
GRS - 392

Modelling of
Data Uncertainties on
Hybrid Computers

Modelling of
Data Uncertainties on
Hybrid Computers

Anke Schneider (ed.)

GRS - 392
ISBN 978-3-944161-73-0

Gesellschaft für Anlagen-
und Reaktorsicherheit
(GRS) gGmbH

Remark:

This report was prepared under
contract No. 02 E 11062A with
the German Federal Ministry for
Economic Affairs and Energy
(BMWi).

The work was conducted by
the Gesellschaft für Anlagen- und
Reaktorsicherheit (GRS) gGmbH.

The authors are responsible for
the content of this report.

June 2016

Keywords:

Density-driven Flow, Modelling, Uncertainty, Fracture Flow, Final Repository

I

Acknowledgement

This report summarizes the work in the joint project “Modellierung von Daten-

ungewissheiten auf hybriden Rechnern“ (H-DuR) of the project partners from the Uni-

versity of Frankfurt, the University of Jena and the GRS. The project was funded by the

German Federal Ministry for Economic Affairs and Energy (BMWi) under the contract

no’s 02 E 11062C, 02 E 11062B and 02 E 11062A.

We would like to thank all our colleagues who contributed to this final report and to the

successful conclusion of the project, the members of the working groups of Prof. Sab-

ine Attinger (University of Jena) and Prof. Gabriel Wittum (University of Frankfurt) as

well as the collegues involved at the Steinbeis Research Center 936. Finally, we would

like to express our thanks to Peter Frolkovič (Slovak University of Technology) as well

as the not diretly involved collegues of the Repository Safety Research Division of GRS

for their consultation.

Various colleagues have contributed to this report. These were

Chapter 2: Michael Hoffer, Michael Lampe, Arne Nägel, Sebastian Reiter,

Andreas Vogel, Gabriel Wittum

Chapter 3: Dmitrij Logashenko, Arne Nägel, Martin Rupp, Andreas Vogel,

Gabriel Wittum

Chapter 4: Sabine Attinger, Katharina Roß

Chapters 1, 5, 6: Anne Gehrke, Klaus-Peter Kröhn, Anke Schneider, Hong Zhao

III

Abstract

The codes d³f and r³t are well established for modelling density-driven flow and nuclide

transport in the far field of repositories for hazardous material in deep geological for-

mations. They are applicable in porous media as well as in fractured rock or mudstone,

for modelling salt- and heat transport as well as a free groundwater surface.

Development of the basic framework of d³f and r³t had begun more than 20 years ago.

Since that time significant advancements took place in the requirements for safety as-

sessment as well as for computer hardware development. The period of safety as-

sessment for a repository of high-level radioactive waste was extended to 1 million

years, and the complexity of the models is steadily growing. Concurrently, the demands

on accuracy increase. Additionally, model and parameter uncertainties become more

and more important for an increased understanding of prediction reliability. All this

leads to a growing demand for computational power that requires a considerable soft-

ware speed-up. An effective way to achieve this is the use of modern, hybride comput-

er architectures which requires basically the set-up of new data structures and a corre-

sponding code revision but offers a potential speed-up by several orders of magnitude.

The original codes d³f and r³t were applications of the software platform UG /BAS 94/

whose development had begun in the early nineteennineties. However, UG had recent-

ly been advanced to the C++ based, substantially revised version UG4 /VOG 13/. To

benefit also in the future from state-of-the-art numerical algorithms and to use hybrid

computer architectures, the codes d3f and r3t were transferred to this new code plat-

form. Making use of the fact that coupling between different sets of equations is native-

ly supported in UG4, d³f and r³t were combined to one conjoint code d³f++.

A direct estimation of uncertainties for complex groundwater flow models with the help

of Monte Carlo simulations will not be possible in the near future because of the related

high computational effort. Therefore handling uncertainties was paid special attention

here, and particular models were developed.

The VRL based graphical user interface was advanced and adapted to the new code

developments and the user demands. Based on Java, it allows a visual as well as a

script based controlling and was extended by an integrated visualization tool. The out-

put of files in the vtk-format allows the use of modern postprocessors. The preproces-

IV

sor ProMesh for the data input, creation of model geometries and grid generation was

also extended and improved thereby facilitating the application of d³f++ considerably.

Finally, the newly developed code d³f++ underwent a series of tests. It was successful-

ly applied to several large complex models in crystalline as well as in sedimentary rock.

V

Zusammenfassung

Die Programme d³f und r³t wurden mit dem Ziel entwickelt, die dichtebeeinflusste

Grundwasserströmung und den Transport von Nukliden und anderen Schadstoffen im

Fernfeld von Endlagern in tiefen geologischen Formationen modellieren zu können. Sie

sind sowohl in porösen Medien als auch in Kluftgesteinen, zur Modellierung des Salz-

und Wärmetransportes sowie in Gebieten mit freier Grundwasseroberfläche einsetzbar.

Die Entwicklung der Grundstruktur der Programme d³f und r³t liegt bereits mehr als 20

Jahre zurück. Seit den 90er Jahren haben sich sowohl die Anforderungen an eine

Langzeitsicherheitsanalyse als auch die Rechentechnik erheblich weiterentwickelt. Der

Nachweiszeitraum für die Sicherheit eines Endlagers für stark wärmeentwickelnde ra-

dioaktive Abfälle wurde auf eine Million Jahre ausgedehnt, und die Modelle werden

immer komplexer. Zusätzlich steigen die Ansprüche an die Genauigkeit und Zuverläs-

sigkeit von Modellen. Hinzu kommt die wachsende Bedeutung der Berücksichtigung

von Modell- und Parameterungewissheiten zur Erhöhung der Vorhersagezuverlässig-

keit. All dies bedeutet ein wesentliches Anwachsen des Rechenaufwandes, der es

notwendig macht, die Software erheblich zu beschleunigen und moderne, hybride

Rechnerarchitekturen effizient zu nutzen. Dies erforderte den Aufbau neuer Daten-

strukturen und damit eine grundlegende Überarbeitung der Simulationsprogramme, er-

öffnet jedoch Beschleunigungsmöglichkeiten um mehrere Größenordnungen.

Die Programme d³f und r³t stellten Anwendungen der Software-Plattform UG /BAS 94/

dar. Diese Plattform wurde innerhalb der letzten Jahre zu einer auf C++ basierenden,

substantiell überarbeiteten Version UG4 weiterentwickelt /VOG 13/. Um weiterhin nu-

merische Verfahren auf dem neuesten Stand der Wissenschaft und hybride Rech-

nerstrukturen nutzen zu können, war es notwendig, auch die Funktionalitäten von d³f

und r³t auf der Basis von UG4 neu zu implementieren. Dabei wurde die in der Struktur

von UG4 angelegte Möglichkeit genutzt, die Lösung verschiedener Differentialglei-

chungssysteme miteinander zu koppeln. So entstand aus d³f und r³t der gekoppelte

Code d³f++.

Eine direkte Abschätzung von Datenungewissheiten mit Hilfe von Monte-Carlo-

Simulationen wird für komplexe Grundwassermodelle wegen des hohen Rechenauf-

wandes in naher Zukunft nicht möglich sein. Deshalb wurde ein neues Modell entwi-

ckelt, das Ungewissheiten direkt mit in das Differentialgleichungssystem integriert.

VI

Die VRL-basierte Benutzeroberfläche wurde weiterentwickelt und an die Neuentwick-

lungen und den Bedarf der Benutzer angepasst. Auf Java-Basis erlaubt sie sowohl ei-

ne visuelle als auch eine textbasierte Programmierung. Sie wurde außerdem um eine

integrierte Visualisierungsmöglichkeit erweitert. Die zusätzliche Ausgabe von Files im

VTK-Format ermöglicht die Nutzung moderner Postprozessoren. Auch der Präprozes-

sor ProMesh zum Einlesen von Daten und zum Aufbau von Modellgeometrien sowie

zur Gittergenerierung wurde erweitert und verbessert.

Die Neuentwicklungen wurden umfangreichen Tests unterzogen. Der neue Code d³f++

wurde erfolgreich auf große, komplexe Modellgebiete sowohl im Kristallin als auch im

Sedimentgestein angewendet.

VII

Table of contents

 Acknowledgement .. I

 Abstract .. III

 Zusammenfassung .. V

 Table of contents ... VII

1 Introduction ... 1

2 Design of UG4 ... 5

 General ... 5 2.1

 Coupling of different systems of equations ... 8 2.2

2.2.1 Systems of partial differential equations ... 8

2.2.2 Discretization of the equations .. 13

2.2.3 Element-local considerations .. 14

2.2.4 Coupling of discretizations .. 17

 Script interface .. 22 2.3

2.3.1 General introduction .. 22

2.3.2 The domain and grid specification .. 23

2.3.3 The flow module (integrated d3f) ... 24

2.3.4 The reaction-transport module (integrated r3t) .. 29

2.3.5 Start values, boundary conditions and subset data 29

2.3.6 Solver setup and time control .. 31

 Graphical user interface .. 34 2.4

2.4.1 Introduction ... 34

2.4.2 VRL-Studio .. 34

2.4.3 ProMesh .. 43

2.4.4 Data output and visualisation .. 53

 Summary ... 56 2.5

3 Solvers ... 57

 Multicore architectures and GPU .. 57 3.1

3.1.1 Multicore CPUs ... 57

VIII

3.1.2 GPUs ... 57

3.1.3 Benefits of Multicore CPUs and GPUs .. 58

 Improving the performance in d3f++ using accelerators 60 3.2

3.2.1 Strategy 1: General Purpose Acceleration for Unstructured Grids 60

3.2.2 Strategy 2: Optimized Implementation for Structured Grids 61

 Multigrid solvers .. 64 3.3

 Solvers for nonlinear transient problems ... 68 3.4

3.4.1 Preliminaries ... 68

3.4.2 Nonlinear Solvers I: Classic Newton-type schemes 69

3.4.3 Nonlinear Solvers II: Linear Implicit schemes ... 72

3.4.4 Numerical Experiments ... 74

3.4.5 Conclusion .. 78

 Higher Dimensional Problems ... 79 3.5

3.5.1 Introduction: Transport equations for probability density........................... 79

3.5.2 Sparse grids for discretization of high-dimensional PDEs 80

3.5.3 Numerical tests ... 83

4 Modelling uncertainty in salt transport ... 87

 Motivation .. 87 4.1

 Methods .. 90 4.2

4.2.1 PDF transport equations ... 90

4.2.2 Mean and Variance Transport Equations .. 91

4.2.3 Analytical Solutions of the First Moment ... 94

4.2.4 Analytical Solution of the Second Moment .. 94

 A Time Dependent Extension of the IEM Model 97 4.3

 Simulations .. 99 4.4

4.4.1 Simulation Setup ... 99

4.4.2 Concentration Variance ... 100

4.4.3 PDF Modelling ... 101

 Conclusions ... 106 4.5

5 Code verification and applications .. 107

IX

 Viscosity-dependent flow .. 107 5.1

5.1.1 Model description .. 107

5.1.2 Results .. 110

 A 3d fracture flow and transport model ... 114 5.2

5.2.1 Background ... 114

5.2.2 Conceptual model ... 115

5.2.3 Fractures ... 117

5.2.4 Hydraulic properties .. 120

5.2.5 Hydraulic boundary conditions .. 121

5.2.6 Tracer test ... 122

5.2.7 Results .. 124

5.2.8 Conclusions ... 142

 3d regional free surface flow ... 144 5.3

5.3.1 Free groundwater table in d³f++ .. 144

5.3.2 The Sandelermöns model ... 146

5.3.3 Sandelermöns simulations .. 150

5.3.4 Conclusions ... 153

6 Summary .. 155

7 References ... 157

 Table of Figures..………...……………………………………………………169

 List of Tables……………...…………………………………………………...175

A Notation………………………………………………………………………...177

B Viscosity dependent flow……………………………………………………..179

C Data for the Task 6 model……………………………………………………183

1

1 Introduction

In Germany, radioactive waste is to be disposed in deep geological formations. Long

term safety assessment for a repository requires a comprehensive system understand-

ing and qualified high-performance tools. These tools have to be able to describe all

relevant processes concerning nuclide transport through the host rock or the overlying

geological formations, respectively.

