, that is computed on a very fine grid and using very small time steps 
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such that this solution is expected to be close to the true solution. The difference be-

tween the reference solution ߯௦
 and some coarser approximation ߯௦ is computed in 

H1-norm, i. e. by 

ߜ ≔ ቌ	නห߯௦ െ ߯௦
ห

ଶ
	 ห߯ߘ௦ െ ௦߯ߘ

ห
ଶ
ܸ݀

Ω

ቍ

ଵ/ଶ

 (4.11)

The results for the linear, quadratic and cubic Ansatz spaces are shown in Tab. 4.1. A 

visualization of the decrease of the approximation difference is shown in Fig. 4.3. 

 

Fig. 4.3 Difference to a reference solution of the Henry problem for the first three 

orders of Ansatz spaces measures in H1-norm 

4.2 Filtering algebraic multigrid solver 

The linear systems generated by the described discretization technique tend to be ra-

ther large in real world problems and can normally not be solved using exact solvers 

(e. g., LU-decomposition) or simple iterative solvers (e. g., Jacobi/Gauss-Seidel solv-

ers). More powerful solvers have been created for such cases. Two-grid solvers are 

used to reduce the error on different length scales: A so-called smoother is used to re-

duce high-frequency parts of the error. The remaining error is then solved by looking at 

the problem on a coarser grid. For this, the two-grid solver needs transfer operators: a 

restriction operator which restricts vectors from the fine grid to the coarse grid, and a 

prolongation operator, which prolongates vectors from the coarse grid to the fine grid. 

Finally, a direct solver is used to calculate the solution on the coarse grid. Choosing re-
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cursively two-grid methods as coarse solvers results in multi-grid solvers. The ad-

vantage of multigrid-solvers is that they regard multiple related problems with vastly dif-

fering complexity instead of only regarding one large problem. Different multigrid solv-

ers exist, most prominently are the group of geometric multigid methods and of 

algebraic multigrid methods (cf. /HAC 85/, /RUG 87/). While geometric multigrid meth-

ods build grid hierarchies through repeated refinement, starting from a coarse problem, 

algebraic multigrid methods start from the fine problem and calculate the coarse grid 

and the transfer operators algebraically. The Filtering Algebraic Multigrid method, 

which will be described in the following, is a variant of an algebraic multigrid method. 

The key ideas can be summarized as follows (cf. /WAG 00/, /HEP 12/): 

On each level of a given hierarchy, a smoothing operator is applied, with the goal to re-

duce high frequencies of the error. Components of the error, which aren’t reduced by 

the application of a smoother are then subject to the coarse grid correction. Note that 

we regard those components as algebraically smooth. The coarse grid correction in-

volves restriction of the defect from a fine grid to a coarser grid through the so called 

restriction operator ܴ and a prolongation operator ܲ, which projects corrections from 

coarser grids to finer grids. Furthermore, the coarse grid operator ܣு, which represents 

the fine operator on the coarse grid, is calculated by the Galerkin product ܣு ൌ  .ܲܣܴ

Note that the notation is for the two-grid algorithm, since the generalization to the mul-

tigrid-algorithm is trivial. 

Algebraic multigrid is an iterative algorithm for solving linear equations systems of the 

form ݔܣ ൌ ܾ. The approximation ݔ	is corrected by the two-grid-operator ܶ by  

ାଵݔ ൌ ݔܵ െ ுܣ
ିଵܴ൫ݔܵܣ െ ܾ൯ ൌ ݔܶ  ܿ (4.12)

where c = ܲܣு
ିଵܴܾ and ܶ ൌ ሺܫ െ ுܣܲ

ିଵܴܣሻܵ, which means: smooth, calculate new de-

fect, restrict to coarse grid, solve on coarse grid, prolongate to fine grid and add correc-

tion. Since for the error it holds ݁ାଵ ൌ ଵܾିܣ െ ାଵݔ ൌ ܶ݁	, every algebraic multigrid 

method tries to minimize ‖ܶ‖ in some norm. FAMG uses a special approximation of 

‖ܶ‖: 

‖ܶ‖  ஷݔܽ݉ ∥ ܦ
ଵ
ଶ൫1 െ ܴܲ൯ܵିܦ

ଵ
ଶܦ

ଵ
ଶିܣ

ଵ
ଶ݁ ∥ / ‖݁‖ 

(4.13)
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with ܦ diagonal of ܣ. The minimization can be separated if all vectors t for which 
||భ/మ௧||

||భ/మ௧||
 

is not small are interpolated exactly onto the coarse grid: ൫ܫ െ ܴܲ൯ݐ ൌ 0.	These are 

exactly the vectors which are algebraically smooth, so they are not efficiently reducible 

for smoothers. They are also called zero-energy modes. In the FAMG algorithm, a rep-

resentative subset of so-called test vectors ݐ has to be chosen to capture all the zero-

energy-modes. Then the minimization (with the restriction above) can be done by 

ܫଵ/ଶ൫ܦ|| െ ܴܲ൯ܵܦଵ/ଶ||ி. 

For the sake of illustration, only the symmetric case will be regarded in the following, 

i. e., ܣ ൌ ்ܴ which leads to ,்ܣ ൌ ܲ. Note that there are extensions to FAMG for non-

symmetric matrices, systems of equations and multiple testvectors (cf. /NAE 10/, 

/NÄG 12/) 

4.2.1 Global and local minimization 

In the following ܴ ൌ ܴ is used, which is sufficient as shown in /WAG 00/. This leads 

to the following minimization problem: 

min

‖ሺܫ െ ܴܲሻܵ‖షభ ,

.ݏ .ݐ ሺܫ െ ܴܲሻܵݐ ൌ 0
 (4.14)

‖∙‖షభ is the induced operator norm of the vector norm ‖ݔ‖షభ ൌ ඥ〈ିܦଵݔ,  .〈ݔ

In order to express this locally, it is assumed that a fine node ݅ (a node which only ex-

ists on the fine grid) is interpolated by coarse nodes (nodes which also exist in the 

coarse grid), which are neighbours of ݅ in the adjacency graph of the matrix ܣ. Given a 

partitioning of all nodes in coarse (ܥ) and fine (ܨ) and a vector ݍ ൌ ݅-th row of ሺܫ െ ܴܲሻ, 

problem (4.14) can be rewritten as a sum over local and independent minimization 

problems: 

∑ min

|ܽ|‖ܵ′்ݍ‖షభ

ଶ
∈

.ݏ .ݐ ,ݍ〉 ܵᇱݐ〉 ൌ 0 ∀݅ ∈ ܨ
 (4.15)
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This leads to the following algorithm: 

1. For all nodes ݅ 

a. get the (local) representation of the testvector ݐ 

b. Calculate for all neighbour pairs ݊ ് ݉ ∈ ܰ 

,ܨ ൌ min
,

ܽฮܵ′்ݍ,ฮషభ
ଶ

.ݏ .ݐ ,,ݍ〉 ܵᇱݐ〉 ൌ 0
 (4.16)

c. if ܨߠ,  minஷ∈ே ,ܨ , andܨ  ,ߜ ߜ ൏ 1 then 

save the pair ሺ݊,݉ሻ in ܲܰ and their quality value ܨ,. 

Afterwards, a set of possible parent nodes ܲܰ is assigned to every node ݅. 

4.2.2 Smoother 

The construction of the interpolation operator focuses on the interpolation of smooth 

vectors only. For this, a special smoothing operator ܵᇱ is used. ܵ′ consists of one Jaco-

bi-step ܵ ൌ ܫ െ -followed by a Jacobi-step updating only fine nodes (F ,ܣଵିܦ߱

smoothing): 

ܵ,ி ൌ ܫ െ݁݁
ܣଵିܦ்

∈ி

 (4.17)

resulting in 

ܵᇱ ൌ ܵ,ி ܵ. (4.18)

4.2.3 Coarsening Algorithm 

During the coarsening algorithm, nodes are classified as fine and coarse nodes. Fine 

nodes on a grid level ݈ are nodes, which are not contained in the grid level ݈  1. On the 

contrary, coarse nodes of level ݈ are contained in level ݈  1, too. Prolongation and re-

striction thus have to be constructed in a way that fine nodes are interpolated by neigh-

bouring coarse nodes. The quality of this interpolation is crucial to the successful appli-

cation of the solver. 
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The FAMG method chooses fine- and coarse nodes by minimizing the number of 

coarse nodes while still maintaining a good interpolation for fine nodes. A rating for 

each node is calculated by 

ܴ ൌ min
ெ∈ே\	ி

|ܯ| െ ܯ| ∩ |ܥ  (4.19) ߜ/,ܨ

Note, that ܨ,/ߜ ൏ 1, so that reducing the number of coarse nodes has higher priority. 

Since a node can only be either classified as coarse or fine, the advantage of calculat-

ing multiple possible parent pairs in section 4.2.1 becomes apparent: it results in great-

er flexibility when it comes to performing the actual classification. 

The reasoning above results in the following coarsening algorithm: 

1. calculate ratings ܴ for all nodes 

2. while interpolateable nodes are left: 

a. get unclassified interpolateable node ݅ with lowest rating 

b. get best available parent nodes ݊,݉ for ݅, regarding ܨ, 

c. set ݅ fine 

d. set parent nodes ݊,݉ coarse 

e. for all neighbours ݆ ∈ ܰ 

i. remove all parent pairs in ܲ ܰ which contain ݅ 

(݅ can’t be coarse anymore) 

ii. update rating ܴ 

4.3 Parallelization 

Parallel computers are required to solve problems which are too large to be solved on 

serial computers. Regarding domains of fractured rock, which possibly feature tunnels 

or interwinding layers of different soil types, it is clear that geometries which represent 

such domains often consist of a huge amount of elements. To allow for justifiable solv-

ing times, such domains are distributed amongst multiple processes on parallel com-

puters. Assembling and solving are then performed on those distributed domains. Of 

course, special concepts, algorithms and data structures are required to parallelize 

those tasks and to efficiently perform the required synchronization between different 

processes. 
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All parallelization efforts regarding domain distribution and parallel solving in UG4 are 

based on the pcl-library (“Parallel Communication Layer”), which has been developed 

as a part of the UG4 library (cf. /REI 12a/ /VOG 12/). Note that the structures intro-

duced in the following have originally been introduced in those articles. 

4.3.1 The Parallel Communication Layer 

The parallelization layer has been designed to be usable by all the different modules in 

UG4, e. g., the grid and algebra libraries, while adding a minimal overhead to the re-

quired parallel communication. Based on some general concepts, a C++ template li-

brary has been implemented, which can be used to define paths of parallel communi-

cation. An overview over those concepts is given in the following (cf. /REI 12a/). 

4.3.1.1 Interface 

An interface ܫ on a process ܣ stores objects which are related to objects on a pro-

cess ܤ in a determined order. At the same time there has to be an interface ܫ on pro-

cess ܤ with |ܫ| ൌ -|. The order of the objects in the interfaces is crucial, since durܫ|

ing communication data is exchanged between the ݅-th object in interface ܫ and the ݅-

th object in interface ܫ. 

The dependency on the order of objects in the interfaces has several advantages. No 

global id has to be exchanged along with communicated data during communications, 

since data can be associated with objects in interfaces based on the index of a data 

entry in a communicated data block. This approach is highly efficient, since it reduces 

communication load and avoids lookups in id-tables. Of course this means that pro-

cesses have to assure that objects which are inserted into interfaces are inserted at the 

correct locations. This, however, can be done in a process local way without additional 

communication and is thus preferable regarding scalability and overall parallel perfor-

mance. It should be noted that global ids can still be efficiently generated at any time 

only requiring a single communication step between direct process neighbours. 
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4.3.1.2 Layouts 

On a process ܣ several interfaces ܫ, ,ܫ … can be grouped together in a layout ܮ. 

Layouts can be used to group all interfaces on a process that are used in a special 

context, e. g. ‘master’ and ‘slave’ interfaces. An arbitrary number of layouts may exist, 

making it possible to group interfaces not only by their ‘master’ and ‘slave’ properties, 

but also by the level in which associated objects lie in a multigrid hierarchy (both alge-

braic and geometric multigrid hierarchies). This allows for the construction of algorithms 

and solvers, like smoothers or exact solvers, which only operate on a given level of a 

hierarchy. This again is crucial to guarantee good scalability in multigrid methods. 

In Fig. 4.4 a schematic construction of interfaces and layouts is shown for some dis-

tributed objects. 

 

Fig. 4.4 Example of interfaces and layouts on three processes for a set of objects 

4.3.1.3 Interface Communicator 

The interface communicator performs the actual communication between distributed 

objects. Data is thereby scheduled for separate interfaces or for whole layouts. Data 

can not only be scheduled for multiple interfaces, it is also possible to schedule multiple 

data sources for one interface for a single communication step. For this, the interface 

communicator features send and receive methods. Data is not transferred to other pro-

cesses until the user calls the communicate method. During this method data is col-

lected using communication policies (detailed below), which pack the data into binary 
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buffers, which are then transferred to the processes associated with the interfaces. 

When the buffers arrive at the target processes, the interface communicator uses 

communication policies again to extract the data. Communication is performed using 

asynchronous communication. The required buffers for asynchronous communication 

are maintained by the interface communicator and are reused between successive 

communication calls. This is especially useful for iterative solvers, since a similar com-

munication pattern is executed in each iteration. Buffer reuse thus minimizes overhead 

related to memory allocations. 

4.3.1.4 Communication Policy 

Through the concept of communication policies it is possible to adjust the data col-

lection and extraction process to the structures and data types used in a concrete ap-

plication or library. Data is written and read from binary streams which are supplied by 

an interface communicator. Those streams are later directly used as buffers during 

communication, which means that data is only copied into a buffer once and can then 

be communicated with data from other elements in one block, which is highly efficient 

on current platforms. Instances of specialized communication policies are passed to an 

interface communicator in calls to its send and receive methods, together with the inter-

faces or layouts on which data shall be collected and extracted using the policy. 

4.3.1.5 Process Communicator 

This communicator is used to perform communication between processes, in contrast 

to individual distributed objects. It contains methods to broadcast data, to gather and 

scatter data, to send and receive raw data, to perform reduce and allreduce operations, 

and more. Process communicators are associated with a group of processes to which 

the communication is restricted. One can think of a process communicator as a slightly 

enhanced wrapper to MPI methods using MPI communicators in order to restrict com-

munication to a given set of processes. 

They can, e. g., be used to distribute grids and matrices between processes or to 

check whether all processes reached a given accuracy during application of an iterative 

solver. 
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4.3.1.6 Implementation details 

The concepts of the parallel communication layer (pcl) have been implemented us-

ing the C++ programming language. Users may adjust the provided structures to arbi-

trary object- and container-types through the use of template parameters and type 

traits. The library has been constructed in a way that even allows users to write custom 

interface- and layout-structures from scratch, as long as they adhere to the basic con-

cepts. The provided interface and layout implementations should, however, be suffi-

cient for most applications. 

The clear interfaces defined by the pcl allow for an implementation of the actual com-

munication code, which is hidden from the user. It is therefore possible to completely 

replace the message passing library used in the background. The current implementa-

tion uses MPI (cf. /GRO 99/), which is broadly supported by a great majority of current 

cluster and HPC systems. 

It should be noted, that no special object type has been defined above. Indeed, a spe-

cial object type is not required, since the pcl-structures are designed to support any 

type with which a user may want to identify his distributed objects. The object type is 

specified through template arguments to the interface and layout classes of the pcl. 

Two examples from the simulation framework UG4 are given to illustrate this: 

 UG4’s grid manager stores pointers to the grid objects (vertices, edges, faces and 

volumes) in the interfaces. During communication, communication policies can thus 

directly access values associated with grid objects simply by using the pointer sup-

plied by the interface. No redirection through handles or lookup tables is required. 

More details on how distributed domains are handled can be found in section 4.3.2. 

 UG4’s algebra library stores algebraic indices in the interfaces. Parallel matrix and 

vector operations can then be implemented with low runtime overhead, since the 

indices stored in those interfaces can be used during communication to simply in-

dex into associated matrices and vectors. 

4.3.2 Distributed domains 

The UG4 grid manager supports adaptive unstructured hybrid hierarchical grids in 1, 2 

and 3 dimensions. In a parallel environment, a grid is normally loaded on one process 

(the root process) and then distributed to associated processes. To establish a connec-
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tion between distributed grid parts, the grid manager creates pcl-interfaces and pcl-

layouts during distribution. Those interfaces and layouts can then be used to identify 

object copies of distributed objects and to communicate data, e. g., refinement marks 

during adaptive refinement. 

Two major types of interfaces are thereby used: horizontal and vertical interfaces. 

While horizontal interfaces are used to connect grid parts on each level, vertical inter-

faces are used to establish a connection between parents and children in a grid hierar-

chy, which reside on different processes. Both horizontal and vertical interfaces are fur-

thermore subdivided into master and slave interfaces. This is important to allow for 

clear communication paths and simplifies the synchronization of distributed data tre-

mendously. 

 

Fig. 4.5 Horizontal vertex interfaces on a given grid level 

Three master interfaces and associated slave interfaces are depicted. Note that a specific 

copy of a grid object can lie in multiple master interfaces but at most in one slave interface 

/REI 12a/. 

In Fig. 4.5 the horizontal interfaces created during the distribution of a single grid level 

are depicted. The breakdown into slave and master interfaces can be seen here. It 

should be noted that the grid manager constructs a low dimensional overlap only. In 

Fig. 4.6 horizontal and vertical interfaces are depicted for a 1d example. 
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Fig. 4.6 Schematic overview of the parallel multigrid setup for a 1d example 

Horizontal interfaces are used to establish connections between distributed objects on one 

level, whereas vertical interfaces are used to establish connections between different levels 

(from /REI 12a/). 

The UG4 grid manager, whose grids are used during discretization, supports adaptive 

and anisotropic refinement and coarsening, both for serial and parallel environments. 

The adaption process can be driven by an error estimator or by an adaption criterion 

during simulation. Horizontal interfaces are thereby used to communicate involved re-

finement marks and are dynamically adjusted to the adapted grids. Parallel adaptive re-

finement is fully supported for hybrid grids consisting of triangles, quadrilaterals, tetra-

hedrons, hexahedrons, prisms and pyramids. This allows for the construction of thin 

anisotropic layers to represent fractures. The featured adaptive refinement can hereby 

be used to improve the element quality of anisotropic elements during the first refine-

ment steps. 

4.3.3 Parallel algebra setup 

Since requirements on the algebraic structures are different from those related to adap-

tive grid hierarchies, the implementation of algebra structures in UG4 is independent 

from the grid structures. Still the structure and content of finite element (FE) and finite 

volume (FV) matrices is tightly connected to the content of associated grids, since de-

grees of freedom for the algebra are normally associated with grid elements. The paral-

lelization of distributed matrix and vector classes is thus connected to distributed grids, 

too. As mentioned above, pcl-interfaces are used for the parallel algebra, too. Instead 

of grid objects, indices are stored in the pcl-interfaces for the algebra. Those algebra 

interfaces are constructed from the existing grid interfaces. For each element of a grid 

interface, the indices of associated degrees of freedom are pushed to associated alge-
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bra interfaces, resulting in matching orderings of associated algebra interfaces, even if 

the interfaces are built by each process separately. 

Values associated distributed degrees of freedom can be stored in a distributed vector 

in a couple of ways. The following storage types are used in UG4: 

 consistent: all copies store the true value, 

 additive: the sum of stored values over all copies gives the true value, 

 unique: the master stores the true value and slave copies have zero value. 

One should note that the unique storage type is a special case of the additive storage 

type. Each distributed vector keeps track of its internal storage type. Methods to trans-

form one state into the other are supplied by UG4. They are implemented using the 

constructed pcl-interfaces and layouts. 

The storage type of a distributed matrix allows for even more states. Some examples 

are given in the following: 

 additive: the sum over all matrix-couplings between two indices on all pro-

cesses is the true coupling. 

 additive-diagonal-consistent: same as additive, but self-couplings of indices 

are stored as true values on each process, 

 process-local-consistent: each process stores the true coupling values be-

tween all indices that have a copy on the process. 

4.3.4 A parallel geometric multigrid solver on hierarchically distributed 

grids 

In /REI 12a/ scaling studies of a highly scalable multigrid solver on hierarchically dis-

tributed grids, based on the parallelization schemes introduced above, are presented. 

Those studies demonstrate that the introduced structures of the parallel communication 

layer, together with the grid and algebra parallelization which are built on top, are per-

fectly suitable for high performance computing on large HPC systems (> 100 000 pro-

cesses). The basic ideas and the most important results are presented below. 

The parallel version of the geometric multigrid solver in UG4 is usually applied on grids 

which are distributed in a tree-like structure: The coarse grid is typically contained on 
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one or on a few processes only. Several refinement steps are performed before the 

new top-level is then distributed to more processes. Further refinement steps are then 

performed on all those processes until the new top level is distributed to even more 

processes. The result is a hierarchically distributed multigrid which successively spans 

over all available processes. The highest levels of the grid hierarchy are distributed 

over all available processes, whereas lower levels only span over a subset of available 

processes. This makes perfectly sense, since the highest workload concentrates on the 

upper levels of the grid hierarchy. 

For the application of the smoothing operator, horizontal interfaces are used on each 

level separately. During restriction and prolongation, vertical interfaces are employed to 

transfer data from higher to lower levels and vice versa. 

The highly encouraging results of the weak scaling studies for benchmarks performed 

on the 2d and 3d Laplace problem given in equation (4.20) on the JuGene system at 

Jülich supercomputing center (JSC, FZ Jülich) using up to 262 144 processes (from 

294 912 available processes) are presented in Tab. 4.2. 

െ∆ݑ ൌ ݂								on ሾ0,1ሿௗ (4.20)

Tab. 4.2 Weak scaling of Laplace 2d problem on JuGene 

PE: Number of processing entities, ࢙ࢀ: time for solving, ࢇࢀା࢙, ,࢙ାࢇࡱ  time, efficiency, and :࢙ାࢇࡿ

speedup for assembly and solving. ࢇࢋࢊࡿ: ideal speedup. 

PE grid 

levels 

DoF ࢙ࢀሺ࢙ሻ ࢇࢀା࢙ሺ࢙ሻ  ࢙ାࢇࡱ

(s) 

 ࢇࢋࢊࡿ ࢙ାࢇࡿ

4 6 263 169 2.608 5.064 - - - 

16 7 1 050 625 2.653 5.102 99.2 4.0 4 

64 8 4 198 401 2.694 5.136 98.6 15.8 16 

256 9 16 785 409 2.752 5.175 97.8 62.6 64 

1 024 10 67 125 249 2.800 5.216 97.1 249 256 
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PE grid 

levels 

DoF ࢙ࢀሺ࢙ሻ ࢇࢀା࢙ሺ࢙ሻ  ࢙ାࢇࡱ

(s) 

 ࢇࢋࢊࡿ ࢙ାࢇࡿ

4 096 11 268 468 225 2.854 5.294 95.7 980 1 024 

16 384 12 1 073 807 361 2.934 5.360 94.5 3 870 4 096 

65 536 13 4 295 098 369 3.023 5.452 92.9 15 217 16 384 

262 144 14 17 180 131 329 3.162 5.585 90.7 59 424 65 536 

The results show a very good scaling behaviour of the solver for the 2d and 3d case. 

The assembling time even stays constant. The given ideal speedup is hypothetical only 

for the given problem, since it only considers the increase of process numbers but 

completely ignores required communication. Still the results closely approach this hy-

pothetical perfect scaling behaviour and are a clear indicator for the high efficiency of 

the proposed parallelization approach. 

Tab. 4.3 Weak scaling of Laplace 3d problem on JuGene 

PE: Number of processing entities, ௦ܶ: time for solving, ܶା௦, ,ା௦ܧ ܵା௦: time, efficiency, and 

speedup for assembly and solving. ܵௗ: ideal speedup. 

PE grid 

levels 

DoF ࢙ࢀሺ࢙ሻ ࢇࢀା࢙ሺ࢙ሻ ࢇࡱା࢙ 

(%) 

 ࢇࢋࢊࡿ ࢙ାࢇࡿ

1 4 35 937 2.516 6.967 - - - 

8 5 274 625 2.657 7.368 94.6 7.6 8 

64 6 2 146 689 2.835 7.540 92.4 59.1 64 

512 7 16 974 593 2.935 7.626 91.4 468 512 

4 096 8 135 005 697 2.956 7.676 90.8 3 718 4 096 

32 768 9 1 076 890 625 3.116 7.829 89.0 29 161 32 768 

262 144 10 8 602 523 649 3.073 7.786 89.5 234 575 262 144 
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4.3.5 Parallelization of the FAMG solver 

The parallelization of the FAMG solver (cf., /HEP 12/) is based on the parallel algebra 

structures detailed in section 4.3.3. However, in addition to the low dimensional overlap 

constructed by the grid manager during domain distribution, the FAMG solver addition-

ally requires a broader overlap of degrees of freedom. This is required, since the val-

ues of a matrix ܣ have to be known in the direct neighbourhood ܰ
ଵ of a node ݅ and in 

the neighbourhood of neighbours ܰ
ଶ of ݅ (cf., section 4.2.3), resulting in a required 

overlap of 2 of the matrix ܣ. 

4.3.5.1 Parallel coarsening 

To ensure a consistent coarsening the coarsening process has to be parallelized, too. 

To avoid unintentional interference between neighboured processes, a graph colouring 

algorithm is used on the neighbourhood graph of processes. Using this graph colour-

ing, one can assert that no two processes which could set the same nodes to coarse or 

fine are performing coarsening at the same time. The parallel coarsening is described 

by the following algorithm: 

1. Calculate a graph colouring so that no two cores which could set the same node 

coarse or fine have the same colour 

2. Receive coarsening data from cores with lower colour 

3. Perform the serial coarsening algorithm described in section 4.2.3 

4. Send coarsening data to cores with higher colour 

Combining the serial coarsening approach with those parallel extensions, one receives 

the algorithm to construct the prolongation/restriction operators for the parallel FAMG 

method: 

1. Calculate a 2-overlap of the matrix ܣ 

2. Gather all possible parent nodes (cf., section 4.2.1) 

3. Perform parallel coarsening as described above 

4. Send and receive local prolongation operators on border nodes 

5. Calculate ܴ ൌ ்ܲ, ுܣ ൌ  ܲܣܴ
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4.3.5.2 Agglomeration 

For a good parallel performance it is important that the computational part of a parallel 

algorithm outweighs the time spent with communications. Since the coarsening algo-

rithms of the FAMG method successively decreases the problem size, eventually a 

point is reached where the problem size on a given core is so small that communica-

tion times dominate over computation times. To avoid this bottleneck small matrices on 

several processes are gathered on one process and united to a larger matrix, thus in-

creasing the problem size on one process while removing other processes from the 

FAMG-computations on coarse levels entirely. 

As soon the number of unknowns on a single process falls below a given constant ܰ 

on the current level, the following information will be gathered on the root process: 

 The number of unknowns on each process 

 The process-ids with which each process is connected to via interfaces together 

with the size of those interfaces 

This information is used in an agglomeration algorithm on the root process, which cal-

culates a heuristic graph partitioning so that: 

 All participating cores have more than ௗܰ௦ௗ unknowns. 

 The number of participating cores is maximized. 

 The maximal size of all interfaces between two cores is minimized. 

After the agglomeration procedure some processes will be idle on the current level and 

on levels below. This, however, is preferable to a scenario where all processes are in-

volved with a generally low work load. This can also be seen in the results of geometric 

multigrid methods on hierarchically distributed grids (see section 4.3.4. Note, that the 

agglomeration approach for parallel algebraic multigrid methods and the hierarchical 

distribution approach for parallel geometric multigrid methods share the same idea of a 

tree-like problem distribution on the given processes, using more processes for the up-

per levels of a given problem hierarchy. 
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4.3.5.3 Benchmarks 

Benchmarks have been performed to prove the viability of the proposed approach 

(originally published in /HEP 12/). The 2d Laplace equation (equation (4.20)) has been 

solved on the triangulated unit square using FAMG as preconditioner for the CG meth-

od. The calculations have been performed on the Cray XE6 system “Hermit” at the 

HLRS Stuttgart. Tab. 4.4 shows the weak scaling for a series of initial grid refinement 

levels, Tab. 4.5 shows the numbers of participating cores for associated agglomeration 

numbers ܰ ൌ ௗܰ௦ௗ ൌ 1000 for each run. 

Tab. 4.4 Weak scaling of the 2d Laplace problem on Hermit using FAMG 

௧ܶ௧: total application run time, ௦ܶ௧௨: time for FAMG setup, ௦ܶ௩: time for CG solver using 

FAMG multigrid as preconditioner, ܰ௧: number of CG iterations. 

PE grid 

levels 

DoF ࢇ࢚࢚ࢀ

ሺ࢙ሻ 

࢛࢚ࢋ࢙ࢀ

ሺ࢙ሻ 

AMG 

levels

ࢋ࢙࢜ࢀ ࢘ࢋ࢚ࡺ ሻ࢙ሺࢋ࢙࢜ࢀ
࢘ࢋ࢚ࡺ

4 8 263 169 6.87 3.47 9 1.20 9 0.13 

16 9 1 050 625 9.92 4.17 11 2.26 11 0.21 

64 10 4 198 401 12.11 4.92 13 2.40 11 0.22 

256 11 16 785 409 14.02 5.92 15 2.78 12 0.23 

1 024 12 67 125 249 16.60 6.95 18 3.37 14 0.24 

4 096 13 268 468 225 20.39 8.53 20 3.90 15 0.26 

While an increase in total processing time can be observed with growing problem size 

and process numbers, the increase stays in reasonable bounds. Reasons for the in-

creased setup and solution times may be found in the fact that the coarsening rate of 

the standard FAMG method is only 50 % per level, resulting in a larger number of re-

quired levels to reach the same coarse-grid to fine-grid node ratio as geometric multi-

grid. Furthermore the number of iterations does not stay constant with increasing pro-

cess numbers. However, the time per iteration is bounded and even remains constant if 

the increase in operator complexity is considered as well. 
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Tab. 4.5 Number of participating processes for parallel FAMG 

AMG 

level 

PEs 4, 

used PE 

PEs 16, 

used PE 

PEs 64, 

used PE 

PEs 256, 

used PE 

PEs 1024, 

used PE 

PEs 4096,

used PE 

0-7 4 16 64 256 1 024 4 096 

8 2 8 30 120 479 1 883 

9 1 4 15 62 249 1 044 

10  2 8 31 124 533 

11  1 4 16 72 291 

12   2 8 44 188 

13   1 4 24 110 

14    3 13 61 

15    1 7 37 

16     3 17 

17     2 11 

18     1 5 

19      2 

20      1 
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5 Concepts and criteria for multi-scale adaptivity 

5.1 Motivation  

In multi-grid codes, the mesh size influences the transport parameters – namely the 

ensemble and effective dispersion coefficients. Therefore, grid-size dependent parame-

ters are needed for a realistic description. But according to the grid size there is an arti-

ficial mixing effect which distorts the ensemble quantities in a significant manner as 

shown in chapter 3 and results in a remarkable difference between the ensemble and 

effective quantities for small distances or a finite time regime.  

The aim of this chapter is, to improve the results for the dispersion values which should 

capture the true dispersion more exactly. With the upscaling method of coarse graining, 

this artificial mixing effect can be quantified.  

A criterion for the multi-scale adaptivity would be, that for short time regimes – corre-

sponding to short distances of the solute from the source of injection – the ensemble 

quantity would be the same as the much more exact effective one. Thus, the main cri-

teria for the multi-scale adaptivity is the distance to the fracture: Near the fracture a fine 

a) Ensemble dispersion  

    coefficient 

b) Effective dispersion  

    coefficient 

c) Grid-size dependent 

    quantities 

Fig. 5.1  Effect of the filtering method coarse graining  

grid should be used, whereas in the far field a coarser grid should be applied (e. g. 

/HEN 00/, /NOE 00/, /GRA 01/). In this chapter, a criterion for the multi-scale adaptivity 

is developed by defining the spatial filter in dependence of the grid size. For that pur-

pose, the model described in section (3.3) is now extended to scales which do not de-
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pend on the grid size that means that single fractures are embedded in the fractured 

porous medium.  

5.2 Introduction 

To capture observed phenomena accurately, one has to discretize numerical models 

by grid cells of smaller size than the scale of heterogeneity. The computational effort to 

solve field scale problems is very demanding and it is common to diminish the compu-

tational resolution by choosing coarser grids. Variability is lost in this case and one has 

the problem how to model the impact of unresolved velocity fluctuations upon transport. 

Standard upscaling procedures such as homogenization and stochastic modelling 

compensate unresolved effects by introduction of macro-dispersive fluxes. Both meth-

ods average out all heterogeneities resulting in a total loss of spatial variability in the 

flow and transport parameters (Fig. 5.1 a and Fig. 5.1 b). The challenge now is to find 

an approach which averages out only the real or physical mixing (Fig. 5.1 c).  

In doing this, one usually has to make a compromise between computational efficiency 

and the preciseness/correctness of the model solution. However, numerical grid cells of 

size much larger than the heterogeneity scale might be not desired nor might yield reli-

able results with respect to the required preciseness of the results. Practical problems 

might be dominated by additional scales not much larger than the heterogeneity scale. 

A classical example is given by solute transport in a dipole flow field where the addi-

tional length scale is set by the dipole size respectively the curvature of the larger scale 

dipole flow. In this case, the numerical model has to resolve the curvature of the larger 

scale flow. Smoothing out all variability in the flow by ensemble average gives only reli-

able results for the single realization if the ensemble average may be substituted by 

spatial averaging because of the ergodicity assumption. By construction, the spatial 

average is performed over volumes containing many correlation lengths. Thus, the total 

loss of variability and numerical computation on grid cells which are small enough to 

resolve the large scale flow field leads to inconsistent results. /DUR 96/ and /DUR 97/ 

neglected subgrid effects. /CHR 96/ and /BAR 97/ used an a priori estimate of the 

global flow field to compute upscaled fluxes. /EFE 00/ presented a methodology that 

models subgrid effects without requiring a priori estimates. The method has some ele-

ments in common with the large eddy simulation (coarse graining) method described 

by /BEC 96a/ and /BEC 96b/. However, /EFE 00/ apply a non-uniform coarsening 



87 

through the domain (see /DUR 96/ and /DUR 97/). The drawback of their results is an 

empirical function that appears in the results for coarse grained dispersivities which has 

to be estimated by numerical runs of the model. /RUB 99/ applied coarse graining to 

solute transport and stated explicit results for block-scale macrodispersivity values.  

A solute plume is represented by the concentration field c(x, t). In heterogeneous me-

dia, the mixing coefficients depend implicitly on the spatial distribution of the heteroge-

neities,	D୧୨ ൌ 	D୧୨ሺcሻ, via this concentration. In the stochastic approach, the large-scale 

plume is characterized by the ensemble dispersion coefficient D୧୨
ୣ୬ୱ	ሺtሻ	as defined in 

(3.78) and denotes the average over the ensemble of aquifer realizations representing 

the dispersion characteristics of the whole aquifer, whereas the effective dispersion co-

efficient D୧୨
ୣ	ሺtሻ as defined in (3.77) describes the experimentally observable disper-

sion. The two quantities are identical only for infinite times in media with finite correla-

tion lengths of the heterogeneities (/MET 99/, section 3.6.4; Fig. 3.10 a and Fig. 

3.10 b). In general, the experimentally observable dispersion, which is a property relat-

ed to one given aquifer, is represented by the effective quantity D୧୨
ୣ	ሺtሻ. Thus, deriving 

real block-scale mixing coefficients needs coarse graining of effective mixing coeffi-

cients instead of ensemble quantities if the interest is on finite time regimes and small 

distances of the solute transport.  

The aim is, to improve standard upscaling procedures by introducing a method that is 

capable to transfer a heterogeneous model not only on very large scales but also to in-

termediate scales. Standard upscaling methods are also called asymptotic methods 

whereas the method of coarse graining accounts for pre-asymptotic effects as well. In 

particular, the support volume does not always correspond to a representative volume 

of the heterogeneous medium. 

In the groundwater literature, spatial filters have long been used to conceptually repre-

sent measurement processes /BAV 84/, /CUS 84/, /CUS 86/. The specific application of 

spatial filter concepts that has received the most attention is the measurement of hy-

draulic conductivity on different scales /ALA 89/, /BEC 94/, /BE2 96/, /DES 92/, 

/DES 94a/, /DEU 94/, /HAR 92/, /OLI 90/, /TID 99a/, /TID 99b/, /VEL 70/. These works 

contain a variety of approaches to determine measurement filters. In this study the fo-

cus is on one particular method which is referred to coarse graining. 
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5.3 The method of coarse graining 

The idea of coarse graining is to average local functions over volumes of intermediate 

sizes in order to obtain functions on coarser resolution scales. The coarse scale can be 

e g. the resolution scale of a measurement or the discretisation scale of a numerical 

simulation. In other words, it is searched for a compromise between the computational 

effort and the numerical accuracy.  

5.3.1 Definition of the filter 

According to /ATT 04a/, in the following the coarse scale is assumed to be character-

ised by a typical length ξ and the concept of the coarse graining procedure is demon-

strated on a locally fluctuating function f(x). Fluctuations of f(x) are smoothed out over 

a typical volume ξd around the location x by the following averaging procedure 

〈fሺܠሻ〉ஞ ≡
1
ξୢ

නdୢ

ஞ
ଶ

ି
ஞ
ଶ

ܠfሺ	ܡ   .	ሻܡ

(5.1)

〈fሺܠሻ〉ஞ is the coarse part of the function f(x) and ddy is the infinitesimal d-dimensional 

volume element. Using the Fourier transform, for the smoothed function follows:  

〈fሺܠሻ〉ஞ ൌ
1
ξୢ

නdୢ

ஞ
ଶ

ି
ஞ
ଶ

y	fሺܠ  ሻܡ 	ൌ
1
ξୢ

නdୢ

ஞ
ଶ

ି
ஞ
ଶ

y	නdୢ ܠሺ	ܓexp൫െܑ	ܓ  ሻܓfሺ	ሻ൯ܡ

ൌ නdୢ ܓexpሺെܑ	ܓ ∙ ෑ	ሻܠ
sin൫k୨ξ൯

k୧ξ୧

fሺܓሻ	. 

(5.2)

k୧ is the component of the Fourier vector k in the i-th spatial direction. That means, the 

coarser function is characterised by a Fourier transform which differs from the Fourier 

transform of the original function by multiplication with the functions ∏
ୱ୧୬ሺ୩ஞሻ

୩ஞ୧ .  

The impact of these functions is illustrated in Fig. 5.2. For simplicity, a single function 
ୱ୧୬ሺ୩	ஞሻ

୩	ஞ
 is plotted against the Fourier variable k for different smoothing parameters ξ. At 
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k = 0, the function is equal to 1, independent of ξ. For increasing k-values, it decreases 

and starts to oscillate around 0.  

 

Fig. 5.2  Fourier-transformed filter functions for various scales ξ /ATT 04a/ 

The behaviour of the functions for different values of ξ is shortly discussed: For ξ → 0, 

they are equivalent to one, 

	
sinሺܓ	ξሻ

ξ	ܓ
ቤ
ஞୀ

ൌ 1 . 
(5.3)

This implies that no coarse graining is performed: In this case, the function is still local-

ly resolved:  

〈fሺܠሻ〉ஞୀ ൌ 	fሺܠሻ. (5.4)

In the limit of ξ → ∞, the sine function converges towards the Dirac' Delta distributions: 

	
sinሺܓ	ξሻ

ξ	ܓ
ቤ
ஞୀஶ

ൌ lim
ஞ→ஶ

൬
1
ξ
൰ δሺܓሻ 

(5.5)

and 〈fሺܠሻ〉ஞୀ approaches its total volume average: 

〈fሺܠሻ〉ஞ ൌ නdୢ ܓ expሺെܑܓ ∙ ሻܠ ൬
1
ξ
൰
ୢ

δୢሺܓሻ fሺܓሻ 

ൌ ൬
1
ξ
൰
ୢ

	fሺܓ ൌ 0ሻ 

ൌ ൬
1
ξ
൰
ୢ

නdୢ  	.	ሻܠfሺ	ܠ

(5.6)
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For finite values of ξ, the shape of the functions are the narrower, the larger are the 

values for ξ. Small k-values contribute to the integral, whereas large k-values are sup-

pressed by the fast oscillations of the sine-functions. In other words, the sine-functions 

act as filter functions for k-values: The larger ξ, the wider is the spectrum of k-values 

that are filtered out (Fig. 5.2).  

In summary it can be said, that the coarse graining process transforms the function fሺܠሻ 

into Fourier space, filters out all k-values larger than a certain cut-off value ξ-1 and 

transforms the function back to real space:  

〈fሺܠሻ〉ஞ ≅ නdୢ ܓ expሺെܑܓ ∙ ሻ|୩ܓfሺ	ሻܠ ழଵ/క ≡ නdୢ ܓ expሺെܑܓ ∙ ሻܠ fሺିܓሻ . 
(5.7)

For further mathematical manipulation, the sine functions are replaced by a Gaussian 

filter which is a simpler type of filter functions. The complementary filter function is giv-

en by 

1 െ exp ቆെ
ሺܓ	ξሻଶ

8
ቇ	. 

(5.8)

The width of the Gaussian filter is chosen in a way that its Fourier back transform has a 

similar shape as the sharp cut-off function defined in the original spatial filter. 