To meet the needs of modeling groundwater flow and nuclide transport, in the period

from October 1994 to August 1998 under the identification numbers 02 C 0254 6 (GSF)

and 02 C 0465 0 (GRS) and from October 1 1998 to December 2003 under the identifi-

cation number 02 E 9148 2 the computer codes d³f (distributed density-driven flow) and

r³t (radio-nuclides, reaction, retardation, and transport) were developed /FEI 99/, /FEI

04/. Afterwards, these codes were substantially advanced and continuously adapted to

the state-of-the-art of science and technology. (“E-DuR”, 02 E 10336, /SCH 12/, „A-

DuR“, 02E10558, /SCH 13/, and “ESTRAL 02E10518, /NOS 12/”. They were applied

and qualified in different projects such as WEIMAR (02 E 11072A), URSEL (02 E

10750), KOLLORADO (02 E 10669), ISIBEL (02 E 10719) and QUADER (02 E 11213).

All these works were funded by the Federal Ministry of Education and Research

(BMBF) and by the Federal Ministry of Economics and Technology (BMWi), respective-

ly. By means of these two computer codes it became feasible to simulate density driv-

en flow and pollutant transport in porous and fractured media, including heat transport

as well as free surface flow. They enable to handle large models with complex hydro-

geological structures within reasonable processing times.

With an increasing degree of approximation towards the real, three-dimensional geo-

logical and hydrogeological conditions including all relevant processes, the modelling

becomes more and more complex. According to the German safety case requirements

for heat-generating radioactive waste an assessment period of one million years has to

be regarded. The demands for accuracy and grid resolution are growing, and model

and parameter uncertainties have to be taken into account. This implies a substantially

increase of computational effort and leads easily to inadmissibly long computing times.

Therefore, the most advanced hardware and cutting edge numerical solvers have to be

used at all times.

2

The codes d³f and r³t were based on version 3 of the UG Toolbox, developed at the

Frankfurt University /BAS 94/. In the H-DuR project, they were adapted to the substan-

tially updated, C++-based version UG4 /VOG 13/. During this process the codes were

combined to one conjoint code named d³f++.

State-of-the art computer codes have not only to run on massively parallel computers,

they also have to make use of modern multicore and hybrid computer structures. Each

processor consists of multiple cores that are accessing at the same, hierarchically

structured main memory, and, moreover, the cache memory may be organized in a

much more complex way. In many cases processors of this type are supplemented by

very specialized processors like GPUs and Cell processors. The efficient use of these

modern computer architectures relies on appropriate data structures. Additionally, the

solvers have to be adapted to these new structures. That means conventional comput-

er codes need basically to be restructured to be able to employ these modern comput-

er types. In this report the porting of d³f++ to multicore and hybrid computer systems is

described as well as the enhancement of its multigrid solvers.

At every site investigated some of the the rock properties as well as flow and transport

parameters remain partially unknown. These uncertainties can be taken into account

by stochastic modeling. But in the case of regional groundwater models it can be antic-

ipated that Monte Carlo simulations will not be applicable in the medium-term future

because of their high computational costs. Therefore special attention is paid to the

adaption and application of a new stochastic approach resulting in the replacement of

the salt concentration by a so called “filtered probability density function“ directly in the

differential equation system. This leads, on the other hand, to higher dimensional equa-

tion systems requiring new numerical solvers.

Finally, a modern computer code needs an integrated user interface including comfort-

able pre- and postprocessing tools that enable the user to set-up regional, complex-

structured models, reduce input data errors and ease code handling.

3

Members of the joint project

Goethe Center for Scientific Computing (G-CSC), University of Frankfurt

Kettenhofweg 139, 60325 Frankfurt

Prof. Gabriel Wittum

Ingo Heppner

Christian Poliwoda

Dr. Michael Lampe

Dr. Arne Nägel

Dr. Sebastian Reiter

Martin Rupp

Dr. Sabine Stichel

Dr. Andreas Vogel

Institute for Geosciences, University of Jena, Burgweg 11, 07749 Jena

Prof. Sabine Attinger

Dr. Jude Musuuza

Dr. Katharina Ross

Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH

Repository Safety Research Division, Th.-Heuss-Str. 4, 38122 Braunschweig

Anke Schneider

Dr. Judith Flügge

Anne Gehrke

Dr. Klaus-Peter Kröhn

Dr. Hong Zhao

and as RD-Contractor of GRS

Steinbeis-Forschungszentrum „Technische Simulation”

Bussardweg 6, 75446 Wiernsheim-Iptingen

Dr. Michael Heisig

Dr. Dmitrij Logashenko

Michael Hoffer

5

2 Design of UG4

 General 2.1

The codes d3f (distributed density-driven flow, /FEI 99/) and r3t (radionuclides, reaction,

retardation, and transport, /FEI 04/) enable the simulation of density driven flow and

pollutant transport in porous media. Both codes are based on the simulation toolbox

UG (unstructured grids, /BAS 94/, /BAS 97/), a software framework for the numerical

solution of coupled systems of partial differential equations. The code basis UG has

been created during the early 1990s and continuously enhanced subsequently. Using a

modular software design and focusing on geometric and algebraic multigrid solvers –

asymptotically optimal solvers for large sparse systems of equations – this approach

has been successfully applied to the field of flow and transport in porous media.

While a lot of concepts in the overall design of the software layout in the UG library

have proven to be successful, some external requirements to efficient numerical soft-

ware have changed in the past decades. In order to adapt the flow and transport simu-

lations to this needs, the renewed code basis UG4 for the simulation of coupled partial

differential equations has been developed /VOG 13/. The new implementation is

grounded on an object-oriented software design and written in C++. It is strongly influ-

enced by the predecessor version transferring all concepts that have proven to be use-

ful. However, some design aspects have been redesigned and are described subse-

quently.

In the original design of the UG library applications such as d3f and r3t have been built

as separate applications on top of the core libraries. While this design enabled the re-

usage of core components like solvers and discretizations, the coupling and thereby

simultaneous simulation of the flow field and species transport was not natively sup-

ported. In contrast, a transport simulation had to be carried out after an entire computa-

tion for the flow equations writing the flow field to hard disk and read in afterwards. This

prevented the direct coupling. In the renewed code version UG4 coupling between dif-

ferent sets of equations is natively supported and the standard way to implement dis-

cretizations for physical systems. Grounded on this coupling mechanism the codes d3f

and r3t have been transferred to the new code basis and composed to one coupled

code d³f++.

6

To allow for such a tight coupling of subsystems while still maintaining a modular soft-

ware layout, different discretizations are implemented as separate plugins in the new

code. On start-up UG4 calls the initialization routine of each plugin and passes a refer-

ence to the central registry object (cf. /VOG 13/). Each plugin then registers its func-

tionality (functions, classes, and methods) at this registry. After all plugins are initial-

ized, the registry thus contains information on all functions and classes in all available

plugins, together with extensive information on parameter- and return-types. Since

plugins are built on a common core functionality and mainly implement methods that

operate on this core functionality, the interaction between different plugins is straight

forward given in this setup.

Frontends like UG4’s scripting system (cf. /VOG 13/), ProMesh (/REI 14/) or the Visual

Reflection Language VRL (cf. /HOF 13/) query the registry for available functionality

and build script bindings or visual representations for the different classes and algo-

rithms.

The registry thus provides a reflection mechanism for UG4’s functionality which not on-

ly allows to build flexible frontends but also to couple functionality from different plugins

which transform a common set of core functionality. An overview over the different

modules of UG4 and their interplay is depicted in Fig. 1.

Fig. 2.1 UG4 software layout. Arrows point in the direction of dependencies. Shown

are the core libraries, plugins, the reflection system, the script binding and

various frontends

7

Larger and more refined simulations are nowadays carried out on modern parallel

computer clusters that easily reach hundred thousands of computing cores and can be

accelerated using a hybrid architecture using GPUs. In order to use these growing

computing resources a code must be efficiently scalable to these architectures. Within

UG4 a strong focus is given to highly efficient multigrid methods that have proven to

scale close to optimal up to hundred thousands of cores /REI 13/.

User interfaces are important to handle numerous input specifications and control the

simulations. This topic is addressed by the new software basis in manifold ways. First,

a common basis for the control flow through a registry function provides the possibility

to dock both graphical user interfaces as well as script based interfaces to the simula-

tion codes. Second, the grid format ugx is now used as a standard for all simulations

and computational domains can be created, adapted, optimized and partitioned into

physical subsets using the preprocess mesh-generation software ProMesh. Third, for

the output of the created data an interface to the established VTK framework has been

created.

8

 Coupling of different systems of equations 2.2

The discretization interfaces in UG4 have been realized with a strong focus on the pos-

sibility to couple different physical systems if required. To this end, all different modules

fulfil the specification of standardized modules that can be combined. In the following

the relevant techniques and implementations are described that enable the coupling of

the d3f and r3t modules on the new code basis. Further details on the implementation

can be found in /VOG 13/, /VOG 14/.

2.2.1 Systems of partial differential equations

During the modelling process for flow and transport in porous media a set of partial dif-

ferential equations for a set of unknown functions arises. In the most general descrip-

tion this set of equations can be formally described as follows.

Definition (General system of differential equations)

Let ߗ ⊂ Թௗ be a physical domain and denote by ࢛ ∶ൌ ሺݑଵ, … , -ேሻ the set of the unݑ

known functions ݑ: ߗ ↦ Թ, ݊ ∈ Գ, ሺ݅ ൌ 1, … ,ܰሻ. Provided functionals

ࣛሺ࢛ሻ, ࣧሺ࢛ሻ, ࣶ, ሺ݅ ൌ 1,… ,ܰሻ a general system of time-dependent partial differential

equations is given by

ە
ۖ
۔

ۖ
ۓ
࢛	݀݊݅ܨ ∶ൌ ሺݑଵ, … , ,ேሻݑ ݐ݄ܽݐ	݄ܿݑݏ

	
		߲௧ ଵࣧሺ࢛ሻ 	ࣛଵሺ࢛ሻ ൌ 	ࣶଵ,			݅݊	ߗ,

⋮
		߲௧ ேࣧሺ࢛ሻ 	ࣛேሺ࢛ሻ ൌ 	ࣶே,		 ݅݊ ,ߗ

 (2.1)

and additional boundary conditions.

In UG4 every physical system is modelled by one set of differential equations. These

problem descriptions are intended to be closed systems. However, coupling of several

systems will be allowed by an appropriate specification of the data specified for the us-

er parameters.

In the following the most important physical systems are listed that have been imple-

mented for the transfer of d3f and r3t to the new code basis.

9

2.2.1.1 Haline Flow

The transport of dissolved salt in ground water flow in porous media is modelled by two

nonlinear, coupled, time-dependent differential equations for the brine mass fraction

and the pressure.

Definition (Haline Flow)

Let ߗ ⊂ Թௗ be a physical domain and let the brine mass fraction ߱:ߗ ↦ Թ		ሾ	െ	ሿ and the

pressure : ߗ ↦ Թ		ሾ	ܲܽ	ሿ be the unknown functions. The system of equations for haline

flow is given by

ە
ۖ
۔

ۖ
ۓ

,ሺ߱	݀݊݅ܨ ,ሻ ݄ܿݑݏ ݐ݄ܽݐ
	

																						߲௧ሺ߶ߩሻ 	 ߘ ⋅ ሺߩሻ ൌ ,ߗ	݊݅			,ݍ	
		߲௧ሺ߶߱ߩሻ ߘ ⋅ ሺ߱ߩ െ ሻ߱ߘࡰߩ ൌ 				,ߗ	݊݅			,௦ݍ	

	 ൌ 	െ	
ܓ
ߤ
	ሺߘ െ .ሻࢍߩ

 (2.2)

The physical parameters are given by:

- ߶ [-]: the porosity

ߩ - ≡ ݉ିଷሿ: the fluid density	݇݃	ሾ	ሺ߱ሻߩ

ߤ - ≡ ଵሿ: the fluid viscosityିݏ	݉ିଵ	݇݃	ሾ	ሺ߱ሻߤ

- ۲ୢ୧ୱ୮ ≡ ۲ୢ୧ୱ୮ሺܙሻ	ሾ	݉ଶିݏଵ	ሿ: the mechanical dispersion tensor

- D୫ ≡ D୫	ሾ	݉ଶିݏଵ	ሿ: the molecular diffusion coefficient

 ሿ: the tortuosity tensor	െ	ሾ	܂ -

- ۲ ≡ ܂	ܦ	߶ ۲ୢ୧ୱ୮ሺܙሻ	ሾ݉ଶିݏଵሿ: the hydrodynamic dispersion tensor

 ሿ: the permeability tensor	݉ଶ	ሾ	ܓ -

 ሿ: the gravity vector	ଶିݏ	݉	ሾ	 -

For the dispersion tensor the Bear-Scheidegger-Modell can be used, given by:

ሻௗ௦ሺࡰ ൌ ࡵߙ	 ሺߙ െ	்ߙሻ	
 ⋅ ்

||||
, (2.3)

with the parameters:

 [m]: the longitudinal dispersion lengthߙ -

 the transverse dispersion length :[m] ்ߙ -

10

The equations for the haline flow fit into the general framework by setting ࢛ ∶ൌ ሺ߱, ሻ

and defining

ࣛሺ࢛ሻ ∶ൌ ߘ ⋅ ሺߩሻ,	

ࣛఠሺ࢛ሻ ∶ൌ ߘ ⋅ ሺ߱ߩ െ 	,ሻ߱ߘࡰߩ

ࣧሺ࢛ሻ ∶ൌ 	,ߩ߶

ఠࣧሺ࢛ሻ ∶ൌ .߱ߩ߶

(2.4)

2.2.1.2 Thermohaline Flow

The transport of dissolved salt in ground water flow in porous media taking into account

temperature effects is modelled by three nonlinear, coupled, time-dependent differen-

tial equations for the brine mass fraction, the pressure and the temperature.