5.3.2 Applications to the log-hydraulic conductivity field 

In the following, the filter is applied in order to smooth a spatially variable function and 

to determine the statistical properties of the smoothed function. Assuming a statistically 

stationary function f(x) and applying a spatial filter will not change the mean value since 

it is constant in space due to stationarity: 

〈fሺܠሻ〉ஞതതതതതതതത ൌ
1
ξୢ

න dୢܡ	

ି
ஞ
ଶ

ି
ஞ
ଶ

fሺܠ  ሻܡ

തതതതതതതതതതതതതതതതതതതതതതതത

ൌ 	
1
ξୢ

න dୢܡ	

ି
ஞ
ଶ

ି
ஞ
ଶ

fሺܠ  ሻതതതതതതതതതതܡ ൌ f	̅. 

(5.9)

More interesting is the evaluation of the correlation function of the smoothed function. 

The function is decomposed into the mean value and a deviation from this value:  

fሺܠሻ ൌ f̅  fሚሺܠሻ. (5.10)
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Then, the smoothed correlation function has the form  

C〈〉ሺܠ െ ሻ′ܠ ൌ 〈fሚሺܠሻ〉ஞ	〈fሚሺܠ′ሻ〉ஞ
തതതതതതതതതതതതതതതതതത ൌ නdୢܓ exp൫iܓሺܠ െ ሻ൯′ܠ C෨ 〈〉ሺିܓሻ . 

(5.11)

The integral of the right-hand side in (5.11) follows by using stationarity in the Fourier 

space: 

නdୢܓ	exp൫iܓሺܠ െ ሻ൯C෨′ܠ 〈〉ሺିܓሻ ൌ C෨ 〈〉ሺܓ, ሻ′ܓ δୢሺܓ  ሻ′ܓ ൌ C෨ 〈〉ሺܓ, െܓሻ

≡ C෨ 〈〉ሺܓሻ	. 

(5.12)

Hereafter, the filter is applied to situations with a finite correlation length of heterogenei-

ties and afterwards to cases with infinite ones in order to detect how the stochastic 

properties are changing. 

5.3.2.1 Situations with finite correlation lengths  

In porous media with finite correlation lengths, a Gaussian shaped function with iso-

tropic correlation lengths ℓ ൌ ℓଵ ൌ ℓଶ ൌ ℓଷ ൏ ∞) is inserted to the explicit form of the 

correlation function: 

C〈〉ሺܠሻ ൌ σ
ଶ 	exp ቆെ

ଶܠ

2	ℓଶ
ቇ	. 

(5.13)

Then, the Fourier-transformed correlation function is given by 

C෨ 〈〉ሺܓሻ ൌ σ
ଶ 	ሺ2π ℓଶሻୢ/ଶ	exp ቆെ

ଶℓଶܓ

2
ቇ . 

(5.14)

The new correlation length ℓ〈〉 can be derived by inserting this correlation function into 

the integral (5.11) and performing the integration:  

C〈〉ሺܠ െ ᇱሻܠ ൌ නdୢܓ	exp൫iܓሺܠ െ ᇱሻ൯C෨ܠ 〈〉ሺିܓሻ 

ൌ නdୢܓ	exp൫iܓሺܠ െ ᇱሻ൯ܠ σ
ଶ 	ሺ2π	ℓଶሻ

ୢ
ଶ	exp ቆെ

ଶℓଶܓ

2	
–
ଶξଶܓ

8	
ቇ 

ൌ σ
ଶ ቌ

ℓଶ

ℓଶ 
ξଶ
4

ቍ

ୢ/ଶ

exp൮െ
ሺܠ െ ሻଶ′ܠ

2 ൬ℓଶ 
ξଶ
4 ൰

൲ . 

(5.15)

The result implies, that the correlation length and the variance of the smoothed function 

are changed:  
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ℓ〈〉 ൌ ඨℓଶ 
ξଶ

4
 

(5.16)

σ〈〉
ଶ ൌ σ

ଶ ቌ
ℓଶ

ℓଶ 
ξଶ
4

ቍ

ୢ/ଶ

ൌ σ
ଶ ቆ

ℓଶ

ℓ〈〉
ଶ ቇ

ୢ/ଶ

. 

(5.17)

The new correlation length is larger than that one in the unfiltered situation, ℓ〈〉  	݈, 

and obviously, it cannot be smaller than the new resolution scale ξ. The new variance 

is smaller than that one in the unfiltered case, σ〈〉
ଶ ൏ σ

ଶ 	. With growing ratio ξ / ℓ, the 

variance decreases. In particular, the decrease depends of the spatial dimension. In 

higher spatial dimension, it decreases faster than in lower dimensions. The decrease in 

higher dimensions may occur faster because for smaller ratios ξ / ℓ the average is al-

ready performed over larger volumes. ξ / ℓ >> 1 implies, that the function is smoothed 

over many correlation lengths. Therefore, the function appears after smoothing almost 

homogeneous and the variance goes to zero. In contrast, for ξ / ℓ << 1 the function is 

smoothed within one correlation length, meaning that almost all spatial variability is still 

resolved and it holds σ〈〉
ଶ /σ

ଶ 	ൎ 1. 

These results can be generalised to smoothing functions with anisotropic correlation 

lengths ℓ୧  and anisotropic Gaussian filter functions ξ୧: 

C〈〉ሺܠ െ ᇱሻܠ ൌ σ
ଶ ෑ൮

ℓ୧
ଶ

ℓ୧
ଶ 

ξ୧
ଶ

4

൲

ୢ/ଶ

ෑexp

ۉ

ۈ
ۇ
െ

ሺx୧ െ x୧
ᇱሻଶ

2 ቆℓ୧
ଶ 

ξ୧
ଶ

4 ቇ ی

ۋ
ۊ

ୢ

୧ୀଵ

ୢ

୧ୀଵ

	.	 

(5.18)

5.3.2.2 Situations with infinite correlation lengths  

In fractal porous media with infinite correlation lengths, the correlation function can be 

expressed as a superposition of Gaussian f as described in (3.57): 

C  ሺܠሻ ൌ
2

Γ ൬
β
2൰
න dλ	λஒିଵ
ஶ



expሺെλଶሻ ൝σ
ଶ exp ൭െ

1
2

∑ x୨
ଶୢ

୨ୀଵ

Lଶ
൱ൡ . 

(5.19)

with the correlation length scale	L as defined in (3.58). Accordingly, the Fourier trans-

formed correlation function has the form:  
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C ෪ሺܓሻ ൌ 	
2

Γ ൬
β
2൰
න dλ		λஒିଵ
ஶ



expሺെλଶሻ ቊσ
ଶ ൫2π Lଶ൯

ୢ/ଶ
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ଶLଶܓ

2
ቇቋ . 

(5.20)

To obtain the adapted correlation length L〈〉 for fractal media, the correlation function 

(5.19) has to be inserted into the integral (5.11) and the integration over the Fourier 

transformed variable k has to be performed:  

C 〈〉ሺܠ െ ᇱሻܠ ൌ 	
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(5.21)

The new correlation length and the variance of the smoothed function in fractal porous 

media with infinite correlation lengths have the form: 

L〈〉 ൌ ඨLଶ 
ξଶ

4
ൌ ඨ1 

ξଶλଶ

2ℓଶ
 

(5.22)
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(5.23)

Due to numerical problems, in this study the pre-coefficient related to grid-size de-

pendent quantities in fractal porous media has to be written in the form:  
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(5.24)
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Although L tends to be infinite, the new correlation length L〈〉 is even larger, L〈〉	> L, 

due to the spatial filter width ξ > 0. The adapted variance σෝ〈〉
ଶ  is smaller than the “old” 

variance σ
ଶ .	  

According to situations in porous media with finite correlation lengths, the generalised 

result for smoothing functions with anisotropic correlation lengths in fractal media, 

L୧ ൌ ℓ୧/൫√2λ൯, i = 1, …, d and anisotropic filter functions ξj has the form:  
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5.3.3 Grid-size dependent transport equations 

In the previous sections, the statistical properties of a filtered random function f(x) were 

investigated. The grid-size dependent correlation length and the variance were explicit-

ly evaluated using a Gaussian filter function. In this case, the calculations were straight 

forward because the filter could be applied directly to the function f(x). 

The situation becomes more complicated if the scope is at filtering a differential equa-

tion with heterogeneous coefficients such as porosity or hydraulic conductivity. In this 

case, the solution of the probability density equation (PDE) depends in a complicated 

manner on coefficients and filtering the medium's properties independently of the PDE 

yields incorrect results. Making use of the Green's function formalism implies, that filter-

ing the solution of a differential equation is equivalent to filtering the Green's function or 

the inverse differential operator /ATT 04a/. Nevertheless, the general procedure re-

mains the same and can be summarised in three steps:  

1. transformation of the differential equation into the Fourier space,  

2. filtering out larger Fourier modes and 

3. taking the Fourier back transform which gives the desired filtered differential 

equation and thus the filtered function. 
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Hereafter, the different steps of the coarse graining method, which was originally de-

veloped for large Eddy-simulations in fluid mechanics, are summarised according to 

/ATT 04a/. A detailed description of the coarse graining method can be found e. g. in 

/MCC 90/. 

Step 1: Fourier transformation of the PDE equation  

The Fourier transformation of the PDE reads  

Zሺܓ, ,ᇱܓcሺ	ሻ′ܓ tሻ ൌ Sሺܓሻ	cሺܓᇱ, tሻ  Rሺܓ, ሻ′ܓ cሺܓᇱ, t′ሻ ൌ െρሺܓሻ . (5.26)

S0 indicates an operator with constant coefficients and Rሺܓ,  ሻ is the residual operator′ܓ

given in (3.65). Following Einstein's rule, the summation goes over the same indices. 

The Fourier-transformed operators are defined on the continuum, thus the summation 

is replaced by an integration over the Fourier variable. Using the Green's function for-

malism, the solution can be written as 

cሺܓ, tሻ ൌ െGሺܓሻρሺܓሻെGሺܓሻ	Rሺܓ, ሻ′ܓ cሺܓ′, t′ሻ . (5.27)

G0(k) is the inverse or Green's function of the PDE with constant coefficients. It is as-

sumed, that the inverse operator Zିଵሺܓ,  ሻ also exists. It is defined by′ܓ

Zିଵሺܓ, ,′′ܓZሺ	ሻ′′ܓ ሻ′ܓ ≡ δ	ሺܓ, . (5.28)	ሻ′ܓ

Zିଵሺܓ,  ሻ is related to the Fourier-transformed Green's function of the full PDE by′ܓ

Zିଵሺܓ, ሻ′ܓ ≡ Gሺܓ, െܓ′ሻ . (5.29)

In this context, it is emphasized, that in the Green's function a minus sign arises: The 

Green's function in real space is the solution of the full head equation assuming delta 

functions δሺܠ െ -ሻ as source terms. By transforming the governing equation into Fouri′ܠ

er space, δሺܓ െ  ሻ follows as source term differing from the right-hand side of (5.28) by′ܓ

a minus sign. 
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Step 2: Performance of the filtering procedure  

Applying the filtering procedure to the solution, provides the following set of equations 

cሺିܓ, tሻ ൌ െGሺିܓሻρሺିܓሻ െ GሺିܓሻR′ሺିܓ, ሻ′ܓ cሺܓ′, t′ሻ

ൌ െGሺkିሻρሺିܓሻ െ GሺkିሻR′ሺିܓ, ାᇱܓcሺ	ାሻ′ܓ , t′ሻ

െ GሺିܓሻR′ሺିܓ, ᇱିܓcሺ	ሻି′ܓ , t′ሻ , 

(5.30)

cሺܓା, tሻ ൌ െGሺܓାሻρሺܓାሻ െ GሺܓାሻR′ሺܓା, ሻ′ܓ cሺܓ′, t′ሻ

ൌ െGሺkାሻρሺܓାሻ െ GሺkାሻR′ሺܓା, ାᇱܓcሺ	ାሻ′ܓ , t′ሻ

െ GሺܓାሻR′ሺܓା, ᇱିܓcሺ	ሻି′ܓ , t′ሻ . 

(5.31)

Due to the filter, the inner integration variables k’, k’’ and k’’’ are restricted to large-  

respectively small-wave numbers. The arguments of the functions and the operators 

are also defined on the restricted wave number spectra. Both equations are coupled 

because the heads on the right-hand side still depend on long- and on short wave-

number contributions. As pointed out above, the main interest is on cሺିܓ, tሻ because its 

Fourier back transform is the grid-size dependent head distribution which is desired to 

determine. To that end, the solution for cሺܓା, tሻ is inserted into the equation for cሺିܓ, tሻ	. 

Step 3: Decoupling 

The implicit set of equations (5.30) and (5.31) is solved by making use of the inverse 

operator as introduced in step 1 but with restricted wave spectra: 

cሺିܓ, tሻ ൌ െZିଵሺିܓ, ሻିܓᇱିሻρሺܓ െ Zିଵሺିܓ, ᇱିሻRܓ ሺܓ′ି, ାሻ′′ܓ cሺܓାᇱᇱ, t′′ሻ , (5.32)

cሺܓା, tሻ ൌ െZିଵሺܓା, ାሻܓାሻρሺ′ܓ െ Zିଵሺܓା, ାሻR′ܓ ሺܓ′ା, ሻି′′ܓ cሺିܓᇱᇱ, t′′ሻ . (5.33)

For the remaining step, cሺܓା, tሻ has to be inserted into (5.32): 

cሺିܓ, tሻ ൌ െZିଵሺିܓ, ሻିܓᇱିሻρሺܓ

 Zିଵሺିܓ, ,ି′ܓሺ	ᇱିሻRܓ ,ା′′ܓାሻሾZିଵሺ′′ܓ ାሻ′′′ܓାሻρሺ′′′ܓ

െ Zିଵሺܓ′′ା, ,ା′′′ܓሺ	ାሻR′′′ܓ ሻି′′′′ܓ cሺିܓᇱᇱᇱᇱ, t′′′ሻሿ . 

(5.34)
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Step 4: Mean field approximation and localisation approximation 

Equation (5.34) is rewritten into 

Zሺିܓ, ᇱିܓcሺ	ᇱିሻܓ , tᇱሻ ൌ െρሺିܓሻ  Rሺିܓ,  ᇱାሻܓ

																													∙ ሾZିଵሺܓ′ା, ାሻρሺkାᇱᇱሻ′′ܓ  Zିଵሺܓ′ା, ାሻR′′ܓ ሺܓ′′ା, ሻି′′′ܓ cሺିܓᇱᇱᇱ, t′′′ሻሿ	. 

(5.35)

Expression (5.35) looks already like the desired filtered head equation. The left-hand 

side of the equation is equivalent to (5.26) with all Fourier variables restricted to small-

wave numbers. The large-wave fluctuations show their impact by means of the second 

and third terms on the right hand side. For further mathematical treatment, the long-

wave fluctuations are approximated by their ensemble mean values (mean field ap-

proximation) and, hence, the second term on the right-hand side vanishes. This can be 

seen by expanding Zିଵ in a perturbation series and performing the ensemble average 

term by term: The statistical translation invariance of the hydraulic conductivity field re-

quires that k + k’’ = 0 with k > 1 / ξ and k’’ < 1 / ξ which cannot be fulfilled simultane-

ously and the terms have to vanish.  

The third term on the right-hand side does not vanish and can be understood as a 

scale-dependent effective operator which is induced by small-scale heterogeneities 

varying on typical length scales smaller than ξ.  

Step 5: Fourier back transformation 

In real space, expression (5.35) reads after localisation 

Z〈cሺܠ, tሻ〉ஞ െ 〈RᇱZିଵ	R′〉〈cሺܠ′, t′ሻ〉ஞ ൌ െ〈ρ〉ஞ . (5.36)

Applying these results to the transport situation, then for the filtered concentration 

cሺିܓ, tሻ follows: 

∂
∂t
cሺିܓ, tሻ  Zሺିܓ, ,ᇱିܓcሺ	ᇱିሻܓ tᇱሻ ൌ െρሺିܓሻδሺtሻ 

																														 R′ሺିܓ, ,ା′ܓାሻZିଵሺ′ܓ ,ᇱᇱାܓାሻcሺ′′ܓ t′′ሻ
 R′ሺିܓ, ,ା′ܓZିଵሺ	ାሻ′ܓ ,ା′′ܓାሻR′ሺ′′ܓ ,ᇱᇱᇱିܓሻcሺି′′′ܓ tሻ . 

(5.37)

In real space, the grid-size dependent transport equation then reads after substituting 

the scale-dependent dispersion tensor 

∂
∂t
〈cሺܠ, tሻ〉ஞ  ஞ〈ܝ〉൫ െ Dሺt, ξሻ൯〈cሺܠ, tሻ〉ஞ ൌ 0 . 

(5.38)
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5.3.4 Grid-size dependent dispersion coefficients 

From the definitions of the centre-of-mass velocity and the dispersion coefficients in 

one single realisation as given by equations (3.69) and (3.70), these general grid-size 

dependent transport coefficients follow: 

u୧
େୋሺt, ξ	ሻ ൌ

d
dt
൫െi ∂୩൯ሼln cሺܓ_, tሻሽ

തതതതതതതതതതതതതത|ିܓ ൌ 0  
(5.39)

∂୩	denotes the partial derivative with respect to the k-component in the i-th direction. 

The grid-size dependent quantities then have the form: 

u୧
ୣ,େୋሺt, ξሻ ൌ

d
dt
൫െi ∂୩൯ሼln cሺܓ_, tሻሽ

തതതതതതതതതതതതതത|ܓ_ ൌ 0 , 
(5.40)

D୧୨
ୣ,େୋሺt, ξሻ ൌ

1
2
d
dt
൫െi ∂୩൯ ቀെi ∂୩ౠቁ ሼln cሺܓ_, tሻሽ

തതതതതതതതതതതതതത|ܓ_ ൌ 0 , 
(5.41)

D୧୨
ୣ୬ୱ,େୋሺt, ξሻ ൌ

1
2
d
dt
൫െi ∂୩൯ ቀെi ∂୩ౠቁ lnሼcሺܓ_, tሻሽ

തതതതതതതതതതത|ܓ_ ൌ 0 . 
(5.42)

Following the steps sketched in the previous sections, the following integral expres-

sions for the contributions to the grid-size dependent dispersion coefficients in porous 

fractal media with finite correlation lengths can be derived:  

δ୳୳ቄD୧୨
ୣ୬ୱ,େୋቅሺt, ξሻ

ൌ uതଶ න න dtᇱ
ஶ

		ିஶܓᇲவ௸

cሺെܓᇱ, t െ tᇱሻp୧ሺܓ′ሻ p୨ሺܓ′ሻ C෨
〈〉ሺିܓሻ	,	 

(5.43)

δ୳୳ቄD୧୨
ୣ,େୋቅሺt, ξሻ ൌ δ୳୳ቄD୧୨

ୣ୬ୱ,େୋቅሺt, ξሻ 

											െuതଶ න න dtᇱ
ஶ

	 ିஶܓᇲவ௸

cሺെܓᇱ, t െ tᇱሻp୧ሺܓ′ሻ p୨ሺܓ′ሻ C෨
〈〉ሺିܓሻcሺെܓᇱ, tᇱሻ	. 

(5.44)

These quantities are determined by the non-dimensional auto-correlation function 

C෨ 〈〉ሺିܓሻ	 of the velocity fluctuations. 

5.4 Results for grid-size dependent transport parameters  

In this part, the results for the temporal behaviour of the grid-size dependent ensemble 

and effective dispersion coefficients are presented in the simple case of a completely 
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three-dimensional isotropic model with only one single disorder correlation length 

ℓ୦ ൌ ℓ୴ ൌ ℓ respectively L୦ ൌ L୴ ≡ L	,	an isotropic local dispersion tensor, DL = DT ≡ D, 

and an isotropic filter width ξ. This case corresponds to natural geological formations in 

deep layers which may have thicknesses up to a few hundred metres (e. g. /BRU 06/).  

 

 

 

 

a) Situation in heterogeneous porous 
media with finite correlation lengths; 
graph modified after /KRO 91/ 

 

b) Situation in fractal porous media with 
infinite correlation lengths; graph 
modified after /KRO 91/ 

c) A grid should be used with different  
mesh sizes according to the  
distance of the fracture 

Fig. 5.3  In order to model fissures and large fractures (red box in Fig. a and b), a fi-

ne grid should be used at the interface between fractures and fissures and 

a coarser grid elsewhere (Fig. c) 

In the following, the heterogeneous background medium consists of embedded single 

large fractures (Fig. 5.3 a and Fig. 5.3 b) as it was shown in regions C and D in Fig. 

3.1. In order to model such a situation, a fine grid should be used at the interface be-

tween the fractures and the surrounding background medium and a coarser grid at 
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larger distances to the fracture in order to reduce the computational effort as shown in 

Fig. 5.3 c and discussed e. g. by /HEN 00/, /NOE 00/ or /GRA 01/. 

In this study, first the results for finite correlation lengths of the heterogeneities are pre-

sented (shown in Fig. 5.3 a) and afterwards for infinite ones (Fig. 5.3 b). In the graphs, 

the grid-size dependent quantities are marked by the label CG and quantities related to 

fractal porous media are indicated by a hat  . Since the focus of this study is on fractal 

media, the results of the grid-size dependent quantities in media with finite correlation 

lengths are briefly presented and their explicit expressions are given in Appendix B.  

5.4.1 Grid-size dependent coefficients with finite correlation lengths  

The problem is characterised by four different timescales  

τ୳ ൌ
ℓ
uത
൏ τ୳,ஞ ൌ τ୳ඨ1 

ξଶ

4ℓଶ
ൌ τ୳ ℓ〈〉 (5.45)

τୈ ൌ
ℓଶ

D
൏ τୈ,ஞ ൌ τୈ ቆ1 

ξଶ

4ℓଶ
ቇ ൌ τୈ ℓ〈〉

ଶ  (5.46)

and a second inverse Peclet number ϵஞ defined as 

ϵ ൌ
τ୳
τୈ

 ϵஞ ൌ
τ୳,ஞ
τୈ,ஞ

ൌ
ϵ

ට1 
ξଶ

4ℓଶ

ൌ
ϵ
ℓ〈〉

 
(5.47)

The explicit expressions for the grid-size dispersion quantities in a 3-dimensional iso-

tropic system have the form:  

	δ୳୳ሼD୧୧
ୣ୬ୱሺt, ξሻሽ ൌ δ୳୳ሼD୧୧

ୣ୬ୱሺtሻሽ െ ቆ
ℓଶ

ℓ〈〉
ଶ ቇ

ୢ/ଶ

uത ℓ〈〉 M୧
େୋ,ି൫Tஞ, 0, 0൯ (5.48)

	δ୳୳൛D୧୧
ୣሺt, ξሻൟ ൌ δ୳୳ሼD୧୧

ୣ୬ୱሺt, ξሻሽ െ ቆ
ℓଶ

ℓ〈〉
ଶ ቇ

ୢ/ଶ

uത ℓ〈〉 M୧
େୋ,ା൫Tஞ, bஞ, bஞ ൯ (5.49)

with the dispersion coefficients in the unfiltered situation	δ୳୳൛D୧୧ ሺtሻൟ derived by 

/DEN 00a/ and given in the Appendix A and the auxiliary functions M୧
େୋ,േ	 due to the 

coarse graining method defined in (13.16) and (13.17) in the Appendix B. To obtain the 

grid-size dependent effective quantities, a contribution containing the parameter bஞ has 
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to be subtracted from the corresponding ensemble coefficients. Hence, the grid-size 

dependent effective coefficients consist of four parts: two for the grid-size dependent 

ensemble expression and two more for the grid-size dependent effective contribution. 

5.4.1.1 Temporal behaviour of the grid-size dependent coefficients with finite 

correlation lengths  

The most remarkable new feature is an asymptotic value determined by the ratio be-

tween the width of the filter and the correlation length. In a realistic aquifer situation, the 

advective and the dispersive timescales are well separated and one expects 

 <  << 1 /GEL 83/. The presentation and discussion of the results is therefore limited 

to this regime. All relevant features characteristic for the various time regimes are 

found also in the case of a small inverse Peclet number.  

The plume evolves after instantaneous solute injection at time t = 0. For times smaller 

than the advective timescales it has travelled advectively over distances shorter than 

the correlation length. The behaviour in the given aquifer still depends sensitively on 

the particular microscopic structure of this aquifer, so in this time regime the ensemble 

averaged quantities obviously have a very restricted formal meaning only. In the follow-

ing discussion the focus is on the more relevant time regime t ≫ τ୳. 

5.4.1.2 Asymptotic behaviour of the plume 

For zero coarse graining, both dispersion coefficients are zero: All velocity fluctuations 

are modelled explicitly and, thus, no subscale part of the model exists which has to ac-

count for unresolved velocity fluctuations. With increasing filter, the asymptotic value is 

still below the value for the macro dispersion coefficient calculated by Homogenization 

or alternativly by stochastic modelling but approaches the large scale value in the limit 

of ξ >> ℓ. In this limit, coarse graining is performed over large volumes. Large scale 

resolution and small scale heterogeneity are well separated and coarse graining com-

pared to homogenization respectively stochastic modelling gives the same results. For 

large times, the effective and ensemble dispersion coefficients become identical 

(13.11). If small-scale mixing is present, the width of the filter should be chosen accord-

ing to the spreading of the plume in transverse direction: 

ξ~ඥ16	D	t		. (5.50)
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In an isotropic model, as it is considered in this study, where there is only one disper-

sion tensor DL = DT ≡ D, the correct physical filter width is influenced by the local dis-

persion coefficient D.  

Fig. 5.4 shows the longitudinal component for both ensemble and effective dispersion 

coefficients for different filter widths of ξ. The grid-size dependent ensemble quantities 

are indicated by dotted curves, whereas the scale-dependent effective coefficients are 

denoted by dashed-dotted ones. All the values are normalised with the macroscopic 

value 	Dଵଵ
∗ ൌ δ୳୳൛Dଵଵൟ	/	δ

୳୳ሼDଵଵ
୫ୟୡ୰୭ሽ. 

Fig. 5.4 a shows the quantities without coarse graining and the scale-dependent coeffi-

cients for different ratios ξ = a / ℓ. It is visible that for large filter widths the asymptotical 

limit is reached more exactly. If the correct physical filter width as given in (5.50) is in-

serted, both quantities show a more exact temporal behaviour because the increasing 

of the dispersion in the intermediate time regime τ୳ ≪ t ≪ τୈ starts later and the con-

stant long-time value is reached later as well.  

 

a) Dଵଵ
େୋሺt, ξሻ for D=0.01 m² / d and  

different ratios ξ = a / l 

b) Dଵଵ
େୋሺt, ξሻ for various local dispersion  

coefficients D 

Fig. 5.4  The longitudinal dispersion coefficients for different values of the filter width 

ξ.  

All the values are normalized with 	۲
∗ ൌ ઼	/	൛۲ൟܝܝ઼

ሼ۲ܝܝ
 .ሽܗܚ܋܉ܕ
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A closer view on the temporal behaviour of the grid-size dependent quantities using the 

correct physical filter width for different values of the local dispersion coefficient D is 

shown in Fig. 5.4 b. The effect of this parameter causes a later start of the increasing 

dispersion the smaller the local dispersivity is and the later the asymptotical limit is 

reached. For large inverse Peclet numbers ϵஞ < 1 which do not refer to realistic aquifer 

situations according to /GEL 83/ the true dispersion is overestimated significantly. The 

difference between the ensemble and effective quantities becomes remarkable in the 

intermediate time regime τ୳ ≪ t ≪ τୈ and vanishes with increasing time. 

Fig. 5.5 shows the transverse component for both ensemble and effective dispersion 

coefficients for various values of the filter width ξ. The ensemble quantities are again 

indicated by dotted curves whereas the effective coefficients are shown by dashed-

dotted ones. All the values are normalized with the macroscopic value 	Dଶଶ
∗ ൌ

δ୳୳൛Dଶଶൟ	/	δ
୳୳ሼDଶଶ

୫ୟୡ୰୭ሽ as given in /DEN 00a/. Fig. 5.5 a shows the quantities without 

the coarse graining procedure as well as the grid-size dependent coefficients for differ-

ent filter widths.  

a) Dଶଶ
େୋሺt, ξሻ for D = 0.01 m² / d and dif-

ferent ratios ξ = a / l 

b) Dଶଶ
େୋሺt, ξሻ  for various local dispersion 

coefficients D 

Fig. 5.5  The transverse dispersion coefficients for different values of the filter width 

ξ.  

All the values are normalized by 	Dଶଶ
∗ ൌ δ୳୳൛Dଶଶൟ	/	δ

୳୳ሼDଶଶ
୫ୟୡ୰୭ሽ. 
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The ensemble dispersion approaches its long time value on timescales larger than 

t ≫ τ୳. /RUB 99/ used an exponential correlation function for the log conductivity field 

whereas in this study a Gaussian shaped function is used. The exponential variogram 

renders the results more complicated. However, the dependence of the dispersion co-

efficients on the ratio ξ / 	ℓ is comparable. Similar as in the previous section, the en-

semble dispersion coefficient displays artificial mixing effects due to the spatial filter.  

The effect of the coarse graining in the transverse component is similar to that one of 

the longitudinal component: For large filter widths the asymptotical limit is reached 

more exactly and for large inverse Peclet numbers – which are not common in realistic 

aquifer situations – the dispersion is overestimated significantly as shown in Fig. 5.5 b. 

Fig. 5.4 and Fig. 5.5 show clearly that the results for the temporal behaviour of the dis-

persion coefficients can be improved with the coarse graining method since the effect 

of this method resolves only the true mixing due to the filter width. In situations with a 

finite correlation length of the heterogeneities this effect is important especially for 

small travel times of the particles because the difference between the dispersion coeffi-

cients and the coarse grained quantities vanishes with increasing time and the asymp-

totic limit of the quantities with and without coarse graining are the same (Fig. 5.4). 

5.4.2 Grid-size dependent coefficients with infinite correlation lengths 

In fractal media, the transport situation is characterised by the following four different 

timescales:  

τො୳ ൌ
ℓ

√2	λ	uത
ൌ
L

uത
൏ τො୳,ஞ ൌ τො୳ඨLଶ 

ξଶ

4
ൌ τො୳ L〈〉 

(5.51)

τොୈ ൌ
ℓଶ

2	λଶD
ൌ
Lଶ

D
൏ τොୈ,ஞ ൌ τොୈ ቆLଶ 

ξଶ

4
ቇ ൌ τොୈ L〈〉

ଶ  
(5.52)

ϵොஞ ൌ
τො୳,ஞ
τොୈ,ஞ

ൌ
ϵො

	L〈〉
 

(5.53)

with the new correlation length 	L〈〉 defined in (5.22). For not getting confused with the 

quantities in media with finite correlation lengths, the quantities in fractal media are de-

noted in the following with a hat   and a ࣞ. The explicit expressions for the grid-size 

dependent dispersion coefficients in fractal media have the form: 
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	δ୳୳൛ ࣞ୧୧
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(5.54)
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with  

Tஞ ൌ
t
τො୳,ஞ

ൌ
t

τො୳	L〈〉
	 ; 														bஞ ൌ

2t
τොୈ,ஞ

ൌ
2t

τොୈ L〈〉
ଶ . 

(5.56)

	L〈〉 denotes the new correlation length given in (5.22) and ξ the filter width. As men-

tioned after expression (5.49), the effective coefficients consist of four parts and due to 

numerical problems, the pre-coefficient related to grid-size dependent quantities in frac-

tal porous media has to be written in the form as given in (5.24). The auxiliary functions 

in a 3-dimensional isotropic system are given by: 

ࣧ
ଵ
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(5.57)
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σ
ଶ  denotes the variance of the log-hydraulic conductivity and  

	φෝஞ ൌ

τො୳,ஞ
τොୈ,ஞ

ට1  2bஞ

ൌ
ϵොஞ

ට1  2bஞ

 

(5.59)
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(5.60)

5.4.3 Temporal behaviour of the grid-size dependent coefficients in fractal 

media with infinite correlation lengths  

In the following, the filter is applied to the situation in fractal porous media with finite 

correlation lengths.  
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5.4.3.1 Grid-size dependent longitudinal ensemble dispersion coefficient 

The explicit expression of the longitudinal ensemble dispersion coefficient in situations 

with small local dispersion coefficients D has the form: 

	δ୳୳൛ ࣞଵଵ
ୣ୬ୱ,େୋሺt, ξሻൟ ൌ 	δ୳୳൛ ࣞଵଵ
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2

Γ ൬
β
2൰
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(5.61)

with δ୳୳൛ ࣞଵଵ
ୣ୬ୱൟሺtሻ given in (3.100) and ࣧଵ

େୋ,ି in (5.57). 

Situations with infinite Peclet numbers for ઼ܝܝ൛ऎ
,ܜ۱۵ൟሺ,ܛܖ܍ ሻ 

In situations with infinite Peclet numbers, the expression of the longitudinal ensemble 

dispersion coefficient reduces to the time-independent expression: 
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If small-scale mixing is present and the filter width is chosen according to the spreading 

of the plume in transverse direction ξ~ඥ16	D	t	, the results for effective mixing without 

coarse graining are recovered: 
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ቍቑdλ  (5.63) 

ൌ δ୳୳൛ ࣞଵଵ
ୣൟሺtሻ 

This implies that – by adapting the width of the filter to the physical spreading of the 

plume – artificial mixing effects can be avoided in the situation for infinite correlation 

lengths L as well. Therefore, the filter width of ξ~ඥ16	D	t defines the criterion for the 

multi-scale adaptivity. 
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5.4.3.2 Grid-size dependent longitudinal effective coefficient  

The explicit expression of the scale-dependent longitudinal effective dispersion coeffi-

cient for small local dispersion coefficients D has the form: 

	δ୳୳൛ ࣞଵଵ
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with 	δ୳୳൛ ࣞଵଵ
ୣ୬ୱ,େୋሺt, ξሻൟ defined in (5.61), ࣧଵ

ା in (3.98) and 	 ࣧଵ
େୋ,ା in (5.57). 

Situations with infinite Peclet numbers for 	઼ܝܝ൛۲
,ܜ۱۵ሺ,܍ ሻൟ 
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(5.65)

with 	δ୳୳൛Dଵଵ
ୣ୬ୱ,େୋሺt, ξሻൟ defined in   (5.63). 

Fig. 5.6 shows the effect of the coarse graining method on the longitudinal dispersion 

coefficients in fractal porous media for β = 0.5. In Fig. 5.6 a, the grid-size dependent 

dispersion coefficients are shown for a filter width ξ ൌ ࣵ, where ࣵ does not depend on 

the local dispersion tensor or the time, but the green curves in this figure denote the 

correct physical filter width ξ ൌ ඥ16	D	t . The unfiltered effective dispersion coefficient 

is shown by the red curve. It is visible, that the larger the filter width ξ ൌ ࣵ – which cor-

responds to a smaller cut-off effect – the larger are the dispersion values and with in-

creasing time, the grid-size dependent longitudinal dispersion coefficients show an er-

godic behaviour because they reach the same constant long-time value. The larger the 

filter width is, the larger is this constant value and the later it is reached. This result is 
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similar to that one found for the longitudinal component in media with finite correlation 

lengths (section 5.4.1), but the timescale is much larger in fractal media. 

a) ࣞଵଵ and ࣞଵଵ
େୋ for various filter widths ξ b) ࣞଵଵ and ࣞଵଵ

େୋ for various filter 

widths ξ ൌ ඥ16 D t  

Fig. 5.6  The grid-size dependent longitudinal dispersion coefficients for different 

values of the filter width ξ and a fractality of β = 0.5 

If the correct physical filter width ξ ൌ ඥ16	D	t is applied – indicated by the green 

curves – the grid-size dependent coefficients will not reach a constant long-time value, 

but they increase with growing time. In this case, the grid-size dependent ensemble 

dispersion coefficient is identical to the effective coefficient without the coarse graining 

procedure. This implies, that in fractal media the overestimation of the dispersion val-

ues in the ensemble longitudinal component can be remarkably reduces by applying 

the coarse graining method and the much more exact effective dispersion values can 

be recovered. Furthermore, if the correct physical filter width ξ ൌ ඥ16	D	t is applied to 

the effective coefficient, the effect of the coarse graining procedure will remain visible 

at all times.  

Fig. 5.6 b shows the effect of the coarse graining method on the longitudinal dispersion 

coefficients for various degrees of fractality β. In more fractal media denoted by a 

smaller value of β, the dispersion values and the corresponding grid-size dependent 

quantities are smaller for short travel times corresponding to short distances to the frac-

ture and with increasing time and distances they are getting larger than in less fractal 
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media. Furthermore, it is again visible that the grid-size dependent ensemble quantity 

recovers the values of the corresponding unfiltered effective coefficient and that the ef-

fect of the coarse graining method on the effective coefficients remains visible at all 

times. 

The effect of the spatial filtering is important especially for small distances correspond-

ing to finite times. This implies, that the distance to the fracture is important: Near the 

fracture (small distances) a fine grid should be applied, whereas in the far field a 

coarser grid should be used (Fig. 5.3) e. g. /HEN 00, /NOE 00/, /GRA 01/. 

5.4.3.3 Grid-size dependent transverse ensemble coefficient  

The explicit grid-size dependent transverse ensemble dispersion coefficient reads: 
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with δ୳୳൛Dଶଶ
ୣ୬ୱൟሺtሻ defined in (3.107) and ࣧଶ

େୋ,ି	in (5.58). 

5.4.3.4 Grid-size dependent transverse effective coefficient  

The explicit expression of the grid-size dependent transverse effective dispersion coef-

ficient has the form: 

	δ୳୳൛ ࣞଶଶ
ୣሺt, ξሻൟ 			ൌ 	δ୳୳൛ ࣞଶଶ

ୣ୬ୱሺt, ξሻൟ 

െ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ 2

Γ ൬
β
2൰
න dλ		λஒିଵ
ஶ



expሺെλଶሻ	൛	uത	L	 ࣧଶ
ା൫T, b, b൯ൟ

െ	
2

Γ ൬
β
2൰
න dλ		λஒିଵ
ஶ



expሺെλଶሻ ቆ
L

L〈〉
ଷ ቇ ൛uത L〈〉 ࣧଶ

େୋ,ା൫Tஞ, bஞ, bஞ	൯ൟ

ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

	

(5.67)

with 	δ୳୳൛Dଶଶ
ୣ୬ୱ,େୋሺt, ξሻൟ defined in (5.66),	 ࣧଶ

ା in (3.98)and ࣧଶ
େୋ,ା in (5.58). 
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Fig. 5.7 shows the effect of the coarse graining procedure on the transverse dispersion 

component in fractal media for various degrees of fractality and different values of the 

filter width ξ ൌ ඥ16	D	t. Fig. 5.7 a shows the effect for a local dispersion tensor 

D = 0.01 m² / d and various degrees of fractality β. In more fractal media indicated by a 

smaller value of β, the dispersion values and the corresponding grid-size dependent 

quantities are larger. Furthermore, it is visible that the effect of the coarse graining pro-

cedure reduces the overestimation in the transverse ensemble coefficients and recov-

ers the values of the unfiltered transverse effective quantity.  

a) ࣞଶଶ and ࣞଶଶେୋ for D = 0.01 m² / d and 
various degrees of fractality β 

b) ࣞଶଶ and ࣞଶଶେୋ for β = 0.5 and vari-

ous filter widths ξ ൌ ඥ16	D	t  

Fig. 5.7  The grid-size dependent transverse dispersion coefficients in fractal media 

for various degrees of fractality β and different values of the filter width ξ  

This effect becomes more visible in Fig. 5.7 b where the grid-size dependent trans-

verse coefficients are shown for various values of the correct physical filter ξ ൌ

ඥ16	D	t	. The dispersion quantities and their corresponding grid-size dependent coef-

ficients are larger for high values of D. The grid-size dependent ensemble and the ef-

fective quantities seem to be the same and hence, the transverse quantities seem to 

show an ergodic behaviour. The effect of the coarse graining procedure on the trans-

verse effective coefficient and the influence of a filter width of ξ ൌ ࣵ, which does not 

depend on the time and the local dispersion tensor D on the transverse quantities is 

only marginal.  
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5.5 Comparison between finite and infinite correlations lengths 

In the following, the results of the coarse graining method in media with finite and infi-

nite correlation lengths of the heterogeneities are compared in order to emphasize the 

differences between the two types of media. Quantities without coarse graining are de-

noted by solid and dashed curves, whereas grid-size dependent quantities are indicat-

ed by dotted and dashed-dotted ones. 

   

a) Effective longitudinal coefficients b) Log-log-plot of the effective  
longitudinal coefficients 

Fig. 5.8  Longitudinal effective coefficients in media with finite and infinite correlation 

lengths without and with the coarse graining procedure for ξ ൌ ඥ16	D	t 

Fig. 5.8 shows the effective longitudinal dispersion quantities for both media with finite 

and infinite correlation lengths of the heterogeneities without and with coarse graining 

for local dispersivities of D = 2 x 10-4 m² / d and D = 5 x 10-5 m² / d. Quantities related to 

finite correlations lengths are denoted by D_ii, whereas quantities related to infinite cor-

relation lengths are indicated by the script symbol ࣞ_ii. The different line types indicate 

various values of the local dispersion tensor D. 

It is clearly visible, that the dispersion coefficients in media with finite correlation 

lengths reach the same constant long-time value for both quantities with and without 

the coarse graining procedure (Fig. 5.8 a). On the other hand, the dispersion coeffi-

cients in fractal media do not reach a constant value. Furthermore, the quantities with-
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out and with the spatial filtering procedure are always different. This fact is visible in 

particular in the log-log-plot (Fig. 5.8 b) by the same gradient of the curves. 

In the transverse component of the dispersion coefficients the temporal behaviour of 

the quantities without and with coarse graining in the two media types is similar: Both 

the quantities without and with the spatial filtering reach the same constant long-time 

value – but with the difference of the much longer timescale in fractal media. Therefore, 

the influence of the coarse graining method on the transverse dispersion coefficients 

vanishes for large times in both media with finite and infinite correlation lengths. 

5.6 Summary 

The results for grid-size dependent ensemble and effective mixing coefficients for both 

media with finite and infinite correlation lengths of the heterogeneities as well as the 

longitudinal and transverse dispersion component were presented (Tab. 5.1). 

In multi-grid codes the mesh size influences the dispersion coefficients. Therefore, grid-

size dependent transport coefficients are needed for a realistic description of the situa-

tion, but according to the grid size there is an artificial mixing effect which distorts the 

real mixing. With the upscaling method of coarse graining this artificial mixing effect 

can be quantified. This spatial filtering method allows the determination of the true mix-

ing according to the grid size.   

Closed results are stated for weakly heterogeneous media, avoiding empirical functions 

as needed in /EFE 00/. It could be shown, that the coarse graining method reduces the 

artificial mixing effect in the ensemble quantities –in particular in the longitudinal dis-

persion component – which is responsible for a remarkable overestimation of those 

quantities. The coarse graining method filters out the fluctuations in the effective dis-

persion quantities as well. In media with finite correlation lengths, this effect is visible 

especially for small distances to the fracture, whereas this difference vanishes with 

growing distance and the same constant long-time value is reached by both the effec-

tive quantities without and with the spatial filtering procedure. 

On the other hand, in fractal media the coarse graining method reduces the artificial 

mixing effect especially in the ensemble longitudinal quantity. If a filter width of ξ ൌ 	ࣵ   

– which does not depend on the time or the local dispersion tensor – is applied to the 
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longitudinal quantities, a small value of the filter width will result in a large cut-off effect 

and the corresponding grid-size dependent quantities will be small and reach the same 

constant long-time value. The larger the filter width, the smaller is the cut-off effect and 

the larger is the long-time value.  

However, if the correct physical filter width ξ~ඥ16	D	t	 is applied to the longitudinal 

dispersion coefficients in fractal porous media, the corresponding grid-size dependent 

ensemble quantity recovers the values of the unfiltered effective coefficient, which re-

flects the dispersion more exactly. In the effective longitudinal quantity itself, the effect 

of this filter width persists at all times. Therefore, the coarse graining method indeed 

improves the dispersion quantities defining the true physical mixing.  

In the transverse component in both media types with finite and infinite correlation 

lengths, the effect of the coarse graining method is not as significant as in the longitu-

dinal component because it persists only for small times. With increasing time, both 

quantities without and with the coarse graining procedure reach the same constant 

long-time value and show an ergodic behaviour. In media with finite correlation lengths, 

this constant value is reached much earlier than in fractal media. 

Tab. 5.1 Overview of the results for the temporal behaviour of the dispersion coeffi-

cients without and with the coarse graining procedure 

 Heterogeneous porous media Fractal porous media 

longitudinal: Dଵଵ	 transverse: Dଶଶ longitudinal: ࣞଵଵ transverse: ࣞଶଶ 

Dଵଵ
ୣ୬ୱ	ሺtሻ Dଵଵ

ୣ	ሺtሻ Dଶଶ
ୣ୬ୱ ሺtሻ Dଶଶ

ୣ ሺtሻ ࣞଵଵ
ୣ୬ୱሺtሻ ࣞଵଵ

ୣሺtሻ ࣞଶଶ
ୣ୬ୱሺtሻ ࣞଶଶ

ୣሺtሻ 

without 
coarse 
graining 

ergodic ergodic ~c tଵିβ ~c t
ଵିβ
ଶ  ergodic 

/DEN 00a/, /DEN 00b/, /DEN 02/ /FIO 01/  

with 
coarse 
graining  

Dଵଵ
ୣ୬ୱ,େୋሺt, ξሻ Dଵଵ

ୣ,େୋሺt, ξሻ	 Dଶଶ
ୣ୬ୱ,େୋሺt, ξሻ Dଶଶ

ୣ,େୋሺt, ξሻ ࣞ
ଵଵ
ୣ୬ୱ,େୋሺt, ξሻ ࣞଵଵ

ୣ,େୋሺt, ξሻ ࣞ
ଶଶ
ୣ୬ୱ,େୋሺt, ξሻ ࣞଶଶ

ୣ,େୋሺt, ξሻ

ξ~ࣵ ergodic ergodic ergodic ergodic 
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6 Adaptive numerical multi-scale solver 

6.1 Introduction 

Simulation of groundwater flow and solute transport in fractured porous media is cur-

rently one of the most active research fields and is of great practical importance cf. 

e. g. /NEU 05/, /BEA 93/, /MUR 79/, /MAL 97/, /SHI 98/, /GRA 05/, /GRA 09/, /SHA 09/. 

Fractures influence flow and transport processes essentially. Especially, the often high 

conductivity in the fractures leads to their representation as preferential fast pathways 

for contaminant transport. Because of their long and thin geometry, fractures are diffi-

cult to handle numerically: On the one hand, computational grids covering the whole 

domain where hydrology is simulated usually cannot resolve the thickness of fractures. 

On the other hand, the simulations on finer grids resolving the fractures even in smaller 

domains encounter specific difficulties with numerical solvers that demonstrate poor 

performance in this case. 

In order to deal with these issues, fractures are often considered as objects of reduced 

dimensionality (surfaces in three dimensions), and the field equations are averaged 

along the fracture width cf., for example, /ANG 09/, /BAS 00b/, /MAR 06/, /SOR 01/. 

This is motivated by the thickness of the fractures, which is usually negligible in com-

parison with the size of the whole domain, the fact that the complicated geometry of 

fracture networks reduces essentially the efficiency of numerical methods and the geo-

logical data that usually do not contain enough geometrical information for the exact 

representation of the fractures as thin layers. 

In order to analyze the quality of the results of a ሺ݀ െ 1ሻ-dimensional approach, two dif-

ferent representations of a fracture are considered. In the first one, the fractures have 

the same geometric dimension as the embedding bulk medium and are thus said to be 

݀-dimensional, with ݀ ൌ 2 in 2d and ݀ ൌ 3 in 3d. In the second representation, the frac-

tures are considered as ሺ݀ െ 1ሻ-dimensional manifolds, and we use the averaged 

model introduced in /GRI 12a/, /GRI 10/, /GRI 13/, /REI 12b/, /STI 12/. The first ap-

proach is well-established, more general, but computationally more expensive and 

practically applicable only for very simple geometries of the domain and the fractures. 

The second approach, instead, requires some working hypotheses but is computation-

ally essentially cheaper. The second approach was verified by numerical computations 
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and comparison with the well-established ݀-dimensional approach. It could be shown 

that the results obtained by the two methods are in good agreement with each other for 

sufficiently small fracture widths cf. /GRI 12a/, /GRI 10/, /GRI 13/, /REI 12b/, /STI 12/. 

Though, for increasing fracture width, phenomena, e. g. vortices, are observed inside 

the fractures that are not reproduced by the ሺ݀ െ 1ሻ-dimensional model. 

Therefore, the aim is to define a criterion indicating the validity of the ሺ݀ െ 1ሻ-

dimensional approach. Furthermore, a dimension-adaptive strategy is introduced that is 

able to simulate the flow in the fracture sufficiently exact, including specific phenomena 

as the appearance of vortices, while keeping the computational cost sufficiently small. 

The resulting dimension-adaptive methods and the computation of the criterion were 

included in the software package d3f. 

6.2 Model equations 

In this model, a fracture ࣠ is a region occupied by a porous medium whose permeabil-

ity is bigger than the permeability of the medium ࣧ in which it is embedded. It is as-

sumed that the same flow and transport processes occur both in the fracture and in the 

embedding medium. The regions ࣠ and ࣧ interact through exchange processes. To 

be consistent with the macroscopic continuum description, the partial differential equa-

tions governing density-driven flow are obtained by means of the balance laws of 

mass, momentum, and energy, and the Second Principle of Thermodynamics. These 

laws have to be written for each constituent of the fluid-phase (i. e. water and brine), 

and for the solid-phase. However, suitable hypotheses allow for a considerable reduc-

tion of the number of equations to be solved. It is assumed that the fracture and the 

surrounding porous medium satisfy the following requirements: 

a) they are subject to a uniform temperature field; 

b) pore-scale mass exchange processes between the fluid- and the solid-phase 

are absent everywhere in ߗ; 

c) the solid-phase is undeformable and at rest; 

d) inertial terms are negligible in the balance laws of momentum; and 

e) the porosities of the medium and the fracture are constant but, in general, dif-

ferent from each other. 
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In order to model the interaction between ࣠ and ࣧ, it is necessary to provide a de-

scription of the interface separating the fracture from the embedding medium. For sim-

plicity, this interface is assumed to be ideal. This means that mass and momentum are 

transferred from the fractures to the medium (and vice versa) without undergoing fur-

ther processes at the interfaces.  

6.2.1 The ࢊ-dimensional model 

According to these simplifying hypotheses, the problem of fluid flow and brine transport 

in a fractured porous medium is macroscopically governed by the laws of mass bal-

ance of the brine and the fluid-phase as a whole. These equations must be written for 

both the porous medium and the fracture. By renaming the mass fraction of the brine 

by ߱, these equations read 

߲௧ሺ߶ఈߩఈሻ  ߘ ⋅ ሺߩఈܙఈሻ ൌ ఈ,ௌܵఈ,  (6.1)ߩ

߲௧ሺ߶ఈߩఈ߱ఈሻ  ߘ ⋅ ሺߩఈ߱ఈܙఈ  ۸ఈሻ ൌ ߱ఈ,ௌߩఈ,ௌܵఈ, (6.2)

The index ߙ ∈ ሼ݂,݉ሽ specifies whether a physical quantity is defined in the fracture, ࣠, 

or in the surrounding porous medium, ࣧ ≔ ߗ ∖ ࣠. The quantities ߶ఈ, ߩఈ, and ܙఈ are 

the fluid-phase volume fraction (porosity), mass density, and specific discharge, while 

߱ఈ	and ۸ఈ are the mass fraction and mass flux of the brine, respectively. In the right-

hand side, ܵఈ denotes the power of the source/sink, ߱ఈ,ௌ is the mass fraction of the 

brine in the source (for a sink, ߱ఈ,ௌ ൌ ߱ఈ), ߩఈ,ௌ ≔  .ఈሺ߱ఈ,ௌሻߩ

Under the assumption of negligible inertial terms, the momentum balance laws of the 

brine and the fluid-phase as a whole enable to express ܙఈ and ۸ఈ in terms of the quan-

tities ߶ఈ, ߩఈ, ߱ఈ (already present in (6.1) – (6.2)), and the pressure, ఈ. If the validity of 

Darcy's and Fick's laws is assumed for the problem at hand, then ܙఈ and ۸ఈ are given 

by 

ఈܙ ൌ െ
۹ఈ

ߤ
ሺߘఈ െ ሻ, (6.3)ఈߩ

۸ఈ ൌ െߩఈ۲ఈ߱ߘఈ. (6.4)
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where ۹ఈ,  ,ߤ, and ۲ఈ are the permeability tensor, fluid viscosity, gravity acceleration 

vector, and diffusion-dispersion tensor, respectively. Equations (6.3) – (6.4) can be ob-

tained through the exploitation of the dissipation inequality for both ࣠ and ࣧ	cf. 

/BEA 90/, /BEN 00/, /DEG 54/. 

In general, the tensor ۲ఈ [mଶ	sିଵ] describes diffusion and mechanical dispersion, i. e. 

۲ఈ ≔ ۲ఈௗ  ۲ఈௗ (6.5)

The diffusion tensor, ۲ఈௗ, accounts for tortuosity, and is therefore defined by ۲ఈௗ ≔

 ఈ is the tortuosity tensor. In the܂ ௗ is the scalar molecular diffusivity, andܦ ఈ, where܂ௗܦ

following, only the case of isotropic tortuosity (i. e. ܂ఈ ൌ ఈܶॴ) is considered. Further-

more, by postulating isotropic dispersivity, the tensor of mechanical dispersion, ۲ఈௗ, is 

transversely isotropic, and admits the expression given by Scheidegger /SCH 74/, i. e. 

۲ఈௗ ≔ ܽఈ௧ ఈ|ॴܙ|  ሺܽఈℓ െ ܽఈ௧ ሻ
ఈܙ⨂ఈܙ
|ఈܙ|

 (6.6)

where ܽఈ௧  and ܽఈℓ  are the transversal and longitudinal dispersivity lengths, respectively, 

and the symmetry axis which generates the transverse isotropy is given by the direc-

tion of flow, ܙఈ, or, equivalently, by the second-order symmetric tensor ܙఈ⨂ܙఈ 

/BEA 90/. 

In order to close the mathematical problem, a constitutive law for the mass density of 

the fluid-phase, ߩఈ, is supplied. Following Oldenburg and Pruess /OLD 98/, perfect mix-

ing of water and brine is hypothesized, which gives 

ఈߩ ൌ ఈሺ߱ఈሻߩ ≔
ߩௐߩ

ߩ െ ሺߩ െ ௐሻ߱ఈߩ
 (6.7)

where the mass densities of “pure water”, ߩௐ, and “pure brine”, ߩ, are given con-

stants. Since the mass density ߩఈሺ߱ఈሻ varies in response to the mass fraction, the re-

sulting non-potential flow cf. /BEA 72/ is said to be density-driven.  

Requiring the validity of Darcy's law (6.3) in the fracture may be a strong assumption. 

Indeed, since the fluid is expected to flow faster in the fracture than in the surrounding 

medium, the Forchheimer's correction term cf. /DIE 05/ may become necessary for a 

more precise description of the flow in the fracture. Therefore, the Forchheimer equa-

tion is introduced: 



119 

ሺ1  ఈఈሻݍఈܣ ൌ ఈ ఈ with ൌ െ
۹ఈ

ߤ
ሺߘఈ െ ሻ (6.8)ఈߩ

with the Euclidean norm ݍఈ ≔ ඥఈ ∙ -ఈ. For a deܣ ఈ and the Forchheimer coefficient

tailed derivation of this equation see /GRI 13/. The non-dimensional quantity  

ఈܨ ≔ ఈ (6.9)ݍఈܣ

is said to be the Forchheimer “number”. Physically, ܨఈ represents the ratio of liquid-

solid interaction to viscous resistance /ZEN 06/.  

The norm of the specific discharge, ݍఈ, can be expressed as a function of the norm 

 ఈ. Indeed, by taking the norm on both sides of (6.8), one finds the expressionݍ

ሺ1  ఈݍఈሻݍఈܣ ൌ ఈሻଶݍఈሺܣ ⇒ 			,ఈݍ  ఈݍ െ ఈݍ ൌ 0. (6.10)

The physically meaningful solution to (6.10) reads 

ఈݍ ൌ
െ1  ඥ1  ఈݍఈܣ4

ఈܣ2
 (6.11)

Substituting this result into (6.8), the formula 

ఈ ൌ ݂ሺܣఈ, ఈ ఈ withఈሻݍ ൌ െ
۹ఈ

ߤ
ሺߘఈ െ ሻ (6.12)ఈߩ

with ݂ሺܣఈ, ఈሻݍ ൌ
ଶ

ଵାඥଵାସഀഀವ
 can be obtained. Equation (6.12) can be used with the 

equation system (6.1) – (6.4) replacing (6.3). Since equation (6.12) with ܣఈ ൌ 0 yields 

ఈ ൌ  ఈ, equation (6.12) is more general than equation (6.3), including Darcy and

Forchheimer flow, and will, therefore, be considered in the following. 

The assumption of Fick-type diffusion (equation (6.4)) may be questionable too, when 

big values of brine mass fraction are involved, though, for simplicity this is not further 

discussed here. 

In order to close the system of equations for fracture and medium, balance laws at the 

fracture-medium interface need to be introduced. The mass balance at the fracture-

medium interface is given by the continuity of the normal components of the mass flux-

es of both the fluid-phase as a whole and the brine on ߲࣠: 
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 ∙  ൌ  ∙ on ߲࣠, (6.13)  

ࡶ ∙  ൌ ࡶ ∙ on ߲࣠, (6.14)  

with  being the outer unit normal vector on ߲࣠. 

The balance of momentum, under the hypotheses of macroscopically inviscid fluid and 

negligible advective contributions, implies that both ఈ and ߱ఈ are continuous across 

the interface /HAS 89a/, i. e. 

 ൌ  and ߱ ൌ ߱       on ߲࣠ (6.15)

6.2.2 The ሺࢊ െ ሻ-dimensional model 

In order to get the equations for the ሺ݀ െ 1ሻ-dimensional fracture representation (with 

geometric shape as shown in Fig. 6.1, equations (6.1), (6.2), (6.4) and (6.12) with 

ߙ ൌ ݂ are averaged. Then the fracture ࣠ is ideally replaced by its mean plane ࣭. Ac-

cordingly the band-shaped lateral boundary ࣜ degenerates to the closed line ࣜ ൌ ࣜ ∩

࣭, which coincides with the contour of ࣭. By መ࣭ ሺଵሻ and መ࣭ ሺଶሻ the two sides of ࣭ are denot-

ed that are geometrically indistinguishable from ࣭, but separate the fracture from the 

medium. 

 

Fig. 6.1 Scheme of a planar d-dimensional fracture in the averaging process 

The average is performed along the thickness of the fracture according to the averag-

ing method introduced in /BEA 72/, /BEA 77/, /BEA 79/, /BEA 90/. To simplify the aver-

aging process, first a change of variables reducing the number of fluctuations featuring 

in the averaged form of (6.1), (6.2), (6.4) and (6.12) is performed by using the defini-
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tions of brine concentration, ܿఈ, instead of mass fraction, ߱ఈ ∶ൌ
ഀ
ఘഀ
	. For a detailed dis-

cussion on this topic cf. /GRI 10/, /GRI 12a/, /STI 12/, /REI 12b/. After the averaging 

process the change is performed backwards for the new variable ܿ̅ ≡ 〈 ܿ〉, denoting 

the average of the concentration in the fracture, to ෝ߱ ∶ൌ
̅
ఘഥ

, where ෝ߱ is then refered to 

as “equivalent” mass fraction in the fracture and  

ߩ̅ ≡ ൫ߩ ෝ߱൯ ൌ
ఘೈఘಳ

ఘಳାሺఘೈିఘಳሻఠෝ
. 

A detailed derivation of the averaging process can be found in /GRI 12a/, /GRI 10/, 

/GRI 13/, /REI 12b/, /STI 12/. After some simplifications the following system of equa-

tions in ෝ߱ is derived cf. /REI 12b/, /GRI 13/: 

߲௧ሺ߶߳ߩሺ ෝ߱ሻሻ  ఙߘ ⋅ ൫߳ߩሺ ෝ߱ሻ〈ܙ
ఙ〉൯  ܳ


ሺሻ



ൌ ൫ߩ߳ ෝ߱,ௌ൯ܵ̅, (6.16)

߲௧ሺ߶߳ߩሺ ෝ߱ሻ ෝ߱ሻ  ఙߘ ⋅ ൫߳ߩ൫ ෝ߱൯ ෝ߱〈ܙ
ఙ〉  ߳〈۸

ఙ〉൯  ܲ

ሺሻ



 

ൌ ൫ߩ߳ ෝ߱,ௌ൯ ෝ߱,ௌܵ̅, 

(6.17)

where ݇ ൌ 1,2 and ܵ̅ ≔ 〈 ܵ〉 does not depend on the unknown functions and is consid-

ered to be given. 

The fluxes 〈ܙ
ఙ〉 and 〈۸

ఙ〉 are defined by 

ܙ〉
ఙ〉 ൌ ݂൫ܣ, ܙ〉ො൯ݍ

ఙ 〉 with 〈ܙ
ఙ 〉 ൌ െ

ܭ
ߤ
̅ఙߘൣ െ ൫ߩ ෝ߱൯ఙ൧, (6.18)

〈۸
ఙ〉 ൌ െߩ൫ ෝ߱൯۲ߘఙ ෝ߱, (6.19)

where ۲ ≔ ۷ܦ  ۲
ௗ with the ሺ݀ െ 1ሻ ൈ ሺ݀ െ 1ሻ-tensor ۲

ௗ: 

۲
ௗ ≔ ܽ

௧หܙ
ఙหॴ  ሺܽ

ℓ െ ܽ
௧ሻ
ܙ
ఙ⨂ܙ

ఙ

ܙ|
ఙ|

. (6.20)

The fluxes ܳ
ሺሻ and ܲ

ሺሻ that are defined on the interface መ࣭ ሺሻ and express the rate at 

which mass leaves or enters the fracture at this interface are defined by  

 ܳ

ሺሻ ൌ ߩ ቀ ෝ߱

ሺሻቁ ොݍ
ሺሻ, (6.21)



122 

ܲ

ሺሻ ൌ ߩ ቀ ෝ߱

ሺሻቁω௨௪ௗ
ሺሻ ොݍ

ሺሻ  መܬ
ሺሻ, (6.22)

where ω௨௪ௗ
ሺሻ ൌ ෝ߱

ሺሻ if 	ݍො
ሺሻ ൏ 0, and ω௨௪ௗ

ሺሻ ൌ ෝ߱ if 	ݍො
ሺሻ  0, and 

መܬ 
ሺሻ ൌ െߩ ቀ ෝ߱

ሺሻቁܦ
ఠෝ
ሺೖሻିఠෝ
ఢ/ଶ

, (6.23)

ොݍ 
ሺሻ ൌ ݂ ቀܣ, ොݍ

ሺሻቁ ොݍ
ሺሻ , (6.24)

ොݍ
ሺሻ ൌ െ

ܭ
ߤ
	
̂
ሺሻ െ ̅
߳/2

െ ൬ߩ ቀ ෝ߱
ሺሻቁ െ ൫ߩ ෝ߱൯൰  ∙ ܖ

ሺሻ൩. (6.25)

Since (6.16) – (6.17) describe density-driven flow and brine diffusion by means of the 

averaged quantities 〈ܙ
ఙ〉 and 〈۸

ఙ〉, which are defined on the mean plane of the fracture, 

࣭, we say that they provide an ሺ݀ െ 1ሻ-dimensional representation of the phenomena 

taking place in the fracture. Equations (6.16) – (6.17) in the unknowns ෝ߱ and ̅ are 

thus defined on ࣭ (not in ࣠), and have to be coupled to the set of equations for the 

mass fraction and the pressure defined in ࣧ ≔ ߗ ∖ ࣭, not in ࣧ. We denote these new 

unknowns by ෝ߱: ࣧ → Թ and ̂: ࣧ → Թ. They approximate the original unknown 

functions ߱:ࣧ → Թ and :ࣧ → Թ defined in the smaller domain ࣧ ⊂ ࣧ . For ෝ߱ 

and ̂, we formulate equations analogous to (6.1) – (6.2): 

 ߲௧ሺ߶ߩሺ ෝ߱ሻሻ  ߘ ⋅ ሺߩሺ ෝ߱ሻෝሻ ൌ ,ௌܵ, (6.26)ߩ

߲௧ሺ߶ߩሺ ෝ߱ሻ ෝ߱ሻ  ߘ ⋅ ൫ߩሺ ෝ߱ሻ ෝ߱ෝ  ۸መ൯ ൌ ෝ߱,ௌߩሺ ෝ߱,ௌሻܵ, (6.27)

Where 

ෝܙ ൌ ݂ሺܣ, ෝ ෝ withොሻݍ ൌ െ
ܭ
ߤ

ሺ̂ߘ െ ሺߩ ෝ߱ሻሻ, (6.28)

۸መ ൌ െߩሺ ෝ߱ሻ۲ߘ ෝ߱. (6.29)

In order to close the system of equations, balance laws at the fracture-medium inter-

face need to be introduced similar to equations (6.13) – (6.15). Since the values taken 
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by mass fraction and pressure on ࣭ሺଵሻ, ࣭ሺଶሻ and in ࣠ may generally be different from 

one another in the ݀-dimensional model, and the ሺ݀ െ 1ሻ-dimensional model has to be 

able to reproduce this contingency, we require that at each point of ࣭ there exist three 

values of mass fraction and three values of pressure, i. e. we allow for the inequalities 

ෝ߱
ሺଵሻ ് ෝ߱ ് ෝ߱

ሺଶሻ,         ̂
ሺଵሻ ് ̅ ് ̂

ሺଶሻ, on ࣭ (6.30)

where, in accordance with (6.15), ෝ߱
ሺሻ and ̂

ሺሻ are interpreted as the values of mass 

fraction and pressure that the fracture and the enclosing medium have in common at 

መ࣭ ሺሻ ሺ݇ ൌ 1,2ሻ. So, the surface ࣭ behaves as a discontinuity surface in the ሺ݀ െ 1ሻ-

dimensional model. 

The continuity conditions at the fracture-medium interface ࣭ሺሻ	read 

ܳ

ሺሻ ൌ ܳ


ሺሻ , and ܲ


ሺሻ ൌ ܲ


ሺሻ,      on ࣭ሺሻ with ݇ ൌ 1,2. (6.31)

with ܳ
ሺሻ ൌ ߩ ቀ ෝ߱

ሺሻቁ ොݍ
ሺሻ  and ܲ

ሺሻ ൌ ߩ ቀ ෝ߱
ሺሻቁ ෝ߱

ሺሻݍො
ሺሻ  መܬ

ሺሻ.  

The conditions on the tangential fields 〈ܙ
ఙ〉 and 〈۸

ఙ〉 are replaced by the simpler ones 

stating that ࣜ is impervious, i. e. 


ఙ ∙ ࣎ ൌ ఙ ∙ ࣎ ൌ 0,      and ࡶ

ఙ ∙ ࣎ ൌ ఙࡶ ∙ ࣎ ൌ 0, on ࣜ, (6.32)

with ࣎ being the unit normal vector on ࣜ. Note that equations (6.16) – (6.17) obtained 

by adopting Bear's method /BEA 79/, are similar to those determined by Hassanizadeh 

and Gray /HAS 89b/, which are based on the averaging procedure put forward by Gray 

/GRA 82/, /GRA 83/.  

6.3 Numerical methods 

In this section the numerical methods are discussed that are used to solve the equation 

systems introduced in section 6.2. The basic operations that are needed for modelling 

fractured media are implemented in the UG framework cf. /BAS 94/, /LAN 05/, where 

all the basic numerics are placed. Application-specific parts were implemented in d3f cf. 

/FEI 99/, and /SCH 12/ for the fracture specific implementation. 
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6.3.1 Computational grid 

The computational grid is generated using the general purpose meshing software 

ProMesh cf. /REI 13/, further described in section 12.5. Here only some basic demands 

on the grid are stated that are necessary for the discretisation. 

For both, the ݀- and the ሺ݀ െ 1ሻ-dimensional model, a regular conform grid needs to be 

generated that covers the whole domain	Ω. Within this grid, the fracture interfaces are 

corresponding to edges in 2d (or surfaces in 3d) of the grid. The width of the fracture 

should be resolved by exactly two layers of elements that may be degenerated. Those 

elements are needed in order to get the three degrees of freedom in the fracture that 

are necessary for the ሺ݀ െ 1ሻ-dimensional discretisation. For the ݀-dimensional model, 

the coarse grid has to be of the same structure as the coarse grid for the ሺ݀ െ 1ሻ-

dimensional model, meaning that the fracture is also resolved by exactly two layers of 

elements, only the fracture width is geometrically resolved and not replaced by zero. 

The reason for the same structure is the possibility to use a dimension-adaptive meth-

od as described in section 6.5.1. 

6.3.2 Discretisation 

The ሺ݀ െ 1ሻ-dimensional model, i. e. the coupled system (6.16) – (6.17) and (6.26) – 

(6.27), has different dimensionalities and separate unknown functions defined in the 

same domain. This feature is important for the discretization, which is a finite-volume 

method, also known as the control volume /KAR 95/ or finite volume element methods 

/CAI 90/. Application of this method to density driven flow according to Darcy’s law in 

domains with fractures was presented in /GRI 10/, /REI 12b/, /SCH 12/. Here, a similar 

method is desribed cf. /GRI 13/, though, an essential difference is that the tangential 

part of the velocity in fractures depends not only on the degrees of freedom associated 

with the inner part of the fractures. Furthermore, the Forchheimer correction introduces 

much stronger nonlinearity in the discretised system than the Darcy law. In this section 

we recall the discretisation from /GRI 13/. 

6.3.2.1 Discretization grids and degrees of freedom 

The following notation is used. The time interval is covered by a grid ሼݐ: ݊  0ሽ with 

0 ൌ ݐ ൏ ⋯ ൏ ݐ ൏ ⋯; ߬ ≔ ݐ െ  is polygonal, and the ߗ ିଵ. It is assumed thatݐ
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ሺ݀ െ 1ሻ -dimensional network of fractures ࣭ ⊂  is ߗ is piecewise planar. The domain ߗ

covered by a conformal triangulation ܂ఆ that consists of triangles and quadrilaterals if 

݀ ൌ 2 and tetrahedra, prisms and hexahedra if ݀ ൌ 3. It is supposed that for every ele-

ment ݁ ∈ ݁ ,ఆ܂ ∩ ࣭ is either empty or consists only of corners, whole sides and whole 

edges of ݁. Thus, ࣭ is covered by the ሺ݀ െ 1ሻ-dimensional triangulation ࣭܂ ≔ ሼ݁ ∩ ࣭: ݁ ∈

,ఆ܂ ݁ ∩ ࣭	is	a	side	of	݁ሽ. To simplify the notation, it is assumed that every ݁ ∈  ఆ has at܂

most one side on ࣭ and at most one on ߲ߗ. Similarly, ݁ ∈  may not have more than ࣭܂

one side on ࣜ. The generalization is straightforward. 

Denote by ߗ the set of all grid points, i. e. corners of the elements of ܂ఆ. Let ࣭ ≔

ߗ ∩ ࣭. For the approximation of the discontinuities on ࣭, grid functions that may have 

several values at every ݔ ∈ ࣭ are considered. To define them properly, a special enu-

meration of the grid points is introduced so that several indices correspond to the same 

-Degrees of freedom are uniquely assigned to these indices and not directly to geo .ݔ

metric positions. 

To this end, for every ݔ ∈ ሻݔሺܤ , consider a ballߗ ൌ ሼݕ: ݕ| െ ଶ|ݔ ൏
ଵ

ଶ
distሺݔ,  ఆሻሽ, where܂

distሺݔ,  and those sides and edges of elements ݔ ఆሻ is the minimum distance between܂

݁ ∈  Fractures ࣭ cut these balls into disjoint open subsets .ݔ ఆ which do not contain܂

(cf. Fig. 6.2). Denote these subsets of ܤሺݔሻ for all ݔ ∈ …,ଵܤ  byߗ , ܰ ே, whereܤ   |ߗ|

is the total number of them. The closure of every ܤ contains only one ݔ ∈  , that isߗ

denoted by ݔ. Under this enumeration, there may be ݔ ൌ ݔ ∈ ࣭ for ݅ ് ݆. For simple 

straight fractures, points ݔ ∈ ࣭ ∖ ࣜ have two different indices, and the intersection 

points of the fractures have even more ones. For ݔ ∈ ߗ ∖ ࣭ or ݔ ∈ ࣭ ∩ ࣜ, ࣭ does not 

split ܤሺݔሻ, so ࣭ cuts ܤሺݔሻ into one part. For ݁ ∈ ߉ ఆ, denote܂ ≔ ሼ݅: 1  ݅  ܰ, ݔ ∈

݁, ܤ ∩ ݁ ് ∅ሽ. These are indices of corners of ݁ regarding the orientation of ݁ with re-

spect to the fractures. 
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Fig. 6.2 Enumeration of the grid nodes in a piece of a grid with N ൌ 100. The thick 

lines denote the fracture 

To represent the numerical solution of (6.26) – (6.27), for time ݐ and index 1  ݅  ܰ 

the degrees of freedom are denoted by ෝ߱
  and ̂

 . For each ݅, ෝ߱ሺݐ, ,ݐሺ̂ ሻ andݔ  ሻݔ

in the solution of (6.26) – (6.27) are continuous in ܤ. In the numerical solution, ෝ߱
  and 

̂
  approximate the limits 

ෝ߱
 ൎ lim

௫→௫,௫∈
ෝ߱ሺݐ, ̂ ,ሻݔ

 ൎ lim
௫→௫,௫∈

,ݐሺ̂ ሻ. (6.33)ݔ

Piecewise linear functions ෝ߱
 , ̂

 : ߗ → Թ are defined by the linear interpolation of the 

values ෝ߱
  and ̂

  for ݅ ∈ ݁  in every߉ ∈  ఆ. These functions may be discontinuous܂

only at ࣭. 

In the fractures, grid functions ෝ߱
  and ̅

  approximating ෝ߱ and ̅ at time ݐ inde-

pendently on ෝ߱
  and ̂

	  are introduced. Let ܰ ≔ |࣭|. Additionally to the enumera-

tion above, indices ܰ  1,… ,ܰ  ܰ are assigned to all the points from ࣭, so that 

࣭ ൌ ቄݔேାଵ, … , ேାேቅ. Then ෝ߱ݔ
 , ̅

 : ࣭ → Թ are continuous piecewise linear functions 

with nodal values ෝ߱
  and ̅

  at ݔ ∈ ࣭. For ݁ ∈ ߉ let ,࣭܂ ≔ ൛݅: ܰ ൏ ݅  ܰ  ܰ, ݔ ∈ ݁ൟ. 

Furthermore, let ߉
 ≔ ߉ ∖ ሼ݅ሽ, if ݅ ∈ ߉ , and߉

 ≔ ∅ otherwise. Then ߉ ≔ ⋃ ߉


∈܂  is 

the set of all the indices of neighbouring grid points of ݔ. For 1  ݅  ߉ ,ܰ ⊂ ሼ1,… ,ܰሽ, 

whereas for ݅  ߉ ,ܰ ⊂ ൛ܰ  1,… ,ܰ  ܰൟ. Besides this, for ݅  ܰ, let ߉መ ≔

൛݆: ܰ ൏ ݆  ܰ  ܰ, ݔ ൌ ݅ ൟ and, forݔ  ܰ, let ߉መ ≔ ൛݆: 1  ݆ ൏ ܰ, ݔ ൌ -መ repre߉ ൟ. Setsݔ

sent the relations between the “fracture DOF (degree of freedom) indices” and the “bulk 

medium DOF indices” of points ݔ ∈ ࣭. Note that for ݅  ܰ, ห߉መห  1. 

B1

B2 B3

B4

B5 B6

B7

x1

x2=x101

x3=x4=x102

x5=x6=
x7=x103
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6.3.2.2 The finite-volume scheme 

With each ݅, 1  ݅  ܰ, a computation cell (“control volume”) is associated by con-

structing a conformal dual mesh of finite volumes ܸ ⊂ Թௗ using the so-called bary-

center based control volumes. Then ܸ is defined as a union of ܸ
 for all ݁ ∈  ఆ such܂

that ݅ ∈ . To get ܸ߉
, the element ݁ is cut by the segments of the straight lines, con-

necting the barycenter of this element with the centers of its sides (for ݀ ൌ 2), or by the 

segments of the plains spanning the barycenter of the element, the centers of the edg-

es and the barycenters of the sides (for ݀ ൌ 3). Then ܸ
 is the part of ݁ containing ݔ. 

The segments are denoted by ߛ
 , i. e. ߛ

 ≔ ݁ ∩ ߲ ܸ ∩ ߲ ܸ for ݆  ܰ. Besides, ߛ
 ≔ ݁ ∩

߲ ܸ ∩ ࣭ with ݆ ∈ ߛ መ and߉
 ≔ ݁ ∩ ߲ ܸ ∩  Then .ߗ߲

߲ ܸ ൌ ራ ራ ߛ


∈௸
∪௸∪ሼሽ:∈௸

. 
(6.34)

By ܖ
  the unit normal vector to ߛ

  pointing out of ܸ, i. e. ܖ
 ൌ െܖ

 , is denoted. Nor-

mals ܖሺଵሻ and ܖሺଶሻ are constant on ߛ
 . One of them is ܖ

 , the other one ൫െܖ
 ൯. 

Control volumes ܸ are used in the discretization of (6.26) – (6.27). For every ݅, 

1  ݅  ܰ, if ݔ does not lie on the Dirichlet boundary, (6.26) – (6.27) are integrated 

over ܸ. After the application of the divergence theorem, one gets: 

߶ න߲௧ߩሺ ෝ߱ሻ

	



ݔ݀  නߩሺ ෝ߱ሻܙෝ ⋅ ܖ
 ݏ݀

	

ఊೕ
,

ൌ නߩ൫ ෝ߱,ௌ൯ܵ݀ݔ


, (6.35)

߶ න߲௧ሺߩሺ ෝ߱ሻ ෝ߱ሻ

	



ݔ݀  න൫ ෝ߱
 ሺߩ ෝ߱

 ሻܙෝ  ۸መ൯ ⋅ ܖ
 ݏ݀

ఊೕ
,

ൌ න ෝ߱,ௌߩ൫ ෝ߱,ௌ൯ܵ݀ݔ

	



, 
(6.36)

where the summation runs over all ݁ ∈ ݅ ఆ, such that܂ ∈ ݆ , and߉ ∈ ߉
 ∪ መ߉ ∪ ሼ0ሽ. For 

the approximation of the time derivative the backward Euler scheme is used: 

  ߲௧ߩሺ ෝ߱ሻ
	


ݔ݀ ൌ | ܸ|ൣߩሺ ෝ߱
 ሻ െ ൫ߩ ෝ߱

ିଵ൯൧/߬, (6.37)
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න߲௧ሺߩሺ ෝ߱ሻ ෝ߱ሻ

	



ݔ݀ ൌ | ܸ|ൣߩሺ ෝ߱
 ሻ ෝ߱

 െ ൫ߩ ෝ߱
ିଵ൯ ෝ߱

ିଵ൧/߬, (6.38)

The summands (6.35)-(6.36) corresponding to the indices ݅ ∈ ߉
 ∪ ሼ0ሽ depend only on 

ෝ߱
  and ̂

 . For them, the approximation from /FRO 98b/ is used, except that the 

Darcy velocity at the integration points is replaced by the Forchhheimer velocity ac-

cording to (6.12). In particular, the so-called consistent velocity cf. /FRO 98a/, /FRO 

96a/ is used for ܙෝሺ ෝ߱
 , ̂

 ሻ (and therefore for ܙෝ ൌ ,ܣሺܨ qොሻܙෝ). An upwind 

method is applied for the discretization of the convection term ෝ߱
 ሺߩ ෝ߱

 ሻܙෝ.  

The summand with ݆ ∈  መ in (6.35) – (6.36) requires a special treatment. Let ݁ be such߉

an element that ݅ ∈ ߛ  and߉
 ് ∅. Let ݇ ∈ ሼ1,2ሽ be such that ܖ

 ൌ െܖሺሻ. Then (6.31) 

and the following approximations are used: 

නߩሺ ෝ߱
 ሻܙෝ ⋅ ܖ

 ݏ݀

	

ఊೕ


ൌ න ܳ

ሺሻ݀ݏ

	

ఊೕ


ൎ หߛ
 ห ܳ

ሺሻ൫̂
 , ̅

 ; ෝ߱
 , ෝ߱

 ൯, (6.39)

න൫ ෝ߱
 ሺߩ ෝ߱

 ሻܙෝ  ۸መ൯ ⋅ ܖ
 ݏ݀

	

ఊೕ


ൌ න ܲ

ሺሻ݀ݏ

ఊೕ


ൎ หߛ
 ห ܲ

ሺሻ൫̂
 , ̅

 ; ෝ߱
 , ෝ߱

 ൯. (6.40)

These approximations are algebraic functions of ෝ߱
 ̂ ,

 , ෝ߱
  and ̅

 . 