Definition (Thermohaline Flow)

Let ߗ ⊂ Թௗ be a physical domain and let the brine mass fraction ߱:ߗ ↦ Թ		ሾ	െ	ሿ, the

pressure : ߗ ↦ Թ		ሾ	ܲܽ	ሿ and the temperature ߠ: ߗ ↦ Թ		ሾ	ܭ	ሿ	be the unknown functions.

The system of equations for thermohaline flow is given by

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ

,ሺ߱	݀݊݅ܨ , ,ሻߠ ݄ܿݑݏ ݐ݄ܽݐ

																																																																	߲௧ሺ߶ߩሻ 	 ߘ ⋅ ሺߩሻ ൌ ,ߗ	݊݅			,ݍ	
																																																߲௧ሺ߶߱ߩሻ ߘ ⋅ ሺ߱ߩ െ ሻ߱ߘࡰߩ ൌ 				,ߗ	݊݅			,௦ݍ	

		߲௧ ቀ൫߶ܥߩ ሺ1 െ ߶ሻߩ௦ܥ௦൯ߠቁ ߘ ⋅ ൫ܥߩߠ െ ൯ߠߘ߉ ൌ ,ߗ	݊݅			,0	

	 ൌ െ

ߤ
ሺߘ െ .ሻࢍߩ

 (2.5)

The physical parameters as far as not described in Section 2.2.1.1 are given by:

- Λ	ሾ	ܹ	݉ିଵ	ିܭଵሿ: the thermal conductivity

- Cୱ	ሾ	ܬ	݇݃ିଵ	ିܭଵሿ: the heat capacity of the solid / rock

- C	ሾ	ܬ	݇݃ିଵ	ିܭଵሿ: the heat capacity of the fluid

- ρୱ	ሾ	݇݃	݉ିଷሿ: the rock density

The equations for the thermohaline flow fit into the general framework by setting

࢛ ∶ൌ ሺ߱, , ሻ and definingߠ

ࣛሺ࢛ሻ ∶ൌ ߘ ⋅ ሺߩሻ,	

ࣛఠሺ࢛ሻ ∶ൌ ߘ ⋅ ሺ߱ߩ െ 	,ሻ߱ߘࡰߩ
(2.6)

11

ࣛఏሺ࢛ሻ ∶ൌ ߘ ⋅ ൫ܥߩߠ െ 	,൯ߠߘ߉

ࣧሺ࢛ሻ ∶ൌ 	,ߩ߶

ఠࣧሺ࢛ሻ ∶ൌ 	,߱ߩ߶

ఏࣧሺ࢛ሻ ∶ൌ ൫߶ܥߩ ሺ1 െ ߶ሻߩ௦ܥ௦൯ߠ.

2.2.1.3 Pressure-driven Flow

The flow due to pressure effects if modelled by one partial differential equation for the

pressure.

Definition (Pressure-driven Flow)

Let ߗ ⊂ Թௗ be a physical domain and let the pressure : ߗ ↦ Թ		ሾ	ܲܽ	ሿ be the unknown

function. The system of equations for pressure-driven flow is given by

ە
ۖ
۔

ۖ
ۓ
,ሻሺ	݀݊݅ܨ ݄ܿݑݏ ݐ݄ܽݐ

	
ߘ ⋅ ሺߩሻ ൌ ,ߗ	݊݅			,ݍ	

 ൌ 	െ	
ܓ
ߤ
	ሺߘ െ .ሻࢍߩ

 (2.7)

The equations for the pressure-driven flow fit into the general framework by setting

࢛ ∶ൌ ሺሻ and defining

ࣛሺ࢛ሻ ∶ൌ ߘ ⋅ ሺߩሻ,	

ࣧሺ࢛ሻ ∶ൌ 0.
(2.8)

2.2.1.4 Prescribed Flow

If the flow field is user-specified as a known function of space and time, this is used as

a very simple system of physics.

Definition (Prescribed Flow)

Let ࢹ ⊂ Թࢊ be a physical domain. For the prescribed flow system the Darcy velocity is

specified as a function

൛
	

	 ≡ ,࢞ሺ ݊݅			,ሻݐ (2.9) ,ߗ

12

2.2.1.5 Transport equations

The transport of radionuclides for the r3t functionality is modelled using a physical sys-

tem of convection-diffusion type. The velocity field used for the convection is given by

the Darcy velocity from the flow equations.

Definition (Transport equation)

Let ࢹ ⊂ Թࢊ be a physical domain and let the radionuclide concentration ࢉ: ࢹ ↦

Թ		ሾ		ሿ be the unknown function. The system of equations for the transport is giv-

en by

൞

,ሺܿሻ	݀݊݅ܨ ݄ܿݑݏ ݐ݄ܽݐ

																						߲௧ሺ߶ܴܿሻ 	 ߘ ⋅ ሺܿ െ ܿࡰ ሻ ߶ܴߣܿ ൌ ,ݍ ݅݊ .ߗ
 (2.10)

The physical parameters are given by:

- ߶	ሾെሿ: the porosity

 ݉ିଷሿ: the rock density	݇݃	ሾ	ߩ -

ௗܭ -
ሺሻ	ሾ	݉ଷ	݇݃ିଵሿ: the distribution coefficient

- ܴ ൌ 	1	 		
ଵିథ

థ
ௗܭߩ	

ሺሻ	ሾ	െ	ሿ: the retardation factor

- ۲	ሾ	݉ଶିݏଵ	ሿ: the diffusion-dispersion tensor

 ሿ: the darcy velocity	ଵିݏ	݉	ሾ	ܙ -

- ଵܶ/ଶ
ሺሻ 	ሾ	ݏ	ሿ: the half-life

- λ୧ ൌ 	
୪୬ ଶ

భ்/మ
ሺሻ 	ሾ	ݏ

ିଵ		ሿ: the decay constant

The source term ݍ includes those radionuclides ݇ that decay into radionuclide ݅,

ݍ ൌ ߶ܴߣ ܿ

, (2.11)

with:

 ݇ : the decay constant of radionuclideߣ -

- ܿ: the concentration of radionuclide ݇

The equations for the transport fit into the general framework by setting ࢛ ∶ൌ ሺܿሻ and

defining

13

ࣛሺ࢛ሻ ∶ൌ ߘ ⋅ ሺܿ െ ሻܿࢺ	ࡰ 	 ,ܴܿߣ߶

ࣧሺ࢛ሻ ∶ൌ ߶ܴܿ.
(2.12)

2.2.2 Discretization of the equations

The partial differential equations describing the flow and the transport in porous media

can be derived using Reynold’s transport theorem and the fact that certain quantities

obey a conservation law, i.e., within a closed volume and in the absence of sinks or

sources the overall quantity within the volume is conserved over time. In order to reflect

the conservation law on the discrete level, finite volume methods are used that ensure

the balance equation for discrete so-called control volumes.

The discretization of the domain is obtained by a partition into a finite element grid.

Definition (Grid)

Let ࢹ ⊂ Թࢊ be a physical domain. A set of disjoint sets ࢎࢹ ൌ 	 ሼࡷ, … ,ሽࡺࡷ, ࡷ ⊂ is ,ࢹ

called a grid (or mesh), if it forms partition of ࢹ, i.e.,

ߗ ൌ ራ ܭ
∈ఆ

ܭ				, ∩ ᇱܭ ൌ ∅ ݎ݂ ݈݈ܽ ܭ ് ᇱ. (2.13)ܭ

The functions that must be computed (e.g., brine mass fraction, pressure, solute densi-

ty) are represented using this grid in order to define an appropriate discrete function

space.

Definition (Discrete function spaces)

Let ࢎࢹ ൌ 	 ሼࡷ, … ,ሽࡺࡷ, ࡷ ⊂ ࢹ be a grid for the domain ࢹ ⊂ Թࢊ. Let ࡼ be the space of

all polynomials up to order k, then the discrete function space for a single unknown

function is given by

ܷ ൌ ൛ݑ ∈ ;ሻߗሺܥ |ݑ ∈ ܲ, ݎ݂ ݈݈ܽ ܭ ∈ ൟ. (2.14)ߗ

A discrete function can be represented using shape functions ࢶ: ߗ ↦ Թ by an addi-

tive composition,

ሻ࢞ሺݑ ൌ 	ݑ, ሻ࢞ሺࢶ

, ,ݑ ∈ Թ. (2.15)

14

The elementwise space is fixed using polynomial spaces of lagrange type, i.e. for an

appropriate set of points on the element ࢇ ∈ -the basis functions fulfil the require ,ܭ

ment ࣘሺࢇሻ ൌ -. The elementwise space is denoted by ܷ, the global space is deߜ	

noted by ܷ.

2.2.3 Element-local considerations

The general idea for the coupling is to restrict the process to an elementwise consider-

ation. During the assembling process all grid elements are looped and the coupling is

performed on the element.

2.2.3.1 Trial spaces on elements

Let ܷ be the element function space and ܷ the global function space. Denote by |ܷ|

and |ܷ| the number of degrees of freedom on the spaces. On each grid element de-

fine the mapping between element-local and global unknown numbering by

݃ሺܭ, ݆ሻ: ሼ1, … , |ܷ|ሽ ∋ ݆ ↦ ݅ ∈ ሼ1,… , |ܷ|ሽ (2.16)

Using this mapping the local solution can be extracted from the global space via

,ݑ ൌ ,,ሺ,ሻݑ 1 ݆ |ܷ|. (2.17)

2.2.3.2 Defect equation on elements

The global defect

݀:Թ|| ≃ ܷ ∋ ݑ ↦ ݀ሺݑሻ ∈ Թ|| (2.18)

is decomposed into a set of local contributions

݀ሺݑሻ ൌ
∈ஐ

݀
ሺݑሻ, 								݀

ሺݑሻ ∈ Թ||. (2.19)

It is assumed that the elementwise contribution only depends on the element-local un-

knowns and thus can write

݀:Թ|಼| ≃ ܷ ∋ ݑ ↦ ݀ሺݑሻ ∈ Թ
|಼|, (2.20)

by setting

15

݀, ൌ ݀,ሺ,ሻ
 , 1 ݆ |ܷ|. (2.21)

Example (Flux discretization using finite volumes)

The flow term of a conservation equation can be discretized as

݀ࣜ,ሺݑሻ ൌ 	
∈ࣜ

න 	
ப
ሻݑሺܨ ⋅ ݊ ߯ ൌ

∈ఆ

∈ࣜ

න
ப∩

ሻݑሺܨ ⋅ ݊ ߯

ൌ: 	
∈ఆ

݀ࣜ,
 .