For the discretization of (6.16) – (6.17), ሺ݀ െ 1ሻ-dimensional computation cells are con-

structed in ࣭: With every ݅  ܰ, the ሺ݀ െ 1ሻ-dimensional control volume                     

ܵ ≔ ⋃ ⋃ ߛ


∈܂:∈௸∈௸  is associated. At the intersections of the fractures, ܵ may lie in 

several intersecting planes. For ݁ ∈ ߪ boundary segments ,࣭܂
  of ܵ analogously to ߛ

  

are introduced: For ݅, ݆  ߪ ,ܰ
 ≔ ݁ ∩ ߲ ܵ ∩ ߲ ܵ. Besides this, ߪ

  is the intersection of 

݁ ∩ ߲ ܵ with the edge of the fracture. For every ߪ
 ܖ ,

  is the unit normal vector that lies 

in the plane of ݁ and points out of ܵ. Note that ܵ are barycenter based control vol-

umes, too. Integration of (6.16) – (6.17) over ܵ and performing some algebraic trans-

formations yields: 
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 ൦
߮߳
2

න߲௧ߩሺ ෝ߱ሻ ݔ݀

	

ௌ


߳
2
 නߩ൫ ෝ߱

 ൯݂ ቀܣ, ොݍ
ሺሻቁ ෝܙ〉

ఙ 〉 ⋅ ܖ
 	݈݀

	

ఙೕ
,ୀଵ,ଶ

 න ܳ

ሺሻ݀ݏ

	

ௌ

൪ ൌ ߳ නߩ൫ ෝ߱,ௌ൯ܵ̅	݀ݏ

	

ௌ

, 

(6.41)

 ൦
߮߳
2

න߲௧൫ߩሺ ෝ߱ሻ ෝ߱൯ ݔ݀

	

ௌୀଵ,ଶ


߳
2
 නቀෝ߱ߩሺ ෝ߱ሻ݂ ቀܣ, ොݍ

ሺሻቁ ෝܙ〉
ఙ 〉  〈۸

ఙ〉ቁ ⋅ ܖ
 	݈݀

	

ఙೕ
,

 න ܲ

ሺሻ݀ݏ

	

ௌ

൪ ൌ ߳ නߩ൫ ෝ߱,ௌ൯ ෝ߱,ௌܵ̅	݀ݏ

	

ௌ

, 

(6.42)

where the summation runs over all ݁ ∈ ݅ such that ,࣭܂ ∈ ߉
, and ݆ ∈ ߉

 ∪ መ߉ ∪ ሼ0ሽ. For 

the time derivatives in (6.41) – (6.42) the backward Euler scheme is used analogously 

as in (6.37) – (6.38). 

As ߪ
  are segments of straight lines (for ݀ ൌ 3) or points (for ݀ ൌ 2), the integrals over 

them in (6.41)-(6.42) are discretized using the method from /FRO 98b/ formulated in 

ሺ݀ െ 1ሻ dimensions for ෝ߱
  and ̅

 . The only modification is that the velocity is        

multiplied by ݂ሺܣ, ොݍ
ሺሻሻ. For the convection term in (6.42), a ሺ݀ െ 1ሻ-dimensional      

version of the upwind method for the discretization of (6.36) is applied. For 〈ܙෝ
ఙ 〉, the 

consistent velocity from /FRO 96b/ is used. Furthermore, the approximations of these 

integrals require the values of ݂ሺܣ, ොݍ
ሺሻሻ at the integration points located at the centers 

of ߪ
 . They are approximated using ݂ሺܣ, ොݍ

ሺሻሻ ൎ 	݂ሺܣ, ݍ
ሺሻሻ with 

ݍ
ሺሻ ≔ ට〈ܙෝ

ఙ 〉 ∙ ෝܙ〉
ఙ 〉  ቀqො,

ሺሻ  qො,
ሺሻ ቁ

ଶ
/4, where qො,

ሺሻ  and qො,
ሺሻ  are values of qො

ሺሻ  

according to (6.25) at ݔ and ݔ, resp.. 
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To approximate the integrals of ܳ
ሺሻ and ܲ

ሺሻ (cf. (6.21) – (6.22)) in (6.41) – (6.42), the 

fact that ܵ ≔ ⋃ ⋃ ߛ


:∈௸,ܖೕ
 ୀିܖሺೖሻ∈௸  is used where ߛ

  are disjoint planar sets: 

න ܳ

ሺሻ݀ݏ

	

ௌ

ൎ   หߛ
 ห

:∈௸,ܖೕ
 ୀିܖሺೖሻ∈௸

ܳ

ሺሻሺ̂

 , ̅
 ; ෝ߱

 , ෝ߱
 ሻ, (6.43)

න ܲ

ሺሻ݀ݏ

	

ௌ

ൎ   หߛ
 ห

:∈௸,ܖೕ
 ୀିܖሺೖሻ∈௸

ܲ

ሺሻ൫̂

 , ̅
 ; ෝ߱

 , ෝ߱
 ൯. (6.44)

The contribution of (6.43) – (6.44) to (6.41) – (6.42) is exactly the same as the contribu-

tion of the terms (6.39) – (6.40) to (6.35) – (6.36) so that the entire discretization is 

conservative w.r.t. the mass of the total fluid phase and mass of the salt. 

Note that the exact evaluation of ܳ
ሺሻ and ܲ

ሺሻ in (6.39) – (6.40) and (6.43) – (6.44) is 

not possible because of ఙ̅ in 〈ܙෝ
ఙ 〉 (cf. (6.21), (6.22), (6.24)): At grid nodes, ̅

  is 

not differentiable. For this, we approximate 〈ܙෝ
ఙ 〉 in the integrands over ܵ ∩ ݁ by the 

arithmetical average of 〈ܙෝ
ఙ 〉 at the integration points of ߪ

  for ݆ ∈ Λ
. 

Conditions (6.32) at ࣜ are natural boundary conditions for the finite-volume discretiza-

tion. They introduce no additional terms in (6.35) – (6.36) and (6.41) – (6.42). Further 

boundary conditions should be used for ෝ߱ and ̅ at ࣭ ∩  .ߗ߲

Using the introduced approximations of the integrals in (6.35) – (6.36) for all ܸ and in 

(6.41)-(6.42) for all ܵ, a sparse system of ܰ  ܰ nonlinear algebraic equations is ob-

tained.  

Technically, the assembling of this nonlinear system can be implemented as a cycle 

over only the elements of ܂ఆ. When assembling the contribution of, say, triangle 

ሺݔଵ, ,ଶݔ  ସሻ in Fig. 6.2, not only the local matrices for (6.35) – (6.36) are computed, butݔ

also a part of the local matrix for (6.41) – (6.42) for the segment ሾݔଵଵ,  ଵଶሿ for only oneݔ

݇ such that ሺሻ is the inner normal for the triangle. As soon as the contribution of the 

element on the opposite side of the fracture is assembled, the terms with the second ݇ 

are added to the local matrix of ሾݔଵଵ,  ଵଶሿ. Thus distinguishing between the sides ofݔ

the fractures is avoided. 
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For the ݀-dimensional model, i. e. equations (6.1) – (6.2), the same finite-volume dis-

cretisation as for (6.26) – (6.27) is used. 

6.3.3 Numerical solution 

In programs d3f and r3t, implicit time discretisations are used. This means, the discreti-

sation of the model in space and time leads to a large sparse system of algebraic 

equations in every time step. Computation of the stationary flow with d3f requires the 

solution of a large sparse non-linear system of algebraic equations, too. In r3t, further 

methods like operator splitting, can be used for the reaction terms. 

In the simulations, these non-linear systems are solved by the Newton method. To 

make use of the sparsity of the linear systems in the iterations of the nonlinear solver, 

they are solved by the BiCGStab method with the geometric multigrid preconditioning 

cf. /BAR 09/. In the multigrid cycle, the ILUβ-smoothers and the Gaussian elimination 

as the coarse grid solver are used. This multigrid preconditioner proved to be very effi-

cient in the case of not too complicated geometries such that the coarse grid is not ex-

tremely detailed. The matrices in the grid hierarchy are not computed by the Galerkin 

formula but assembled as the Jacobians of the discretized nonlinear systems for each 

grid. 

However, for the ݀-dimensional fracture representation the geometric anisotropy of the 

fractures may lead to convergence problems in the linear solver. To overcome this 

problem a multigrid method using a dimension-transfer is introduced in section 6.5.1. 

6.4 Comparison of ࢊ- and ሺࢊ െ ሻ-dimensional approaches 

In this section results of the ݀- and the ሺ݀ െ 1ሻ-dimensional approaches are compared 

in order to see, whether the use of the ሺ݀ െ 1ሻ-dimensional model is adequate or a full 

resolution of the fracture is necessary.  

6.4.1 Benchmark problems 

A modified version of the classic seawater intrusion problem by Henry /HEN 64/ is con-

sidered where the domain, a rectangle 2 ൈ 1 mଶ, features a fracture (cf. Fig. 6.3a). For 
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the test problem in 3d the geometry is extended to a three-dimensional one, a hexahe-

dron 2 ൈ 2 ൈ 1 mଷ (cf. Fig. 6.3b). 

a) b)  

Fig. 6.3 Geometry and boundary conditions for the modified Henry problem featur-

ing a fracture. a) 2d case, b) 3d case 

At the top (ݖ ൌ 0) and the bottom (ݖ ൌ െ1 m) (and in 3d at the front (ݕ ൌ 0) and the 

backside (ݕ ൌ 1	m)), zero-flux boundary conditions for both the flow and the transport 

equations are imposed. At the inland side (ݔ ൌ 0), ߱ ൌ 0	 (fresh water) and a constant 

flux (ݍ ൌ െ3.3 ⋅ 10ିହ m ⋅ sିଵ, cf. /SIM 04/) is prescribed. At the sea side (ݔ ൌ 2 m), 

߱ ൌ ෝ߱ ൌ 1 and hydrostatic pressure is imposed. The parameters used for computa-

tions are listed in Tab. 6.1. 

Tab. 6.1 Parameters for the Henry problem 

Symbol Quantity Value 

 Diffusion coefficient in the mediumܦ 6.6 ⋅ 10ି mଶ sିଵ 

 Diffusion coefficient in the fractureܦ 13.2 ⋅ 10ି mଶ sିଵ 

Gravity 9.81 m  sିଶ 

 Permeability of the medium 1.019368ܭ ⋅ 10ିଽ mଶ

 Permeability of the fracture 1.019368ܭ ⋅ 10ି mଶ

߶ Porosity of the medium 0.35  

߶ Porosity of the fracture 0.7  

Viscosity 10ିଷ kg ߤ mିଵ sିଵ 

ௐ Density of water 10ଷ kgߩ mିଷ 

 Density of brine 1.025ߩ ⋅ 10ଷ kg mିଷ 

ܽఈ௧ , ܽఈℓ  Dispersivity lengths 0

 ఈ Forchheimer coefficient 0ܣ
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Simulations were performed on a grid with about 6 ⋅ 10ସ grid nodes in 2d and 6 ⋅ 10 

degrees of freedom in 3d. The timestep was chosen ߬ ൌ 15 sec. In the ݀-dimensional 

representation, fracture width was resolved by 8 layers of elements inside the fracture. 

More details and results of these fractured Henry problem and also of other test prob-

lems can be found in /GRI 12a/, /GRI 10/, /GRI 13/, /REI 12b/, /STI 12/. 

6.4.2 Comparison results 

In order to compare the two approaches for modelling flow in fractured porous media, 

simulations with both the ݀- and the ሺ݀ െ 1ሻ-dimensional fracture representation are 

performed. The results are then compared by computing in both simulations the value 

of mass fraction and pressure at a given point in the fracture, and the values of the 

jump of mass fraction and pressure at the two sides of the fracture. 

In the ሺ݀ െ 1ሻ-dimensional simulation, equations (6.16) – (6.17) in the fracture are con-

sidered which provide averaged values for the mass fraction and the pressure. In order 

to get from the ݀-dimensional simulation, where equations (6.1) – (6.2) are solved, val-

ues that are comparable to those of the ሺ݀ െ 1ሻ-dimensional simulation, an average 

along the fracture width is performed. At fixed points in the fracture mass fraction and 

pressure are compared for varying time. The results for the pressure and the jump of 

the pressure of the two simulations agree quite acceptable and are, therefore, not 

shown here. 

a) b)  

Fig. 6.4 Comparisons of d‐ and ሺd	‐	1ሻ‐dimensional simulations of the 2d problem at 

x = 1.5 m: mass fraction in the fracture and its absolute error for a fracture 

of width (a) ࣕ = 0.003 m and (b) ࣕ = 0.024 m 
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In Fig. 6.4 the mass fraction in the fracture for the two-dimensional Henry problem (cf. 

Fig. 6.3a) is compared using geometries with different fracture widths. It can be noticed 

that the results of the two approaches agree with each other until the fracture width ex-

ceeds a certain value. When the fracture width is bigger than this value, the fracture 

becomes too thick for the averaging procedure to give acceptable results. However, 

below this value, the results obtained by the two approaches seem to be in good 

agreement. Indeed, it can be observed that for a thin fracture (cf. Fig. 6.4a) the abso-

lute error is small, whereas for a thicker fracture (cf. Fig. 6.4b) the error made is in-

creased. Especially in the beginning (ݐ ൏ 5	min) a relative error of over 30% is made. 

As the ሺ݀ െ 1ሻ-dimensional model yields not only averaged values inside the fracture, 

but also values at the interfaces between fracture and medium, allowing to approximate 

a vertical gradient, it is worthwile to compare these values as well. 

a) b)  

Fig. 6.5 Comparisons of d‐ and ሺd	‐	1ሻ-dimensional simulations of the 2d problem at 

x = 1.5 m: jump of mass fraction in the fracture and its absolute error for a 

fracture of width (a) ࣕ = 0.003 m and (b) ࣕ = 0.024 m 

In Fig. 6.5 the comparison of the jump of the mass fractions at upper and lower inter-

faces of fracture and medium ሺω
ሺଶሻ െ ω

ሺଵሻሻ is shown. It can be noticed that even for the 

fracture of width ߳ ൌ 0.003	m where the comparison of the averaged mass fraction 

showed barely no difference between ሺ݀ െ 1ሻ- and ݀-dimensional simulation results, an 

relative error of about 10% is made in the beginning (ݐ ൏ 10	min). By further decreasing 

the fracture width to, e. g., ߳ ൌ 0.001	m, also this error decreases. This implies that, the 

jump of the mass fraction is even more sensitive on fracture width than the average. 

For the fracture of width ߳ ൌ 0.024	m the result of the jump comparison is obviously re-

ally bad (cf. Fig. 6.5b). A change of signs between ݀- and ሺ݀ െ 1ሻ-dimensional simula-



135 

tions can be observed: The jump in the ݀-dimensional simulation is positive, meaning 

that the mass fraction at the lower interface is bigger than the mass fraction at the up-

per interface, whereas the ሺ݀ െ 1ሻ-dimensional simulation indicates this the other way 

around. So here not only the error is big, but a different result is generated. This may 

be explained by an observation made considering the thick fracture of width ߳ ൌ

0.024	m.  

a) b)  

Fig. 6.6 d‐dimensional simulation results for the 2d problem with a fracture of width 

	ࣕ = 0.024 m. a) concentration profile and velocity directions, b) vorticity 

For increasing fracture width it can be noticed (cf. Fig. 6.6a) that there are also phe-

nomena taking place inside the fractures. It can be observed that the velocity inside the 

fracture is turning around, i. e. a vortex is generated. Such phenomena cannot be re-

produced by the ሺ݀ െ 1ሻ-dimensional simulation. For a fracture of width ߳ ൌ 0.024	m the 

major effect is given by the production of vortices in the fracture. This result is assumed 

to follow from the fact that the fracture is thick enough to develop the density contrast 

necessary for the rotation of velocity. Therefore, the vorticity defined by  

ࢻࣀ ≔  ൈ ఈ (6.45)ܙ

is considered. Under the assumptions of uniform viscosity, and isotropic and piecewise 

constant permeability, using equation (6.3) 

ࢻࣀ ൌ ఈߩߘଵ۹ఈሺିߤ ൈ ሻࢍ ൌ ఈܿߘሺ′ߩଵ۹ఈିߤ ൈ ሻ (6.46)ࢍ

with ߩᇱ ൌ
ሺఘಳିఘೈሻ

ఘಳ
 can be obtained. It can be noticed that the absolute value of vortici-

ty is maximal when the gradient of the brine concentration is orthogonal to the gravity 

acceleration vector or, in other words, when ࢍ is tangent to the isolines of the concen-

tration. In Fig. 6.6b it can be observed that the vorticity reaches comparably high val-

ues inside the fracture. When the fracture is thick enough, the brine finds sufficient 
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space to distribute itself along the fracture width. This means that, for a given cross 

section of the fracture, the brine concentration deviates appreciably from its mean val-

ue (cf. Fig. 6.6a). Consequently, vorticity varies as a function of height along the frac-

ture width. This is accompanied by a nonuniform distribution of the specific discharge in 

the fracture, as in Fig. 6.6a an inversion of the tangential component of  can be ob-

served. 

As the rotation of the velocity, i. e. the vorticity, is a three-dimensional phenomenon, in-

creasing the fracture width in three dimensions can lead to even bigger differences be-

tween ݀- and ሺ݀ െ 1ሻ-dimensional simulation results. 

a) b)  

Fig. 6.7 Comparisons of d‐	and ሺd	‐	1ሻ‐dimensional simulations of the 3d problem  

At (x, y, z) = (1.125, 0.5, -0.675) m: mass fraction in the fracture and its absolute error for a 

fracture of width (a) ࣕ = 0.003 m and (b) ࣕ = 0.024 m. 

In Fig. 6.7 the comparison of the concentration for the three-dimensional Henry prob-

lem is shown (cf. Fig. 6.3b) and a very good consistency for the fracture of width 

߳ ൌ 0.003	m can be observed. As expected, the results for the fracture of width 

߳ ൌ 0.024	m of ݀- and ሺ݀ െ 1ሻ-dimensional simulations differ enormously and the abso-

lute error (not shown) is even a lot higher than in the two-dimensional case. 

Comparisons of pressure and of jumps are not shown here because of space re-

strictions, but for the fracture of width ߳ ൌ 0.003	m they can be found in /REI 12b/. 
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6.5 Dimension-adaptive methods 

Both, ݀- and ሺ݀ െ 1ሻ-dimensional approaches for modelling flow in fractured porous 

media are very common. As shown in section 6.4, there are certain cases where the 

ሺ݀ െ 1ሻ-dimensional model fails to give reliable results and, therefore, the usage of a ݀-

dimensional model is necessary. On the other hand, the application of a ݀-dimensional 

model requires high resolution and, therefore, leads to high storage demands and 

computational cost. Also, due to the geometric anisotropy and the jumps of the coeffi-

cients, introduced by the thin subdomains representing the fractures, the convergence 

rate of the multigrid solver may deteriorate. 

In this section two new approaches are introduced. The first one is a dimension-

adaptive multigrid method that improves the convergence of the multigrid solver for the 

݀-dimensional fracture representation. The second approach is based on the idea to 

use the ݀-dimensional approach only if the ሺ݀ െ 1ሻ-dimensional model is not valid, i. e. 

the results from the ሺ݀ െ 1ሻ-dimensional model differ essentially from those of the ݀-

dimensional model. Therefore, a criterion is introduced indicating the validity of the 

ሺ݀ െ 1ሻ-dimensional approach. 

6.5.1 Dimension-adaptive multigrid method 

In order to overcome possible convergence problems of the linear solver, that are due 

to geometric anisotropies in the ݀-dimensional model, a multigrid method featuring a 

dimension transfer is introduced: The fractures are fully resolved on the fine grids, and, 

therefore, the obtained solution corresponds to the solution of the ݀-dimensional mod-

el. Though, on coarser grids of the grid hierarchy, where the geometric anisotropy is 

more evident, the fracture is considered to be ሺ݀ െ 1ሻ-dimensional. This leads to an 

improved convergence of the linear solver. 

We consider a grid hierarchy Ω (݈ ∈ ሼ0, … ,   ሽ) that is constructed from a coarse grid Ωܮ

(generated as described in section 12 with the properties stated in section 6.3.1) by 

regular, conform and anisotropic refinement. On the finest level Ω all ݊ fractures ࣠ 

ሺ݅ ൌ 1,… , ݊ሻ are ݀-dimensional. On every other grid Ω (݈ ∈ ሼ0, … , ܮ െ 1ሽ) the aspect ra-

tio is calculated for all fracture elements. If it is smaller than the reference value, 

DEGENERATED_SIZE, the element is considered to be ሺ݀ െ 1ሻ-dimensional. If only one el-

ement in a fracture on the grid Ω is marked as ሺ݀ െ 1ሻ-dimensional, then all elements 
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in this fracture on the grid Ω	are marked as ሺ݀ െ 1ሻ-dimensional as well. Allowing dif-

ferent dimensionalities of a fracture on one grid level would require further assumptions 

and considerations, which are not discussed here.  

If the fracture is not treated as ሺ݀ െ 1ሻ-dimensional, i. e. all elements are marked as ݀-

dimensional, the fracture is ݀-dimensional and not treated in a special way. It is obvi-

ous that if a fracture is ሺ݀ െ 1ሻ-dimensional on the grid Ωℓ with 0  ℓ ൏ L, then the frac-

ture is ሺ݀ െ 1ሻ-dimensional on all grids Ω with ݈  ℓ. The finest grid, where a fracture 

࣠ is ሺ݀ െ 1ሻ-dimensional, defines Lாீሺ ࣠ሻ ∶ൌ maxሼ݈:	 ࣠ 	is	ሺ݀ െ 1ሻ െ dimensional	on	Ωሽ. 

Note that it is essential that ܮாீሺ ࣠ሻ ൏  for all fractures ࣠ in order to obtain the same ܮ

solution as by using the ݀-dimensional approach. Furthermore, on the grids Ω 

(݈ ∈ ሼ0, … , ாீሺܮ ࣠ሻ െ 1ሽ) only anisotropic refinement has to be applied in the fracture 

࣠.  

On levels Ω (݈ ∈ ሼ0, … , ாீሺܮ ࣠ሻሽ) the ሺ݀ െ 1ሻ-dimensional discretisation (section 6.3.2) 

is performed according to equations (6.16) – (6.17) in the fracture ࣠ and equations 

(6.26) – (6.27) in the medium. On levels Ω (݈ ∈ ሼܮாீሺ ࣠ሻ  1,… ,  ሽ) the ݀-dimensionalܮ

discretisation (section 6.3.2) is performed according to equations (6.1) – (6.2) in the 

fracture ࣠ as well as in the medium. Between the levels ܮாீሺ ࣠ሻ and ܮாீሺ ࣠ሻ  1 a 

dimension-transfer is performed in the fracture ࣠ by a special choice for the restriction 

and the prolongation. 

This approach improves the convergence of the multigrid solver in comparison to solv-

ing equations (6.1) – (6.2) in the fracture on the whole grid hierarchy Ω (݈ ∈ ሼ0, … ,  ,(ሽܮ

but the obtained solution is the same because the fracture is ݀-dimensional on the fine 

grid. 

6.5.2 Dimension-adaptive computation 

The dimension-adaptive multigrid method, described in section 6.5.1, is suitable for 

keeping the computational grids relatively coarse while still resolving the fractures ݀-

dimensional. Though, the computational grids containing ݀-dimensional resolved frac-

tures still contain a lot more vertices (esp. in 3 dimensions) than those using a ሺ݀ െ 1ሻ-

dimensional fracture representation resulting in larger storage demands and longer 

computational times. Moreover, the construction of these grids is often more difficult 
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and complex. Hence, in order to keep the numerical cost small, ሺ݀ െ 1ሻ-dimensional 

fracture representations should be used as often as possible. 

On the one hand the comparisons in section 6.4 showed that for really thin fractures 

the ሺ݀ െ 1ሻ-dimensional approach yields reasonable results. Furthermore, it is obvious 

that if, e. g., saltwater has not (yet) approached the fracture, a full resolution of the frac-

ture is not necessary. On the other hand the comparisons for thicker fractures show 

that the ሺ݀ െ 1ሻ-dimensional model is not always able to yield correct results. 

Therefore, the idea is to construct a dimension-adaptive approach that is able to switch 

at run-time depending on the actual flow conditions and fracture properties between ݀- 

and ሺ݀ െ 1ሻ-dimensional fracture representations.  

In order to establish this approach, the following features are needed:  

a) Two computational grids (݀- and ሺ݀ െ 1ሻ-dimensional) 

b) Transfer operators that transfer the solution (the unknowns) between the grids 

c) A condition, when to perform this switch 

In order to simplify the transfer operator, only grids where the fracture ends with trian-

gles in the ݀- as well as the ሺ݀ െ 1ሻ-dimensional representation are allowed. The multi-

grid structures can be switched using the functionality already implemented in UG. 

The transfer operators are constructed, such that they keep the solution in the medium 

ࣧ by copying the values of the solution if the two grids are identical in ࣧ, or else, by 

interpolating them. The solution in the fracture ࣠ needs more consideration. Comparing 

݀- and ሺ݀ െ 1ሻ-dimensional grids, it can be observed that the geometric position of the 

grid nodes at the interface between fracture and medium is shifted. This is due to the 

fact that in the ݀-dimensional grid in contrast to the ሺ݀ െ 1ሻ-dimensional grid the frac-

ture width ߳ is actually present (and resolved). During the transfer, this shift has to be 

taken into account in the hydrostatic part of the pressure , by adjusting  with േ݃ߩ௭∆ݖ, 

where ∆ݖ corresponds to the shift in ݖ-direction and ݃௭ is the ݖ-component of the gravi-

ty acceleration vector ࢍ. 

In order to simplify the notation, we assume in the following that Ω contains only one 

fracture ࣠. Let Ω
ሺௗିଵሻ (݈ ∈ ሼ0, … , ሽ) be the grid hierarchy featuring the ሺ݀ܮ െ 1ሻ-
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dimensional fracture and Ω
ௗ (݈ ∈ ሼ0, … , -݀ ሽ) the grid hierarchy featuring theܮ

dimensional fracture. Let V
ሺௗିଵሻ and V

ௗ be the vector spaces defined on Ω
ሺௗିଵሻ and Ω

ௗ. 

The operator ࣦௗ
ሺௗିଵሻ: V

ௗ → V
ሺௗିଵሻ (݈ ∈ ሼ0, … ,  ሽ) maps from the ݀-dimensional grid to theܮ

ሺ݀ െ 1ሻ-dimensional grid. The values of the solution at the interfaces between fracture 

and medium are copied, as they are the same in the ሺ݀ െ 1ሻ-dimensional model. Here-

by, the pressure is corrected with the hydrostatic part given by the shift, as explained 

above. The averaged value inside the fracture, needed for the ሺ݀ െ 1ሻ-dimensional 

model, is determined by calculating the average along the fracture width by numerical 

integration. 

The other transfer operator ࣦሺௗିଵሻ
ௗ : V

ሺௗିଵሻ → V
ௗ (݈ ∈ ሼ0, … , ሽ) maps from the ሺ݀ܮ െ 1ሻ-

dimensional grid to the ݀-dimensional grid. In the ሺ݀ െ 1ሻ-dimensional model only the 

values of the solution at the interfaces between fracture and medium and an averaged 

solution inside the fracture are known. Therefore, on every line parallel to  that con-

tains vertices in ࣠ a quadratic polynom is considered, fulfilling the following conditions: 

The values of the solution at the interfaces (where the pressure is corrected with the 

hydrostatic part given by the shift) are the same as well as the averaged solution. This 

quadratic polynom is then used to calculate the values of the solution inside the frac-

ture on all vertices on the line parallel to . The choice of this quadratic polynom mostly 

yields suitable results. Only in some special cases, e. g., when vortices are involved, 

the calculated values are different compared to the actual values. 

The construction of the transfer operators implies that using them one after another 

starting at the ݀-dimensional grid, ࣦௗ
ሺௗିଵሻࣦሺௗିଵሻ

ௗ , preserves the values for average and 

interface values, but yields different concentration and pressure profiles, as the values 

inside the fracture may differ due to ࣦሺௗିଵሻ
ௗ .  However, using them one after another 

starting at the ሺ݀ െ 1ሻ-dimensional grid preserves all values: ࣦௗ
ሺௗିଵሻࣦሺௗିଵሻ

ௗ ൌ ॴ. 

After defining the transfer operators, the criterion for the validity of the ሺ݀ െ 1ሻ-

dimensional approach needs to be defined. The comparisons in section 6.4.2 indicate 

the following as influencing factors: 

a) Width of the fracture: The fracture width is an essential condition for the validity of 

the averaging process. Moreover, for increasing fracture width there might appear 

processes inside the fracture (e. g. vortices) that cannot be resolved by the ሺ݀ െ

1ሻ-dimensional model. 
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b) Angle of the fracture to gravitation: The appearance of vortices is related to the an-

gle of concentration gradient and gravity. Due to the high permeability in the frac-

ture, the concentration gradient is often high along the fracture. Therefore, the ap-

pearance of vortices is more likely in horizontal than in vertical fractures. 

c) Permeability in the fracture: Increasing the permeability leads to higher velocities 

and, therefore, a higher chance for a phenomenon to appear in the fracture. In-

creasing the ratio of permeabilities between fracture and medium leads to a higher 

discontinuity at the interface in result of which, e. g., vortices can appear. 

d) Current flow conditions: If the concentration at the fracture is very small, the 

ሺ݀ െ 1ሻ-dimensional model is sufficient to describe all necessary phenomena. It is 

obvious that only a fast flow can generate vortices. 

Considering these factors, the following criterion was empirically established: 

ߠ ≔ ϵ	
ܭ
ܭ

max
࣠
൛ࣀൟ

߲௫߱

௭߲߱
 (6.47)

with the vorticity ࣀ as defined in (6.45). Now, the value of this criterion indicates, 

whether to use the ݀- or the ሺ݀ െ 1ሻ-dimensional model. Therefore, two threshold val-

ues are introduced 

ߠ   ݀-dimensional (6.48)ߠ

ߠ ൏ ଵ ሺ݀ߠ െ 1ሻ-dimensional (6.49)

Thereby, ߠ ്  ଵ to avoid a switchߠ  andߠ ଵ and an overlapping zone is left betweenߠ

back and forth between the two models if the criterion is near the threshold.  

The established criterion may not be the final criterion, as until now its significance was 

only tested on a few benchmark problems. It is part of the current work to further ana-

lyse this criterion and to assure its significance by testing it on various different test 

cases. Section 6.5.3 shows that the criterion works well for the considered Henry prob-

lem. Note that, the criterion in (6.47) has the physical unit of a velocity. It is also part of 

the current work to understand the meaning of this and to modify the criterion in a way 

such that it is dimensionless. 
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6.5.3  Numerical Experiments 

Numerical experiments using the dimension-adaptive method introduced in section 

6.5.2 are shown considering the Henry problem described in section 6.4.1 with a differ-

ent domain, where the fracture is not attached to the right boundary (cf. Fig. 6.9a). 

In Fig. 6.8 the results obtained by the three different approaches, ݀- and ሺ݀ െ 1ሻ-

dimensional fracture representations and dimension-adaptive approach, are shown. 

Thereby, the ݀-dimensional simulation result is considered to be the correct reference 

solution. The absolute errors made by the ሺ݀ െ 1ሻ-dimensional as well as by the di-

mension-adaptive simulation in comparison to the ݀-dimensional simulation are shown. 

It can be observed that using the dimension-adaptive approach, the error can be kept 

small.  

   

Fig. 6.8 Comparisons of d-, ሺd	‐	1ሻ‐dimensional and dimension-adaptive simulations 

of the 2d problem at x = 1.5 m: mass fraction in the fracture and its absolute 

error for a fracture of width ࣕ = 0.024 m (cf. Fig. 6.9a) 

In the beginning, when the incoming saltwater has not reached the fracture, the error 

made by the ሺ݀ െ 1ሻ-dimensional model is small and the dimension-adaptive approach 

uses the ሺ݀ െ 1ሻ-dimensional fracture representation (cf. Fig. 6.8). Then, the saltwater 

intrudes the fracture, a vortex is built and at ܶ ൌ 3.25	min the criterion indicates to 

switch to the ݀-dimensional fracture representation. As it can be seen, the error de-

creases and is going to zero instead of increasing as it is the case for the ሺ݀ െ 1ሻ-

dimensional model. Later, at ܶ ൌ 32.5	min, when the fracture is filled with saltwater and 

the solution approximates the stationary state, the criterion indicates that a switch back 

to the ሺ݀ െ 1ሻ-dimensional model is possible. In result, the error increases a bit, but the 
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relative error stays below 2 % (cf. Fig. 6.9 (right)). So, with this approach the error can 

be kept small over the whole computation time, while the full resolution of the fracture 

with more storage demands is only used for some part of the time. 

a)  b)  

Fig. 6.9 a) Geometry, b) Comparisons of d-, ሺd	‐	1ሻ‐dimensional and dimension-

adaptive simulations of the 2d problem at x = 1.5 m: relative error 

Also for the jump of the mass fraction (not shown), the error can be reduced significant-

ly using the dimension-adaptive method instead of using the ሺ݀ െ 1ሻ-dimensional 

method. 

For the 3d case, the dimension-adaptive switch is not implemented, but the behaviour 

of the criterion can be observed. For the examples considered in 6.4 it was observed 

(cf. Fig. 6.7) that for a fracture of width ߳ ൌ 0.003	m the ሺ݀ െ 1ሻ-dimensional model 

yields really good results, whereas for a fracture of width ߳ ൌ 0.024	m the ሺ݀ െ 1ሻ-

dimensional model is not able to model the right behaviour of the flow. Computation of 

the criterion shows that in this example for the fracture of width ߳ ൌ 0.003	m the criteri-

on stays well below the threshold and approves so the use of the ሺ݀ െ 1ሻ-dimensional 

model. However, for a fracture of width ߳ ൌ 0.024	m the value of the criterion lies above 

the threshold over the whole time, meaning that in this case the ݀-dimensional ap-

proach should be used solely. This is consistent with the results from section 6.4. 
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Fig. 6.10 Criterion ࣂ for the 3d Henry problem (cf. Fig. 6.3b) with fractures of different 

width. 

6.6  Discussion 

In this chapter a ݀- and a ሺ݀ െ 1ሻ-dimensional approach for modeling fractured porous 

media were discussed. The ሺ݀ െ 1ሻ-dimensional approach has in favour less computa-

tional cost and less problems with the numerical solver. Though, in section 6.4.2 it was 

shown that it can not cover all phenomena that might happen inside the fracture and 

that its validity should be seriously questioned. In order to deal with this, a dimension- 

adaptive multigrid method improving the convergence of the numerical solver for the ݀-

dimensional case was introduced in section 6.5.1. Furthermore, a criterion indicating 

the validity of the ሺ݀ െ 1ሻ-dimensional approach was introduced (cf. section 6.5.2). This 

criterion can be computed while run-time and allows, e. g., to use a dimension-adaptive 

approach that switches between ݀- and ሺ݀ െ 1ሻ-dimensional fracture representations 

depending on actual flow-conditions and fracture properties. The results of this ap-

proach in section 6.5.3 show that the error made with the ሺ݀ െ 1ሻ-dimensional model 

can be kept small, while also keeping the numerical cost small. 
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7 Development of simple models for the fast computation of 

flow and transport through fractured rocks 

7.1 Introduction  

The prediction of large-scale transport of solutes through fractured rock is essential for 

risk assessment of long term disposal of waste. The choice of a model concept for the 

description of fractured rocks strongly depends on the scale of the problem, the geolog-

ical characteristics of the area of investigation and the purpose of the simulation.  

Generally, fractured rocks can be considered to consist of a hierarchy of connected 

flow paths. The largest and highly connected fractures conduct the main part of the 

flow. This highly connected system is embedded in a system of smaller-scale fractures 

and fissures that form a background system or the rock matrix with a much smaller hy-

draulic conductivity. 

Transport of nuclides takes places in the large-scale fracture system but also in the 

heterogeneous background system. However, transport mechanisms differ in both sys-

tems. Nuclide transport is due to advection and dispersion. The transport in the large 

fractures is mostly dominated by advective transport. Dispersion along the large frac-

tures is often neglected. In contrast, solute transport in the heterogeneous background 

system is due to diffusion or dispersion and eventually due to advection. The advective 

movement in the rock matrix is small compared to the advection of plume in the large-

scale fracture system and is therefore often neglected. Mass exchange between the 

fracture system and the rock matrix is governed by a diffusive flux across the ma-

trix/fracture boundary.  

In detailed models, the connected network of large-scale fractures is modelled explicit-

ly. The position and distribution of fractures is known or generated statistically by a 

fracture network generator. Modelling in detail also the background or smaller-scale 

fracture network is often computationally not feasible. In this case, the background sys-

tem can be replaced by a heterogeneous continuum if statistical properties like fracture 

length distribution, fracture orientation, fracture density and transmissivity distribution 

are known. The latter approach has been investigated by /REE 08a/ who introduced a 

fracture continuum approach using MODFLOW. Their findings allow to make use of 
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scaling results derived and presented in the previous chapters 3 and 5 of this report 

and to assign effective medium’s properties (e. g. effective dispersion coefficients) to 

the background material. Nevertheless, the computational burden is large if transport 

through the large-scale fracture system and the effective rock matrix is modelled in 

high spatial resolution. 

The aim of this work package is the development of a faster computational method for 

risk assessment of nuclide transport through fractured rocks. To this end, the complexi-

ty of models needs to be reduced further and compromises with respect to accuracy 

have to be made. 

The simplest and computationally fastest models are effective 1-D-models in which not 

only the rock matrix but also large scale fracture system is replaced by an effective 

medium with effective properties. In addition, the two effective media might interact with 

each other via a linear exchange. 

Before the effective 1d-model is stated, it is desired to emphasize that also the target 

variable of model may influence the model type: If a fast model for giving conservative 

estimates of the first arrival time of nuclides is desired to be built, it is needed to char-

acterise the transport behaviour of nuclides in an ensemble of realisations in order to 

account for centre-of-mass fluctuations from realisation to realisation. From that follows 

that the ensemble spread needs to be considered in the effective model. In contrast, if 

peak concentrations of radioactive nuclides reaching specific locations in the subsur-

face are aimed to be given, it is needed to account for the effective dispersion coeffi-

cient in the effective model since the ensemble dispersion overestimates the physical 

mixing due to heterogeneities and conservative estimates of peak concentrations 

would be too small. 

To this end, it will be distinguished in the following between the effective 1d-model for 

estimating first arrival times and the effective 1d-model for estimating peak concentra-

tions. The main difference of the two models will be that the first model will build on the 

ensemble mixing, whereas the latter will rely on the effective mixing behaviour of the 

plume. 

In order to establish the effective transport model, it is needed to specify the advective 

movement of the plume which is determined by the mean groundwater flow through the 

fractured system, the spreading behaviour of the plume within the large-scale fracture 
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system and the interaction of the plume with the background material or the rock ma-

trix. 

7.2 Effective transport properties  

Replacing the large-scale fracture system by an effective medium implies that the frac-

ture system is not resolved in detail but that the main impact of the heterogeneous sys-

tem on the solute transport behaviour is captured by an effective description. The sug-

gestion is to replace the transport through the large-scale fracture system by an one-

dimensional transport description that correctly models the centre-of-mass movement 

of the plume through the medium and the spreading of the plume due to the heteroge-

neity of the fracture system. 

/REE 08a/, /REE 08b/ investigated particle transport in various fracture networks that 

differ in fracture length distribution, fracture density and transmissivity distribution. They 

could demonstrate that depending on their characteristics, multi-Gaussian or so-called 

operator-stable solute distributions evolve.  

Multi-Gaussian distributions are completely described by their first two centralised spa-

tial moments – the centre-of-mass and the width of the plume. In particular, the second 

centralised spatial moment or the width of the plume grows linearly with time if the 

spreading is normal-diffusive or dispersive. To this end, the spread or variance of the 

plume grows proportional to the square root of time and multi-Gaussian distributions 

can be modelled by conventional advection-dispersion equations (ADEs) with constant 

dispersion coefficients.  

In contrast, operator-stable distributions show a different behaviour. For instance, the 

spatial moments of multi-Gaussian and operator-stable distributions scale very differ-

ently. Operator-stable distributions show a super-diffusive spreading of the plume. In 

other words, the variance also grows according to a power-law of time but with an ex-

ponent that is larger than 0.5. The exponent can be linked to the fracture networks 

characteristics. As /REE 08a/, /REE 08b/ found, the main influence on the effective 

transport behaviour stems from the fracture length distribution that is given for fractures 

above a certain lower cutoff size L by 

PሺL  ℓሻ ൌ ω	ℓିࣵ		. (7.1)
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where the probability of a fracture of length ℓ is dependent on ω, a constant that de-

pends on the minimum fracture length and a power-law exponent ࣵ that ranges be-

tween 1 and 3 /DAV 93/. For 1.0 ൏ ࣵ ൏ 1.9, the effective transport behaviour is gov-

erned by anomalous dispersion. For 1.9 ൏ ࣵ ൏ 2.2, multi-Gaussian or operator-stable 

distributions may evolve depending on high or low fracture densities. For larger values 

of the exponent ࣵ, multi-Gaussian distributions evolve. 

/REN 99/ proposed that fracture length exponent values for natural fracture networks 

are in the range 1.4 ൏ ࣵ ൏ 2.2. This suggests that a super-Fickian model of transport 

such as the fractional advection-dispersion equation (FADE) may be applicable to more 

field sites than the conventional ADE, which has shown poor performance for sparsely 

fractured domains dominated by long fractures.  

The next step is to relate the fracture length exponent ࣵ with the ensemble spread 

σଵଵ
ଶ,ୣ୬ୱሺtሻ of the solute plume. /REE 08b/ empirically estimated the ensemble spreading 

as 

σଵଵ
ଶ,ୣ୬ୱሺtሻ ∝ tଶ/ࣵ  (7.2)

which implies an anomalous super-dispersive movement for ࣵ ൏ 2.0.  

With this result, the power-law fracture length distribution can be also related to hetero-

geneous continuum conductivity fields that show a power-law covariance function 

C୪୬	ሺሻሺܠሻ ൌ σ୳୳ଶ zିஒ,						0  β  1 (7.3)

with 

z ൌ ቆ1 
∑ x୧

ଶୢ
୧ୀଵ

ℓ²
ቇ
ଵ/ଶ

.				 