(2.22)

2.2.3.3 Jacobian on elements

In the same way the global Jacobian

:ܬ Թ|| ≃ ܷ ∋ ݑ ↦ ሻݑሺܬ ∈ Թ||ൈ|| (2.23)

is decomposed into elementwise contributions

ሻݑሺܬ ൌ 	
∈ஐ

ܬ
ሺݑሻ, ܬ

ሺݑሻ ∈ Թ||ൈ|| . (2.24)

Given the local solution this can be written as

:ܬ Թ|಼| ≃ ܷ ∋ ݑ ↦ ሻݑሺܬ ∈ Թ|಼|ൈ|಼|, (2.25)

by setting

,ܬ ൌ ሺ,ሻ	,ሺ,ሻܬ
 ,				1 ݅ | ܸ|, 1 ݆ |ܷ|. (2.26)

Example (Flux discretization using finite volumes)

The flow term of a conservation equation can be discretized as

ܬࣜ
, ൌ 	

∈ࣜ

න
ப
൫߶൯ܨ ⋅ ݊	߯ ൌ

∈ఆ

∈ࣜ

න
ப∩

൫߶൯ܨ ⋅ ݊ ߯

ൌ 	
∈ஐ

ܬࣜ
,

(2.27)

16

2.2.3.4 Element based evaluation

It is thus sufficient to restrict the computation of the defect and jacobian to elements. In

the equations of the physical systems there are, however, still integrals that must be

approximated numerically. This is achieved via numerical quadrature rules that give the

final element-local formulation and show that user data and other numerically provided

information must be given for point evaluation on an element basis.

Example (Flux discretization using finite volumes)

The local defect for the convection diffusion equation

െ ⋅ ሺݑܦሻ ݑݎ ൌ 0,				in	Ω, (2.28)

is discretized using a reference element mapping ܶ: Թௗᇱ ⊃ ܭ ∋ ݔ ↦ ݔ ൌ ܶሺݔሻ ∈ Թௗ,

the corresponding jacobian of the transformation ܬሺݔොሻ: ൌ
ப಼்ሺࣈሻ

பࣈ
ቚ
ୀ௫ොࣈ

 and an appropriate

quadrature rule ሼ߱
ப; ොݔ

பሽ
ୀଵ,…,

ಢಳ (weights and points) using the following evaluations:

 ݀,ሺݑሻ ൌ െ 	ப∩
ሻݔሺݑ௫ሻݔሺܦ ⋅ ݊ሺݔሻ߯ሺݔሻ݀ܵሺݔሻ	

 				 	∩
	ݔሻ݀ݔሻ߯ሺݔሺݑሻݔሺݎ

 ൌ െ 	ப∩
൫ܦ ிܶሺݔሻ൯ܬ

ି்ሺݔොሻ௫ݑොሺݔሻ ⋅ ݊ሺݔሻටdet݃ப∩ሺݔොሻ	݀	

 				 	∩
൫ݎ ܶሺݔሻ൯ݑොሺݔሻ	หdetܬ∩ሺݔොሻห݀ݔ	

 ൎ െ∑ 	

ಢಳ

ୀଵ ܦ ቀ ிܶ൫ݔ
ப൯ቁ ܬ

ି்൫ݔො
ப൯௫ݑො൫ݔ

ப൯ ⋅ ݊൫ݔ
ப൯ටdet݃ப∩൫ݔො

ப൯	߱
ப	

 				∑ 	

ಳ

ୀ ሺݎ ܶሺݔ
ሻሻ	ݑොሺݔ

ሻ		|detܬ∩ሺݔො
ሻ|	߱

Example (Gradients and values of shape functions)

For the local evaluation of the discrete solutions the shape functions must be evaluat-

ed. This is done on an element basis. Using the reference element transformation

ܶ: Թௗᇱ ⊃ ܭ ∋ ݔ ↦ ݔ ൌ ܶሺݔሻ ∈ Թௗ this evaluation can be reduced to evaluations on the

reference elements.

17

Value of discrete function

Φ୧ሺݔሻ ൌ ϕ ቀ ܶ
ିଵሺݔሻቁ ൌ Φ

୰ୣሺݔොሻ (2.29)

Gradient

ϕ|௫	௫ ൌ ܬ
ି்ሺݔොሻ	௫ො	Φ

୰ୣ|௫ො (2.30)

2.2.4 Coupling of discretizations

The previous section has shown how the discrete computation of the solutions can be

reduced to an elementwise consideration. In particular the solutions as well as the de-

fect and jacobian have been written in an element fashion and the required computa-

tion were based on the integration points of the finite volume scheme. This is the basis

for the coupling mechanism that is described in the following considerations. All men-

tioned physical systems have been implemented using this approach and thus are

available for simultaneous computation of coupled systems and can be used as build-

ing blocks to construct combined models.

2.2.4.1 Systems

It is assumed that the overall solution can be partitioned into several parts that form a

reasonable subdivision of the solution space. For example, every physical system of

partial differential equations (e.g., haline flow, thermohaline flow, transport) can be

considered as a single system and the associated unknown functions are a useful split-

ting of the overall function space. Now, the solution space on every element is parti-

tioned.

Definition (System function spaces)

Let ࡷࢁ be the function space of the whole system on a grid element ࡷ ∈ -A parti .ࢎࢹ

tioning into ࢙࢙࢟ ∈ Գ system spaces ࡷ,࢙ࢁ, ࢙ is a partitioning of the solution ,࢙࢙࢟

space such that it can be written as

ܷ ൌ ଵܷ, ൈ …ൈ ܷ౩౯౩,, (2.31)

with |ܷ| ൌ ∑ 	
౩౯౩
௦ୀଵ ห ௦ܷ,ห. By this splitting of the function space also the element-local so-

lution ݑ ∈ Թ|಼| is splitted into the solution parts ݑ௦, ∈ Թ|ೞ,಼| associated with the sub-

system s and using the formal mapping

18

g௦ሺܭ, ݅ሻ: ሼ1, … , | ௦ܷ,|ሽ ∋ ݅ ↦ ݆ ∈ ሼ1,… , |ܷ|ሽ (2.32)

this can be written as association

,ೞሺ,ሻݑ ൌ ௦,,ݑ ,				1 ݅ | ௦ܷ,|. (2.33)

2.2.4.2 Data imports

Due to the splitting of the function spaces into several subspaces the overall set of

equations can be partitioned into subsets of equations that are associated with the sys-

tem components. However, this relates to a set of unrelated physical systems. In order

to allow the coupling of the different physics a mechanism must be introduced that

takes care of this coupling. Therefore, it is assumed that the equations for a physical

system explicitly depend on their associated solutions only. The coupling with other

physical systems is achieved via the data that must be specified for the equations. This

data is allowed to depend on other solutions from the overall problem.

Definition (Import)

Let ࡷ ∈ be partitioned into system ࡷࢁ be a grid element and let the solution space ࢎࢹ

solutions ሼࢁ,ࡷ, … , ,ሽࡷ,࢙࢙࢟ࢁ ࢙ A data import is a functionality that allows the	.࢙࢙࢟

position based read of some C++-Type data ࡰ ≃ Թ and may depend on the solution

of the entire problem, i.e.,

ࣣ: Թௗ ൈ Թ ൈ Թ|಼| ↦ D,

,ݔ ,ݐ ݑ ↦ ࣣሺݔ, ,ݐ .ሻݑ
(2.34)

Using the imports of the restriction, that every system defect is allowed to depend on its

own solutions only, the defect can now be formalized as

݀௦, ≡ ݀௦,ሺݑ௦,, ௦ࣣ,ଵ, … , ௦ࣣ,ࣣೞ
ሻ, ݊

ೞࣣ
∈ Գ (number of imports), (2.35)

and the coupling with other solution components is realized via the imports.

Example (Imports for convection diffusion type)

Let c be a unknown density of a solute. The finite volume discretization forms a system

with the associated subsolution c. Different types of imports appear:

The reaction rate ݎ is an import of type Թ and used as

19

݀,,൫ݑ,൯ ൌ න 	

ܿݎ ൌ	

୧୮ݓ
 ୧୮൯. (2.36)ݔ୧୮൯ܿ൫ݔ൫ݎ

The velocity ࢜ is an import of type Թௗ and used as

݀,,ሺݑ,ሻ ൌ න 	
ப

࢜	ܿ ⋅ ݊ ൌ

୧୮ݓ
ப ܿሺݔ୧୮ሻ ୧୮ሻݔሺ࢜ ⋅ ݊ሺݔ୧୮ሻ. (2.37)

The diffusion ࡰ is an import of type Թௗൈௗ and used as

݀,,ሺݑ,ሻ ൌ െන 	
ப

ܿࡰ ⋅ ݊ ൌ െ

୧୮ݓ
ப ୧୮ሻݔሺܿ୧୮ሻݔሺࡰ ⋅ ݊ሺݔ୧୮ሻ. (2.38)

2.2.4.3 Computation of Jacobian for coupled systems

Given that every system defect depends on the system solutions only and other solu-

tions are incorporated via imports, the computation of the jacobian can be automated.

This is due to the fact that the chain rule can be employed to first compute the lineari-

zation of the defect with respect to the imports and then compute the derivative of the

import with respect to the solution components. Formally, give a defect as

݀௦,:Թ|ೞ,಼| ∋ ௦,ݑ ↦ ݀௦,ሺݑ௦,, ௦ࣣ,ଵ, … , ௦ࣣ,ࣣೞ
ሻ ∈ Թ|ೞ,಼|, (2.39)

the entries of the jacobian are given by

ሻݑ௦௦,ሺܬ ൌ
∂݀௦,
௦,ݑ∂

ቤ
௨಼

 	

ࣣೞ

ୀଵ

∂݀௦,
∂ ௦ࣣ,

ቤ
௨಼

⋅
∂ ௦ࣣ,

௦,ݑ∂
ቤ
௨಼

 (2.40)

for the diagonal part (i.e., the dependency w.r.t. the system unknowns) and

ሻݑ௦௧,ሺܬ ൌ

ࣣೞ

ୀଵ

∂݀௦,
∂ ௦ࣣ,

ቤ
௨಼

⋅
∂ ௦ࣣ,

௧,ݑ∂
ቤ
௨಼

 (2.41)

for the dependencies w.r.t. other solution components which are introduced via the da-

ta imports. This shows the general idea to implement the physical systems: First, the

computation of the defect w.r.t. its own unknowns must be implemented. Second, the

linearization of the defect w.r.t. the data imports must be available. In addition the data

import must provide the dependency of the import w.r.t. the solution components that it

depends on.

20

Example (Linearization of defect for convection diffusion type)

Let c be an unknown density of a solute. The finite volume discretization forms a sys-

tem with the associated subsolution c. The required derivations are:

For the reaction rate term ݎܿ one computes

Թ ∋
∂݀,,
,,ݑ∂

ൌ න

߶ݎ ൌ	

୧୮ݓ
ݎ|୧୮ ߶|୧୮ , (2.42)

Թ ∋
∂݀,,
ݎ∂

ฬ
୧୮
ൌ ୧୮ݓ

ܿ|୧୮	. (2.43)

For the convection term ⋅ ሺܿݒሻ one computes

Թ ∋
∂݀,,
,,ݑ∂

ൌ න 	
ப

߶	ݒ ⋅ ݊ ൌ

୧୮ݓ
ப ߶|୧୮ ୧୮|ݒ ⋅ ݊|୧୮ , (2.44)

Թௗ ∋
∂݀,,
ݒ∂

ฬ
୧୮
ൌ ୧୮ݓ

ப	ܿ|୧୮	݊|୧୮ . (2.45)

For the diffusion term െ ⋅ ሺܿܦሻ one computes

Թ ∋
∂݀,,
,,ݑ∂

ൌ െන 	
ப

߶ܦ ⋅ ݊ ൌ െ

୧୮ݓ
ப ୧୮|ܦ |୧୮߶ ⋅ ݊|୧୮ , (2.46)

Թௗൈௗ ∋
∂݀,,
ܦ∂

ฬ
୧୮
ൌ െݓ୧୮

ப	݊|୧୮ ୧୮|்ܿ . (2.47)

2.2.4.4 Computation of user data

It remains to specify how the data imports are filled with data. This is accomplished by

connecting an import to a user data item. This can be done at runtime of the program

and allows for the flexibility to couple together several systems. In order to be as gen-

eral as possible the minimum requirement for the user data interface is chosen as fol-

lows.

Definition (User data)

Let ܭ ∈ be a grid element and let the solution space ܷ be the entire elemtentlocalߗ

function space.	A user data is a functionality that allows the position based evaluation

of some C++-Type data ܦ ≃ Թ and the derivates w.r.t. to the solution ܷ, i.e.,

ࣞ:Թௗ ൈ Թ ൈ Թ|಼| ↦ D	 (2.48)

21

,ݔ ,ݐ ݑ ↦ ࣞሺݔ, ,ݐ .ሻݑ

Several kinds of user data have been implemented and can be categorized as follows.