(7.4)

For comparing the results for the ensemble dispersion coefficients as presented in 

chapter 3 with the results of /REE 08b/, the longitudinal ensemble dispersion coefficient 

has to be integrated over time in order to get the ensemble spreading. It can be con-

cluded that 

2	
ࣵ
ൌ 2 െ β				 

(7.5)
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or  

β ൌ 2 െ
2	
ࣵ
; 							 ࣵ ൌ

2
2 െ β	

		.	 
(7.6)

To this end, for the first time fracture network properties like the length distribution are 

linked with the statistical property of a continuous heterogeneous medium. In this con-

text, the large-scale discrete fracture network can be replaced by a continuous hetero-

geneous medium and all results of effective transport coefficients can be used as pre-

sented in chapters 3 and 5. 

The background small-scale fracture system can be also represented by statistically 

distributed small-scale fractures. The difference between the fractured background sys-

tem and the large-scale fracture system is that the background system is dominated by 

shorter finite length fractures. To this end, a multi-Gaussian plume behaviour is much 

more likely in the background system than in the large-scale fracture system. The sim-

plest approach is to neglect advection and longitudinal dispersion in the background 

system and only accounts for mixing transverse to the large-scale fractures. Since it is 

known /ATT 04b/ that transverse mixing is almost not impacted by heterogeneous con-

ductivity distributions, it might be sufficient to approximate the transverse mixing by its 

local value. If the dispersive or diffusive movement in the rock matrix is not resolved at 

all, the interaction with the rock matrix can be replaced by a second porosity and a 

simple linear exchange between these two porosities. 

7.3 Simple effective 1d-transport models 

In this context, relatively simple effective 1d-transport equation models can be stated:  

a) The simple 1d-model that estimates the first arrival time distributions follows as 

∂c
∂t


∂ሺu	cሻ

∂x
െ ቀσଵଵ

ଶ,ୣ୬ୱሺtሻቁ
ଵ

ଶିஒ 	൬
∂
∂x
൰

ଶ
ଶିஒ

c ൌ െα ሺc െ k cሻ . 
(7.7)

with 

∂c
∂t

ൌ α	ሺc െ k cሻ		. 
(7.8)
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The coefficient σଵଵ
ଶ,ୣ୬ୱሺtሻ can be calculated from the results presented in chapters 3 

and 5. For β ൌ 2, the transport equation reduces to the standard Advection-

Dispersion-Equation (ADE). For β ൏ 2, an anomalous transport behaviour with a 

fractional ADE results. 

b) The simple 1d-model that should be used for estimating peak concentrations is giv-

en by 

∂c
∂t


∂ሺu	cሻ

∂x
െ ቀσଵଵ

ଶ,ୣሺtሻቁ
ଶ

ଷିஒ 	൬
∂
∂x
൰

ସ
ଷିஒ

c ൌ െα ሺc െ k cሻ . 
(7.9)

with 

∂c
∂t

ൌ α	ሺc െ k cሻ		. 
(7.10)

The coefficient σଵଵ
ଶ,ୣሺtሻ can be taken again from chapters 3 and 5.  

7.4 Analytical solution for the simple effective 1d-models 

The use of analytical solutions for solute transport predictions provides advantages 

over numerical simulations as less intensive field characterisation is needed to produce 

screening-level predictions. In general, for operator-stable plumes eigenvectors corre-

spond to principal fracture set orientations, power-law fracture length exponent values 

provide a good estimate for values of ࣵ. This result implies that first cut transport ap-

proximations for the leading plume edge in fractured media can be constructed from 

fracture network statistics and the analytical results presented in chapters 3 and 5. 

In order to give explicit solutions, initial and boundary conditions still need to be speci-

fied. It will be presented here the explicit solution of a plume of nuclides being released 

from a source in such a way that a fixed nuclide concentration is kept at one boundary 

of the computational domain. For simplicity, this boundary is set to x = 0. The second 

boundary is set to infinity. At time t = 0, no nuclides are within the computational do-

main. 

For the standard ADE or Gaussian transport, the analytical solution can be taken from 

textbooks like /HAE 92/ (page 446, formula 6.133). The solution for case 7.3 a) reads 
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cሺx, tሻ ൌ
cx

ඥ4	π Dଵଵ
ୣ୬ୱ

		න dtᇱ
1

√tଷ

୲


exp ቆെ

ሺx െ ut′ሻଶ

4Dଵଵ
ୣ୬ୱ t′

ቇ J൫ktᇱ, αkሺt െ t′ሻ൯, 
(7.11)

whereas the solution for case 7.3 b) reads 

cሺx, tሻ ൌ
cx

ට4	π Dଵଵ
ୣ
		න dtᇱ

1

√tଷ

୲


exp ቆെ

ሺx െ ut′ሻଶ

4Dଵଵ
ୣ t′

ቇ J൫ktᇱ, αkሺt െ t′ሻ൯. 
(7.12)

The function J(a,b) denotes in both formulae the Goldstein function. In case of a frac-

tional transport equation (FADE), the above stated solution can be extended to the 

fractional case making use of the fact that the exponential function under the integral 

states the nuclide distribution after a point-like release of nuclides without any interac-

tion with the rock matrix following the standard ADE – denoted by g(x,t) in the following:  

cሺx, tሻ ൌ
cx

ට4	π Dଵଵ
ୣ
		න dtᇱ

1

√tଷ

୲


gሺx, tሻ J൫ktᇱ, αkሺt െ t′ሻ൯. 

(7.13)

The nuclide distribution after a point-like release but following the FADE, reads 

gሺx, tሻ ൌ නdq		expሺiqxሻ 	exp ቀെiuqt െ σଵଵ
ଶ ሺtሻቁ |q|ଶ, (7.14)

where q denotes the transformed variable into the Fourier space. Note, that an explicit 

solution for g(x,t) cannot be stated in case of a FADE. Nevertheless, the integral repre-

sentation (7.14) can be inserted into (7.13) and the nuclide concentration can be eval-

uated numerically. 
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8 Algorithms and tools for inverse modelling and parameter 

estimation 

8.1  Introduction 

In density-driven flow problems, as well as in many other mathematical problems, 

some model parameters, for example permeabilities and porosities, are used. Their 

values have to be determined before a simulation can be started. Usually, these pa-

rameters can be taken from measurements. But in many cases the measurements are 

not sufficient or data does not exist for all hydrogeological units of the model domain. A 

calibration becomes necessary.  

In this case inverse modelling can be applied to estimate the undetermined parame-

ters. In this chapter the implementation of a parameter estimation method within the d3f 

framework is presented. Furthermore, a short user manual is provided and the applica-

tion of the method to two d3f problems is investigated. 

8.2 Problem definition 

Given observations by means of an experimental data set, one typical task is to find 

model-parameters which adequately describe the data. To make this more specific, the 

following notation is introduced: 

 ݕԦ ∈ ܻ ⊂ Թ  is a vector of observations, 

 ߠԦ ∈ ܲ ⊂ Թ  is a vector of model parameters, 

 Ԧ݂: Թ → Թ is the output function of the model. Ԧ݂ deterministically maps model 

parameters to the space of observations. 

Evaluating the function Ԧ݂ may be an expensive operation with respect to computational 

time. In the context of this work it is, e. g., running a simulation with high spatial resolu-

tion for many time steps. It is required that the number of observations is larger or 

equal to the number of model parameters, i. e., ݊   .
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Let the function ݎԦ ≔ Ԧ݂ሺߠሻ െ -Ԧ denote the residual between simulated and observed daݕ

ta. The goal is to find a set of parameters, which describes the experimental data ade-

quately. Mathematically, this can be described as follows: 

Find ߠԦ ∈ ܲ such that the parameter estimation function ߶ defined by 

߶൫ߠԦ൯ ≔
1
2
ฮݎԦሺߠԦሻฮ

ଶ

→ ݉݅݊ (8.1)

is minimal. 

For the remainder of this work, the norm in this objective is the Euclidean norm of Թ. 

This simplifies the presentation. One should bear in mind, however, that there is some 

freedom in the choice of the norm. In some cases, e. g., when standard deviations of 

the residuals are available, a weighted norm may be more appropriate. 

8.3 Gauß-Newton-Method 

One standard strategy for the solution of Eq. (8.1) is a Gauß-Newton solver cf. 

/NOC 06/ and /BAT 88/. Starting from some initial guess ߠԦ
ሺሻ

, this method iteratively 

seeks to find an update 

	Ԧߠ⟵Ԧାଵߠ ∆  (8.2)	Ԧߠ

such that the parameter estimation function ߶ decreases from step to step, i. e., 

߶൫ߠԦାଵ൯ ൏ 	߶൫ߠԦ൯. 

Assuming that Ԧ݂ and thus also ݎԦ is differentiable the following linearization is obtained 

Ԧାଵ൯ߠԦ൫ݎ ൎ Ԧ൯ߠԦ൫ݎ  ԦሻߠԦାଵെߠሺ		ܬ  (8.3)

Here, ܬ	 ≔ ܦ Ԧ݂൫ߠԦ൯=	ݎܦԦ൫ߠԦ൯ denotes the Jacobian of ݎԦ and Ԧ݂ for the current parame-

ters ߠԦ	 respectively.  Note that the step length satisfies ∆ ≕Ԧߠ ሺߠԦାଵെߠԦሻ. 
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Replacing ݎԦ in eq. (8.1) by the linearization in eq. (8.3), an alternative minimization 

problem is obtained: Find ∆  Ԧ, such thatߠ

1
2
ฮݎԦ  ∆		ܬ Ԧߠ ฮ

ଶ

→ ݉݅݊. (8.4)

Here ݎԦ൫ߠԦ൯ has been replaced by	ݎԦ.	The benefit of this formulation is that it is equiva-

lent to the linear problem 

ܬ
∆	ܬ் Ԧൌߠ െܬ

Ԧ. (8.5)ݎ்

Assuming that ܬ ∈ Թൈ has full rank, which means that the derivatives of 	ݎԦ	 w.r.t.	ߠԦ 

are linearly independent and thus ܬ
ܬ்  0 is symmetric positive definite. However, this 

problem may be ill-conditioned. In the current implementation a QR-decomposition of 

  is used to avoid problems. As for any other Newton-type method, a special strategyܬ

is required for increasing the convergence radius. In this work a standard line-search 

strategy has been implemented. 

That is, the update step is replaced by 

Ԧାଵߠ ⟵ 	Ԧߠ   (8.6)	Ԧߠ∆ߣ

and ߣ is selected form the discrete set such that  

߶ଶ൫ߠԦ  Ԧߠ∆ߣ ൯ ൌ min
ఒ∈

߶ଶ൫ߠԦ  Ԧߠ∆ߣ ൯ (8.7)

and ܮ ൌ ሼ2ି: ݊ ൌ ܭ , In the experiments presented below	ሽ.ܭ…,0 ൌ 8 turned out to be 

efficient. 

The computation of the derivatives merits some additional comments: 

1) It is not assumed that ܬ is available explicitly. Instead it is determined implicitly by 

numerical differentiation. The derivatives are approximated by 

Ԧݎ߲

Ԧߠ߲
ൎ
	ԦߠԦ൫ݎ  ߜ Ԧ݁൯ െ 	ԦߠԦ൫ݎ െ ߜ Ԧ݁൯

ߜ2
 (8.8)

This formula is of second order w.r.t ߜ  0.  
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2) This is quite expensive, since 2 evaluations of ݎԦ must be performed. However, this 

is an inherently parallel task. The same holds true for the previously mentioned line-

search strategy in eq. (8.6). 

It is important to note, that the Gauß-Newton algorithm does not only yield estimates of 

the parameters, but also their sensitivity by virtue of eq. (8.5). Using some decent 

standard assumptions this allows to estimate the (co-)variance and the correlation of 

the estimated parameters. 

8.4 Implementation and Parallelization 

The main steps of the implementation of the Quasi-Newton method described in sec-

tion 8.3 are depicted in Fig. 8.1. A description in detail and a user manual for parameter 

estimation can be found in 13D. 

 

Fig. 8.1 Most important steps of the parameter estimation algorithm implemented in 

d3f (figure taken from /MUH 12/) 

Mainprocess

Subprocesses

Compute the
parameter estimation function
for every variation.

Determine all necessary parameter vector 
variations for the computation of the derivatives
of the parameter estimation functions with 
respect to the parameters.

Initial Parametervector

estimated parameter vector

Prepare one subprocess for every 
variation of the parameter vector.

Start a single subprocess
for every variation.

Collect results from subprocesses and
determine all variations for line search. 

Inform mainprocess that 
subprocess has finished.

Prepare one subprocess for every line search
step.

Collect results and determine the
optimal parameter vector.

Convergence criterium satisfied?

Yes

Determine current parameter vector.

Initial Step ? 

If 
no

t, 
ne

xt
 s

te
p

If yes, continue with
initial parameter vector

If no, continue with
parameter vector from
last step

Start a single subprocess
for every variation.

Inform mainprocess that 
subprocess has finished.

Compute the
parameter estimation function
for every variation.



157 

8.5  Numerical Experiments 

In this section the presented method for parameter estimation is applied to two different 

density driven flow problems. Section 8.5.1 covers the Gorleben example (gorleb-

en_left_fit) and Section 8.5.2 covers the Saltdome example (saltdome_fit) from d3f. In 

both cases the permeability parameter ࡷ	is estimated from a given set of datapoints for 

the mass fraction. These examples can be used to create all necessary files needed by 

the parameter estimation method for other d3f problems. 

The underlying equations for density driven flow in the subdomain ߙ read: 

߲௧ሺ߶ఈߩఈ߱ఈሻ  ߘ ⋅ ሺߩఈ߱ఈܙఈ െ ఈሻ߱ߘఈ۲ఈߩ ൌ 0 (8.9)

߲௧ሺ߶ఈߩఈሻ  ߘ ⋅ ሺߩఈܙఈሻ ൌ 0 (8.10)

ఈܙ ൌ െߤఈିଵ۹ఈሺߘఈ െ ሻ (8.11)ఈߩ

ఈߩ ൌ ሺ1 െ ߱ఈሻߩௐ߱ఈߩ (8.12)

ఈߤ ≔ ߤ ⋅ ∗ሺ߱ఈሻ (8.13)ߤ

∗ሺ߱ఈሻߤ ≔ 1  1.85 ⋅ ߱ఈ ⋅ ߱ఈ,௦ െ 4.1 ⋅ ሺ߱ఈ ⋅ ߱ఈ,௦ሻଶ  44.5
⋅ ሺ߱ఈ ⋅ ߱ఈ,௦ሻଷ (8.14)

۲ఈ ≔ ۲ఈௗ  ۲ఈௗ (8.15)

۲ఈௗ ≔ ܽఈ௧ ఈ|۷ܙ|  ሺܽఈℓ െ ܽఈ௧ ሻ
ఈܙ⨂ఈܙ
|ఈܙ|

 (8.16)

A nomenclature can be found in Appendix 13A. 

8.5.1 Example Gorleben 

The geometry and boundary conditions are depicted in Fig. 8.2, initial values for mass 

fraction can be found in Tab. 8.1 and the parameters used in the computation are 

shown in Tab. 8.2. The a priori given datapoints for the mass fraction are shown in Tab. 

8.3. The parameter estimation method is then applied to two different test cases. These 

cases have a different initial value for the permeability ࡷ. Results are shown in Tab. 8.4 

and Tab. 8.5.  
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It is shown that in both cases the parameter estimation method works sufficiently well. 

After a total of seven Newton-steps the value for the parameter estimation function is 

reduced by a factor of about 10ି଼ in the first case and 10ିଵଶ in the second case. The 

permeability parameter ࡷ is estimated up to an error of 6 % in the first case and <1 % 

in the second case. 

 

Fig. 8.2 Domain and boundary conditions for the example "Gorleben" 

If boundary conditions are not specified then Neumann zero boundary conditions are used 

Tab. 8.1 Initial conditions for the example "Gorleben" 

Condition Value  

∀ሺݔ, ߱ ሻݕ ൌ 0 

Tab. 8.2 Parameters for the example "Gorleben" 

Symbol Value in subdomain "Aquifer" 

,ሺ0  െ9.81 m sିଶሻ 

۲ௗ 1.00 ⋅ 10ିଽ mଶ s ⋅ ۷ 

1.00 ࡷ ⋅ 10ି଼ mଶ ⋅ ۷ 

߶ 0.2 

 1.99ߤ ⋅ 10ିଷ kg mିଵ sିଵ 

߱௦ 0.26 

ௐ 998.2 kgߩ mିଷ 

 1197.2ߩ kg mିଷ 

ሾܽ௧, ܽℓሿ ሾ10 m, 100 mሿ 

c = 0 

q = 3.3·10-5 
Aquifer 

c = 1 

hydrostat. Press. 

p = 0.0 to 

p = 11 744.532 

0 m 

-400 m 
0 m 16 000 m 
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Tab. 8.3 Data for the UG3 numproc "l2_param_est" 

Time Coordinates Value 

1.0 ⋅ 10 ሺ8332, െ221ሻ ߱ ൌ 0.0732404 

1.1 ⋅ 10 ሺ8332, െ221ሻ ߱ ൌ 0.0835534 

1.2 ⋅ 10 ሺ8332, െ221ሻ ߱ ൌ 0.0927142 

1.3 ⋅ 10 ሺ8332, െ221ሻ ߱ ൌ 0.1009130 

1.4 ⋅ 10 ሺ8332, െ221ሻ ߱ ൌ 0.1083080 

1.5 ⋅ 10 ሺ8332, െ221ሻ ߱ ൌ 0.1211720 

Tab. 8.4 Numerical Test 1 

Newton 
Step 

L2-Error Value for ࡷ 

0 5.5⋅ 10ିସ 5.00 ⋅ 10ିଽ mଶ ⋅ ۷ 

1 2.0⋅ 10ିହ 7.61 ⋅ 10ିଽ mଶ ⋅ ۷ 

2 1.7⋅ 10ିହ 8.59 ⋅ 10ିଽ mଶ ⋅ ۷ 

3 1.3⋅ 10ି 9.22 ⋅ 10ିଽ mଶ ⋅ ۷ 

4 9.1⋅ 10ିଽ 9.58 ⋅ 10ିଽ mଶ ⋅ ۷ 

5 6.1⋅ 10ିଵ 9.78 ⋅ 10ିଽ mଶ ⋅ ۷ 

6 4.0⋅ 10ିଵଵ 9.89 ⋅ 10ିଽ mଶ ⋅ ۷ 

7 2.5⋅ 10ିଵଶ 9.94 ⋅ 10ିଽ mଶ ⋅ ۷ 

Tab. 8.5 Numerical Test 2 

Newton 
Step 

L2-Error Value for ࡷ 

0 1.6⋅ 10ିଷ 2.00 ⋅ 10ି଼ mଶ ⋅ ۷ 

1 4.6⋅ 10ିହ 1.35 ⋅ 10ି଼ mଶ ⋅ ۷ 

2 2.2⋅ 10ି 1.16 ⋅ 10ି଼ mଶ ⋅ ۷ 

3 1.5⋅ 10ି 1.09 ⋅ 10ି଼ mଶ ⋅ ۷ 

4 1.0⋅ 10ି଼ 1.04 ⋅ 10ି଼ mଶ ⋅ ۷ 

5 6.5⋅ 10ିଵ 1.02 ⋅ 10ି଼ mଶ ⋅ ۷ 

6 3.8⋅ 10ିଵଵ 1.01 ⋅ 10ି଼ mଶ ⋅ ۷ 

7 2.4⋅ 10ିଵଶ 1.00 ⋅ 10ି଼ mଶ ⋅ ۷ 
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8.5.2 Example Saltdome 

In contrast to the gorleben example, where the domain is build from one layer only, a 

total of three different layers are used in the saltdome example (Q-Sand, Clay, and T-

Sand). This leads to three permeability parameters, which need to be estimated by the 

parameter estimation method.  

The domain and boundary conditions are depicted in Fig. 8.3, initial conditions for the 

mass fractions are shown in Tab. 8.6, and the parameters used in the computation can 

be found in  

Tab. 8.7. As expected, with these additional datapoints the parameters converge to the 

correct values. After a total of seven newton steps the parameter estimation function is 

reduced by a factor of 10ିଽ. The permeability parameter for the subdomain Q-Sand is 

estimated up to an error of 2 %, the permeability parameters for the subdomains T-

Sand and Clay are estimated up to an error of 1 %.  

The saltdome example shows, that datapoints should be chosen depending on the 

computational domain and the number of parameters to be estimated. 

 

 

Fig. 8.3 Domain and boundary conditions for the example "Saltdome" 

If boundary conditions are not specified then Neumann zero boundary conditions are used. 

Tab. 8.6 Initial conditions for the example "Saltdome" 

Condition Value 

ݕ ൏ 300 ߱ ൌ 1 

ݕ  ݕ  330 ߱ ൌ 1 െ ሺݕ െ 300ሻ/30 

330 ൏ ߱ ݕ ൌ 0 

 

c = 0 

0 m 

40
0 

m
 

T-sand 

c 
=

 0
 

q 
=

 -
6.

3·
10

-8
 Q-sand 

16 000 m

clay clay clay 

c = 0 
q = -5.1·10-9 

c “inout” 
p = 0 

c = 0 
q = -5.1·10-6 



161 

Tab. 8.7 Parameters for the example "Saltdome" 

Symbol Value in subdomain 
"Clay" 

Value in subdomain 
"Q-Sand" 

Value in subdomain 
"T-Sand" 

,ሺ0  െ9.81 m	sିଶሻ ሺ0, െ9.81 m sିଶሻ ሺ0, െ9.81 m	sିଶሻ 

۲ௗ 1.00 ⋅ 10ିଽ mଶ	s ⋅ 	۷ 1.00 ⋅ 10ିଽ mଶ s ⋅ ۷ 1.00 ⋅ 10ିଽ mଶ	s ⋅ 	۷ 

1 ࡷ ⋅ 10ିଵଷ mଶ ⋅ 	۷ 5 ⋅ 10ିଵ mଶ 1 ⋅ 10ିଵ mଶ 

߶ 0.05 0.2 0.2 

	 1.99ߤ ⋅ 10ିଷ kg	mିଵ	sିଵ 1.99 ⋅ 10ିଷ kg mିଵ sିଵ 1.99 ⋅ 10ିଷ kg	mିଵ	sିଵ 

߱௦ 0.26 0.26 0.26 

mିଷ 998.2 kg	ௐ 998.2 kgߩ mିଷ 998.2 kg	mିଷ 

mିଷ 1197.2	kg	 1197.2ߩ kg mିଷ 1197.2	kg	mିଷ 

ሾܽ௧, ܽℓሿ ሾ1 m, 10	mሿ ሾ1 m, 10 mሿ ሾ1 m, 10	mሿ 

Tab. 8.8 Data for the UG3 numproc "l2_param_est" (Numerical Test 1) 

Time Coordinates Value 

1.0 ⋅ 10ଽ ሺ13000,200ሻ ߱ ൌ 0.868481 

1.1 ⋅ 10ଽ ሺ13000,200ሻ ߱ ൌ 0.858477 

1.2 ⋅ 10ଽ ሺ13000,200ሻ ߱ ൌ 0.847902 

1.3 ⋅ 10ଽ ሺ13000,200ሻ ߱ ൌ 0.837481 

1.4 ⋅ 10ଽ ሺ13000,200ሻ ߱ ൌ 0.827644 

1.6 ⋅ 10ଽ ሺ13000,200ሻ ߱ ൌ 0.807919 

1.7 ⋅ 10ଽ ሺ13000,200ሻ ߱ ൌ 0.798205 

1.8 ⋅ 10ଽ ሺ8000,200ሻ ߱ ൌ 0.852578 

1.9 ⋅ 10ଽ ሺ8000,200ሻ ߱ ൌ 0.843073 

2.0 ⋅ 10ଽ ሺ8000,200ሻ ߱ ൌ 0.833789 

2.1 ⋅ 10ଽ ሺ8000,200ሻ ߱ ൌ 0.824735 

2.2 ⋅ 10ଽ ሺ8000,200ሻ ߱ ൌ 0.815915 
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Tab. 8.9 Numerical Test 1 

New-
ton 

Step 

L2-Error Value for ࡷ  
"Q-Sand" 

Value for ࡷ  
"T-Sand" 

Value for ࡷ  
"Clay" 

0 3.8⋅ 10ିଷ 7.00 ⋅ 10ିଵ mଶ ⋅ ۷ 2.00 ⋅ 10ିଵ mଶ ⋅ ۷ 3.00 ⋅ 10ିଵଷ mଶ ⋅ 	۷ 

1 8.8⋅ 10ି 1.45 ⋅ 10ିଵ mଶ ⋅ ۷ 1.13 ⋅ 10ିଵ mଶ ⋅ ۷ 4.43 ⋅ 10ିଵଷ mଶ ⋅ 	۷ 

2 5.1⋅ 10ି଼ 1.36 ⋅ 10ିଵ mଶ ⋅ ۷ 9.94 ⋅ 10ିଵଵ mଶ ⋅ ۷ 3.60 ⋅ 10ିଵଷ mଶ ⋅ 	۷ 

3 5.2⋅ 10ିଽ 1.36 ⋅ 10ିଵ mଶ ⋅ ۷ 8.91 ⋅ 10ିଵଵ mଶ ⋅ ۷ 4.92 ⋅ 10ିଵଷ mଶ ⋅ 	۷ 

4 3.5⋅ 10ିଵ 1.36 ⋅ 10ିଵ mଶ ⋅ ۷ 8.48 ⋅ 10ିଵଵ mଶ ⋅ ۷ 6.39 ⋅ 10ିଵଷ mଶ ⋅ 	۷ 

5 1.0⋅ 10ିଵଵ 1.38 ⋅ 10ିଵ mଶ ⋅ ۷ 8.52 ⋅ 10ିଵଵ mଶ ⋅ ۷ 6.79 ⋅ 10ିଵଷ mଶ ⋅ 	۷ 

6 8.7⋅ 10ିଵଶ 1.38 ⋅ 10ିଵ mଶ ⋅ ۷ 8.48 ⋅ 10ିଵଵ mଶ ⋅ ۷ 6.94 ⋅ 10ିଵଷ mଶ ⋅ 	۷ 

7 8.4⋅ 10ିଵଶ 1.38 ⋅ 10ିଵ mଶ ⋅ ۷ 8.46 ⋅ 10ିଵଵ mଶ ⋅ ۷ 7.03 ⋅ 10ିଵଷ mଶ ⋅ 	۷ 

Tab. 8.10 Data for the UG3 numproc "l2_param_est" (Numerical Test 2) 

Time Coordinates Value 

1.00 ⋅ 10ଽ ሺ15000,200ሻ ߱ ൌ 0.710631 

1.05 ⋅ 10ଽ ሺ8000,275ሻ ߱ ൌ 0.701684 

1.10 ⋅ 10ଽ ሺ15000,200ሻ ߱ ൌ 0.697345 

1.15 ⋅ 10ଽ ሺ8000,275ሻ ߱ ൌ 0.679212 

1.20 ⋅ 10ଽ ሺ15000,200ሻ ߱ ൌ 0.684607 

1.25 ⋅ 10ଽ ሺ8000,275ሻ ߱ ൌ 0.657997 

1.30 ⋅ 10ଽ ሺ15000,200ሻ ߱ ൌ 0.672264 

1.35 ⋅ 10ଽ ሺ8000,275ሻ ߱ ൌ 0.638124 

1.40 ⋅ 10ଽ ሺ15000,200ሻ ߱ ൌ 0.660415 

1.45 ⋅ 10ଽ ሺ8000,275ሻ ߱ ൌ 0.619393 

1.60 ⋅ 10ଽ ሺ15000,200ሻ ߱ ൌ 0.637511 

1.65 ⋅ 10ଽ ሺ8000,275ሻ ߱ ൌ 0.585251 

1.70 ⋅ 10ଽ ሺ15000,200ሻ ߱ ൌ 0.626399 

1.75 ⋅ 10ଽ ሺ15000,350ሻ ߱ ൌ 0.055336  

1.80 ⋅ 10ଽ ሺ15000,350ሻ ߱ ൌ 0.054888 

1.85 ⋅ 10ଽ ሺ500,350ሻ ߱ ൌ 0.202641 

1.90 ⋅ 10ଽ ሺ500,200ሻ ߱ ൌ 0.913014 

1.95 ⋅ 10ଽ ሺ500,350ሻ ߱ ൌ 0.193654 

2.00 ⋅ 10ଽ ሺ8000,350ሻ ߱ ൌ 0.159648 



163 

Time Coordinates Value 

2.05 ⋅ 10ଽ ሺ8000,350ሻ ߱ ൌ 0.156330  

2.10 ⋅ 10ଽ ሺ8000,350ሻ ߱ ൌ 0.153129 

2.15 ⋅ 10ଽ ሺ8000,350ሻ ߱ ൌ 0.15004 

2.20 ⋅ 10ଽ ሺ8000,200ሻ ߱ ൌ 0.815915 

Tab. 8.11 Numerical Test 2 

Newton 
Step 

L2-Error Value for ࡷ  
"Q-Sand" 

Value for ࡷ  
"T-Sand" 

Value for ࡷ  
"Clay" 

0 8.4⋅ 10ିଷ 7.00 ⋅ 10ିଵ mଶ ⋅ ۷ 2.00 ⋅ 10ିଵ mଶ ⋅ ۷ 3.00 ⋅ 10ିଵଷ mଶ ⋅ ۷

1 2.7⋅ 10ିସ 2.07 ⋅ 10ିଵ mଶ ⋅ ۷ 1.46 ⋅ 10ିଵ mଶ ⋅ ۷ 2.04 ⋅ 10ିଵଷ mଶ ⋅ ۷

2 7.5⋅ 10ି 1.87 ⋅ 10ିଵ mଶ ⋅ ۷ 1.07 ⋅ 10ିଵ mଶ ⋅ ۷ 2.05 ⋅ 10ିଵଷ mଶ ⋅ ۷

3 2.7⋅ 10ି 2.45 ⋅ 10ିଵ mଶ ⋅ ۷ 1.09 ⋅ 10ିଵ mଶ ⋅ ۷ 1.31 ⋅ 10ିଵଷ mଶ ⋅ ۷

4 1.7⋅ 10ି 2.80 ⋅ 10ିଵ mଶ ⋅ ۷ 1.09 ⋅ 10ିଵ mଶ ⋅ ۷ 1.19 ⋅ 10ିଵଷ mଶ ⋅ ۷

5 6.2⋅ 10ି଼ 3.72 ⋅ 10ିଵ mଶ ⋅ ۷ 1.06 ⋅ 10ିଵ mଶ ⋅ ۷ 1.04 ⋅ 10ିଵଷ mଶ ⋅ ۷

6 1.7⋅ 10ିଽ 4.76 ⋅ 10ିଵ mଶ ⋅ ۷ 1.03 ⋅ 10ିଵ mଶ ⋅ ۷ 1.01 ⋅ 10ିଵଷ mଶ ⋅ ۷

7 6.1⋅ 10ିଵଶ 4.91 ⋅ 10ିଵ mଶ ⋅ ۷ 1.01 ⋅ 10ିଵ mଶ ⋅ ۷ 1.01 ⋅ 10ିଵଷ mଶ ⋅ ۷

8.6 Conclusions 

This chapter describes the parameter estimation method, which has been implemented 

and submitted to the d3f repository within the A-Dur project. In Appendix D a user man-

ual can be found describing all necessary details about the parameter estimation 

method. Furthermore, the functionality of the parameter estimation method is investi-

gated by two examples. It is shown that the method works sufficiently well, as long as 

the parameter estimation problem is not ill-conditioned. This is not the case if sufficient 

data points are provided. 
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9 Fast predictions by random-walk methods 

9.1 Introduction 

In the simulation of solute transport in porous media, the advection-dispersion equation 

/BEA 79/ is usually adopted as governing equation, which can be solved by standard 

finite difference methods (FDM) and finite element methods (FEM). These methods 

may suffer from the numerical dispersion or artificial oscillations unless a high grid 

resolution and small time steps are applied. An alternative is the particle tracking 

method which does not have the Peclet constraint, thus is applicable especially for the 

advection-dominated problems. 

The basic idea of particle tracking is that a finite number of particles represent the 

distribution of a solute mass. Each particle carries a certain concentration or a certain 

fraction of the total mass and moves in the porous media according to the velocity field 

and dispersive process. The concentration distribution of the system is converted from 

particle clouds by spatial discretization and counting of particles in the cell. The particle 

tracking method does not solve the transport equation directly; instead, it uses the flow 

velocities obtained from the solution of the flow equation to advect the particles, and 

adds some additional displacement to simulate dispersion. 

The benchmarks presented in this section are organized in such a way that they can be 

classified by both dimension and application field. 

Tab. 9.1 RWPT benchmarks organization 

 Classification by dimension 

Field 1d 2d 3d 

Porous Media ADuR5-1  ADuR5-2 

Pore Scale  ADuR13-1 ADuR13-2 
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9.2 Theory 

The classical advection-dispersion equation of a conservative solute in porous media 

can be written as /BEA 79/ 

ܥ∂
ݐ∂

ൌ െሺܸܥሻ  ሻ (9.1)ܥሺ۲

where ܥ is the concentration (ିܮܯଷ), ܸ is the pore velocity vector (ିܮܯଵ), and ۲ is the 

hydrodynamic dispersion tensor (ܮଶܶିଵ), t is time (ܶଶ) and is the differential operator. 

The random walk particle tracking (RWPT) method is issued from stochastic physics. 

The stochastic differential equation is /ITO 51/ 

ሻݐሺܠ ൌ ିଵሻݐሺܠ  ݐିଵሻሻΔݐሺܠሺܞ  ܼඥ2۲ሺܠሺݐିଵሻሻΔ(9.2) ݐ

where ܠ is the coordinates of the particle location, Δݐ is the time step, and ܼ is a 

random number whose mean is zero and variance is unity. 

It has been shown that this equation is equivalent to an equation that is slightly different 

from the advection-dispersion eq. (9.1). To be equivalent to eq. (9.1), the modified 

velocity /KIN 86/ is expressed as 

ܸ
∗ ൌ ܸ 	

ଷ

ୀଵ

ܦ∂
ݔ∂

 (9.3)

with dispersion tensor /BEA 79/ 

ܦ ൌ ߜ|ܸ|்ߙ  ሺߙ െ ሻ்ߙ
ܸ ܸ

|ܸ|
 ܦ

ௗ (9.4)

where ߜ is the Kronecker symbol, ߙ is the longitudinal dispersion length, ்ߙ is the 

transverse dispersion length, ܦ
ௗ  is the tensor of molecular diffusion coefficient, and ܸ 

is the component of the mean pore velocity in the ݅th direction. 
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The equivalent stochastic differential equation to eq. (9.1) in three-dimensional 

problems can be written as (cf. /TOM 90/, /LAB 96/, /KIN 88/) 

௧ା௧ݔ ൌ ௧ݔ  ቆ ௫ܸሺݔ௧, ,௧ݕ ,௧ݖ ሻݐ 
௫௫ܦ∂
ݔ∂


௫௬ܦ∂
ݕ∂


௫௭ܦ∂
ݖ∂

ቇΔݐ

				ඥ2ܦ௫௫Δܼݐଵ  ට2ܦ௫௬Δܼݐଶ  ඥ2ܦ௫௭Δܼݐଷ

௧ା௧ݕ ൌ ௧ݕ  ቆ ௬ܸሺݔ௧, ,௧ݕ ,௧ݖ ሻݐ 
௬௫ܦ∂
ݔ∂


௬௬ܦ∂
ݕ∂


௬௭ܦ∂
ݖ∂

ቇΔݐ

				ට2ܦ௬௫Δܼݐଵ  ට2ܦ௬௬Δܼݐଶ  ට2ܦ௬௭Δܼݐଷ

௧ା௧ݖ ൌ ௧ݖ  ቆ ௭ܸሺݔ௧, ,௧ݕ ,௧ݖ ሻݐ 
௭௫ܦ∂
ݔ∂


௭௬ܦ∂
ݕ∂


௭௭ܦ∂
ݖ∂

ቇ Δݐ

				ඥ2ܦ௭௫Δܼݐଵ  ට2ܦ௭௬Δܼݐଶ  ඥ2ܦ௭௭Δܼݐଷ

(9.5)

where ݕ ,ݔ, and ݖ are the coordinates of the particle location, Δݐ is the time step, and ܼ 

is a random number whose mean is zero and variance is unity. 

In eq. (9.5), the spatial derivatives of the dispersion coefficients are introduced from the 

modified velocity /KIN 86/. Together with eq. (9.4), the spatial derivatives of the 

dispersion coefficients can be expressed as a function of the derivatives of velocity. 

Note that to obtain the derivatives of velocity, velocity has to be continuous 

mathematically. To this end, velocity is interpolated at any location in an element from 

the known velocity at the element nodes. 

 

Fig. 9.1 Spatial derivatives of velocity for a particle in triangular and quadrilateral el-

ements 

Since the proposed RWPT method makes use of the FEM for velocity estimation, the 

derivative of velocity within each element is computed as in Fig. 9.1 and written as 
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∂ ௫ܸ

ݔ∂
ൌ
ܸሺݔோሻ െ ܸሺݔሻ

݈௫
;
∂ ௬ܸ

ݕ∂
ൌ
ܸሺݕሻ െ ܸሺݕሻ

݈௬
;
∂ ௭ܸ

ݖ∂
ൌ
ܸሺݖேሻ െ ܸሺݖௌሻ

݈௭
 (9.6)

while recognizing, 

∂ ௫ܸ

ݕ∂
ൌ
∂ ௫ܸ

ݖ∂
ൌ
∂ ௬ܸ

ݔ∂
ൌ
∂ ௬ܸ

ݖ∂
ൌ
∂ ௭ܸ

ݔ∂
ൌ
∂ ௭ܸ

ݕ∂
≃ 0 (9.7)

where ݔ and ݔோ are intersection points of the element edges with a line parallel to the 

global ݔ axis at which velocities are ܸሺݔሻ and ܸሺݔோሻ, ݕ and ݕ are intersection points 

of the element edges from down to up with a line parallel to the global ݕ axis at which 

velocities are ܸሺݕሻ and ܸሺݕሻ, ݖௌ and ݖே are the intersection points of the element 

edges from south to north with a line parallel to the global ݖ axis at which velocities are 

ܸሺݖௌሻ and ܸሺݖேሻ, and ݈௫, ݈௬, and ݈௭ are the length of each intersection line, respectively. 

Thus, the derivatives of the dispersion coefficients are as follows /HOT 02/ 

௫௫ܦ∂
ݔ∂

ൌ ௫ܸ
∂ ௫ܸ

ݔ∂
ቈߙ ቆ

2
ܸ
െ ௫ܸ

ଶ

ܸଷ
ቇ െ ்ߙ

௬ܸ
ଶ  ௭ܸ

ଶ

ܸଷ


௫௬ܦ∂
ݕ∂

ൌ ሺߙ െ ሻ்ߙ ቈ
∂ ௬ܸ
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ܸ
െ ௫ܸ ௬ܸ

ଶ

ܸଷ
∂ ௬ܸ
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௫௭ܦ∂
ݖ∂

ൌ ሺߙ െ ሻ்ߙ ቈ
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(9.8)

Because velocity is not derivable at the interface of two adjacent elements in a 

nonuniform flow, computing dispersion coefficient derivatives by using a finite element 

approach would yield erroneous values /HOT 02/. To prevent these errors, a particle is 

coded to have information of an element index and the velocity estimation is 
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continuous even at the elemental boundaries in this method. Thus, the derivatives of 

dispersion coefficients will be computed accordingly. This is an improved approach 

from the work by /HOT 02/. 

9.3 Random walk particle tracking (RWPT) in porous media (Benchmark 

ADuR5-1 and ADuR5-2) 

9.3.1 One-Dimensional Benchmark (ADuR5-1) 

9.3.1.1 Problem definition 

A one-dimensional homogeneous aquifer is chosen to simulate a soil column 

experiment conducted by /HAR 00/. In the experiment, a constant flow rate was 

established, 2.5 pore volumes NaCl-tap water solution and 2.5 pore volumes 

Cryptosporidium parvum solution (1 ൈ 10ହ oocysts per mL) were injected respectively, 

the outflow was continuously collected. Fig. 9.2 shows the schematic description of the 

experiment. 

  

Fig. 9.2 Schematic of soil column experiment 

NaCl-tap water solution is used as a tracer, which experiences only advection and 

dispersion. The Cryptosporidium parvum can be classified as a biological colloid. 

Colloids moving in porous media experience advection, dispersion, sorption-

desorption, and filtration. 
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9.3.1.2 Motivation 

This benchmark aims to verify the proposed RWPT method by comparing it with tradi-

tional FEM in mass transport. Furthermore, RWPT provides features to simulate com-

plex processes such as sorption-desorption and filtration. 

9.3.1.3 Analytical solution 

For the one-dimensional transport including sorption-desorption and filtration through a 

homogeneous medium the following differential equation is applied 

ܥ∂
ݐ∂


ߩ
݊
ௌܥ∂
ݐ∂

ൌ ߙݒ
∂ଶܥ
ଶݔ∂

െ ሺݒ
ܥ∂
ݔ∂

 ሻ (9.8)ܥߣ

where ܥ is dissolved concentration (kg⋅m	ିଷ), ܥௌ is sorbed concentration (kg⋅kg	ିଵ), ݐ is 

time (s), ߩ is bulk density (kg⋅m	ିଷ), ݊ is porosity (-), ݒ is velocity (m⋅s	ିଵ), ߙ is 

longitudinal dispersivity (m), ݔ is distance (m), and ߣ is filtration coefficient (m	ିଵ). 