Constant data

The data is given as constant function.

Position- and time-dependent data

The data is provided as a function of space and time

System-dependent data

The data is computed by a physical system. In this case the data will depend on the so-

lution components that are associated with the system and the derivate w.r.t. the func-

tions must be implemented. An important example of such a system-dependent data

export is the computation of the Darcy velocity that is known to the haline/thermohaline

system and can be imported into the convection equation for the solute transport.

Data linker

Even more flexibility in the coupling of user data is gained via the implementation of a

so-called data linker. These objects take some user data as input and combine existing

data to these new user data. The derivative of the new data is automatically available

using the chain rule and the known dependencies of the combined data. Using such

kind of data combination a broad variety of couplings can easily be realized with small

implementation effort or even just by connection on a script level. This gives a large

flexibility for the future generalization for other kind of data dependencies. Formally,

one can define this setup as a functionality

ࣞ:ࣞଵ ൈ …ൈ ࣞࣞ ↦ D,	
ࣞଵ, … ,ࣞࣞ ↦ Dሺࣞଵ,… , ࣞࣞሻ.

(2.49)

and thus compute the derivatives via

∂ࣞ
௧,ݑ∂

ቤ
௨಼

ൌ

ࣞ

ୀଵ

∂ࣞ
∂ࣞ

ฬ
௨಼

⋅
∂ࣞ
௧,ݑ∂

ቤ
௨಼

. (2.50)

22

 Script interface 2.3

One way to control the execution of the code is via user scripts. For the new code basis

the scripting language LUA1 has been chosen in order to specify the required user data

and the solver control parameters. Thereby one script file is used to specify an entire

problem.

2.3.1 General introduction

Every script starts by including the necessary utility for density driven flow problems.

This is accomplished using the code line shown in Fig. 2.2.

Fig. 2.2 Loading the utility for density driven flow problems

The utility script contains a central function that starts and controls the whole solution

process. It is called passing a LUA-table that specifies the problem and the solvers.

This line is shown in Fig. 2.3.

Fig. 2.3 Starting the computation: “problem” is the LUA-table with the model specifi-

cation and the solver setup

A LUA-table is created opening a pair of brackets. The most simple (empty) specifica-

tion of the problem is as demonstrated in Fig. 2.4.

Fig. 2.4 Starting a new problem specification using bracket-notation

1 LUA project site, http://www.lua.org

23

Inside the problem table the specifications are grouped with respect to their content.

This not only allows a better overview but is also used in order to activate or deactivate

an entire problem part, e. g. the transport part can be turned on or off by using or not

using this subgroup and is independent from the flow section. The basic sub-

specification syntax is presented in

Fig. 2.5 Starting a new sub-specification using bracket-notation

The available sub-specifiers are shown in Tab. 2.1.

Tab. 2.1 Available sub-specifier for the d3f++ utility

Specifier Specification for …

domain … the grid, world dimension and refinements

flow … the flow problem to be solved

transport … the transport problem to be solved

time … the time control

output … the output / balancing options

2.3.2 The domain and grid specification

The physical domain is provided as a file in ugx-format. Such grids are created using

the software tool ProMesh and provide a geometric description of the domain, the grid

as well as a partitioning of the grid into distinguished subsets that can be used to set

different types of equations or boundary conditions for different subsets. One, two and

three dimensional grids are supported. Starting from a coarser grid the number of re-

finements is controlled by the numRef specification. An example for the domain entry is

shown in Fig. 2.6.

24

Fig. 2.6 Entry for the domain specific setup

2.3.3 The flow module (integrated d3f)

On the given grid a flow field can be computed, controlled by the specifications in the

flow section. The flow field can be used in the transport section in order to compute

simultaneously the transport of radionuclides.

There are several types of flow that can be computed and they require different type of

user data input. In any case the entry “type” must be specified. This item allows to

choose between the different physics. The variables or functions to be computed are

specified by the item “cmp”. An example is shown in Fig. 2.7.

Fig. 2.7 Starting a specification for density driven flow

The available types are listed in Tab. 2.2. All types characterize a physical system as

described in Section 2.2.1 and can thus be coupled with other systems. This is used

e.g. to use the Darcy velocity as user data for the import of the velocity in the transport

section.

25

Tab. 2.2 Physical systems for the flow section and examples for the component

specification dependent on the chosen type

type description cmp

prescribed user defined flow field -

pressure-driven pressure dependent flow field { “p” }

haline density driven flow { “w”, “p” }

thermohaline thermohaline flow { “w”, “p”, “T” }

In the following for every type the required data input is presented.

2.3.3.1 Prescribed flow

The prescribed flow equation (see Section 2.2.1.4) is given by

				 ≡ ,࢞ሺ (2.51) ߗ	݊݅			,ሻݐ

and requires the specification of the Darcy velocity as a known function. This can be

given in two ways. First, the velocity can be specified as a constant field by simply

passing the vector as shown in Fig. 2.8.

Fig. 2.8 A constant flow field specification

Alternatively, the flow field can be specified as a function of spatial coordinates and

time. To this end one can specify a LUA-function (see Fig. 2.9) before and then pass

this function as a flow field specification (see Fig. 2.10).

Fig. 2.9 A LUA-function specifying a flow field

26

Fig. 2.10 Passing the Lua-function as data value

Alternatively, the user function can be specified inline as shown in Fig. 2.11.

Fig. 2.11 Inline version of the user function specification

2.3.3.2 Pressure-driven flow

The pressure-driven flow (see Section 2.2.1.3) is computed as follows:

ە
ۖ
۔

ۖ
ۓ
,ሻሺ	݀݊݅ܨ ݄ܿݑݏ ݐ݄ܽݐ

	
ߘ ⋅ ሺߩሻ ൌ ,ߗ	݊݅			,ݍ	

 ൌ 	െ	
ܓ
ߤ
	ሺߘ െ .ሻࢍߩ

 (2.52)

The parameters can be set as shown in Fig. 2.12.

Fig. 2.12 Example for the pressure-driven setup

27

2.3.3.3 Haline flow

The haline flow (see Section 2.2.1.1) is computed by

ە
ۖ
۔

ۖ
ۓ

,ሺ߱	݀݊݅ܨ ,ሻ ݄ܿݑݏ ݐ݄ܽݐ
	

																						߲௧ሺ߶ߩሻ 	 ߘ ⋅ ሺߩሻ ൌ ,ߗ	݊݅			,ݍ	
		߲௧ሺ߶߱ߩሻ ߘ ⋅ ሺ߱ߩ െ ሻ߱ߘࡰߩ ൌ 				,ߗ	݊݅			,௦ݍ	

	 ൌ 	െ	
ܓ
ߤ
	ሺߘ െ .ሻࢍߩ

 (2.53)

The parameters are specified as shown in Fig. 2.13.

Fig. 2.13 Example for the density-driven flow setup

28

2.3.3.4 Thermohaline flow

The thermohaline flow (see Section 2.2.1.2) is computed using the equation

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ

,ሺ߱	݀݊݅ܨ , ,ሻߠ ݄ܿݑݏ ݐ݄ܽݐ

																																																																	߲௧ሺ߶ߩሻ 	 ߘ ⋅ ሺߩሻ ൌ ,ߗ	݊݅			,ݍ	
																																																߲௧ሺ߶߱ߩሻ ߘ ⋅ ሺ߱ߩ െ ሻ߱ߘࡰߩ ൌ 				,ߗ	݊݅			,௦ݍ	

		߲௧ ቀ൫߶ܥߩ ሺ1 െ ߶ሻߩ௦ܥ௦൯ߠቁ ߘ ⋅ ൫ܥߩߠ െ ൯ߠߘ߉ ൌ ,ߗ	݊݅			,0	

	 ൌ െ
ܓ
ߤ
ሺߘ െ .ሻࢍߩ

The parameter can be set as shown in Fig. 2.14.

Fig. 2.14 Example for the thermohaline density-driven flow setup

29

2.3.4 The reaction-transport module (integrated r3t)

The transport equation uses the Darcy velocity q provided by the flow section in order

to simulate the transport of radionuclides or other substancies. Thereby, effects as

sorption or radioactive decay have to be regarded. The parameters have to be speci-

fied in the transport section as shown in Fig. 2.15.

Fig. 2.15 Starting the transport problem section

As detailed in Section 2.2.1.5 the equation for a radionuclide is given by

൞

,ሺܿሻ	݀݊݅ܨ ݄ܿݑݏ ݐ݄ܽݐ

																						߲௧ሺ߶ܴܿሻ 	 ߘ ⋅ ሺܿ െ ࡰ ሻܿࢺ ܴܿߣ߶ ൌ ,ݍ ݅݊ .ߗ
 (2.54)

For every radionuclide the parameters are thus specified as shown in Fig. 2.16

Fig. 2.16 Adding a radionuclide to the transport problem

2.3.5 Start values, boundary conditions and subset data

In general the presented user data can be specified not only by a constant value. For

most of the data the input can also be a LUA-function. They can be specified by a pre-

defined function or inline analogously as shown in Fig. 2.9 to Fig. 2.11.

30

For all variables start values have to be specified in the initial section. For every com-

ponent a constant value as well as any user-defined function can be used. Fig. 2.17

provides an illustration.

Fig. 2.17 Start value specification

Boundary conditions are specified in the boundary section. Fig. 2.18 illustrates the set-

up.

Fig. 2.18 Boundary condition specification

In addition to these global definitions, parameters also may be specified on certain

subsets. Usually e. g. the permeability varies over different parts of the domain and

must be set therefore for each subset. This can be accomplished in two ways. First the

user can simply open a new bracket within a section and use the subset keyword to re-

strict the subsequent specifications to this subset only. This is shown in Fig. 2.19.

31

Fig. 2.19 Using different specifications on subsets

Second, a data table can be used to give the parameters in a table format. An example

is shown in Fig. 2.20.

Fig. 2.20 Data table format for user data specification

2.3.6 Solver setup and time control

A special section in the LUA script is reserved for the solver settings. The nonlinear

solver needs the parameters shown in Fig. 2.21.

32

Fig. 2.21 Specification of the newton solver setup

The linear solver can be controlled as presented in Fig. 2.22.

Fig. 2.22 Specification of the linear solver setup

For the control of the time stepping the section “time” is used. This is shown in Fig.

2.23.

33

Fig. 2.23 Specification of the time control

34

 Graphical user interface 2.4

2.4.1 Introduction

The new code structure as well as the enhanced functionality of d³f++ necessitates the

development of a new, integrated graphical user interface.

The first problem in applying a groundwater code is the set-up of of the hydrogeological

structure that may be arbitrarily complicated and based on huge amounts of data pro-

vided in various different formats. To support the user in this stage of work the

ProMesh tool was created that allows compiling of hydrological layers to a regional,

hydrogeological model, designing fractures or other structures and that also includes a

grid generator (see chapter 2.4.3).

Using a comprehensive code like d³f++ requires an in-depth knowledge of its function-

ality as well as a good understanding of mathematical modelling and numerical meth-

ods. The complete functionality of the code may be accessed with the help of the LUA

scripts described in chapter 0. Operating with scripts offers a high flexibility. To make

the application of d³f++ more convenient and clear and to help the user in avoiding er-

rors, the graphical user interface is created, based on the “Virtual Reflection Library”

(VRL, cf. /HOF 13/, see chapter 2.4.2).

2.4.2 VRL-Studio

2.4.2.1 Introduction

VRL-Studio is an interactive visual programming environment for controlling complex

simulation workflows. It can be easily extended with the help of a capable plugin archi-

tecture. To use VRL-Studio efficiently, several plugins have been developed to provide

interactive access to UG4 and d3f++ based applications.

As mentioned in chapter 2.1 VRL-Studio plugins for UG4 have access to the UG regis-

try and use it to provide interactive user interfaces for registered UG functionality.

35

Fig. 2.24 VRL-Studio and UG4 Registry

2.4.2.2 Server-Client Communication

Interactive access to the simulation tool chain is a huge improvement. However, prob-

lems may arise if the simulation is computationally too expensive. Therefore, the UG

plugin for VRL contains a server-client infrastructure for remotely controlling simula-

tions. This type of remote computation retains most interactive aspects of the simula-

tion, i.e., the user gets notified of intermediate results, as well as errors that may have

occurred during the simulation.