The instantaneous, linear sorption model assumes that 

ௌܥ ൌ (9.9) ܥௗܭ

where ܭௗ is the partitioning coefficient (݉ଷ ⋅ ݇݃ିଵ). The retardation coefficient ܴ is 

ܴ ൌ 1 
ߩ
݊
ௗ (9.10)ܭ

The dispersion coefficient in the ݔ-direction ܦ௫௫ (݉ଶ ⋅  ଵ) isିݏ

௫௫ܦ ൌ  (9.11)ߙݒ

The analytical solution for a pulse input (inject time from 0 to ߬) is /VAN 81/): 

ܥ ൌ
1
2
ܥ ቈexp ൬

ሺ1ݔݒ െ ሻߛ
௫௫ܦ2

൰ erfc ቆ
ݔ െ ܴ/ݐߛݒ

2ඥܦ௫௫ݐ/ܴ
ቇ 

          exp ቀ
௩௫ሺଵାఊሻ

ଶೣೣ
ቁ erfc ൬

௫ା௩ఊ௧/ோ

ଶඥೣೣ௧/ோ
൰൨ 

(9.12)

for ݐ ∈ ሺ0, ߬ሻ, 
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ܥ ൌ
1
2
ܥ ቈexp ൬

ሺ1ݔݒ െ ሻߛ
௫௫ܦ2

൰ erfc ቆ
ݔ െ ܴ/ݐߛݒ

2ඥܦ௫௫ݐ/ܴ
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          exp ቀ
௩௫ሺଵାఊሻ

ଶೣೣ
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௫ା௩ఊ௧/ோ

ଶඥೣೣ௧/ோ
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          െexp ቀ
௩௫ሺଵିఊሻ

ଶೣೣ
ቁ erfc ൬

௫ି௩ఊሺ௧ିఛሻ/ோ

ଶඥೣೣሺ௧ିఛሻ/ோ
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          െexp ቀ
௩௫ሺଵାఊሻ

ଶೣೣ
ቁ erfc ൬

௫ା௩ఊሺ௧ିఛሻ/ோ

ଶඥೣೣሺ௧ିఛሻ/ோ
൰൨ 

(9.13)

for ݐ ∈ ሺ߬,∞ሻ , where 

ߛ ൌ ඥ1  ଶ (9.14)ݒ/௫௫ܦܴߣݒ4

9.3.1.4 Numerical solution 

The calculation area is simplified to a line with the length of 0.1m. For the numerical 

model 100 elements and 101 nodes are included. Head gradient is set by giving two 

constant pressures at both left and right boundaries to establish a uniform velocity field 

with the value of 7.1 ݉݀ିଵ. 

The number of pore volume (ݔ-axis) is calculated by 

ܲ ൌ
ݐݒ
ܮ

 (9.15)

where ݒ is the seepage velocity, ܮ is the length of the soil column. Considering the 

Courant number, the time step size is set by assigning ܲ to 0.01. In the simulation, 

100 particles per time steps are loaded near the left boundary for 250 time steps. 

The filtration process is described by using the filtration coefficient. The sorption-

desorption process is described by the two-rate model from /JOH 95/. In the two-rate 

model, desorption is governed by two different rate coefficients 

ܰ/ ܰ ൌ భ௧ି݁ܣ  ሺ1 െ ሻ݁ିమ௧ (9.16)ܣ

where ࡺ is the number of particles remaining on the medium at time ࡺ ,࢚ is the initial 

number of particles on the medium at the time of initial sorption,  is a weighting factor, 
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and  and  are the fast and slow sorption rate coefficient, respectively. Relevant 

parameters are listed in Tab. 9.2. 

Tab. 9.2 Model parameters for the column experiment 

Symbol Parameter Value Unit 

݇   Permeability  1.114476⋅ 10ିଵଵ   m	ଶ  

     Longitudinal dispersivity   0.005   mߙ

݊   Porosity(tracer)   0.5   െ  

݊   Porosity(colloid)   0.42   െ  

  Weighting factor   0.9   െ   ܣ

݇ଵ  Fast sorption rate coefficient  0.1   െ  

݇ଶ  Slow sorption rate coefficient  0.001   െ  

  ିଵ	Filtration coefficient   5.2   m   ߣ

9.3.1.5 Results 

The tracer experiences only advection and dispersion, which means in eq. (9.9), ܥௌ ൌ

ߣ ,0 ൌ 0. The results of RWPT simulation for the distribution of concentration over time 

are compared to those of measured value from the experiment by Harter, the analytical 

solution, and the OGS simulation with the mass transport method. The comparison 

results are shown in Fig. 9.3, where the green curve is the measured value, the dashed 

black curve is the simulation result operated with FEM, the blue curve is the RWPT 

simulation result, and the red curve is the analytical solution. 
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Fig. 9.3 Tracer transport with advection and dispersion 

In the colloid transport simulation, the number of particles leaving the right boundary is 

counted each time step. The number is then converted to concentration in order to 

obtain the corresponding breakthrough curve over time. The comparison with the 

measured value from Harter’s experiment is shown in Fig. 9.4, where the green curve 

is the measured value, and the blue curve is the RWPT simulation result. No analytical 

solution is available in this kind of situation. 

  

Fig. 9.4 Colloid transport with sorption-desorption and decay 
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9.3.2 Three-Dimensional Benchmark (ADuR5-2) 

9.3.2.1 Problem definition 

A three-dimensional homogeneous cube is chosen to verify advective dispersive 

transport. The side length of the cube model domain is 100 ݉. The velocity field is held 

constant in the diagonal direction from the bottom left to top right (Fig. 9.5). 

   

Fig. 9.5 Schematic of 3d homogeneous model 

9.3.2.2 Analytical solution 

The stated problem can be solved with an analytical solution provided by /OGA 61/. 

,ݔሺܥ ,ݕ ,ݖ ሻݐ ൌ
ܸܥ

8ሺݐߨሻଷ/ଶඥܦ௫௫ܦ௬௬ܦ௭௭
exp ቈെ

ሺݔ െ ሻଶݔ

ݐ௫௫ܦ4
െ
ሺݕ െ ሻଶݕ

ݐ௬௬ܦ4

െ
ሺݖ െ ሻଶݖ

ݐ௭௭ܦ4
 

(9.17)

where ܥ is the initial concentration. 

9.3.2.3 Numerical solution 

The domain is discretized with tetrahedral elements. The same grid density is used for 

converting particle distributions to element concentrations. The head gradient is set by 

assigning two constant boundary conditions on the diagonal joint points. 
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The initial source load is applied to an area close to the bottom left of the domain with 

an initial concentration of ܥ ൌ 1 ݇݃݉ିଷ. The material properties for this model setup 

are given in Tab. 9.3. 

Tab. 9.3 Material properties for 3d homogeneous medium 

Symbol Parameter Value Unit 

݇   Permeability   6.0804⋅ 10ିଵ   m	ଶ  

    Longitudinal dispersivity  0.005   mߙ

  Transverse dispersivity  0.005   m  ்ߙ

݊   Porosity   0.2   െ  

9.3.2.4 Results 

The advection-dispersion of the particles pulse across the cube is shown in Fig. 9.6. At 

the beginning, particles are assembled together as they were released from positions 

that are very close to each other. As the particles moving along with the flow, they 

disperse and form a spherical surface-shaped cloud. When the particles move to the 

center of the cube, the area of the spherical surface-shaped cloud reach to the 

maximum. After particles across the center of the cube, as the flowpaths begin to 

converge, the shape of the particle cloud change to a funnel-shaped curved surface. 

Particles move along the diagonal line have the bigger velocities and shorter pathlines 

so they reach to the top right corner of the cube earlier than other particles. 

The number of particles that pass the top right corner of the cube is counted at every 

time step in order to generate the concentration breakthrough curve. The result of 

RWPT simulation for the distribution of concentration over time is compared to the 

analytical solution. The comparison results are shown in Fig. 9.7, where the blue curve 

is the RWPT simulation result, and the red curve is the analytical solution. The shape 

of the breakthrough curve is classical and similar to 1d and 2d simulations. With a 

relatively large number of particles the problem of fluctuations in concentration 

calculation can be overcome. 
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Fig. 9.6 Particle clouds in the cube 

  

Fig. 9.7 Transport results of the 3d RWPT method compared with analytical solution 

9.4 RWPT in pore scale space (Benchmark ADuR13-1 and ADuR13-2) 

Physical observations and theoretical treatments of flow in porous media are usually 

associated with three different length scales: pore-, local-, and field-scales. Dominant 

processed and governing equations may vary with scales. In this benchmark, efforts 

are taken in order to simulate solute transport in pore scale in a simplified manner. The 

governing equation adopted here is the groundwater flow equation based on Darcy’s 

law. 
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9.4.1 Two-Dimensional Pore Scale Benchmark (ADuR13-1) 

9.4.1.1 Problem definition 

To simulate particles moving in pore scale space, first the problem is simplified into a 

two-dimensional case which is a box with only one grain inside. The calculation area is 

a rectangular space with a circle in the middle, the void between the circle and the 

rectangular is the calculation domain and discretized by triangle mesh (Fig. 9.8). 

   

Fig. 9.8 Mesh of 2d box with one grain inside 

9.4.1.2 Numerical solution 

Firstly, the proposed RWPT method in this model is testified by assign constant 

hydraulic head to the left and right boundaries (Dirichlet boundary condition), and no-

flow boundary conditions to the top and bottom boundaries. Particles are released from 

a line that is close to the left boundary. Relative parameters are listed in Tab. 9.4. 

Tab. 9.4 Material properties for 2d pore scale model with one grain inside – advec-

tive 

Symbol Parameter Value Unit 

݇   Permeability   1⋅ 10ିଵ   m ଶ  

Diffusion coefficient   0.0   m   ܦ ଶs ିଵ  

݊   Porosity   1.0   െ  
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9.4.1.3 Results 

The particles are moving in the pore space according to the velocity field. Particle cloud 

develops over time is show in Fig. 9.9. The shape of the particle cloud is a straight line 

in the beginning, and then is curved a little as it getting closer to the grain. The 

velocities in the area surrounding the grain are very small that particles in this area are 

moving very slowly. When a particle hit the surface of the grain or the boundary of the 

box, it will be captured. Particles pass through the throats between the grain and the 

box are accelerated as the velocities in these throats are large. After passing through 

the throats, particles spread to form an arc and move on to the right side boundary. In 

the zone that is behind the grain no particles are observed because the flow velocity is 

relatively small and dispersion is not considered in this benchmark. 

 

Fig. 9.9 Particles advect in rectangular domain with one grain 



179 

9.4.1.4 Discussion 1 

If there is no flow in this domain, and the molecular diffusion coefficient is increased, 

then the movements of the particles are dominated by the molecular diffusion process. 

Relative parameters are listed in Tab. 9.5. 

Tab. 9.5 Material properties for 2d pore scale model with one grain inside – diffusive 

Symbol Parameter Value Unit 

݇   Permeability   1⋅ 10ିଵ   m ଶ  

⋅Diffusion coefficient   1   ܦ 10ି଼   m ଶs ିଵ  

݊   Porosity   1.0   െ  

Particles are released from a line that is close to the left boundary. As there is no flow, 

particles are moving randomly in the pore space. Particle cloud develops over time is 

show in Fig. 9.10. Some of the particles attach to the surface of the grain or the 

boundary of the box. The molecular diffusion coefficient is relative to temperature. This 

benchmark is aimed to achieve the effect that particles are moving differently when 

temperature changes. 

9.4.1.5 Discussion 2 

Next, the number of grains in the box is increased from one to six. The void between 

the circles and the rectangular is the calculation domain and discretized by triangle 

mesh (Fig. 9.11). Dirichlet boundary conditions are set by assign constant hydraulic 

head to the left and right boundaries. No-flow boundary conditions are set to the top 

and bottom boundaries. Particles are released from a line that is close to the left 

boundary. Relative parameters are unchanged as listed in Tab. 9.4. 



180 

 

Fig. 9.10 Particles diffuse in rectangular domain with one grain 

 

Fig. 9.11 Mesh of 2d box with several grains inside 

Particle cloud develops over time is show in Fig. 9.12. Note that in this benchmark, 

released particles are displayed in the color of blue. When a particle hits the boundary 

and gets attached, it turns to red. But in the next time step, the attached particle still 

has the chance to detach and move again. It is clear that this benchmark is not a 

simple combination of six single grains, because they can affect each other. The 

velocity field in this case is with more complexity thus the particle cloud is complicated. 

But the particle cloud development obeys the same trend as in the single grain case. 
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Fig. 9.12 Particles transport in rectangular domain with several grains 

9.4.1.6 Discussion 3 

If the grain (circle) is discretized inside (Fig. 9.13), then particles attached to the 

surface of the grain can go into the grain and diffuse inside. Different porosity and 

permeability coefficient are given to grains and the pore space. Note that the different 

colors here represent materials with different properties. Dirichlet boundary conditions 

are set by assign constant hydraulic head to the left and right boundaries. No-flow 

boundary conditions are set to the top and bottom boundaries. Particles are released 

from a line that is close to the left boundary. Relative parameters are listed in Tab. 9.6. 
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Fig. 9.13 Mesh of 2d box with meshed grains inside 

Tab. 9.6 Material properties for 2d pore scale model with six meshed grains inside 

Symbol Parameter Value Unit 

݇  Permeability (pore space)  1⋅ 10ିଵ   m	ଶ  

݇  Permeability (grains)  1⋅ 10ିଵଶ   m	ଶ  

⋅Diffusion coefficient  1  ܦ 10ିଵହ   m	ଶs	ିଵ  

݊  Porosity (pore space)  1.0   െ  

݊  Porosity (grains)  0.1   െ  

Particle cloud develops over time is show in Fig. 9.14. The particles in the pore space 

are moving according to the velocity field. Note that there’s no flow inside of the grains, 

only molecular diffusion. Particles that hit the surface of the grains can go into the 

grains and move inside. Their movements are because of molecular diffusion thus are 

random. 
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Fig. 9.14 Particles transport in rectangular domain with several meshed grains 

9.4.2 Three-Dimensional Pore Scale Benchmark (ADuR13-2) 

9.4.2.1 Problem definition 

Similar to the 2d case study, the problem is first simplified into a three-dimensional 

case with only one grain in a box. The calculation area is a cube space with a sphere in 

the center, the void space between the sphere and the cube is the calculation domain 

and discretized by tetrahedral mesh (Fig. 9.15). 



184 

 

Fig. 9.15 Mesh of 3d box with one grain inside 

9.4.2.2 Numerical solution 

The proposed RWPT method in this model is testified by assign constant hydraulic 

head to the left surface and right surface boundaries (Dirichlet boundary condition), and 

no-flow boundary conditions to the top, bottom, front, and back surface boundaries. 

Particles are released from a surface that is close and parallel to the left surface 

boundary. Relative parameters are listed in Tab. 9.7. 

Tab. 9.7 Material properties for 3d pore scale model with one grain inside 

Symbol Parameter Value Unit 

݇   Permeability   1⋅ 10ିଵ   m ଶ  

⋅Diffusion coefficient   1   ܦ 10ିଵହ   m ଶs ିଵ  

݊   Porosity   1.0   െ  

9.4.2.3 Results 

The particles are moving in the pore space according to the velocity field. Particle cloud 

develops over time is show in Fig. 9.16. The shape of the particle cloud is a plain 

surface in the beginning, then is curved a little as it getting closer to the grain. The 

velocities in the area surrounding the grain is very small that particles in this area are 

moving very slowly. When a particle hit the surface of the grain or the box, it will be 

attached. In the zone that is behind the grain no particles are observed because the 

flow velocity is relatively small that no turbulence is happened in that zone. 
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Fig. 9.16 Particles advect in cube domain with one grain 

9.4.2.4 Mutiple Grains 

To establish a numerical model, not only a detailed understanding of the flow behavior 

in the pore space is needed, an accurate and realistic characterization of the structure 

of the pore space is significant as well. In this work, the pore space computational 

mesh is generated by the utilization of CGAL and settleDyn. 

To generate a mesh, first a polyhedral domain (Fig. 9.17a) is prepared, and a 

tetrahedral mesh of the domain is generated with CGAL. For the grains, a 3d image 

(Fig. 9.17b) is used, which is very flexible, can be obtained from micro-CT scans or 

generated manually. The structure of the grains is generated with settleDyn. Grains are 

represented by polyhedrons. 
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a) Domain outline                       b) Grain image] 

Fig. 9.17 CGAL mesh generation 

Secondly, use the grain mesh to refine the domain mesh with CGAL’s mesh refining 

algorithm. Using the Delaunay triangulation, with sub domain labels, the labeled 

tetrahedral mesh with embedded grains (Fig. 9.18) is generated. 

 

Fig. 9.18 Mesh with embedded grains 

In this example, the calculation domain is a rectangular parallelepiped with several 

grains inside (see Fig. 9.18). The grains’ sizes are not uniform and grains are randomly 

distributed among the domain. The pore space is discretized with tetrahedral elements 

and the inside spaces of the grains are discretized as well. 

The flow field is simplified to potential flow that on the inlet and outlet boundary, 

Dirichlet boundary conditions are adopted that constant hydraulic heads are set on 

both front and back surfaces. Other surfaces are set to be no-flow boundaries that fluid 

cannot pass the boundary and adjacent flow lines are parallel to the boundary surface. 
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The pore space is treated as a medium which is set to be homogeneous and isotropic. 

Fig. 9.19 shows the hydraulic head isosurfaces of the calculation domain. 

   

Fig. 9.19 Hydraulic head isosurfaces in domain with grains – potential flow 

In the potential flow, the hydraulic head gradient has a direction that is always 

perpendicular to the equipotential lines. As this is an isotropic medium, the direction of 

fluid flow is parallel to the hydraulic head gradient, i. e., flow lines will cross the 

hydraulic head isosurfaces at right angles. 

Particles are released to the domain from an area close to the inlet boundary for a 

constant time. Fig. 9.20 shows the simulation results of particles’ distribution over time. 

The particles are carried along by the fluid and move in the pore space. The "random 

walk" property allows the particles to digress from the flow line to some extent. Some of 

the particles enter the dead end of the pore space where the velocity is extremely low. 

Some hit to the surface of the grains and get captured because the velocity there is 

close to zero. The simulation results show the advantage of the proposed RWPT 

method that it is capable to describe the detailed flow properties. 
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a) t = 0 d) t = 150 

 
b) t = 50 e) t = 200 

 
c) t = 100 

 

Fig. 9.20 Particle clouds in domain with embedded grains 
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10 Benchmarking 

10.1 Introduction 

10.1.1 Measurements of fracture aperture 

Fractures may be defined through direct measurement or geo-statistical reproduction. 

In the benchmarks of this report, both methods will be utilized. Where fractures are 

directly measured, as in benchmark ADuR3 for instance, the methodology utilizes a 

laser profiler. Profiles (elevation measurements) are taken of each fracture surface, 

and these are manipulated numerically. Point-wise fracture aperture is the difference 

between the top and bottom surfaces at corresponding locations. Statistically 

reproduced fractures, as in ADuR2 for instance, reproduce roughness of the aperture 

(not each surface) to achieve a desired mean and standard deviation. The result is 

used directly as fracture aperture in numerical simulations. 

10.1.2 Effective parameters: hydraulic vs. mechanical permeability 

For a fracture represented by two parallel (planar) plates, permeability is a function of 

the fracture aperture by the cubic law, 

݇ ൌ
ܾଶ

12
 (10.1)

For a uniformly fracture rock mass, the cubic law takes form as ܾଷ/12	ݏ		, where s is 

fracture spacing. 

The aperture, b, however, represents only the mechanical state of the fracture. In 

reality, observed flow rates are dependent on the hydraulic state of the fracture. In 

other words, fracture roughness matters. Therefore two different apertures are 

distinguished: the so-called "void" aperture, ܾ௩, and the "hydraulic" aperture, ܾ. The 

void aperture is the mean geometrically measured distance between the two fracture 

surfaces, including only those points that are not in contact (as the name implies, 

including only voids). The hydraulic aperture is a correction from this value (ܾ  ܾ௩), 

with one possibility known as the geometric correction /PIG 93/, 
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ܾ
ଷ ൌ expۦlnሺ݇ሻۧ ൌ expሺ3ۦlnሺܾ௩ሻۧሻ, (10.2)

where the angled brackets indicate that the mean is taken over the logarithm of the 

pointwise void aperture. Therefore, as an approximation to reality, the (effective) true 

permeability of a rough fracture is given by, 

݇ ൌ
ܾ
ଶ

12
 (10.3)

In the following, this permeability is used to approximate behavior of the fracture and to 

generate an analytical solution for (qualitative) comparison to simulations within rough 

fractures, where permeability occurs point-wise (and mechanically) as ݇ ൌ ܾ
ଶ/12		. 

Therefore, this is an effective permeability, and shall be used as an attempt to 

approximate (or provide reference to) true flow behavior in a rough fracture from a 

single bulk property. 

10.1.3 Benchmarks organization and responsible authors 

The benchmarks are organized in such a way that they can be classified by both 

dimension and process. 

Tab. 10.1 Benchmarks organization 

Process 

Classification by dimension 

1d 1.5d 2d 2.5d 3d 

H     ADuR1     

    ADuR2     

ADuR6         

ADuR7         

      ADuR8   

      ADuR10   

        ADuR11 

    ADuR12     

HT   ADuR3       

HM     ADuR4     
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The benchmarks are kindly provided by colleagues listed below. 

Tab. 10.2 Benchmark authors 

Benchmark name Responsible authors 

ADuR1   Joshua Taron  

ADuR2   Joshua Taron  

ADuR3   Norbert Boettcher  

ADuR4   Joshua Taron  

ADuR5   Yuanyuan Sun  

ADuR6   Joshua Taron and Florin Radu 

ADuR7   Joshua Taron  

ADuR8   Joshua Taron  

ADuR10   Joshua Taron  

ADuR11   Joshua Taron  

ADuR12   Norihiro Watanabe  

ADuR13   Yuanyuan Sun and Dmitri Naumov 

10.2 Alternate numerical methods for advective transport in heterogene-

ous fractures (Benchmark ADuR6) 

10.2.1 Finite elements and finite difference method 

10.2.1.1 Motivation 

This benchmark compares different numerical methods, and checks the correct codes 

implementation. It also shows the importance of confining different geological condi-

tions to conservative transport. 



192 

10.2.1.2 Differences in transport 

For these comparisons, OGS is utilized as the FEM software and TOUGH2 as the FDM 

software. TOUGH2, as with other FDM based simulators, requires upwinding to 

generate stable mass transport. The basic advection/diffusion equation in 1d is referred 

to, 

ܥ∂
ݐ∂

 ݑ
ܥ∂
ݔ∂

ൌ ܦ
∂ଶܥ
ଶݔ∂

. (10.4)

For a finite-difference based spatial discretization, the local truncated error, neglecting 

higher order terms, is, 

ߝ ൌ ݔΔݑ ሺ߱ െ 0.5ሻ 
ݐΔݑ
Δݔ

⋅ ሺߠ െ 0.5ሻ൨ ⋅
∂ଶܥ
ଶݔ∂

, (10.5)

so that the numerical dispersion is, in non-dimensional terms, 

1
ܲ݁௨

ൌ ሾሺ߱ െ 0.5ሻ  ܥ ⋅ ሺߠ െ 0.5ሻሿ, (10.6)

for the Courant number, ܥ ൌ
௨௧

௫
, and the numerical dispersion based peclet number, 

ܲ݁௨ ൌ
௨௫

ೠ
, with the coefficient of numerical dispersion, ܦ௨. If molecular diffusion 

or longitudinal dispersion is also in use, then the total dispersion results in a total Peclet 

number of, 

1
்ܲ݁

ൌ
1

ܲ݁௨


1
ܲ݁
. (10.7)

For optimal selection of parameters, theoretical zero-numerical dispersion can be 

guaranteed, such as ߠ ൌ 0.5 (central difference scheme) and ߱ ൌ 0.5 (central 

upwinding scheme). Stability is not always guaranteed in TOUGH2, which exhibits far 

greater stability for an implicit time difference scheme. Therefore, with an implicit 

scheme, theoretical zero numerical dispersion occurs for a given value of ߱ with a 

given Courant number. This can be guaranteed in smooth fractures. In rough fractures, 

however, the Courant number is variable and, therefore, so is the amount of numerical 

dispersion. It is only possible to seek parameters that meet a given numerical 

dispersion on the average. 
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10.2.1.3 Smooth transport 

Fig. 10.1 shows the difference in tracer breakthrough between the FEM and FDM 

simulators for a single smooth fracture. Note that an exact solution is obtained for the 

FEM solution, but the FDM solution exhibits differences due to the degree of spatial 

upwinding that is utilized. 

   

Fig. 10.1 Breakthrough curves for OGS and TOUGH2 

Analytical and numerical solutions for Pe = 2. The curve TOUGH Dnum=0 utilizes weighting 

parameters such that zero theoretical numerical dispersion exists (Pe = 2 is obtained with 

molecular diffusion). The curve TOUGH DnumെPe = 2 utilizes zero molecular diffusion, 

and weighting parameters such that the numerical dispersion corresponds to Pe = 2. 

10.2.1.4 Velocity fields in rough fractures 

In remaining portions of the section the same real fracture is utilized as in Benchmark 

ADuR4 (see section 10.2.2). Here, first the differences in velocity produced by FEM 

and FDM approximation methods are examined. This is shown in Fig. 10.2. Note that 

while quite similar, differences arise due to assumptions made in both numerical 

methods. The FDM method utilizes harmonic averaging of permeability and mobility 

between adjacent cells, while the FEM method inherently operates on arithmetic 

averages. 



194 

 

Fig. 10.2 Velocity differences between FEM and FDM for single rough fracture, 

stressed at 1 MPa 

Smooth lines show also the velocity in a smooth fracture with the same effective permeabil-

ity as the 1 MPa stressed rough fracture. 

10.2.1.5 Tracer breakthrough in rough fractures 

Now that differences in the smooth fracture due to mass transport assumptions, and 

differences in velocity of the rough fracture due to mobility assumptions are observed, 

differences in mass transport between the two methods for rough fractures at alternate 

states of stress (alternate degrees of roughness) will be illustrated. This is shown in 

Fig. 10.3. The 1 MPa stressed fracture utilizes an inlet boundary pressure of 1 MPa. 

The 5 MPa stressed fracture utilizes an inlet pressure of 4.30728 MPa, which, utilizing 

the effective permeability of the fracture, corresponds to generate the identical velocity 

of the 1 MPa stressed fracture. In other words, if the effective permeability were 

precisely accurate, both breakthrough curves would overlay identically. Of course, this 

is not the case, and the greater degree of roughness in the 5 MPa fracture generates 

different behavior altogether than the 1 MPa case. Differences are quite apparent 

between FEM and FDM for the velocity of breakthrough (see above) and also the 

amount and style of dispersion that is observed (see also above). Note that for the 

1 MPa stressed fracture, the effective permeability correctly approximates the 50 % 

breakthrough, although a greater degree of dispersion is witnessed in the numerical 

solution. 
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Fig. 10.3 Breakthrough curves for different states of stress for OGS and TOUGH2 

10.2.2 Finite elements and random walk particle tracking  

(Benchmark ADuR4-1 and ADuR4-2) 

In reality, all fractures undergo some form of mechanical compression. With an 

average lithostatic stress gradient of approximately 22 MPa/km and average 

hydrostatic gradient of near 10 MPa/km, the effective normal stress on a fracture in the 

Earth’s upper crust increases at near 12 MPa/km. Even shallow aquifers (൏	1 000 m in 

depth for instance) may experience significant stress and, for reasonably compliant 

fractures, a degree of mechanical closure that can significantly impact hydraulic 

permeability. At greater depths the geothermal gradient becomes important, and 

thermally activated chemical-mechanical processes (such as pressure solution and 

sub-critical crack growth) become critical in determining the behavior of fluid flow in 

fractures. In the following, it is focused on only the hydro-mechanical behavior. 

Although capable of simulating coupled hydro-mechanical processes, OpenGeoSys is 

utilized only for the hydraulic flow and mass transport problem, with mechanical 

calculations performed analytically prior to numerical simulation. This is done for ease 

of comparison to other simulators designed to handle the flow-transport problem alone. 

Roughness profiles of a real fracture are utilized to determine the permeability-stress 

state for a set of conditions, and this state utilized as input to the numerical simulator. 
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A single rough fracture of Arkansas novaculite (		99.5 % quartz) /YAS 06/ was 

roughness profiled /MIT 03/ on each of its rough surfaces utilizing a 3d laser scanner. 

Aperture distribution within the fracture is determined from point-by-point subtraction of 

the two digitized surfaces. From the data it is possible to determine the area of contact 

between the surfaces after any vertical relative shift of the two surfaces (closure or 

opening of the fracture), and this will be taken advantage of below. 

10.2.2.1 Mechanical compression 

It is of significant interest and importance to examine the behavior of a fracture under 

alternate initial stress conditions. A fracture compressed at 10 MPa (ൎ	0.8 km depth) 

may exhibit largely different flow characteristics than one at 30 MPa (ൎ	2.5 km depth), 

for instance. As a fracture compresses, different areas of the surfaces will come into 

contact, altering the available area of flow and introducing the potential for flow 

channeling; an effect important for both mass transport and for chemical reaction. 

 

Fig. 10.4 Conceptualization of mechanical compression process, with asperity de-

formation and half-space compliance 

The novaculite fracture is compressed (analytically) to various initial stress conditions, 

prior to the onset of simulation, and the resulting compressed permeability utilized as 

input to the finite element mesh. For aperture closure based on contact theory, 

deformation of each asperity is usually assumed to follow either Hertz’s solution for the 

elastic contact of spherical bodies /JAE 07/, or a model for the deformation of 

cylindrical columns /PYR 00/. Asperity deformation alone has been shown to 

underestimate closure at low effective stress, and overestimate at higher stress, with 
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more accurate solutions obtained by considering also deformation of the (approximate) 

half-space surrounding each asperity. Here, compression occurs via elasticity theory, 

where contacting asperities of the fracture are treated as deforming cylinders and the 

area around these cylinders allowed to compress via a Boussinesq half-space 

approximation Fig. 10.4). The solution for the deformation length of a half-space from a 

circular contact of radius, r, is /COO 92/ (written in terms of elastic aperture change, 

Δܾாଵ), 

Δܾாଵ ൎ
′ߪ
ܴܧ

൬
ݎ4

1 െ ߭ଶ
൰, (10.8)

where ߭ is Poisson ratio, E is Young’s modulus, ߪ′ is the effective normal stress, and 

ܴ is contact area ratio (fraction of nominal area that is in contact). The deformation of 

a cylindrical column (asperity) is, 

Δܾாଶ ൎ
′ߪ
ܴܧ

ܾ௩ , (10.9)

where ܾ௩  is the initial void aperture (mean aperture within the fracture of all points not 

in contact), used as an approximation of the potential deformation length. Combining 

these relationships, the total elastic aperture change is, 

Δܾா ൌ
′ߪ
ܴܧ

൬
ݎ4

1 െ ߭ଶ
 ܾ௩ ൰.   (10.10)

The unknown variable, ܴ is obtained by numerical manipulation of the digital fracture 

profiles. 

10.2.2.2 Conservative transport in a stressed fracture 

Fig. 10.5 shows fracture permeability at three alternate stress states. Blue areas are 

open to flow, while increasing degrees of red indicate a greater degree of closure. Note 

a complete alteration in the fracture with respect to flow availability with increasing 

stress. 



198 

 

Fig. 10.5 Aperture of the (real) novaculite fracture compressed at different stress 

states 

Blue indicates open space, while increasing red indicates fracture contact. 

Fig. 10.6 shows the breakthrough curves for the three states of stress (10, 20, and 

30 MPa). Analytical solutions are generated utilizing ܾ. In all cases, a pressure drop of 

1.0 ൈ 10ହPa is utilized. Time step is governed dynamically with a Courant condition, 

where the Courant number, ܥ ൌ ݒ ⋅ ݔ݀ is maintained beneath 0.8, for ,		ݔ݀/ݐ݀ ൌelement 

size, and is controlled by the minimum occurring number within the FEM domain at 

each time step. Diffusion coefficient, ܦ, is chosen based on the approximated ܾ, to 

maintain a Peclet number of ܲ݁ ൌ ݒ ⋅ ܦ/ݔ݀ ൎ 5. The monitoring location is 25	% of the 

total flow length from the injection point, and centrally located perpendicular to flow. 

Note that OGS is quite stable at Peclet numbers in excess of (typical) 2. No trouble has 

been observed at Pe exceeding 10. Dashed lines in the figure represent the analytical 

solution to the 1d ADE equation, utilizing ܾ and is only a reference. Note that the 

approximation made by utilizing a mean aperture is reasonable at lower values of 

roughness and diverges rapidly in rougher fractures. Note also that a single point in the 

domain is being monitored at, and thus the resulting value would differ not only due to 

general roughness, but due to the location and layout of this roughness. 
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Fig. 10.6 Breakthrough curves at each increment of stress 

Analytical solution utilizes the effective permeability (k). 

10.2.2.3 Uncertainty in flow, Preferential flow: Random walk particle tracking 

(RWPT) 

To examine changes to flow characteristics, two alternate forms of mass transport are 

utilized: the classical advection-dispersion equation (ADE) and random walk particle 

tracking (Fig. 10.7). The RWPT simulator within OGS is modified to allow a continuous 

source of particles (numerically approximate to a Neumann concentration boundary) for 

comparison with results from ADE simulations. For comparison, dispersion is not 

allowed within the RWPT simulation: particles are only advected with the flow. 

Therefore, particles represent the 50 % concentration breakthrough if particles are 

imagined as concentrations. The plot for each stress state is shown at a different 

absolute time, but each corresponds to the same dimensionless time, ݐ ൌ ݒ ⋅  ,ܮ/ݐ

where ݐ is current time and ܮ is total flow length, with ݒ calculated from the mean ܾ. 

Therefore, if ܾ is a good approximation of behavior, the concentration advance in each 

plot should be approximately of the same extent. Note that this is true, but also that the 

increasing tendency for preferential flow with stress lends to increasingly less uniform 

concentration advance: with increasing stress, a given point in the geometry will record 

strongly different behavior than its neighbors. This is an observation that is apparent in 

Fig. 10.7, where the ܾ at ߪ ൌ  .is of lower quality ܽܲܯ	30
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Fig. 10.7 RWPT vs. ADE at different stress states 

Two separate simulations are conducted and overlay one another. Particle pathlines (black) 

and particles (white) are illustrated, and overlay contours (red = higher concentration) gen-

erated from the ADE simulation. 

Aperture in the file apertures.txt was modified prior to simulation. It was multiplied 

uniformly by a factor of 10 000. This does not impact simulation results, where only the 

ratio between connecting element sizes is important, and benefits the simulation by 

increasing the size of values on the matrix diagonal. The values occurring in file 

apertures.txt have already undergone this transformation. 

Tab. 10.3 Properties of the stressed fracture 

∗࢜ : mean permeability calculated from mechanical (void) aperture : effective (hydraulic) 

permeability calculated from hydraulic aperture 

∗࢜ ࣌  ࢌࡰ  

 ሾ݉ଶሿ ሾ݉ଶሿ ሾ݉ଶ/ݏሿ for ܲ݁ ൌ 5 

10 MPa 2.10 ൈ 10ିଵଶ 1.54 ൈ 10ିଵଶ 2.83 ൈ 10ି 

20 MPa 1.14 ൈ 10ିଵଶ 7.19 ൈ 10ିଵଷ 1.33 ൈ 10ି 

30 MPa 7.97 ൈ 10ିଵଷ 4.47 ൈ 10ିଵଷ 8.22 ൈ 10ି଼ 

The 7 503 nodes comprise a structured FEM mesh of 7 320 elements. Each element is 

given a permeability based on its corresponding aperture value, calculated pointwise 

from ݇ ൌ ܾ
ଶ/12. Based on the mean calculated hydraulic aperture, ܾ, the diffusion 

required to maintain a Peclet number ܲ݁ ൌ 5 is calculated. For the first time steps, step 
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size is controlled with a Courant condition, maintaining the Courant number  0.8 at all 

points in the geometry to guarantee a stable velocity field (the element with the highest 

velocity/size ratio governs behavior at each time step). 

10.3 Sorption in heterogeneous fractures (Benchmark ADuR7) 

This benchmark shows the effect of roughness on mass transport with sorption process 

in the fracture. 

10.3.1 Problem definition 

The advection-dispersion equation is written as, 

ܥ∂
ݐ∂

ൌ ܦ
∂ଶܥ
ଶݔ∂

െ ݑ
ܥ∂
ݔ∂

െ
ߩ
߶
ݍ∂
ܥ∂

ܥ∂
ݐ∂

െ (10.11) ,ܥߣ

for the bulk solid density ߩ, and a reactive source term expanded by the chain rule, 

ப

ப

ப

ப௧
, and a decay constant, ߣ. Rearranging produces, 

ܴ
ܥ∂
ݐ∂

ൌ ܦ
∂ଶܥ
ଶݔ∂

െ ݑ
ܥ∂
ݔ∂

െ (10.12) ,ܥߣ

with the retardation coefficient, ܴ. The retardation coefficient is, ܴ ൌ 1 
ఘ್
థ
 for the ,்ܭ

sorption isotherm, ்ܭ. If a linear isotherm is utilized, it may substitute, ்ܭ ൌ  ௗ. If aܭ

Freundlich isotherm is utilized, it may substitute ்ܭ ൌ  ିଵ. To include decay in theܥிܭ݊

equation, ߣ ൌ ݇ௗܥଵି for the reaction order, ݉, and decay constant, ݇ௗ. 

The analytical solution for a constant input is /VAN 81/: 

ܥ ൌ
1
2
ܥ exp ൬

ሺ1ݔݑ െ ሻߛ
2D

൰ erfc ൬
ݔܴ െ uݐߛ

ݐܴܦ√2
൰ 

          exp ቀ
௨௫ሺଵାఊሻ

ଶୈ
ቁ erfc ቀ

ோ௫ା௨ఊ௧

ଶ√ோ௧
ቁቃ 

(10.13)

where 

ߛ ൌ ඥ1  ଶ (10.14)ݑ/ܦߣ4
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10.3.2 Results 

Fig. 10.8 shows breakthrough curves for the same fracture at 1 MPa and 5 MPa normal 

stress (same as in previous sections). Again, inflow pressure to the 5 MPa fracture is 

adjusted to match the same theoretical velocity as the 1 MPa stressed fracture, utilizing 

the effective permeability. In this figure, two smooth fractures are also generated, with 

permeabilities corresponding to the effective permeability for the 1 MPa and 5 MPa 

fracture. Linear sorption is utilized in all curves, with ܴ ൌ 2. The analytical solution is 

obtained by use of the 1d advection-dispersion equation, adjusted for the appropriate 

retardation in velocity and dispersion. In both smooth fractures, the numerical solution 

overlays the analytical identically, proving the numerical accuracy in the homogeneous 

case. With the introduction of roughness (mild for 1 MPa stress and greater for 5 MPa 

stress) the deviation is noticeable (as in previous sections), which may indicate some 

numerical inaccuracy due to incorrect heterogeneous velocity fields (see previous 

section) but also that the effective permeability approximation is not exact. 

 

Fig. 10.8 Breakthrough curves for Pe = 2 and R = 2 for fracture at 1 MPa and 5 MPa 

Fig. 10.9 breaks down the 1 MPa and 5 MPa solutions individually. Illustrated is the 

conservative solution (ܴ ൌ 1) and the sorption solution with both linear and Freundlich 

isotherms (both with ܴ ൌ 2). 
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Fig. 10.9 Breakthrough curves for Pe = 2 and R = 2 for fracture at a) 1 MPa and b) 

5 MPa 

a) 

b) 
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10.4 Matrix diffusion in fractured rock (Benchmarks ADuR1 and ADuR2) 

10.4.1 Background 

In many engineered geological environments (reservoirs for the sequestration of CO	ଶ, 

nuclear waste repositories, engineered geothermal systems (EGS), etc.) fluid/mass/ 

thermal transport is controlled by high permeability fractures, situated within an intact 

rock matrix of significantly lower permeability. Typically, the intact matrix comprises a 

much larger volume fraction of the total system. Therefore, while flow characteristics 

are fracture dominated, the matrix volume serves as a storage site for pressure, 

chemical mass, and temperature, that may communicate with intersecting fractures 

and provide a buffer against rapid changes within the fractures. 

In traditional reservoir modeling, such systems are referred to as dual-porosity or dual-

permeability, and are modeled by introducing a separate grid discretization (matrix 

continuum) to a (FE) finite element (for instance) framework, that may communicate via 

exchange terms to the original (fracture continuum) element discretization. Dual-

porosity refers to the case where global flow occurs across the entire fracture 

continuum, while the matrix continuum serves only as a storage site, with exchange 

allowed with fractures in corresponding elements. Dual-permeability is the more 

complex case applicable where the matrix may exhibit a slightly higher (non-negligible) 

permeability. Here, global flow is allowed in both continuums, in addition to exchange 

between them. 

Because of the necessity of an additional grid discretization, the greater modeling 

accuracy that is introduced comes at the expense of computational efficiency. This 

drawback has lead researchers to introduce alternate methods to incorporate dual-

porosity like behavior. The following benchmark examines one such method. 
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10.4.1.1 Problem definition 

  

Fig. 10.10 Fracture-matrix diffusive exchange 

This benchmark is introduced to examine mass transport interaction between an 

advection dominated planar fracture and a low permeability rock matrix (Fig. 10.10). In 

terms of mass transport, the system is similar to a construct of dual-porosity. 

Advective-dispersive transport of a non-reactive solute is simulated within a planer 

fracture using OpenGeoSys (OGS). Diffusion into the surrounding matrix occurs via an 

analytical solution for diffusion into an infinite medium. The approach mimics the 

composite analytical/numerical solution provided by /MCD 09/, with exchange between 

the fractures and matrix accommodated by source terms within the advection/ 

dispersion equation (ADE). The geometry and material parameters are chosen to fit 

data extracted from experiments conducted during the Colloid Radionuclide 

Retardation Experiment at Nagra’s Grimsel test site /KOS 05/. 

Simulations are conducted utilizing the ADE only (therefore no matrix contribution to 

fracture mass transport), ADE with matrix diffusion (ADE+MD), and ADE+MD with 

sorption of contaminant to the matrix structure (ADE+MD+sorption). 

10.4.1.2 Numerical solution 

OGS solves the general advection/dispersion equation (ADE) for mass transport in an 

effective fracture continuum, 

ܥ∂
ݐ∂

ൌ െ்ሺܥܦሻ െ ݒ ⋅ ܥ  , (10.15)ݍ

where ݍ is a source term establishing the connection between fracture and matrix 

domains and where the fluid velocity, ݒ, is obtained from Darcy’s law. Matrix diffusion is 

governed by the analytical solution to the diffusion equation, 

Fracture

z

Matrix
Diffusive Flux

Node Element

x
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ܥ∂
ݐ∂

ൌ ∗ܦ
∂ଶܥ
ଶݖ∂

, (10.16)

given here, for the effective diffusion coefficient ܦ∗, as opposing pulses of 

concentration, C	, 

ܥ∂
ݖ∂

ሺݖ ൌ 0, ሻݐ ൌ
െܥ

ඥܦߨ∗ሺݐ െ ିଵሻݐ
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ୀଵ
ە
۔

ۓ െܥ

ටܦߨ∗൫ݐ െ ିଵ൯ݐ
			


ܥ

ටܦߨ∗൫ݐ െ ൯ۙݐ
ۘ

ۗ
, 

(10.17)

where the addition of opposing terms represents diffusion occurring over the current 

time step (first term, time step ݊), corrected for accumulations that have occurred over 

each of all previous time steps (remaining terms in summation, time step ݆). See 

/MCD 09/ for an explanation of this derivation. This result informs the source term as, 

ݍ ൌ െ
∗ܦ

ܾ

ܥ∂
ݖ∂
, (10.18)

where b	 is fracture aperture at node ݅. Sorption into the solid matrix may also be 

considered by including retardation effects into the effective diffusion coefficient, 

∗ܦ ൌ  ,is the coefficient of molecular diffusion, ߬ is diffusive tortuosity ܦ , where		ሺܴ߬ሻ/ܦ

and ܴ is a retardation factor given by, 

ܴ ൌ 1 
ߩௗܭ
߶
, (10.19)

for the sorption coefficient, ܭௗ [݉ଷ/݇݃], bulk rock density, ߩ, and porosity, ߶. Darcy’s 

law is applied to the global FE system by utilizing the cubic law to obtain permeability at 

each computational element, ݇ ൌ ܾ
ଶ/12		 and applying the appropriate elemental 

volume (including aperture contribution) to each element. 
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10.4.2 Solute transport through a smooth fracture with matrix diffusion 

(Benchmark ADuR1) 

This benchmark is introduced to verify the matrix diffusion function. It simulates the ad-

vective dispersive transport of a solute in a one-dimensional fracture with constant ap-

erture, with and without the effect of matrix-diffusion. 

 

Fig. 10.11 Conceptual realizations in OpenGeoSys and PICNIC 

For smooth fractures, benchmarking of the OGS numerical/analytical system was 

conducted against the analytical matrix diffusion code PICNIC (V 2.2, /BAR 01/). The 

geometry and material parameters in PICNIC and OGS are summarized in Tab. 10.4 

and the conceptual model is shown in Fig. 10.11. PICNIC solves the one-dimensional 

problem, whereas in OGS a two-dimensional discretization was chosen. A rectangular 

domain of 5.2 m ൈ 0.5 m was discretized with 1 155 nodes and 2 080 triangular 

elements. One of the shorter domain edges was chosen as inflow boundary and fluid 

was injected at the boundary-nodes in such a way that the resulting fluid velocity 

matches exactly the value from Tab. 10.4. 

Tab. 10.4 Geometry and material properties for ADuR1 smooth fracture benchmark 

Symbol Unit   Description   Value  

 Distance source boundary to observation point 2.5 ݉ ܮ

݇ ݉ଶ Uniform fracture permeability 2.52 ൈ 10ି଼ 

Fluid velocity 7.05 ݏ/݉ ݒ ൈ 10ିସ 

  ݉ Coefficient of longitudinal dispersion (OGS only) 0.078ߙ

ܲ݁ െ Peclet number (PICNIC only) 25 

  െ Matrix porosity 0.3ߝ

Diffusion coefficient in rock matrix 7.4 ݏ/ ݉ଶܦ ൈ 10ିଵଵ 

z

x

y

L

C(L/2,t)

v(0,t)=const

C(0,t)
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C(0,t)
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As defining exactly the same transport boundary conditions in OGS and PICNIC is not 

possible, a special procedure was used to replicate as closely as possible the 

boundary conditions of PICNIC: 1) The PICNIC solution was obtained for a constant 

flux, 50s pulse of solute at the inflow boundary. Concentration vs. time was recorded at 

the inflow-leg, and 2) Concentrations vs. time extracted from PICNIC were applied 

(fixed) to the inflow boundary of the OGS system. 

These procedures work, as long as advective fluxes are much higher than the 

dispersive-diffusive fluxes over the boundary. The breakthrough curve is recorded at a 

distance of 2.5 m down-gradient from the inflow boundary. In OGS the domain is set to 

5 m, double the distance between inflow boundary and observation point; far enough 

away to avoid boundary influence of contaminant breakthrough. 

Two cases are examined: 1) Advection/dispersion (ADE) only and 2) ADE plus matrix 

diffusion (MD). Results are agreeable between PICNIC and the OGS solution (Fig. 

10.12). For this simulation very small time steps are required during the concentration 

injection phase. This is not due to numerical stability or accuracy but due to the 

concentration boundary which is a function of time. Larger time steps apply this (very 

special boundary case) inaccurately. 

 

Fig. 10.12 Breakthrough of the ADE and the ADE+MD solutions calculated with 

PICNIC and OGS 
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10.4.3 Solute transport through a rough fracture with matrix diffusion 

(Benchmark ADuR2) 

Real rock fractures are of course not parallel plates, but are comprised of two rough 

surfaces held apart at contacting asperities. Fluid pressure and velocity and solute 

distribution will vary locally, rather than representing a bulk value, as governed by 

location dependent fracture aperture and permeability. This benchmark examines the 

effect of fracture roughness on solute distribution. 

Darcy’s law is accommodated in the global FE system by applying the cubic law to 

obtain permeability at each computational element, ݇ ൌ ܾ
ଶ/12		, and updating the 

elemental volume (including aperture contribution) of each element. In the previous 

benchmark (ADuR1) this was uniform across the geometry. Now variable aperture is 

introduced such that permeability and element volume will vary within each finite 

element. 

Fracture apertures (in file apertures.txt) are generated utilizing a geostatistical fracture 

surface generator provided by Geraldine Pichot at U. du Havre (Le Havre, France). 

Permeabilities (in file permeabilities.txt) are generated directly from the aperture file 

through use of the cubic law. Two fractures are compared, one that is nearly smooth 

(FR1) and one with significant roughness (FR2). Characteristics are provided in Tab. 

10.5. 

Tab. 10.5 Fracture properties 

All values represent the mean across the geometry. ࢜∗  is permeability calculated from the 

mean mechanical aperture (࢜࢈), while  is effective mean permeability (from ࢎ࢈). 

Fracture ࢜ ࢜࢈ ࢜࢈/࣌∗   ࢎ࢈ 

 െ ሾ݉ߤሿ ሾ݉ଶሿ ሾ݉ߤሿ ሾ݉ଶሿ 

FR1 0.0236 0.418 1.46 ൈ 10ିଵସ 0.417 1.45 ൈ 10ିଵସ 

FR2 0.458 0.459 2.12 ൈ 10ିଵସ 0.416 1.44 ൈ 10ିଵସ 

Processes of diffusion are, of course, quite slow, and so matrix diffusion is only 

important as timescales increase relative to advective velocity. To illustrate the MD 

process, therefore, the permeability of these fractures is low in conjunction with a low 

pressure source and a high rate of diffusion into the porous matrix. The importance of 
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matrix diffusion relative to fluid velocity may be roughly defined with a parameter similar 

to the Peclet number, 

ܲ݁ ൌ
ݒ ⋅ ݔ݀
ܦ

ൎ 0.14, (10.20)

for the diffusion coefficient within the rock matrix ܦ, and with all parameters 

obtainable from Tab. 10.5 and Tab. 10.6. Therefore, matrix diffusion is significant 

relative to velocity, and a significant contribution from matrix diffusion on concentration 

within the fracture is expected. When fracture velocity is much higher relative to the 

rate of matrix diffusion the impact on fracture concentration is lower, but matrix 

diffusion will remain important if chemical processes are being examined in the rock 

matrix. 

Fluid velocity will vary spatially to a larger degree in the rough fracture. Note, however, 

that while each fracture exhibits a different mean permeability (݇௩∗ in Tab. 10.5), both 

fractures exhibit nearly the same effective permeability (݇ in Tab. 10.5). For the same 

overall pressure drop, then, both fractures would be expected to show similar mean 

mass transport behavior (this can be seen approximately true in Fig. 10.14). 

Roughness itself, however, will alter behavior from the mean case; both with regard to 

fracture transport and the contribution from matrix diffusion. Differences in 

concentration breakthrough between the smooth and rough fracture and with and 

without matrix diffusion are shown in Fig. 10.13. Note firstly that mean permeability 

(mechanical) is a poor estimate of behavior (cubic law is not valid) in rough fractures. 

The effective permeability does a reasonable job of capturing behavior; but this too is 

limited. Simply changing the monitoring point (Fig. 10.13a, same downstream linear 

distance, but shifting very slightly transverse to flow) demonstrates somewhat different 

breakthrough characteristics. 
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Tab. 10.6 Geometry and material properties for ADuR2 rough fracture benchmark 

Symbol Description Value 

 ݉ Linear distance from source to observation 0.6 ܮ

ܲ Applied boundary pressure 5.0 ൈ 10ସ ܲܽ 

  Coefficient of longitudinal dispersion 0.01 ݉ଶߙ

ܲ݁ Corresponding approximate Peclet number 2 

 (utilizing ݇ obtained from ܾ)  

߶ Matrix porosity 0.3 

 Diffusion coefficient in rock matrix 1.0ܦ ൈ 10ି ݉ଶ/ݏ 

 

Fig. 10.13 Breakthrough curves 0.6m down-gradient 

All curves at point 1860, point 1857 for comparison is also 0.6 m down-gradient, but shifted 

transverse to flow by three grid cells, or 0.006 m. 

A more visual analysis of these results is provided in Fig. 10.14. Mean permeability of 

the rough fracture is  1/2 that of the smooth fracture (Tab. 10.6), but effective 

b) a) Rough (FR2) 

c) Smooth (FR1) 
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permeability is nearly the same for both. Therefore, the mean concentration 

breakthrough is similar for both fractures. Note also that for these statistically 

generated fractures, the roughness is quite uniform (as opposed to real fractures such 

as those examined in ADuR4, see section 10.2.2). 

The 3 150 nodes comprise a structured FEM mesh of 5 916 elements. Each element is 

given a permeability (file permeability.txt) based on its corresponding aperture value 

(file apertures.txt): calculated pointwise from ݇ ൌ ܾ
ଶ/12. 

 

Fig. 10.14 Visual analysis of tracer breakthrough 

Flow enters from bottom at constant pressure (.  ࢇࡼࡹ); constant concentration at the bot-

tom boundary 

10.5 Numerical matrix diffusion: Transport in a coupled fracture-matrix 

system (Benchmark ADuR3) 

10.5.1 Problem definition 

The OGS benchmark for transport by advection and diffusion in a fracture-matrix 

system was provided by Norbert Böttcher (TU Dresden) and can be easily adopted to 

mass transport. This test problem is extended by heat diffusion through a rock matrix 

orthogonal to the fracture (Fig. 10.15) (cf. /KOL 95a/, /KOL 95b/, /TEN 09/). 
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Fig. 10.15 Heat transport in a fracture-matrix system 

10.5.2 Analytical solution 

For this problem an analytical solution is given by Lauwerier (1955) /LAU 55/ with 

following restrictions: 1) In the fracture, heat is transported just by advection, and 2) in 

the rock matrix, heat transport takes place by diffusion (only along the z-axis). The 

Lauwerier equation is given by 
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with the following dimensionless parameters: 
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 (10.22)

where ܾ is the fracture width, ߣ is the thermal conductivity, ܿ is the heat capacity, ߩ is 

the density and ݎ and ݓ are rock or water material parameters respectively. 

10.5.3 Numerical solution 

The Lauwerier-problem is formed as a coupling of advective 1d heat transport in x-

direction and diffusive 1d heat transport in z-direction. This means, that nodes in the 

rock matrix are not influenced by their left or right neighbors. The matrix elements are 

connected to the fracture elements orthogonally. Fig. 10.16 shows a schematic 

description of the model setup. Because of the symmetry, the numerical model 

calculates just the domain above the x-axis. 
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Fig. 10.16 Alignment of the grid for the numerical model 

 

Fig. 10.17 Positions of observation points for temperature breakthrough curves 

Fig. 10.17 shows the positions of observation points which were chosen to evaluate the 

numerical model by the comparison with analytical solutions. The chosen parameters 

and material properties for this solution are shown in Tab. 10.7. 
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Tab. 10.7 Model parameters for the Lauwerier-problem 

Parameter Value 

Spatial discretization 

fracture length ܮ   ሾ50ሿ݉  

matrix width ܹ   ሾ63.25ሿ݉  

step size X Δݔ   ሾ2ሿ݉  

step size Z Δݖ   ሾ0.1265ሿ݉  

half of fracture width ܾ/2   ሾ1.0 ⋅ 10ିଷሿ݉  

groundwater velocity ݒ௫   ሾ1.0 ⋅ 10ିସሿ݉/ݏ  

Temporal discretization 

timesteps Δݐ   ሾ2.0 ⋅ 10ହሿݏ  

No. of timesteps   2 500  

total time   ሾ5.0 ⋅ 10଼ሿݏ  

Material properties – solid 

thermal conductivity ߣ   ሾ1ሿܹ ⋅ ݉ିଵ ⋅   ଵିܭ

heat capacity ܿ   ሾ1 000ሿܬ ⋅ ݇݃ିଵ ⋅   ଵିܭ

density ߩ   ሾ2 500ሿ݇݃ ⋅ ݉ିଷ  

Material properties – fluid 

heat capacity ܿ   ሾ4 000ሿܬ ⋅ ݇݃ିଵ ⋅   ଵିܭ

density ߩ   ሾ1 000ሿ݇݃ ⋅ ݉ିଷ  

10.5.4 Results 

The quality of the numerical results can be shown by temperature distribution curves 

for several times in the rock matrix. Fig. 10.18 shows the temperature profiles for 

ݔ ൌ ሾ0ሿ	݉ at three moments ݐ′. The numerical solution has a very good agreement to 

the analytical results. Temperature profiles along the fracture at ݖ ൌ ሾ0ሿ	݉ are plotted in 

Fig. 10.19. For long simulation times ( ݐᇱ ൌ 1	000; ′ݐ ൌ 600) both solutions fits very well 



216 

together. For short simulation times, the numerical solution differs slightly from the 

analytical results. This discrepancy for short simulation times can be examined in Fig. 

10.20, where temperature breakthrough cures for certain points (see Fig. 10.17) is 

plotted. 

 

Fig. 10.18 Temperature distribution orthogonal to the fracture at x=0 at three different 

times 

 

Fig. 10.19 Temperature distribution along the fracture at three different times 
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Fig. 10.20 Temperature breakthrough curves at certain points in the rock matrix 

10.6 Flow in porous media with fractures (Benchmark ADuR12) 

10.6.1 Problem definition 

This example illustrates the disturbance of the uniform flow in porous media caused by 

the presence of a fracture. Consider a 2d infinite horizontal plane of porous media with 

an embedded fracture. Uniform flow with specific discharge ݍ occurs from the left side 

to the right of the domain. The fracture extends to infinity in the directions normal to the 

plane. The middle point of the fracture is placed at the center of the plane. The shape 

of the fracture is shown in Fig. 10.21. The fracture has a length of ܮ and is inclined with 

angle ߚ. The fracture aperture ܾ may vary with positions. In this example, it is assumed 

that the shape corresponds to that obtained from the normal displacements of the sides 

of a pressurized crack in an elastic medium. This gives 

ܾ ൌ ܾ୫ୟ୶ට1 െ ′ݔ
ଶ
 (10.23)

where ݔ′is the normalized local coordinate systems. ܾ୫ୟ୶ is the aperture at the center 

 Assuming the volume of the fracture is sufficiently small as compared to that of .0 =′ݔ

porous media, the flow in the porous media can be modeled ignoring the width of the 
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fracture. The flow in the fracture is assumed to be laminar along the fracture surface. 

Hydraulic conductivity of the fracture is constant and independent of the aperture 

variation. The pressure variation across the fracture is neglected. 

   

Fig. 10.21 Fracture geometry 

Tab. 10.8 Model parameters 

Symbol Parameter Value Unit 

 ∘ fracture angle 45 ߙ

 ݉ maximum fracture aperture 0.05 ܠ܉ܕܾ

 ݉ fracture length 2.0 ܮ

 fracture hydraulic conductivity 1.0ܭ ൈ 10ିଷ ݉/ݏ 

 porous medium hydraulic conductivity 1.0ܭ ൈ 10ିହ ݉/ݏ 

 specific discharge 1.0ݍ ൈ 10ିସ ݉/ݏ 

10.6.2 Analytical solution 

Strack /STR 82/ has derived an exact solution for this problem as the potential flow. 

The obtained complex potential Ω is given as 

Ω ൌ െܣඥሺܼ െ 1ሻሺܼ  1ሻ  ܼܣ െ
1
2
ఈܼ݁ܮݍ  (10.24) ܥ

for the dimensionless variable ܼ 
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ܼ ൌ ܺ  ܻ݅ ൌ
ݖ െ

1
2 ሺݖଵ  ଶሻݖ

1
2 ሺݖଶ െ ଵሻݖ

 (10.25)

with the endpoints of the fracture ݖଵ and ݖଶ. ܣ is defined as 

ܣ ൌ

1
ܾ୫ୟ୶ܭ2

ܮܭ  ܾ୫ୟ୶ܭ
(10.26) ߙcosܮݍ

and ܥ is the integration constant. In this example, the constant is simply considered as 

zero. 

10.6.3 Numerical solution 

Numerical solution can be obtained by solving steady state liquid flow problem in a 

hybrid system of a discrete fracture model and continuum model (porous media). The 

fracture is represented as a 1d hydraulic conduit. The domain is set up in a finite space 

as a square with length of 10 m as depicted in Fig. 10.22. To compare numerical 

results with the analytical solution, pressure calculated by the analytical solution is 

utilized as prescribed pressure at the lateral boundaries, i. e. ୧୬ ൌ 496	465 Pa and 

୭୳୲ ൌ െ496	465 Pa. It is assumed that the fracture aperture does not vary with 

positions and has constant value even at the endpoints, ܾ ൌ ܾ୫ୟ୶. 

 

Fig. 10.22 Computational area 
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10.6.4 Results 

Pressure distribution obtained by the analytical solution is shown in Fig. 10.23. Lateral 

uniform flow is disturbed in the vicinity of the inclined fracture where the flow is faster 

than in surrounding porous media. Fig. 10.24 presents the pressure profile along a 

diagonal line from the bottom-left to the top-right. Although the numerical solution 

adopts the idealized fracture geometry, results show good agreements between the 

numerical and the analytical solution. 

 

Fig. 10.23 Pressure distribution obtained by the analytical solution 

 

Fig. 10.24 Pressure profile along a diagonal line from the bottom-left to the top-right 
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10.7 Fracture networks: (Grimsel shear zone), flow and conservative 

transport (Benchmark ADuR8) 

10.7.1 Problem definition 

In this section conservative transport in a discrete fracture network is examined. A real 

fracture network is utilized. This network is constructed from data at the Grimsel shear 

zone /KAL 07/. A boundary pressure of 2.0 ൈ 10 Pa is applied (Fig. 10.25). Aperture 

calculations show that ݇ ൌ 1.11 ൈ 10ିଵଶ, where ݇ is calculated from ܾ, as in the 

previous section. 

  

Fig. 10.25 Definition of the Grimsel fracture network benchmark 

10.7.2 Numerical solution 

The geometry consists of 12 802 nodes placed on an unstructured triangular mesh. 

Curvature of the real fracture network was modified in /KAL 07/ to make it more 

amenable to numerical simulation. In this benchmark, the fracture was further modified 

in that aperture across the entire network was decreased uniformly by a factor of 100. 
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This was done because the initial value led to very high permeabilities where a Darcy 

solution would become questionable. 

10.7.3 Results 

Fig. 10.26 shows two simulations, one conducted with a uniform aperture (ܾ), and one 

with the true rough profiles. Note that ܾ is a reasonable approximation of mean 

concentration breakthrough, but obviously fails at locations undergoing an increase or 

lack of preferential flow. Two times are illustrated in the figure. 

The 12 802 nodes comprise a FEM mesh of 24 750 elements. Each element is given a 

permeability based on its corresponding aperture value, calculated pointwise from 

݇ ൌ ܾ
ଶ/12. Based on the mean calculated hydraulic aperture, ܾ the diffusion required 

to maintain a Peclet number ܲ݁ ൌ 2 is calculated. A small additional amount of 

dispersion is applied via a longitudinal and transverse dispersion coefficient for stability. 

For the first timesteps stepsize is controlled by a Courant condition, maintaining the 

Courant number  0.8 at all points in the geometry (the element with the highest 

velocity/size ratio governs behavior at each time step) to guarantee a stable velocity 

field. Aperture was multiplied uniformly by a factor of 100 prior to simulation to increase 

the size of values on the matrix diagonal. 

 



223 

 

 

 

 

Fig. 10.26 Conservative transport in the Grimsel fracture network  

Smooth fractures in a) and b), rough fractures in c) and d), aperture magnitude obtained by 

calculating ࢎ࢈ for the full network 

Uniform aperture
Time 1

Uniform aperture
Time 2

Rough aperture
Time 1

Rough aperture
Time 2

a) 

b) 

c) 

d) 
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10.8 Flow in discrete fracture-matrix systems: Flow and transport in the 

Grimsel 10-fracture network (Benchmark ADuR10 and ADuR11) 

10.8.1 Motivation 

In this benchmark begins the analysis of the Grimsel shear zone 10-fracture network. 

The first step is to examine pressure and velocity fields in the uniform fracture network. 

Meshing is conducted on the fracture network itself. Later, behavior will be examined 

utilizing combined fracture-matrix meshing and interaction. Additional complexities will 

also be added incrementally. 

10.8.2 Independent fracture network - Uniform aperture (Benchmark 

ADUR10) 

Geometry of the network is defined by the corner node coordinates of 10 planar 

fractures, and the locations of their intersections. 

10.8.2.1 Numerical solution 

For the fracture only simulations, meshing is straightforward and is conducted with 

Gmsh, a finite element mesh generator with build-in pre- and post-processing facilities 

/GEU 09/. Fig. 10.27 shows the conversion from geometry data to a 2d mesh with 

Gmsh. 

Two alternate spatial discretizations are explored, one with 2 m discretization, and one 

with 5 m. The resulting fracture meshes are displayed in Fig. 10.28. For a 5 m spatial 

discretization (mean) the mesh comprises 1 363 elements, while the 2 m discretization 

contains 9 175 elements. The total geometry size ሾݔ, ,ݕ ,ሿ is, in meters, ሾ139ݖ 81, 67ሿ. 
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a)  b)  

Fig. 10.27 Conversion from outline to 2d mesh with Gmsh 

a)         b)  

Fig. 10.28 Gmsh mesh results for the 5m (a) and 2m (b) discretisations 

A boundary pressure of 1 MPa is prescribed at the western edge of the westernmost 

fracture, while a pressure of 0 MPa is maintained at the eastern boundary. Initial 

conditions are zero pressure. 

The fractures are uniform with a permeability of 1.0 ൈ 10ିଵଶ ݉ଶ, a porosity of 1.0, and 

no tortuosity. The fluid is prescribed a density of 1 000 ݇݃/݉ଷ and a viscosity of 

1.0 ൈ 10ିଷ ܲܽ ⋅  .Time stepping is controlled by a Courant condition .ݏ

10.8.2.2 Results 

Results are explored qualitatively in Fig. 10.29, which shows the advance of a 

conservative tracer in the 2d network for the alternative meshes 
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a)  d)  

b)  e)  

c)  f)  

Fig. 10.29 Conservative ADE in Grimsel 10-fracture network for the 5m (a – c) and 2m 

(d – f) discretized meshes 

The same simulations are explored with breakthrough curves in Fig. 10.30, where two 

points are selected in the geometry, and relative concentrations monitored in time. 

Points A and B are at ሾݔ, ,ݕ  ሿ coordinate locations ሾ346,192,170ሿ and ሾ395,232,171ሿ (inݖ

meters), respectively. As expected, the 5 m mesh is more dispersive so that at point A, 

closer to the injection boundary, there is little difference between the meshes, but this 

difference grows in time as evidence by point B, further from injection. A slight amount 

of instability is also evident in the larger discretization, where slight negative 

concentrations evolve in early times. 
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Fig. 10.30 Breakthrough curves for conservative tracer at two points 

10.8.3 Fracture imbedded in low permeability matrix - Uniform aperture 

(Benchmark ADUR11) 

Geometry of the network is defined by the corner node coordinates of 10 planar 

fractures, as before, and the locations of their intersections. 

10.8.3.1 Numerical solution 

Including the rock matrix mesh requires additional operations beyond those in the 

previous section. A 2d mesh is first constructed, as before, with Gmsh. Tetgen is then 

used to generate 3d elements across the entire domain corresponding to nodes of the 

2d fracture mesh and the 2d boundaries of the rock matrix. Tetgen is a tetrahedral 

mesh generator and a 3d delaunay tiangulator /SI 04/.The result is then combined to a 

single mesh (Fig. 10.31). 
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Gmsh  

Tetgen  

   ൌ  

Fig. 10.31 Conversion to 2d fracture mesh imbedded in 3d rock matrix 

For a 5 m spatial discretization (mean, on the planar fracture) the mesh comprises 

20 818 elements. While a 3 m and 2 m discretization contain 36 867 and 66 890 

elements, respectively. The total ሾݔ, ,ݕ   .ሿ geometry size is, in meters, ሾ178,121,108ሿݖ

A boundary pressure of 10 MPa is prescribed at the lower left edge of the block 

geometry while a pressure of 0 MPa is maintained at the upper right edge. Initial 

conditions are zero pressure. 

The fractures are uniform with a permeability of 1.0 ൈ 10ିଵଶ ݉ଶ, a porosity of 1.0, and 

no tortuosity (see file ogs.mmp). The lower permeability matrix is assigned a 

permeability of 1.0 ൈ 10ିଵସ ݉ଶ, a porosity of 0.3, and no tortuosity. The fluid is 
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prescribed a density of 1 000 ݇݃/݉ଷ and a viscosity of 1.0 ൈ 10ିଷ ܲܽ ⋅  .(file ogs.mfp) ݏ

Time stepping is controlled by a Courant condition. 

10.8.3.2 Results 

Results are explored qualitatively in Fig. 10.32, which shows the advance of a 

conservative tracer in the 2d network for a mesh with 2m discretization on the fractures 

and one of 3 m discretization, for a slice of the 3d geometry. 

a)  b)   

Fig. 10.32 ADE in slices of the 3d geometry for a) the 3 m discretization and b) the 

2 m discretization 

The full 3d advance is then displayed in Fig. 10.33 for a series of 5 snapshots in time in 

the 2 m mesh.  

The same simulations are explored with breakthrough curves in Fig. 10.34, where two 

points are selected in the geometry, and relative concentrations monitored in time. 

Points A and B are at ሾݔ, ,ݕ  ሿ coordinate locations ሾ346,192,170ሿ and ሾ395,232,171ሿ (inݖ

meters), respectively. Now even points at the leftmost area of the fracture network 

(point A) diverge for the 5 m mesh. A slight amount of instability is also evident in the 

larger discretization, where slight negative concentrations evolve in early times. 
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a)   b)  

c)   d)  

e)   

Fig. 10.33 Conservative transport in the 3d fracture-matrix geometry 

 

Fig. 10.34 Breakthrough curves for conservative tracer at two points in the 2d fracture 
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11 Code verification 

11.1 Fractured Elder problem 

The Henry problem cf. /HEN 64/ and section 6.4.1 and the Elder problem cf. /DEB 00/, 

/ELD 67/ are well-known benchmark problems for density-driven flow. In the Elder 

problem the originally thermally driven flow problem has been reformulated for density-

driven flow by /VOS 87/, among others. Here the density differences are due to heavy 

brine. The geometry was modified to feature a fracture cf. /GRI 12a/, /STI 12/ and the 

boundary conditions can be found in Fig. 11.1. The parameters used in the simulations 

are listed in Tab. 11.1. 

 

Fig. 11.1  Geometry and boundary conditions for the modified Elder problem featuring 

a fracture.  

Tab. 11.1 Parameters for the Elder problem 

Symbol Quantity Value 

 Diffusion coefficient in the mediumܦ 3.565 ⋅ 10ି mଶ	sିଵ 

 Diffusion coefficient in the fractureܦ 10.695 ⋅ 10ି mଶ	sିଵ 

 sିଶ	Gravity 9.81 m 

 Permeability of the medium 4.845ܭ ⋅ 10ିଵଷ mଶ 

 Permeability of the fracture 4.845ܭ ⋅ 10ିଵ mଶ 

߶ Porosity of the medium 0.1  

߶ Porosity of the fracture 0.3  

 sିଵ	mିଵ	Viscosity 10ିଷ kg ߤ

 mିଷ	ௐ Density of water 10ଷ kgߩ

 Density of brine 1.2ߩ ⋅ 10ଷ kg	mିଷ 
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Symbol Quantity Value 

ܽఈ௧ , ܽఈℓ  Dispersivity lengths 0  

 ఈ Forchheimer coefficient 0ܣ

For a fracture of width ߳ ൌ 0.1	m the simulation results of the Elder problem using the 

݀- and the ሺ݀ െ 1ሻ-dimensional model are compared at different points in the fracture 

(cf. Fig. 11.2). It can be observed that the main behaviour, including all peaks, is re-

sembled by the ሺ݀ െ 1ሻ-dimensional simulation. Though, a little shift between the two 

results can be observed. As it is well known that the Elder problem has a history for its 

multiple solutions which are associated, e. g., with the number of fingers at its station-

ary solution (cf. e. g. /JOH 02/, /JOH 03/). Therefore, by keeping in mind, that the com-

putational grids for the ݀- and the ሺ݀ െ 1ሻ-dimensional simulations are not the same, 

this result is satisfactory. Also, the in section 6.5.2 defined criterion indicates that the 

use of the ሺ݀ െ 1ሻ-dimensional model is adequate. 

a)  b)  

Fig. 11.2  Comparisons of ݀- and ሺ݀ െ 1ሻ-dimensional simulations of the Elder prob-

lem mass fraction in the fracture at ݔ ൌ 300	m (a) and ݔ ൌ 440	m (right) cf. 

/STI 12/. 

11.2 Tests using the Forchheimer correction 

In section 6.2 the original model using Darcy’s law was extended by a Forchheimer 

correction of the velocity. In section 6.4.2 it was observed that, e. g., in the Henry prob-

lem there are vortices generated in fractures for increasing fracture width. The pres-

ence of vortices itself, implies not only the questionability of the validity of Darcy’s law, 
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but also the question, if the use of Forchheimer’s correction leads to better results for 

the ሺ݀ െ 1ሻ-dimensional model. 

Therefore, the fractured Henry problem as it was described in section 6.4.1 is consid-

ered using four different sets of parameters for the Forchheimer correction (cf. /GRI 

12b/ and Tab. 11.2), one corresponding to Darcy’s law, two based on the work of 

/THA 98/ and one freely chosen to have a value in between. 

Tab. 11.2 Parameter sets for the Forchheimer coefficient ܣఈ 

Case ࢌ ሾି	࢙ሿ  ሾି  ሿ Reference࢙

1 0 0 Darcy’s law 

2 36 51 (/THA 98/, eq. 4) 

3 1 ⋅ 10ଷ 1 ⋅ 10ଷ - 

4 2.5 ⋅ 10  2.2 ⋅ 10ହ (/THA 98/, eq. 2) 

In Fig. 11.3 it can be seen that for increasing values of the Forchheimer coefficient ܣఈ 

less saltwater is intruding into the domain and the influence of the fracture on the flow 

pattern is reduced. This observation can be explained as follows: In (6.12) the expres-

sion of the specific discharge, which includes the Forchheimer correction, is given by a 

product of the Darcy velocity and a factor depending among others on ܣఈ. This factor 

tends towards zero when ܣఈ tends to infinity and, therefore, the velocity including the 

Forchheimer correction is reduced for increased Forchheimer coefficient ܣఈ. As the 

norm of the Darcy velocity in the fracture is bigger than in the medium, the fracture’s in-

fluence is reduced. 

a)  b)  

Fig. 11.3  Isolines of the mass fraction (corresponding to ߱ ൌ 0.1) of the ݀-

dimensional simulation with different Forchheimer coefficients ܣఈ for 

Henry’s problem with a fracture of width ߳ ൌ 0.003	m (a) and ߳ ൌ 0.024	m 

(b) at time ݐ ൌ 5	min cf. /GRI 12b/. 
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By comparing the impact of the Forchheimer correction for the different fracture widths 

߳ (cf. Fig. 11.3), we notice that the correction with finite values of ܣఈ, e. g. with ܣ ൌ

ܣ ൌ 10ଷ	mିଵ	s (case 3), slows down the flow even more in the case of the thin frac-

ture. The correction with really big ܣఈ  (case 4: ܣ ൌ 2.5	 ∙ 10	mିଵ	s, ܣ ൌ 2.2	 ∙

10ହ	mିଵ	s) gives the same result in both cases and results in a flow pattern in which a 

relation to the original flow pattern of Henry’s problem is no longer visible. Furthermore, 

it can be observed that in the case of the thicker fracture with width ߳ ൌ 0.024	m, the 

Forchheimer correction with ܣ ൌ ܣ ൌ 10ଷ	mିଵ	s (case 3) yields a more uniform distri-

bution of the brine concentration along the fracture width. This observation is very im-

portant for this study because it implies that the ሺ݀ െ 1ሻ-dimensional model might yield 

better results for thicker fractures when the Forchheimer correction is used. 

Comparisons between ݀- and ሺ݀ െ 1ሻ-dimensional simulations of the fractured Henry 

problem using the Forchheimer correction can be found in /GRI 12b/.
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12 Preprocessing and graphical user interfaces for d³f and r³t 

12.1 Introduction 

VRL-Studio is an integrated development environment (IDE) based on the Java Plat-

form that combines both visual and text-based programming. In contrast to many other 

development environments VRL-Studio Projects are fully functional programs that are 

developed at runtime. VRL-Studio is based on VRL (Visual Reflection Library) to ena-

ble declarative and fully automated creation of graphical user interfaces from Java ob-

jects. To accomplish that, VRL uses the information accessible via the Java Reflection 

API /HOF 11/. 

The d³f/UG software is accessible in the VRL visualization framework using a C/C++ 

binding of the required functionality to the Java platform /SCH 12/. The d³f/UG code 

has been developed in a modular way using small, combinable components that allow 

the user to easily change and control its application. All functionality blocks are availa-

ble as a graphical representation in the VRL and can be graphically reorganized and 

adapted in order to suit to the users need. However, many applications are of a very 

similar structure and it is useful to prepare and provide some template applications 

where users must only choose their specific needs (such as physical parameters, do-

main and grid, solver parameters and output requirements), but does need to setup the 

control flow of the project from scratch. This helps to avoid doubling of work and pro-

vides a fast and user-friendly usage of the d³f/UG package within the VRL framework. 

12.2 Project Format 

For VRL-Studio a new project format has been introduced that can contain multiple us-

er-defined workflows. This makes it possible to exchange multiple workflows between 

different computes without having to consider workflow dependencies. That is, if user A 

sends a workflow to user B that consists of several sub-workflows user A can simply 

send the project file to user B. 
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12.3  Improved UI-Generation 

Components in complex workflows often need a large number of input parameters. 

Even though the interface generation provides a mechanism to use problem specific 

parameter visualizations it was necessary to improve the visualization possibilities. 

The interface generation consists of three types of visual components (see Fig. 12.1). 

An object representation is a container, comparable to a program window that can 

group several child components. A method representation is a container component in-

side an object representation. It can also group child components and provides ele-

ments for calling the represented method. To represent variable data VRL provides 

type representations. In most cases they allow interaction with the visualised. 

 

Fig. 12.1 Component Types 

One important extension to those component types is the possibility to define parame-

ter groups inside a method representation. Groups are container objects for parameter 

visualizations. Each group can be shrinked/expanded individually (see Fig. 12.2). 
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Fig. 12.2 Improved Parameter Groups 

Except from grouping the parameters group containers do not influence the functionali-

ty of parameters and methods. The following code example shows how parameter 

groups can be defined: 

Code Example: 
@ComponentInfo(name="GroupSample", category="Custom") 
public class GroupSample implements java.io.Serializable { 
  private static final long serialVersionUID=1L; 
 
  public void groupSample( 
    @ParamGroupInfo(group="Group 1|true|no description") 
    @ParamInfo(name="p1", style="default", options="") int p1, 
    @ParamGroupInfo(group="Group 1") 
    @ParamInfo(name="p2", style="default", options="") int p2, 
    @ParamGroupInfo(group="Group 2|true|no description") 
    @ParamInfo(name="p3", style="default", options="") int p3, 
    @ParamGroupInfo(group="Group 2") 
    @ParamInfo(name="p4", style="default", options="") int p4, 
    @ParamGroupInfo(group="Group 2") 
    @ParamInfo(name="p5", style="default", options="") int p5 
  ) { 
    // 
  } 
} 

The first occurrence of @ParamGroupInfo defines a new parameter group „p1“. The 

Boolean „true“ defines that the group will be expanded. The string defines a tooltip de-

scription „no description“. The second occurrence of @ParamGroupInfo „p1“ specifies 

that the second parameter shall be added to group „p1“. 
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12.4 Dynamic Array Visualizations 

12.4.1 Defining array visualizations 

The type representations that have been discussed so far do not support a variable 

number of input parameters. 

Therefore, a parameter visualization has been developed that can visualize fixed-size 

arrays as well as user defined arrays (the size can be chosen by the user). 

Code Example: 

public Integer add( 

  @ParamInfo(style="array", options="minArraySize=2") Integer... values) { 

    def result = 0 

    values.each{it->result+=it} 

    return result 

} 

 

The code shown above demonstrates how to visualize an integer array with user-

defined size. The minimum number of elements is 2. Fig. 12.3 shows the correspond-

ing VRL visualization. 

 

Fig. 12.3 Integer array with user-defined size 
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Except for array visualizations all available parameter visualizations can be used as el-

ement visualization. The next code example shows how to input a variable number of 

strings using the editor visualization: 

Code Example: 

public String add( 

  @ParamInfo(style="array", options="elemStyle=\"editor\"") String... values){ 

    def result = "" 

    values.each{it->result+=it+"\n"} 

    return result 

} 

Fig. 12.4 shows an example visualization. 

 

Fig. 12.4 String array using an editor component as element visualization 

12.4.2 Array visualizations as container with variable element types 

The previously shown array visualizations (Fig. 12.3) only use one element type for the 

entire array.  

As arrays can also contain elements of different types a type representation container 

has been implemented that dynamically uses the class object of element types to 
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choose the correct element type visualization. This mechanism is equivalent to the vis-

ualization used for top-level containers. 

12.4.3 Creating a new project from the d3f template application 

In the following this template project, its user data setup and usage will be described in 

detail. 

In order to create a new d³f project, the VRL-Studio containing the d³f/UG plugin (pro-

vided as a bundle) must be started. A new project from the d³f-template is created via 

“File”  “New Project from Template”  “UG – Density-Driven-Flow” (see Fig. 12.5).  

 

Fig. 12.5 Creating a new project from template 

This will create a project as shown in Fig. 12.23. The control flow of the project consists 

of three components:  

 DensityDrivenFlow: domain, physical parameter, boundary conditions, start val-

ues, discretization setup 

 KineticSolver: time solver setup, linear solver setup, non-linear solver setup, data 

evaluation 

 VTUViewer: live visualization, output setup 

These three basic components are already connection into a control flow (yellow lines) 

and data dependencies between the components are established (grey lines). After 

choosing the appropriate, problem specific parameters the simulation can be run invok-

ing the “Start” button. 
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12.4.4 DensityDrivenFlow component: physical user data 

The DensityDrivenFlow component is used to setup the user-specific problem of the 

type 

߲
ݐ߲
൫	߶ߩ൯  ൫ߘ ൯ߩ ൌ 0, (12.1)

߲
ݐ߲
൫	߶ߩ߯௦൯  ߯௦ߩ	൫ߘ െ ௦൯߯ߘߩ௦ࡰ ൌ 0, (12.2)

with 

 ൌ െ


ఓ
	ሺߘ െ ሻ. (12.3)ࢍߩ

The unknown solution components are 

 pressure 

߯௦  brine mass fraction. 