In the current implementation the server-client communication is based on the XML-

RPC protocol and does not require additional infrastructure.

2.4.2.3 Console Application Support

To run VRL-Studio workflows in a text based, non-graphical environment, VRL-Studio

projects can be exported as console applications. This enables the user to run applica-

tions remotely, if interactive server-client execution is not applicable.

36

Therefore, VRL-Studio converts visually defined workflows into a code representation

that can be compiled as regular Java library (JAR-File). To further improve the user ex-

perience, VRL-Studio also bundles all necessary plugins and a start script for UNIX

based operating systems and Windows that can be used to run the workflow.

Exported projects can be easily transferred to a different computer. The user does not

have to manually install plugins. Plugins are installed on the target system on first us-

age. To maintain compatibility, each exported console app comes with its own set of

plugins and configuration files.

To execute a console app called console-app.zip on UNIX/Linux the following com-

mands can be used:

#> unzip console-app.zip && sh console-app/run.sh

Console apps can be used in combination with SCP and SSH to execute them on re-

mote computers.

2.4.2.4 LUA Support for VRL-Studio

For simulations that cannot be executed interactively, e.g. if they are running in batch-

mode on high performance computers, it is important for VRL-Studio to have full script-

ing support.

Therefore, the UG plugin for VRL provides a LUA executor that can be fully integrated

into visual VRL-Studio workflows and projects. Scripts that are designed for being used

on high performance computers can be executed with no or little modifications.

2.4.2.5 Integrated LUA Editor

Introduction

The scripting language LUA is used in many projects based on the scientific simulation

system UG4. LUA is tightly integrated into UG4 via a customized LUA-based shell envi-

ronment. The LUA-based shell environment is interfaced with the C++ implementation

of all UG4 classes and functions, and allows modelling UG4 control flows/work flows

from within a flexible and untyped language.

37

The LUA scripts are also commonly used to define simulation parameters and con-

straints, as well as to implement and integrate domain specific algorithms with the ca-

pabilities of the UG4 environment. While integrated development environments (IDEs)

like Eclipse, IntelliJ or Netbeans offer support for writing LUA scripts, the available li-

braries lack specific support for the UG4 shell environment and/or are too tightly bound

to a given IDE in order to be easily ported to the VRL-Studio IDE.

The presented LUA auto-completion extension for the VRL-Studio IDE solves this for

the UG4 user, and offers a viable auto-completion and LUA scripting support for UG4

development within VRL-Studio. The feature is realized as a VRL plugin. VRL plugins

are loaded by the VRL-Studio IDE at start-up and provide seamless extensions to ex-

isting IDE functionality and other plugins for d3f++, UG and data visualisation. The fol-

lowing language features of LUA are supported in the current implementation:

 UG shell-specific functions, classes and their respective documentation

 Global and local variables from the current and all included LUA scripts

 Functions, parameters and Doxygen2-style comments from current and all included

LUA scripts

 Nested hash tables and arrays

 LUA (pseudo) class definitions

The auto-completion feature is context-sensitive. Proposed completions are valid within

the variable scope at the cursor position.

Component Architecture

The LUA auto-completion feature is based on the ANTLR3 4.x parser library (Another

Tool for Language Recognition). The used parser definition fully supports the LUA lan-

guage version 5.2.

The Java code of the LUA parser is generated as part of the build of the LUA auto-

completion plugin by the ANTLR plugin. Fig. 2.25 shows a sample ANTLR definition for

a string (“NORMALSTRING”) in test and visual notation:

2 Doxygen web site, http://www.stack.nl/~dimitri/doxygen

3 /ANTLR/ ANTLR project main page, http://www.antlr.org

38

Fig. 2.25 Lua Grammar Visualisation

At run-time, the parser code builds an abstract syntax tree from arbitrary LUA scripts.

The parser can partially handle scripts that contain syntax errors. Fig. 2.26 details a

sample syntax tree generated by ANTLR for a simple function definition.

Fig. 2.26 Parse Tree (Lua Grammar)

The ANTLR syntax tree is then analysed by two separate components, the LuaAuto-

Complete library and the UG4LuaAutoComplete library, like UG-specific functions and

classes. Using the current cursor position within the document and the current text un-

der the cursor position, those two components generate a set of proposals. The first li-

39

brary generates generic completion proposals for pure LUA code, the second adds UG

shell specific proposals. This allows the LuaAutoComplete library to be used separately

for pure LUA scripts that are not executed within the UG shell environment. The gener-

ated proposals take the current cursor position into consideration. Global and local var-

iable scopes, scopes local to function and loop declarations are taken into account.

The run-time data type of the generated proposal objects is not specific for a given IDE.

This allows the libraries to be reused in other IDEs like Eclipse or IntelliJ by mapping

the generic library type to the specific IDE type. In the provided implementation a map-

ping between library and IDE types is performed for the VRL IDE. Here, the target data

types are the data types used by the RSyntaxTextArea library, which provides a rich

Swing-based text editor with syntax highlighting support.

UG shell-specific functions and classes with documentation

The UG shell provides several thousands of functions and hundreds of classes to a

LUA script executed within its context. The underlying C++ implementation of the func-

tions and classes often has extensive user documentation. This documentation as well

as the function and class signatures are used by the LUA support to compute comple-

tion proposals. The function and class signatures are included from a custom

“UGCompleter” file format provided during the build process of the UG4 environment.

As it is possible that different UG shell versions are used between projects, specific

“UGCompleter” files can be configured.

Fig. 2.27 Auto Completion for UG scripts

40

Fig. 2.27 shows a completion proposal for the function SetOutputProfileStats, a UG4

shell function. In the text editor in the left part of the screenshot the curser position is at

the end of the word ‘set’. A small popup window below the cursor lists set of possible

completions for the word ‘set’. To the right of the selected list item is a descriptive pop-

up window with details for the selected function SetOutputProfileStats.

Global and local variables from the current and included LUA scripts

The LUA support provides completion proposals for global and local variables and

properly recognizes variable scopes, e.g. local variables only valid within a function or

loop declaration.

Fig. 2.28 Auto Completion for Variables

In Fig. 2.28 the code defines two functions foo, bar with local variables ‘abar’ and

‘afoo’, as well as a global variable ‘aVar’. For line 12 the LUA support proposes only

the variables ‘afoo’ and ‘aVar’, and properly ignores the variable ‘abar’ which is not vis-

ible within the scope of the function ‘bar()’. The descriptive window also provides the

line number of the source code location used to generate the proposal.

Functions, parameters comments from current and included LUA scripts

Functions, their parameters and comments (with leading ‘—!’ statement) from the cur-

rent script and all included scripts are provided as completion proposals. In the follow-

41

ing sample a function ‘foo’ is defined with two parameters and a Doxygen parameter.

The parameter list and the comment content are provided by the LUA support.

Fig. 2.29 Auto Completion for LUA Functions

The parameters param1 and param2 in Fig. 2.29 can directly be taken from the pro-

posal list, the Doxygen comment is provided via the descriptive window to the right of

the list.

Nested hash tables and arrays

A practical LUA language feature is its unverbose support for generic nested hash ta-

bles and arrays. The LUA support for hash tables recognizes defined literal keys and

detects the full path to a nested variable declaration for completion proposals.

In Fig. 2.30 a hash table ‘foo’ is defined, with a nested set of keys ‘bar’ and ‘foo’. The

LUA auto-completion proposes then completion for ‘foo.bar.foo’.

42

Fig. 2.30 Nested Tables

Arrays are supported too, when a variable is recognized as array proposals will be fol-

lowed by a bracket like in the screen shot in Fig. 2.31.

Fig. 2.31 Array Completion

LUA class definitions

While there is no full class semantic defined in the LUA language specification, class-

style semantics can be emulated by a mix of hash tables definitions and function point-

ers. A common way to define a class in LUA is depicted in the next screen shot, to-

43

gether with a sample proposal pop-up generated when listing the available class meth-

ods.

Support for the ‘self’ keyword is implemented. Within the scope of a member function of

an existing class, all variables implicitly declared by a leading ‘self’ in other member

functions are proposed by the auto completion feature. An example is shown in Fig.

2.32, where the member variable ‘self.bar’ declared in line 7 and used in line 13 is pro-

posed within the block of the new member function ‘bar()’.

Fig. 2.32 Auto Completion for Self Keyword

2.4.3 ProMesh

A crucial aspect in simulations of groundwater flow is the accurate representation of the

physical domain in which a problem is considered. Special features of such domains,

like the extension and shape of different soil layers or the nature of possibly present

fracture networks, can have a severe impact on the obtained flow patterns. Therefore a

faithful reconstruction of those features in the computational domain is required.

Simulations of groundwater flow are not restricted to specific domains or even to spe-

cific scales. A toolchain that allows for the generation of the underlying computational

44

grids thus shouldn’t impose any unnecessary restrictions either. Instead such a tool

should feature a set of specialized algorithms together with a broad set of more general

meshing tools, which allow for the preparation, visualization, and manipulation of a

broad range of grids through a common user interface. This high degree of flexibility

and accessibility plays a key role in the design, implementation, and evolution of the

cross platform meshing software ProMesh (cf. Fig. 2.33, /REI 14/).

Originally, ProMesh was developed as a stand-alone meshing software. However, with

the development of UG4 and its powerful reflection mechanism (cf. /VOG 13/), the idea

arose that a tighter coupling of the meshing functionality of ProMesh with the simulation

aspects of UG4 could allow for the realization of even more complex simulation setups.

Especially since UG4’s reflection mechanism would then allow users to define integrat-

ed meshing and simulation procedures in one common script or graphical user inter-

face.

Fig. 2.33 The ProMesh user interface

The implementation of ProMesh thus was split into a stand-alone graphical user inter-

face (GUI), which is maintained to allow for manual editing, and a separate UG4 plugin,

in which ProMesh’s data-structures and algorithms are implemented and exposed to

UG4’s registry module. This registry serves as a C++ runtime reflection system which

allows other programs to query for, to instantiate and to execute registered data-

structures and algorithms. This reflection system is not only used by the ProMesh-GUI

45

to automatically generate tool-representations for available meshing algorithms in its

graphical user interface (cf. /VOG 13/), it is also used to expose ProMesh’s meshing

functionality to UG4’s scripting system and to the Java based Visual Reflection Library

(VRL, cf. /HOF 13/). This drastically broadens the scope of application in which

ProMesh may be used. For example, one can now prepare a grid for simulation by em-

bedding fully automated meshing steps in a simulation setup using the VRL or UG4

scripts. The potential of this interplay with regards to a unified and accessible meshing

solution will be considered in the remainder of this section.

First, the general concepts behind ProMesh are reconsidered in Section 2.4.3.1. The

interplay between UG4, ProMesh, and VRL is then examined in Section 2.4.3.2. Final-

ly, examples that demonstrate the potential of the given approach with regards to a uni-

fied and accessible meshing toolset are given in Section 2.4.3.3.

2.4.3.1 Concepts

A central aspect of ProMesh is the visualization and manipulation of one-, two-, and

three-dimensional grids consisting of edges, triangular and quadrilateral elements as

well as tetrahedra, hexahedra, prisms and pyramids. Furthermore, ProMesh allows for

the partitioning of a grid into subsets (or parts), which may then be used to associate

different material properties or boundary conditions with the different parts of the grid

during a simulation run. Those subsets are preserved even if topological or geometric

changes are performed to the underlying grid.

Below, the basic concepts used by ProMesh will be given in more detail. Those con-

cepts build a common ground on which the different meshing algorithms operate. Build-

ing on a set of such well defined concepts has the advantage that different algorithms

can easily be combined to define more complex meshing methods (cf. /REI 14/).

Grids and Grid-Elements

Algorithms in ProMesh operate on grids consisting of vertices, edges, faces and vol-

ume-elements. The name grid-element refers to any of these. For a given grid ܩ the set

of vertices of ܩ is denoted by ீܰ, the set of edges by ீܧ, the set of faces by ீܨ , and the

set of volume elements by ܸீ . The grid ܩ itself is then defined as the union of those el-

ement sets: ܩ ≔ ሼ ீܰ ∪ ீܧ ∪ ܨீ ∪ ܸீ ሽ.

46

With each vertex ݊ ∈ ீܰ a point in Թௗ is associated through the mapping

: ீܰ → Թௗ. (2.55)

Each grid-element ݁ ∈ ,is defined by its set of corner vertices ݊ଵ ܩ ݊ଶ, … , ݊,݉ 1

through the mapping

ሾ∙,∙, … ,∙ሿ:	ሺ ீܰሻ → (2.56) .ܩ

Let Φ:ܩ → Թௗ be an embedding of ܩ into Թௗ such that:

1. For each vertex ݊ ∈ ீܰ: Φሺ݊ሻ ≔ .ሺ݊ሻ

2. For each edge ݁ ∈ ,ீܧ ݁ ൌ ሾ݊ଵ, ݊ଶሿ: ∃߶:	Φሺ݁ሻ → ሾ0,1ሿ, where ߶ is a homeo-

morphism and ߲Φሺ݁ሻ ൌ ሼΦሺ݊ଵሻ,Φሺ݊ଶሻሽ.

3. For each face ݂ ∈ ܨீ : ∃߶:Φሺ݂ሻ → ሼݔ ∈ Թଶ	|	‖ݔ‖ 1ሽ, where ߶ is a homeo-

morphism and ∃	݊ଵ, … , ݊ ∈ ீܰ, ݁ଵ, … , ݁ ∈ :ீܧ ߲Φሺ݂ሻ ൌ ⋃ Φሺ݊ሻ

ୀଵ ∪ ⋃ Φሺ݁ሻ

ୀଵ .

4. For each volume-element v∈ ܸீ : ∃߶:Φሺݒሻ → ሼݔ ∈ Թଷ	|	‖ݔ‖ 1ሽ, where ߶ is a

homeomorphism and ∃݊ଵ, … , ݊ ∈ ீܰ, ݁ଵ, … , ݁ ∈ ,ீܧ ଵ݂, … , ݂ ∈ ܨீ :

߲Φሺ݂ሻ ൌ ⋃ Φሺ݊ሻ

ୀଵ ∪ ⋃ Φሺ݁ሻ

ୀଵ ∪ ⋃ Φሺ ݂ሻ

ୀଵ .

For each ݁ ∈ .݁ Φሺeሻ is then called the geometric representation of,ܩ

A grid ܩ is called consistent if the following conditions hold for all elements ݁ଵ, ݁ଶ ∈

,ܩ ݁ଵ ് ݁ଶ:

1. Φሺ݁ଵሻ ∩ Φሺ݁ଶሻ ൌ ∅, and

2. if dimሺ݁ଵሻ ൌ ݀݅݉ሺ݁ଶሻ:

 Φሺ݁ଵሻ ∩ Φሺ݁ଶሻ ൌ ∅, or

 ∃݁ ∈ ,ܩ dimሺ݁ሻ ൏ dimሺ݁ଵሻ: Φሺ݁ሻ ൌ Φሺ݁ଵሻ ∩ Φሺ݁ଶሻ.

47

For elements ݁ଵ, ݁ଶ ∈ :the following notation is used ܩ

݁ଵ ∈ ݁ଶ ⇔ dimሺ݁ଵሻ ൏ dimሺ݁ଶሻ ܽ݊݀ Φሺ݁ଵሻ ⊂ Φሺ݁ଶሻ. (2.57)

If ܩ is consistent and ݁ଵ ∈ ݁ଶ holds, then ݁ଵ is called an associated element of ݁ଶ and

vice versa. If furthermore dimሺ݁ଵሻ ൌ dimሺ݁ଶሻ െ 1	holds, then ݁ଵ is called a side of ݁ଶ. If

two elements share a common associated element, the elements are called neigh-

boured elements.

Element selections

Element selections provide a central facility through which users can interact with

ProMesh. Each element is therefore considered to be either selected or deselected.

The set of selected elements will be denoted by ܵீ ≔ ሼ݁ ∈ .is selectedሽ	݁|	ܩ

Elements can be assigned to ܵீ by user input, e.g. mouse gestures in the graphical

user interface, or algorithmically. A vast variety of such selection algorithms exists.

Such algorithms, for example, allow for the automated selection of neighboured ele-

ments of selected ones, or for the selection of elements based on special geometric or

topological properties.

Many meshing algorithms require the user to specify the set of elements of a grid, on

which the algorithm shall operate, e.g., for adaptive or anisotropic refinement, retri-

angulation, assignment of subsets (see below), and many other purposes. Through the

concept of element selections, ProMesh provides an unified approach to specify those

elements independent of the actual meshing algorithm that shall be applied. On the

other hand, new meshing algorithms which build upon the concept of selections can

easily be integrated into ProMesh’s toolchain and user interface.

Subdomains (Subsets)

The partitioning of a domain into different subdomains can be very useful to allow for

the definition of different parameter sets, discretization methods, or boundary condi-

tions on those subdomains. ProMesh features so called subsets, which allow for an

analogous partitioning of a grid. To this end, an index ݅ ∈ ሼെ1ሽ ∪ Գ is associated with

each element through the mapping ீܾݑݏ: ܩ → ሼെ1ሽ ∪ Գ:

48

ሺ݁ሻீܾݑݏ ≔ 	 ൜
݅ ∈ Գ, ݁	is assigned to subset ݅,
െ1 ݁	is not assigned to any subset.

 (2.58)

Subsets are typically defined by the user by assigning all elements of the current selec-

tion to a given subset. This has the advantage that the whole set of selection tools

available in ProMesh can be used to efficiently and comfortably define subsets. During

algorithms like refinement and remeshing, subsets are automatically preserved.

Fig. 2.34 illustrates how a subset can be defined on a given mesh using element selec-

tions.

Fig. 2.34 Raw mesh (left), selected elements (middle), and new subset (right)

Tools and Scripting

Each algorithm that defines an operation that transforms a mesh, the current selection,

or the subset structure, is accessible through a tool-dialog in the ProMesh-GUI. Using

UG4’s reflection mechanism, those tool-dialogs are automatically generated from the

function signatures of the different registered meshing algorithms.

Furthermore it is possible to write scripts that call different algorithms on a given mesh.

Those scripts can define import parameters using a special syntax in the comments

section of each script. For each such script ProMesh then generates an additional tool-

dialog through which the script can be executed. Those script-tools integrate seamless-

ly with the existing predefined tools, thus allowing for easy extendibility of ProMesh (cf.

Fig. 2.35 and Fig. 2.36).

49

2.4.3.2 Integration of ProMesh into UG4 and VRL

While ProMesh already features an easy to use graphical user interface, it is often de-

sirable to perform some of the required meshing steps as a part of a simulation run.

Especially when the mesh properties have to be varied between different runs, e.g., for

parameter estimation runs or uncertainty quantification, automated meshing can be-

come a crucial step in the simulation setup.

To this end all meshing functionality previously only available in ProMesh has been

transferred to a ProMesh-plugin for UG4. The ProMesh application thus now only con-

tains code related to the graphical user interface as well as code that creates the tool-

dialogs from available meshing algorithms. The meshing algorithms themselves are

now provided by the ProMesh-plugin and are accessible through UG4’s reflection

mechanism. This setup has numerous advantages:

1. All meshing algorithms registered at UG4’s registry are immediately available in

UG4’s scripting environment and can thus be used in script based simulation

setups.

2. Users of ProMesh’s graphical user interface can now use UG4’s scripting facili-

ty to define more complex meshing algorithms by combining the already availa-

ble ones in custom scripts. Those scripts are then available in the graphical us-

er interface as additional tools.

3. All algorithms are also available in the VRL and can be used directly through

visual representations as well as through UG4’s scripting environment. They

can thus easily be embedded in visual simulation setups. Furthermore scripts

that define more involved meshing procedures for ProMesh or UG4 can be ap-

plied in between other meshing steps thanks to the new UG4-script integration

in the VRL.

4. Using automated test scripts instead of manually executing algorithms in the

graphical user interface for debugging purposes allows for a more rapid devel-

opment of new meshing-algorithms.

One key feature for reusability and code reduction in this setup is the availability of a

common scripting language which can be used by the ProMesh-GUI, the UG4 shell in-

50

terpreter and the VRL. This allows for the implementation of utility methods in common

scripts. The overall workflow and the objects on which those utility scripts operate are

still defined by the respective application. This new approach is possible thanks to two

key aspects. One is the already known reflection mechanism implemented in UG4

through the registry module. The other integral part is the availability of the script inter-

preter as a registered object itself. The interpreter can thus be queried and used

through the already established registry binding for a given language. The interpreter

features facilities to set and get parameters and object-references and to load and run

scripts. Instances of this interpreter can then be used by the ProMesh-GUI, the UG4

shell interpreter and the VRL to load and run common meshing scripts with the provid-

ed mesh instance and custom parameters.

This new setup obviously allows for a very tight integration of meshing and simulation

on many different levels. It reduces the implementation overhead tremendously, since

script-bindings, tool-dialogs, and visual representations in the VRL are all created au-

tomatically from UG4’s reflection mechanism. At the same time a highly specialized

and intuitive graphical user interface is still available (ProMesh-GUI) and allows for the

preparation of complex grids that require manual adjustment.

The approach presented above is an important step towards a work environment with

clearly defined and coherent user interfaces and drastically improves the interoperabil-

ity of the different tools involved.

2.4.3.3 Fractured domain meshing example with ProMesh, UG4, and VRL

To demonstrate the different meshing approaches, a sample domain shall be meshed

using different frontends. The domain will contain two intersecting low dimensional frac-

tures surrounded by a tetrahedral net representing the matrix. First the manual con-

struction method using ProMesh’s user interface is described. Then a script will be

specified which automates the process, and finally, the whole meshing procedure will

be specified using the visual programming language VRL. All three approaches are

equivalent and result in the same grid (cf. Fig. 2.38), which demonstrates the high flex-

ibility achieved through the new implementation of the ProMesh meshing functionality

as a UG4 plugin.

51

Meshing with ProMesh-GUI

When manually meshing a domain with the ProMesh-GUI (cf. Fig. 2.33), a user exe-

cutes a sequence of algorithms which create or transform the element structure of the

currently active mesh. As depicted in Fig. 2.33 (left), those algorithms are represented

by graphical tools in the Tool-Browser. By specifying the parameters of each tool and

pressing the ‘apply’ button, a user can execute one tool after the other. The exact se-

quence in which the tools have to be applied to the current mesh in order to generate

the desired grid is the same as in the scripting example in Fig. 2.35.

Meshing with ProMesh-Scripts

As detailed above, all meshing functionality available in the ProMesh-GUI is also avail-

able in the ProMesh/UG4 scripting environment. A mechanism was implemented in the

ProMesh-GUI that automatically searches for meshing scripts in predefined folders.

Furthermore, ProMesh-GUI features tools to generate new scripts easily (Menu-

Scripts-NewScript). For each script a tool representation is created in the ProMesh-

GUI, which allows users to specify custom parameters and to execute the script on the

currently selected mesh (cf. Fig. 2.36 for the tool to the script from Fig. 2.35).

-- pm-declare-name: fracgen_sample

-- pm-declare-input: w | width | double | val = 8; min = 0

-- pm-declare-input: d | depth | double | val = 4; min = 0

-- pm-declare-input: h | height | double | val = 4; min = 0

CreatePlane(mesh, MakeVec(-2, 1, 0), MakeVec(2, 1, 0),

 MakeVec(-2, -1, 0), MakeVec(2, -1, 0), 0, true)

CreatePlane(mesh, MakeVec(-2, 1, 0), MakeVec(2, 1, 0),

 MakeVec(-2, -1, 0), MakeVec(2, -1, 0), 1, true)

RotateAroundCenter(mesh, MakeVec(0.4, 0.4, 0))

Move(mesh, MakeVec(0, 0.25, 0))

SelectAll(mesh)

ResolveSelfIntersections(mesh, 0.01)

Retriangulate(mesh, 20)

CreateBox(mesh, MakeVec(-0.5 * w, -0.5 * d, -0.5 * h),

 MakeVec(0.5 * w, 0.5 * d, 0.5 * h), 2, false)

Tetrahedralize(mesh, 10, false, false, false, true, 0)

Fig. 2.35 Mesh generation with ProMesh-Script. The variables mesh, w, d, h are

provided by the calling application or script

52

The first lines contain comments describing the variables required by the script. Those

variables have to be defined in the calling script interpreter. When a script is loaded in-

to ProMesh-GUI, the script is automatically parsed for such comments and a tool-

representation is created through which users can supply the required parameters.

Those parameters are then set in the used script interpreter before actually executing

the script itself.

All further lines contain code that operates on the provided mesh object. Most of those

methods are provided by the UG4 ProMesh-plugin. It is of course also possible to mix

in functions defined by other plugins, as well.