All the other variables are user-defined and problem-specific data and must be speci-

fied by the user. Thus, the user must be able to enter the following data 

߶ porosity 

  densityߩ

 ௦ molecular diffusionࡰ

 permeability ܭ

 viscosity ߤ

 gravity ࢍ

The following subsections describe how the user data can be specified in the d3f/UG 

template project within the VRL studio. 

Domain: Grid and Subsets 

All physical parameters are dependent on the physical domain used for the simulation. 

Specification of user data on different subsets of the domain as well as different 
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boundary conditions on parts of the domain rely on the partition of the domain into sub-

sets. Therefore, the recommended data format to load a grid is the *.ugx file format. 

This format stores the plain grid together with the description of different subsets on 

this grid and can be easily created and/or processed using ProMesh (section 12.5.1). 

The *.ugx file used for the simulation is chosen in the section “Domain”  “Grid”. Invok-

ing the selection button a file-dialog appears where the file system can be navigated 

until the requested file is found. 

 

Fig. 12.6 Selection of the domain: Loading a *.ugx file 

Physical Parameter: Inner domain parameter 

Within the domain the system is modeled by the equations given in (12.1) – (12.3). It is 

assumed that the problem parameter may vary in space and time. Specially, the pa-

rameter set may be different in the subsets of the domain. Therefore, all user parame-

ters are given subset by subset. The user can add and remove subset specifications 

using the “+/-“-button as shown in Fig. 12.7. 
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.  

Fig. 12.7 User parameter for several subsets of the domain 

On the left hand side the considered subset is chosen by a drop-down menu. The 

available subsets are according to the selected *.ugx file and automatically adjusted if 

the grid is changed. 

The parameter input on each subset is changed by invocation of the associated button. 

This leads to a dialog window for the data. The input dialog varies from the required da-

ta format: 

Scalar Data depending on space and time 

The porosity and viscosity can be specified by a function of space and time. The sim-

plest case is a constant value for the data. As shown in Fig. 12.8 this can be done en-

tering the corresponding number. In addition for more evolved cases the data may be 

specified using a function given as Java code where the special coordinated, the time 

point and the subset are available as parameters for the function. In order to switch be-

tween the two types of possible data the radio button at the top is used. 



244 

  

Fig. 12.8 Constant data (left) and user code (right) 

Vector Data depending on space and time 

The gravity is specified as a vector of the spatial dimension as shown in Fig. 12.9. 

 

Fig. 12.9 Vector Data in 2d 

Matrix Data depending on space and time 

Permeability and molecular diffusion are given as matrices. The specification can be 

given as constant data or as user code. The data must be specified as a matrix accord-

ing to the dimension of the physical world. The dialog for the constant case is shown in 

Fig. 12.10. 

 

Fig. 12.10 Matrix Data in 2d 
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Solution dependent Data 

The density is assumed to be a function of the brine mass fraction. Thus, in order to 

specify this relation a user code must be given. In addition the derivative of the relation 

has to be specified with respect to the brine mass fraction. This setup is shown in Fig. 

12.11. 

   

Fig. 12.11 Solution dependent data: function (left) and derivative (right) 

All user specific data input options are intelligent in the way that the possible choices 

are related to the selected *.ugx file: dimension-related fields are adjusted in size and 

available subsets are displayed as present. Assistance is provided for the user once 

the domain (i. e. the *.ugx file) is changed: changing the domain dimension the data is 

adjusted in a logical way, e. g., defining a corresponding vector or matrix data for this 

dimension. This speeds up the usage when setting up simulations of several problems 

©of similar type in different dimensions. In rare cases this is not possible and must be 

taken into account. Therefore, again a graphical assistance is provided. Once the *.file 

is changed the user data buttons appear in three different colors: grey (user proofed or 

auto-adjustment successful), yellow (no auto-adjustment available) and red (no rea-

sonable choice available). In the yellow case the user is informed that a reasonable 

choice has been make but may be verified by the user. In the red case the user is re-

quired to adjust the data manually to the needs. This usually appears if no or an invalid 

domain has been chosen. An example is shown in Fig. 12.12. 
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Fig. 12.12 Visual data validity: auto-adjusted (left) and incorrect data (right) 

Boundary Conditions 

Boundary conditions for the brine mass fraction and the pressure have to be specified 

subset-wise. Having selected a domain all available subsets are present in the drop-

down-menus and additional boundary specifications can be added using the “+/-“-

buttons. Two types of boundary conditions are offered: Dirichlet boundary conditions 

can be set prescribing the values as constant or user code. Flow boundary conditions 

are specified prescribing the normal flux. A negative value corresponds to an inflow 

boundary condition. All boundaries can dependent on the spatial coordinates, time and 

subset. If no boundary condition is prescribed for a boundary subset a no flux condition 

is used as default value. See Fig. 12.13 for an illustration. 

 

Fig. 12.13 Specification for the boundary conditions 
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Initial values 

The start values for the brine mass fraction and the pressure at the beginning of the 

computed time interval are specified using scalar user data. Constant and code based 

versions are available.  

 

Fig. 12.14 Setting the initial values for the solution components 

Discretization setup 

The system of partial differential equations is discretized on the given grid. In order to 

allow the user to influence the concrete discretization setup some of the choices are 

make available in the section “Discretization Setup”. 

 

Fig. 12.15 Discretization setup management 

12.4.5 KineticSolver component 

Once the user problem has been specified as described in the previous section, this 

problem must be solved. To do so, the KineticSolver component is used that computes 

the solution for specified time points. The success of the solver and the progress of the 

computation can be observed in the output log at the bottom of the VRL window if re-

quired, see Fig. 12.16. 
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Fig. 12.16 Computation information displayed during a simulation 

Time solver setup 

The time solver is used to control the time discretization scheme. The available param-

eters are shown in Fig. 12.17. 

 

Fig. 12.17 Time solver setup 

It is possible to choose between several schemes: implicit Euler, explicit Euler and 

Crank-Nicolson (implicit Euler is recommended). The start and end time point must be 
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specified. The maximal and minimal time step size is used to control the step size. Al-

ways trying the maximal step size this size will be reduced by the reduction factor until 

solvability of the time step is accounted. The solver fails if the minimal time step size is 

reached. 

Linear and Nonlinear solver setup 

The discretization of the partial differential equations leads to a large sparse matrix sys-

tem that must be solved. Several matrix solvers are implemented for this task. The user 

can choose from iterative solvers such as LinearSolver, CG, BiCGStab or use an LU-

factorization. The iterative solvers can be preconditioned using geometric multigrid, Ja-

cobi, Gauss-Seidel or ILU preconditioner. A maximum number of iterations and a de-

sired computational accuracy must be choose to control the linear solvers. 

 

Fig. 12.18 Linear and Nonlinear solver setup 

Since the solved problem is nonlinear a Newton method is used to solve the nonlineari-

ty using an exact jacobian. The user can specify the maximum numbers of iterations 

and the desired accuracy. 
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Data evaluation 

During the computation it is interesting to compute some data. The user might be inter-

ested in the integrated amount of brine mass fraction within some subset or the flux of 

brine over some boundary subset. This can be requested in the section “Data Evalua-

tion” and is returned as a trajectory usable in a trajectory plotter. 

 

Fig. 12.19 Integration of masses and mass fluxes over subsets 

12.4.6 VTUViewer component 

While a computation is running, it is interesting to see a live visualization of the current 

simulation status. Having performed a simulation it is interesting to review the comput-

ed solution. To this aim the component VTUViewer is integrated into the control flow.  
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Fig. 12.20 Visualization component used for live and replay plots 

The required display styles can be chosen in the “setup” field. The solution component 

(brine mass fraction or pressure) must be selected. In the “Plot” section several set-

tings are available: 

 Title: the title to be shown in the picture / video 

 Range: the data range (user specified or automatic) 

 Data Legend: controls the display of the data legend 

 Outline: draws an outline around the plotted domain 

 Orientation: displays an orientation triad 

In the section “Filters” several filters can be selected in order to provide an easier data 

interpretation: 
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 Display style: controls which elements (volumes, faces, edges, points) of the grid 

are shown.  

 Data Filter: A warp filter displays a 2d solution as a height profile. The contour filter 

shows contour lines / areas, i. e. regions of same value. 

 

Fig. 12.21 Setup panel of the VTUViewer 

The visualization of the selected data is displayed in the section “visualize”. The view 

can be adjusted in size and the geometry can be shifted and zoomed in or out. A full 

screen visualization is available by double-click on the image. 

The data selection is via the field in the section “Files”. The user can choose to show 

just one time step by selection a file or can choose to visualize a whole time series by 

selecting a folder and specifying the file name beginning. In order to produce a png-file 

series (that may be converted to a video) this option can be selected. 
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Fig. 12.22 View of a computed solution 
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Fig. 12.23  Control flow of the d³f template 
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12.5 Preparing geometries for simulating density driven flow 

In order to perform code verification through simulations, means of creating grids which 

represent the underlying domains are required. Since very specific demands on such 

grids arise especially in problems of fractured density driven flow, the grid generator 

ProMesh, a general-purpose meshing software cf. /REI 13/, has been enhanced in or-

der to allow for the construction and inspection of related grids. In the following, a short 

introduction to ProMesh is given in section 12.5.1. Algorithms required for the construc-

tion of 2d and 3d grids are specified in sections 12.5.2 and 12.5.3. In Fig. 12.24 

ProMesh’s user interface is depicted. 

 

Fig. 12.24 ProMesh4 – Graphical User Interface 

12.5.1 ProMesh 

ProMesh is targeted at the generation of 1, 2 and 3 dimensional grids for numerical 

simulations using, e. g., finite element / finite volume or discontinuous Galerkin meth-

ods. It is capable to generate, visualize, and modify unstructured hybrid grids consist-

ing of vertices, edges, faces (triangles or quadrilaterals), and volume elements (tetra-

hedrons, hexahedrons, prisms, and pyramids; cf. Fig. 12.25). Grids are constructed 

and transformed (both geometrically and topologically) by applying different algorithms 

featured in ProMesh. Those algorithms can be applied to the whole grid or to selected 

parts of a grid and involve the optimization of element aspect ratios, local anisotropic 
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refinement with hanging nodes or regular closure, triangle- and tetrahedral fill algo-

rithms and more. Elements can furthermore be assigned to different subsets, allowing 

users to define specific boundary values during simulations, as well as parameters and 

equations for different parts of a grid. 

An important feature of ProMesh is its fully interactive grid visualization, which lends it-

self to inspect even complex volume geometries both on a large scale (different sub-

sets, general structure and geometry of the domain) as well as on very small scales, 

down to the shape and of individual elements. By hiding selected parts of a grid or by 

using different clip-planes, a grids interior can be inspected. The grid visualization is 

fully hardware accelerated and thus allows for a smooth user interaction. 

 

Fig. 12.25 Grid elements used by ProMesh (top: vertex, edge, triangle, quadrilateral; 

bottom: tetrahedron, hexahedron, prism, pyramid) 

12.5.2 Construction of geometries for 2d fractured domains 

In a first step, ProMesh is used to construct the outer boundary and low dimensional 

inner features of a discretization grid, like fractures or boundaries between inner layers. 

This is accomplished through ProMesh’s grid generation and remeshing tools, which 

include, e. g., creation of polylines through extrusion, refinement, or scale-, rotate-, and 

move-transformations. 

In a second step unresolved edge intersections can be automatically resolved by 

ProMesh by introducing new vertices at places where edges intersect and by splitting 

those edges using the new vertices. 

The grid is then prepared for triangular grid generation. Such triangular grids have to 

represent the medium which is possibly split into different layers of rock/soil. Further-

more fractures have to be resolved by triangle sides. In order to create such grids, a 
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first coarse triangulation is constructed without introducing new vertices. Sides of those 

triangles are either edges which were already contained in the initial boundary geome-

try from step 1 or are newly introduced inner edges, which do not cross any other edg-

es (neither newly introduced edges nor edges given from step 1). This triangulation al-

gorithm is based on the “sweep line triangulation” algorithm described in /DEB 00/ and 

is capable of generating triangulations for any set of polygons and polygonal chains, as 

long as one closed polygon exists in the set which contains all other polygons and as 

long as no two edges of any polygon penetrate each other. 

The resulting triangulation may contain triangles which are rather badly shaped. Those 

result from restrictions of the initial geometry or are a consequence from the fact that 

the triangulation algorithm may not introduce new inner vertices. ProMesh thus applies 

a “constrained Delaunay refinement” algorithm cf. /CHE 89/ on the geometry, which 

improves the triangle aspect ratios through vertex insertion and edge swapping, con-

structing a grid which fulfills the “constrained Delaunay” property. 

After triangulation, fractures finally have to be expanded so that the full dimensional 

equations for density driven flow can be applied – until this point they are represented 

by line segments only. A similar algorithm as for the case of low-dimensional fracture 

approximation using degenerated elements given in /REI 12b/ is used. For the full di-

mensional case, however, new vertices are not introduced at the same position as the 

original fracture vertex, from which they were generated, but an offset along the normal 

to the fracture is added. By this quadrilateral elements are generated representing the 

full dimensional fracture. The grid structure in the fractures is thus similar to the case of 

degenerated elements – each degenerated element corresponds to a full dimensional 

fracture element and each vertex of the degenerated geometry built from the same 

base triangulation has a corresponding vertex in the full dimensional equivalent. This 

property is especially useful when it comes to performing the transition from a low di-

mensional to a full dimensional fracture representation during dimensional adaptivity. 

A sample triangulation of a geometry with subsequent expansion of two intersecting 

fractures is depicted in Fig. 12.26. 
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Fig. 12.26 Generation of a fractured domain in 2d. Low dimensional features, triangu-

lation and expanded layers (from left to right) 

12.5.3 Constructing geometries for 3d fractured domains 

Construction of 3d fractured domains can be performed analogously to the 2d case. In-

stead of quadrilaterals, prisms are now used to build the two element layers in the frac-

tures. The grid generation process is again similar to the process used for grids in 

which fractures are represented using two layers of degenerated elements. The reader 

is again referred to /REI 12b/ for a detailed description on how such grids are precisely 

constructed. Again, as in 2d, only the step in which fracture elements are generated dif-

fers. Instead of generating degenerated elements, newly introduced vertices are now 

moved along the fracture normal which points into the side to which the new vertex will 

be connected. Instead of degenerated prisms, normal prisms can now be used to con-

nect old fracture vertices with new ones (cf. Fig. 12.27). 
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Fig. 12.27 Two layers of prisms (blue) generated around an initially low dimensional 

triangular fracture representation (red). Surrounding tetrahedrons omitted 

for clarity 
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13 Summary 

One of the main challenges in flow and transport modelling are the different scales of 

the heterogeneities of the rock matrix. The matrix may comprise homogeneous and 

heterogeneous continuous parts, large deterministically known single fractures and s of 

small background fractures that can be described by geostatistical means only. Of spe-

cial interest is the representation of tiny fissures that cannot be modelled discretely 

without neglecting the porous matrix because this would be too complex and too time-

consuming. 

Growing evidence had indicated in the past that the log hydraulic conductivity field of 

natural heterogeneity of fractured aquifers can be appropriately described with self-

affine properties. The scale effects cause the longitudinal dispersion to increase with 

the travel distance as the solute follows the complex pathways provided by the hetro-

geneities. The temporal behaviour of the longitudinal dispersion in fractal media de-

velopes differently to media with finite correlation lengths: The latter are characterised 

by an ergodic situation and the ensemble and effective quantities converge against the 

same limit value for infinite times while in fractal media, the longitudinal dispersion does 

not converge. Furthermore, the ensemble and effective quantities are different for all 

times. They describe two fundamentally different properties. 

The behaviour of the transverse dispersion coefficients is similar to that in media with 

finite correlation lengths to first increase and then reduce with increasing travel dis-

tance. This is a consequence of the absence of divergence in the flow field and could 

imply a degradation of the contaminant. However, the timescale of changes in the 

transverse dispersion media with finite and with infinite correlation lengths differs con-

siderably. This is a consequence of more branched and much longer pathways of the 

solute particles caused by the tiny fissures that remove any preferential scales. It was 

shown that the timescale increases with the degree of fractality. This corresponds to a 

high tortuosity and a much longer retention period of the contaminants in fractal media. 

Thermohaline flow and transport are described by a system of partial differential equa-

tions. In order to solve these equations numerically, d³f and r³t use a vertex-centered 

finite volume discretisation. Here, beside of the set of discrete control volume, where 
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the conservation law is fulfilled numerically, the Ansatz space for the unknown solution 

has to be chosen. 

The usual choice for the Ansatz functions in d³f is a set of linear trial functions, i. e. the 

unknown solution is represented by linear functions on each mesh element. This ap-

proach requires only degrees of freedom in the vertices. The generalization to higher 

orders is achieved by using a polynomial representation for the unknown solution on 

each element that uses functions of order greater than one. Lagrange finite elements 

are used and result in degrees of freedom on vertices, edges, faces and volumes in or-

der to ensure the continuity of the solution.  

In d3f and r³t barycentric control volumes are used, constructed by taking the convex 

hull of the following points: a vertex of the mesh, all barycenters of adjacent edges and 

faces of the vertex and all barycenters of the adjacent elements. The generalization of 

this construction is related to the chosen Ansatz space. For each degree of freedom 

one control volume is constructed. This ensures that the resulting linear system re-

mains quadratic. For this purpose, each element of the mesh is subdivided virtually into 

smaller elements of the same type, such that the finer partition corresponds to a distri-

bution of degrees of freedom equivalent to the linear case, i. e. all virtual subelements 

carry exclusively degrees of freedom in their vertices. Now, the same barycentric con-

struction procedure as used for the linear case can be applied to the virtually refined 

elements to produce control volumes related to the subelements. 

This type of discretisation was applied to the equations of density driven flow and im-

plemented in d³f. It was successfully tested using Henry’s problem. Hereby, the use of 

quadratic and cubic Ansatz functions resulted in a formidable improvement in conver-

gence rates even for coarser grids. 

The discretisation of the thermohaline flow equations leads to large linear equation sys-

tems. Effective solvers are necessary to reduce the computational effort. Basically, d³f 

and r³t use classical (geometric) or algebraical multigrid solvers (MG and AMG) to 

overcome this problem. Multigrid methods solve the equations iterating among different 

refinement levels of the computational grid. On each level simple iterative solvers are 

used to reduce the high-frequency parts of the error (“smoothing”). The equation sys-

tem is only on the coarse grid solved exactly. However, growing numbers of unknowns 

and higher grid resolution lead to larger and larger systems to be solved. Therefore, 

AMG methods were advanced to filtering algebraic multigrid methods (FAMG). These 
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methods are based on the idea of smoothing only parts of the equation system with re-

duceable defect (high error frequencies). The other parts are directly restricted to the 

coarser grid. In the coarsening algorithm, FAMG methods choose fine- and coarse 

nodes by minimizing the number of coarse nodes while still maintaining a good interpo-

lation for fine nodes. An FAMG solver was developed and implemented in d³f and r³t 

with the objective to speedup the solver especially in case of large numbers of un-

knowns. 

The development of d³f and r³t is based on the ug-toolbox. The codes have been com-

pletely parallelised from the beginning, i. e. the computational grid may be decomposed 

into multiple parts that are distributed to different processors. Assembling and solving 

are performed on those distributed domains. Special concepts, algorithms and data 

structures are required to parallelize those tasks and to efficiently perform the required 

synchronization between different processes.To facilitate communication and to gain 

more efficiency and flexibility, the parallel communication layer (pcl) library has been 

developed and implemented as a part of the ug4 library. Numerical tests using the La-

place equation and a geometric multigrid solver on up to more than 250 000 proces-

sors resulted in a nearly ideal scaling. 

The mesh size influences the dispersion coefficients. Therefore, grid-size dependent 

transport coefficients are needed for a realistic description of the situation. With the up-

scaling method of coarse graining artificial mixing these effects can be quantified. This 

spatial filtering method allows the determination of the true mixing as a function of the 

local grid size. 

For weakly heterogeneous media, it could be shown, that the coarse graining method 

reduces the artificial mixing effect in the ensemble quantities and filters out the fluctua-

tions in the effective dispersion quantities. In media with finite correlation lengths, this 

effect is visible especially for small distances to the fracture, whereas the difference 

vanishes with growing distance. The same limit value is reached by both the effective 

quantities without and with the spatial filtering procedure. 

In fractal media the coarse graining method reduces the artificial mixing effect especial-

ly in the ensemble longitudinal quantity. A small value of the filter width results in a 

large cut-off effect and the corresponding grid-size dependent quantities will be small 

and reach the same limit value. The larger the filter width, the smaller is the cut-off ef-

fect and the larger is the limit value. If the correct physical filter width is applied, the 
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corresponding grid-size dependent ensemble quantity recovers the values of the unfil-

tered effective coefficient, which reflects the dispersion more exactly. In the effective 

longitudinal quantity itself, the effect of this filter width persists at all times. Therefore, 

the coarse graining method improves the dispersion quantities, indeed, defining the 

true physical mixing.  

The transverse dispersion in both media types is not signifycantly affected by the 

coarse graining method. 

A ݀- and a ሺ݀ െ 1ሻ-dimensional approach for modelling fractured porous media were 

compared. The advantages of the ሺ݀ െ 1ሻ-dimensional approach are less computation-

al costs and less numerical problems. It was shown though that it can not cover all 

phenomena that might happen inside the fracture and that its validity should be seri-

ously questioned, especially for the case of large fracture apertures and high density 

contrasts. In order to solve this problem, a dimension-adaptive multigrid method im-

proving the convergence of the numerical solver for the ݀-dimensional case was intro-

duced. Furthermore, a criterion indicating the validity of the ሺ݀ െ 1ሻ-dimensional ap-

proach was developed. This criterion allows a dimension-adaptive approach that 

automatically switches between ݀- and ሺ݀ െ 1ሻ-dimensional fracture representations 

during run-time, depending on actual flow-conditions and fracture properties. The re-

sults of this approach show that the error made with the ሺ݀ െ 1ሻ-dimensional model can 

be kept small, while also keeping the numerical cost small. 

A parameter estimation method is described, which has been implemented into d3f re-

pository. A user manual is given describing all necessary details about the parameter 

estimation method. Furthermore, the functionality of the parameter estimation method 

is investigated by two examples. It is shown that the method works sufficiently well, as 

long as the parameter estimation problem is not ill-conditioned. This is not the case if 

sufficient data points are provided. 

Generally, flow systems in fractured rocks can be characterised by a hierarchy of con-

nected flow paths. The largest and most connected fractures contribute the major part 

to flow and transport. This highly transmissive flow system is embedded in a system of 

smaller-scale fractures and fissures that form a background system as well as the rock 

matrix both of which have a much smaller hydraulic conductivity. For a fast conserva-

tive simulation of solute transport in such a flow system analytical solutions were sug-

gested. For this purpose the network of large connected fractures is focussed on and 
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the influence of the background system has to be estimated. Here is to be distin-

guished between the effective 1d-model for estimating first arrival times and the effec-

tive 1d-model for estimating peak concentrations because the first is built on the en-

semble mixing, whereas the latter relies on the effective mixing behaviour of the plume. 

Instead of solving the advection-dispersion equation, fast predictions in solute transport 

may be obtained using particle tracking methods. This alternative may be a time-saving 

alternative especially for advection-dominated problems. 

In chapter 9 a random walk particle tracking (RWPT) method is explained and tested. 

The results of 1d and 3d test cases are compared to analytical solutions and in 1d 

additionally to measurements and numerical results got by a classical FEM simulation. 

Furthermore, 2d and 3d pore scale benchmarks are suggested. 

For testing the newly implemented features, 12 benchmarks are suggested that enable 

the comparism of d³f and r³t results to analytical solutions, measurements or the results 

of other codes (OGS, TOUGH2, PICNIC and RWPT-methods). 

The VRL-based graphical user interface was further developed and adopted to the 

needs arising in the course of the project. VRL-Studio is an integrated development 

environment (IDE) based on the Java Platform that combines both visual and text-

based programming. It enables declarative and fully automated creation of graphical 

user interfaces from Java objects. The highly flexible graphical user interface permits 

numerical controlling as well as the input of physical parameters and other model data. 

To provide an integrated visualisation, a VTU Viewer is implemented. 

The preprocessor ProMesh was considerably advanced to make it more user-friendly. 

Additionally, grid generation was improved and extended, and the grid quality inpection 

tools were enhanced. 
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A Notation 

The most general notations used in this report are given below. Where different authors 

used different symbols for the same quantity the referring chapter is also cited. 

 

 flow velocity vector [m s-1] 

 flow velocity vector [m s-1] (chapter 3, 5, 7) ࢛

ܸ flow velocity vector [m s-1] (chapter 9, 10) 

 permeability tensor [m²] 

 permeability constant [m²] ܭ

݇ permeability constant [m²] (chapter 9, 10) 

 density [kg m-³] ߩ

  density [kg m-³] (chapter 4)ߩ

 ௐ density of water [kg m-³] (chapter 6, 8)ߩ

  density of brine [kg m-³] (chapter 6, 8)ߩ

 viscosity [Pa s] ߤ

߶ porosity [-] 

݊ porosity [-] (chapter 9, 10) 

߬ tortuosity [-] 

߱ solute mass fraction [-] (chapter   ) 

ܿ volumetric solute concentration [kg m-³] (chapter 3,5,7) 

 volumetric solute concentration [kg m-³] (chapter 9,10) ܥ

߯௦ solute mass fraction [-] (chapter 4) 

 hydraulic pressure [Pa] 

 gravitational acceleration [m s-²] ࢍ

  molecular diffusion coefficient [m² s-1]ܦ

  molecular diffusion coefficient in the medium [m² s-1] (chapter 6)ܦ



310 

  molecular diffusion coefficient in the fracture [m² s-1] (chapter 6)ܦ

 Diffusion coefficient [m² s-1] (chapter 9, 10) ܦ

 dispersion tensor [m² s-1] ࡰ

 dispersion tensor [m² s-1] (chapter 8) ࢊࡰ

 local dispersion coefficient [m² s-1] (chapter 3, 5, 7) ܦ

 ௧ longitudinal & transverse dispersions coefficients [m² s-1] (chapter 6, 8)ߙ ,ߙ

 longitudinal & transverse dispersions coefficients. [m² s-1] (chapter 9, 10) ்ߙ ,ߙ

D11, D22 longitudinal & transverse dispersions coefficients [m² s-1] (chapter 3, 5, 7) 

ሺ… ሻ෪  Fourier transformed variables 

ሺ… ሻ  quantities related to fractal media 

CL correlation length [m] 

Dens, Deff ensemble & effective dispersion coefficients, resp. [m² s-1] 

D11, D22 

Dens, CG, Deff, CG 

longitudinal & transverse dispersions coefficients, resp. [m² s-1] 

grid-size dependent dispersion coefficients [m² s-1] 

x vector of coordinates in j dimensions [m] 

k vector of spatial coordinates in the Fourier space [m-1] 

f = ln(K(x)) log-normally distributed hydraulic conductivity [m s-1] 

Cff (x) correlation function [-] 

p୧ሺܓሻ projector, ensures the incompressibility of the flow [-] 

θሺtሻ Heaviside step function [-] 

c(x, t) spatial concentration distribution of the solute [kg m-³] 

v ൌ  ϕ specific discharge of the groundwater [m s-1]/ܝ

σ
ଶ  variance of the velocity fluctuations [-] 

λ characteristic length scale related to fractal media [m] 

ℓ correlation scale [m] 

L  correlation scale in fractal media [m] 

ℓ〈〉 scale-dependent correlation length [m] 



311 

L〈〉 scale-dependent correlation length in fractal media [m] 

τ୳, τୈ advective & dispersive timescales, resp. [s] 

ϵ ൌ
τ୳
τୈ

 inverse Peclet number [-] 

d Euclidean dimension [-] 

df fractal dimension [-] 

H Hurst coefficient [-] 

β degree of fractality [-] 

ξ spatial filter width [m] 

ω a constant depending on the minimum fracture length [-] 

a power-law exponent 

ADE advection-dispersion-equation  

FADE fractional advection-dispersion-equation 
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B Explicit expressions for the dispersion coefficients without 

coarse graining for finite correlation lengths 

In this appendix, the explicit expressions in media characterised by finite correlation 

lengths of the heterogeneities in an isotropic situation are listed as defined in 

/DEN 00a/.  

B.1 Longitudinal ensemble dispersion coefficient 

The longitudinal ensemble dispersion coefficient has the form:  

	δ୳୳ሼDଵଵ
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(13.1)

with σ
ଶ 	 denoting the variance of the log-hydraulic conductivity and  
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(13.3)

B.2 Transverse ensemble dispersion coefficient 

The transverse component of the ensemble dispersion coefficient reads:  
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(13.4)

with τ୳, τୈ and ε given in (13.2) and h(T) and s(T) in (13.3).  

B.3  Longitudinal effective dispersion coefficient 

The explicit form of the longitudinal effective dispersion coefficient reads: 

	δ୳୳൛Dଵଵ
ୣሺtሻൟ ൌ δ୳୳ሼDଵଵ

ୣ୬ୱሺtሻሽ െ Dଵଵ
ୣሺtሻ (13.5)

with the effective longitudinal contribution Dଵଵ
ୣሺtሻ: 
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(13.6)

and 	δ୳୳ሼDଵଵ
ୣ୬ୱሺtሻሽ as defined in (13.6),	τ୳, τୈ and ε in (13.2) and 
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(13.8)

In order to reproduce the results of /DEN 00a/ and /DEN 02/, the sign of w(t) had to be 

changed (instead of w(-T)) and the exponent in the pre-coefficient (1+2b)-2 (instead of 

“-1”) as described after equation (3.99). 

B.4 Transverse effective dispersion coefficient 

The transverse effective dispersion coefficient is given by the difference  

	δ୳୳൛Dଶଶ
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ୣሺtሻ 

(13.9)

with the effective transverse contribution Dଶଶ
ୣሺtሻ: 
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(13.10)

σ
ଶ 	 denotes the variance of the log-hydraulic conductivity,	δ୳୳ሼDଶଶ

ୣ୬ୱሺtሻሽ is defined in 

(13.4), τ୳, τୈ and ε in (13.2), b and φ in (13.7) and w(t) and g(-T) in (13.8). 
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C Explicit expressions of the scale-dependent dispersion co-

efficients with finite correlation lengths (CL) 

For infinite times the scale-dependent asymptotic value reads: 
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(13.11)

where erfc(z) denotes the error-function as defined by /ABS 84/ and  
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(13.12)

given in /DEN 00a/ with  
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The following explicit expressions are derived for situations characterised by finite in-

verse Peclet numbers ϵஞ ≪ 1 corresponding to realistic aquifer situations /GEL 83/. 
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C.1 Scale-dependent coefficients with finite correlation lengths 

The complete expression of the grid-size dependent effective coefficient consists of 

four parts: Two for the corresponding grid-size dependent ensemble quantity and two 

more for the grid-size dependent effective contribution. The explicit grid-size dependent 

expressions in a 3-dimensional isotropic system have the form:  

	δ୳୳൛D୧୧
ୣ୬ୱ,େୋሺt, ξሻൟ ൌ 	δ୳୳ሼD୧୧

ୣ୬ୱሺtሻሽ െ ቆ
ℓଶ

ℓ〈〉
ଶ ቇ

ୢ/ଶ

uത ℓ〈〉 M୧
େୋ,ି൫Tஞ, 0, 0൯ 

(13.14)

	δ୳୳൛D୧୧
ୣ,େୋሺt, ξሻൟ ൌ 	δ୳୳൛D୧୧

ୣ୬ୱ,େୋሺt, ξሻൟ

െ ൝൛D୧୧
ୣሺtሻൟ െ ቆ

ℓଶ

ℓ〈〉
ଶ ቇ

ୢ/ଶ

uത	ℓ〈〉	M୧
େୋ,ା൫Tஞ, bஞ, bஞ	൯ൡ 

																													 														 

(13.15)

with ൛D୧୧
ୣሺtሻൟ given in (13.6) and (13.10) and the auxiliary functions M୧

େୋ,േ due to the 

coarse graining procedure: 
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and 
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with ℓ〈〉 given in (5.16), the correct physical filter width of ξ in (5.50), ϵஞ	in (13.13), τ୳,ஞ in 

(5.45), τୈ,ஞ in (5.46),	σ
ଶ  denotes the variance of the log-hydraulic conductivity and 
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C.2 Grid-size dependent longitudinal ensemble coefficient with finite CL  

The scale-dependent ensemble dispersion approaches its constant long-time value on 

timescales larger than t ≫ τ୳. The explicit expression has the form: 
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with 	δ୳୳ሼDଵଵ
ୣ୬ୱሺtሻሽ given in (13.1) and Mଵ

େୋି in (13.16).  

Situations with infinite Peclet numbers for 	઼ܝܝ൛۲
,ܜ۱۵ሺ,ܛܖ܍ ሻൟ 

For infinite Peclet numbers the time-independent expression holds 
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If small-scale mixing is present and the width of filter is chosen according to 

ξ~ඥ16	D	t	, the results for effective mixing without coarse graining are recovered 
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C.3  Grid-size dependent transverse ensemble coefficient with finite CL 

The explicit expression of the grid-size dependent transverse ensemble coefficient 

reads: 
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with 	δ୳୳ሼDଶଶ
ୣ୬ୱሺtሻሽ given in (13.4) and Mଶ

େୋି in (13.17). 
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C.4 Scale-dependent longitudinal effective coefficient with finite CL 

The explicit scale-dependent longitudinal effective dispersion coefficient reads: 

	δ୳୳൛Dଵଵ
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with 	δ୳୳ሼDଵଵ
ୣ୬ୱሺtሻሽ given in (13.1), ൛Dଵଵ

ୣሺtሻൟ	 in (13.6) and Mଵ
େୋ,ା in (13.16). The scale-

dependent effective longitudinal coefficient reaches its constant long-time value for 

times t ≫ τୈ,ஞ. This value is identical to that of the corresponding ensemble quantity.  

Situations with infinite Peclet numbers for 	઼ܝܝ൛۲
,ܜ۱۵ሺ,܍ ሻൟ 

The difference between the grid-size dependent ensemble and effective coefficients 

vanishes – similar to the behaviour in situations without the filtering procedure – after 

the plume has sampled dispersively a sufficiently large region of the heterogeneities, 

which is determined by the spatial filter width ξ: If the plume has spread over ξ, the fil-

tering procedure will display no artificial mixing anymore and hence, the grid-size de-

pendent quantities become identical. The corresponding time is given by the scale τୈ,ஞ, 

that becomes large in cases of a small local dispersion. With increasing widths ξ, the 

timescales split according to τ୳ ൏ τ୳,ஞ ≪ τୈ ൏ τୈ,ஞ. For times t ≫ τ୳,ஞ  τ୳ it is: 
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C.5 Scale-dependent transverse effective coefficient with finite CL 

The explicit expression of the scale-dependent transverse effective quantity reads: 
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with 	δ୳୳൛Dଶଶ
ୣ୬ୱ,େୋሺt, ξሻൟ given in (13.24), ൛Dଶଶ

ୣሺtሻൟ in (13.10) and Mଶ
େୋ,ା in (13.17). 
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D Inverse modelling and parameter estimation 

D.1 Submitted Files 

The following files and folders were submitted to the d3f Repository: 

 dfpp/gen/solver/l2_param.c 

 dfpp/gen/solver/l2_param.h 

 dfpp/gen/solver/fit 

 dfpp/2d/gorleben_left_fit/ 

 dfpp/2d/saltdome_fit/ 

Hereby, saltdome_fit and gorleben_left_fit contain an example for the estimation of 

permeability. The files l2_param.c and l2_param.h contain the UG 3 numproc 

"l2_param_est", which is needed for parameter estimation and the folder fit contains 

the Perl module used for parameter estimation. More information can be found in Sec-

tion 8.4 and Section 8.5. 

D.2 Implementation and Parallelization 

The implementation of the Quasi-Newton method described in section 8.3 is divided in-

to a main process and sub processes and can be found in dfpp/gen/solver/fit. The main 

steps of the algorithm are described in detail in this section and are depicted in Fig. 8.1. 

Furthermore, a user manual for parameter estimation and the numproc "l2_param_est" 

can be found in section D.5. 

D.3 Implementation and parallelisation of the Quasi-Newton Method 

The main process starts with an initial set of parameters and is responsible for setting 

up all variations of the parameter vector, which are needed for the computation of the 

search direction. After preparing all necessary information, the main process starts a 

separate subprocess for every variation. With this technique the computation can be 

performed very efficient on parallel computers as each subprocess can be easily dis-

tributed to a single or even multi CPUs. 
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Each subprocess is then responsible for the computation of the parameter estimation 

function. This is performed by the UG3 numproc "l2_param_est" which is described in 

detail in Section D.5. On termination of the processes the value of the parameter esti-

mation function is returned to the main process and is then used to compute a search 

direction. 

Afterwards, the main process prepares all necessary information for the line search 

steps and starts separate subprocesses for every step. Again, the subprocesses can 

be easily distributed to CPUs leading to an optimal parallelization of the algorithm.  

When the computations are finished the subprocesses return the values of the parame-

ter estimation function to the main process. With this information at hand, the main pro-

cess chooses a new parameter vector. If an abort criterion is reached the main process 

terminates and returns the new parameter vector as optimal parameter vector. Other-

wise, the main process starts over with the new parameter vector as initial parameter 

vector (cf. Fig. 8.1). 

D.4 Unser manual for parameter estimation 

In order to use the provided Perl module "gaussnewton.pm" (in dfpp/gen/solver/fit/bin) 

with d3f problems a Perl script and a Perl module providing all problem dependent in-

formation need to be created. 

Furthermore, the following script files need to be included in the script directory of the 

d3f problem: 

 ddf_after_comput.scr 

 ddf_at_ts.scr 

 ddf_before_ts.scr 

 ddf_init_sol.scr 

 ddf_prepare_grid.scr 

 ddf_problem_specific.scr 

 ddf_solver.scr 

 run_ddf_fit.scr 

Hereby, the script run_ddf_fit.scr should be created from run_ddf.scr by adding the 

numproc "l2_param_est" (cf. section D.5). 
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The Perl script needs to provide information about the initial parameters, upper and 

lower parameter bounds, total number of Quasi-Newton steps, number of line search 

steps, and a folder, where the results are stored. An example can be found in 

dfpp/gen/solver/fit/bin/gaussnewton.gorleben.pl. 

The Perl module needs to provide the following information about the d3f problem: 

 problem directory (function getAppDirectory) 

 config file name (function getConfigFilename) 

 necessary information to create a config file (function create_config_file) 

 system dependent information on how to create a batch file  

(function create_batch_file) 

 system dependent information on how to execute a batch file  

(function launch) 

An example can be found in dfpp/gen/solver/fit/bin/UG3/gorlebentask.pm. 

Executing the created Perl script then launches parameter estimation. 

D.5 Implementation of the UG3 numproc "l2_param_est" 

The main purpose of the subprocesses is the efficient computation of the parameter 

estimation function. This is performed by a simulation of an a priori defined mathemati-

cal problem with the set of parameters given by the main process and a comparison of 

simulational data, e. g., concentration, pressure etc., at certain coordinates and times 

with experimental or estimated data. 

In the case of density driven flow the simulation is typically performed with the frame-

work UG by using efficient multigrid methods for solving large systems of linear equa-

tions cf. /BAS 94/, /FEI 99/, and /LAN 05/.  

In this context, experimental data can be entered with help of the UG3 numproc 

"l2_param_est" (cf. example below). The numproc then writes all necessary information 

about the parameter estimation function into the files "l2.dat" and "l2sum.dat".  
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Example 

The numproc "l2_param_est" needs to be created and initialized before the actual 

computation. This is performed within the script file "run_ddf_fit.scr" with the following 

code: 

npcreate l2error $c l2_param_est; //numproc is created 

npinit l2error //numproc is initialized 

       $n 2 //number of data points 

       $p2d 0 100 13000.0 200.0 0.86 

       $p2d 0 110 13000.0 200.0 0.85; 

npdisplay l2error; 

Hereby, $p2d is used for 2d-Datapoints. It needs to be followed by the component of 

the solution in UG (in the example 0 is the first component and corresponds to mass 

fraction), the time, the x-coordinate, the y-coordinate, and the measured/desired value 

for the solution. 

Furthermore, $p3d can be used for 3d-Datapoints. It needs to be followed by the com-

ponent of the solution in UG (in the example 0 is the first component and corresponds 

to mass fraction), the time, the x-coordinate, the y-coordinate, the z-coordinate, and the 

measured/desired value for the solution. 

After each time step the numproc needs to be executed. This is done by the following 

command. 

npexecute l2error $t @time; 

Hereby, @time is the current time in the simulation. 

Testcases 

The example Gorleben can be found in the folder dfpp/2d/gorleben_left_fit/,  

the saltdome example in dfpp/2d/saltdome_fit/. 
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