Instead of executing a script in the ProMesh-GUI, one could of course also run the

script using ugshell or VRL by means of the UG4 script interpreter, after providing val-

ues for the required variables.

Fig. 2.36 Tool representation generated by the ProMesh graphical user interface for

the script from Fig. 2.35

Meshing with ProMesh-VRL

In the VRL, all available meshing algorithms provided by UG4’s registry can be ac-

cessed through their visual representations. By creating a chain of such visual repre-

sentations, one can describe complex meshing algorithms. Fig. 2.37 shows a setup

that describes the exact same meshing procedure as specified in the script from Fig.

2.35.

53

Fig. 2.37 VRL meshing sample

Fig. 2.38 Constrained Delaunay triangulation/tetrahedrization

of intersecting fractures (left) and surrounding matrix (right). Grid generated

with the meshing script from Fig. 2.35

2.4.4 Data output and visualisation

2.4.4.1 Overview

Visualising simulation data is an essential part of the simulation workflow and often

necessary for developing an understanding of the simulation results. Therefore, it is

important to provide capable visualisation tools within the application tool chain.

For UG based applications and d3f++, several visualisation frameworks, such as VTK

and JFreeChart have been integrated.

54

2.4.4.2 VTK

VTK is a powerful framework for interactive 2d and 3d visualisations. It provides a flexi-

ble API that supports several different programming languages /VTK 06/. Among oth-

ers VTK provides components for complex surface rendering and volume rendering.

Simulation results from UG4 based applications such as d3f++ can be saved as VTK

compatible output. This enables a broad variety of options for visualising simulation re-

sults.

2.4.4.3 VTK Plugin for d3f++ based VRL-Studio Projects

For VRL-Studio, a plugin has been developed that enables direct interaction with VTK

visualisations. In previous projects the plugin mainly provided predefined visualisation

components. In addition to this, the direct access to the VTK API via the VRL-Studio

IDE has been improved. It allows for fully customised visualisation components that are

specifically designed for the problem at hand. Fig. 2.39 shows a custom VTK visualisa-

tion that has been developed inside a VRL-Studio project.

Fig. 2.39 Custom VTK Component, JFreeChart

JFreeChart is a Java based charting library. It supports various chart types, such as

line chart, bar chats and histograms. For d3f++ based applications a simplified API is in-

tegrated that can be directly used inside VRL-Studio projects. 2d charts can be gener-

55

ated with the JFreeChart plugin for VRL-Studio. Fig. 2.40 shows a custom 2d line chart

visualisation.

Fig. 2.40 2d Chart based on simplified JFreeChart API

56

 Summary 2.5

In order to adapt the flow and transport simulations to the growing requirements of

modern efficient numerical software, the renewed code basis UG4 for the simulation of

coupled partial differential equations has been developed /VOG 13/. The new imple-

mentation is grounded on an object-oriented software design and written in C++.

To be able to participate in the current and future enhancements and numerical ad-

vances the UG-applications d³f and r³t had to be transformed to this new software plat-

form. Benfitting the fact that coupling between different sets of equations is natively

supportet by UG4, both codes were coupled in this process to the new code d³f++. This

allows the simultaneous simulation of density-driven groundwater flow and pollutant

transport.

UG4 applications are controlled by scripting or a graphical user interface. Therefore,

LUA-scripting and the Visual Reflection Language VRL had to be adapted to the needs

of d³f++. Additionally, d³f++ profits of the UG4 pre-processor ProMesh that enables the

user to set-up model geometries based on different types of data input and to generate

the computational grid. ProMesh was also enhanced by several features that are help-

ful in the buildup of hydrogeological models in the new grid format ugx that is now used

as a standard for all simulations.

For the output of the simulation results an interface to the well established VTK frame-

work has been created, offering the possibility to use e. g. PARAVIEW or VISIT for vis-

ualisation.

57

3 Solvers

 Multicore architectures and GPU 3.1

3.1.1 Multicore CPUs

Until recently, Moore’s Law (rather an extrapolation from the past than a natural law)

predicted that the number of transistors incorporated in a chip and the performance

achieved therewith doubles about every two years. Nowadays, only the part about the

biannual doubling of transistors per chip still holds, while the performance increase of

individual processing units manufactured with new semiconductor technology is be-

coming smaller and smaller. The reason is simply that the clock speeds of current pro-

cessors are hitting hard physical limits. Consequently, as performance can no longer

be increased with higher clock frequencies, the industries’ solution is to put more and

more individual processing units (CPU cores) on a single chip. Such a multicore pro-

cessor appears to a computer’s operating system basically as a collection of multiple

single CPUs, something long supported by all major server operating systems in use

today. However, programs cannot use these additional CPU cores automatically, they

will have to be rewritten and parallelized to benefit from multiple cores. This is in con-

trast to the old picture where new CPUs always ran faster than the previous models

and software directly profited from this without any modification to the code. Another

point to consider is the divergence of CPU speed and memory bandwidth. This gap has

been widening all the time because increases in memory bandwidth could never keep

up with the much faster increases in CPU clock speed. Now, with multicore processors

including up to 16 cores and more to come, all sharing a single bus to the memory

subsystem, things are getting worse and worse. Even codes that have grown up on

traditional supercomputers like d3f++ and therefore should already be capable of using

multicore CPUs efficiently will have to be modified to be better adapted to these recent

trends in microprocessor technology.

3.1.2 GPUs

A second new trend are “boosters”, coprocessor cards that are put in computers along-

side the CPUs and that are intended to accelerate certain parts of a traditional comput-

58

er program that are offloaded to them. These boosters mostly stem from the graphics

processing units (GPUs) of graphics cards. Trying to use them for non-graphical pur-

poses became known as “general purpose computation on GPUs” (GPGPU). Early

GPUs had their functionality mostly hardwired on the chip and they could only be pro-

grammed by presenting the data as textures and the operations to be applied as

OpenGL drawing commands which made the whole subject rather esoteric. But after

GPUs turned from hardwired to programmable, graphic card manufacturers saw a new

market in GPGPU and by now are offering software development kits to target their

chips directly in C-like programming languages. But GPUs differ considerably from

CPUs. Their primary design is still targeted on graphics. Most of the chip’s silicon is

devoted to processing units of which several (16, e.g.) are grouped together with a sin-

gle control unit in a “streaming processor”. These are grouped again in larger units

called “streaming multiprocessors” (192 cores, e.g.), and finally enough of them to get

several thousand cores altogether are put on a single chip. Each streaming multipro-

cessor has some very fast local memory and a texture cache. They are all connected

to the GPU’s main memory (several GB) via some high speed interconnect. A memory

cache between the GPU’s main memory and the streaming multiprocessors may or

may not be present. The general idea behind such an architecture is stream or

throughput computing. Basically, all processing units are executing the same instruc-

tions but on different data. To alleviate the effect of insufficient memory bandwidth (of

course it’s the same with GPUs as with CPUs) a ratio of 20−40 arithmetical instructions

per memory access (high computational intensity) is advised. The control units also al-

lows for multiplexing several threads to one streaming processor, with the idea of al-

ways having a thread ready to go in case the current one is waiting for hundreds of

clock cycles on a memory access. The ideal GPU program has tens of thousands of

threads active at any time.

3.1.3 Benefits of Multicore CPUs and GPUs

Multicore CPUs are not only the industry’s sole answer to the partial invalidation of

Moore’s Law, there are also amenities for end-users. It’s now possible to put 20 or

more CPU cores in a single chassis at pretty low costs. So far, d3f dealt with multicore

CPUs the same way as the operating system does: use every core as a single CPU

(with a single core). Parallelization is then done via MPI which is already available in d3f

and r³t since its beginnings. This however does not take into account that now all the

cores in a multicore CPU share the same memory interface and its available band-

59

width. Other programming models, like using OpenMP for the parallelization on a single

multicore CPU, may be more adequate to tackle this problem. Another general idea is

to reduce the number of memory accesses in favour of more computational instruc-

tions, e.g. by not assembling matrices for the solution of systems of linear equations

but to use discretization stencils in connection with regular grids inside the linear solv-

ers. These ideas are discussed in the sections below.

The primary appeal of boosters and GPUs are their theoretical performance data: over

one TFlop/s in double precision arithmetic, an aggregated memory bandwidth of about

ten times of what is available to a multicore CPU (due to optimized circuit board design

not possible in a server with many memory sockets, and a low number of unsocketed

memory chips directly soldered on the board, allowing for a much wider 368─512 bits

memory bus compared to the 64 bits for multicore CPUs), and a power consumption

that results in at least five times the performance of a multicore CPU at the same watt-

age. The main challenge is of course to reprogram and/or reformulate existing code

and algorithms so that they fit in the GPU’s stream-processing model described above,

otherwise GPUs will not deliver anything close to their advertised performance data.

Ideas to this end are similar to the ones mentioned for multicore CPUs above (namely

increase data reuse and computational intensity, lower number of memory accesses)

and will also be discussed in the following sections. An extra point for GPUs is the

overhead due to data offload from the computer’s main memory to the GPU before a

GPU-boosted section can run, and the transfer back from the GPU to the computer’s

main memory afterwards.

As a general note it might be added that programs like d3f++ do have a relatively high

number of memory accesses compared to computational instructions and that no pro-

gramming trick can ever change this. It is not expected that any adapted version of

d3f++ will ever come close to the theoretical peak performance of both multicore CPUs

and GPUs. It’s still reasonable to tune d3f++ to get the most of current technology. And

despite GPUs have the same problem with memory bandwidth that CPUs have, their

overall higher aggregate memory bandwidth makes their use for d3f++ still promising.

60

 Improving the performance in d3f++ using accelerators 3.2

The existing implementation provides a very high level of flexibility with respect to vari-

ous aspects: It supports, e.g., unstructured grids with heterogeneous element types in

arbitrary dimensions. It not only supports plain density-driven, but also thermal flow.

Moreover, the discretisation is flexible enough to deal with different type of discretiza-

tions, boundary conditions, upwinding schemes etc.

Many of these features are of vital important for the end-user. However, this high level

of flexibility is afflicted with branchings (if-then-else structures) in the machine code.

Thus, it is inherently conflicting with the streaming properties of hardware architectures

outlined in the introduction. As a consequence, the optimization of the existing code

base of d3f++ for a novel hardware paradigm is a challenging task. Seeking for opti-

mality requires defining a trade-off between intrusions in the code and hardware-

optimal execution.

To that end two different strategies were pursued: The first one, Strategy 1, accelerates

the code by replacing the sub-routines of the linear algebra module (matrix-vector mul-

tiplications etc) only, while the second one, Strategy 2, aims at an optimization of the

full code. Both approaches as well as the corresponding results are described in closer

detail below.

3.2.1 Strategy 1: General Purpose Acceleration for Unstructured Grids

The routines of the linear algebra module (access to matrix elements, matrix-vector

multiplications, solvers, etc) are separated from the rest of the code (grid-geometry and

discretization and solvers) by a well-separated interface. Replacing this module only

thus allows for a comparatively non-intrusive way of code-optimization.

In addition to the existing default CPU-algebra, now a separate GPU-algebra module

extends UG4. Therein, for all operations on the GPU, specialized code is supplied. For

the most prominent languages, CUDA and OpenCL, this is achieved by a common in-

terface.

The lifecycle of objects in this module is as follows: Initially, all matrices and vectors are

created and reside in the memory of the CPU. After the discretization has assembled

61

these objects, they can be shipped (copied) to the GPU. These copy operations are

expensive w.r.t time. Thus, in order to minimize the number of copy operations, addi-

tional state flags indicate, if the objects reside on CPU and GPU, CPU only, or GPU

only.

In a test for strategy 1, test both CPU and GPU implementation are compared. Pois-

son’s equation was solved on the unit square in 2d with Dirichlet boundary conditions.

The solver was a linear iteration with Jacobi preconditioner, reducing the error by 12

orders of magnitude. The test was performed on a workstation (2x Intel Xeon, 32 GB

memory, 8 cores per CPU; 2x NVIDIA® Tesla® GPU Accelerators for GPU boosting,

each equipped with 5GB memory), with double with accuracy for floating operations.

Tab. 3.2 shows an acceleration by a factor of about 10.

Tab. 3.1 Wall clock times for the solution with CPU and GPU implementation

respectively

1/h 256 512 1024 2048 4096

DoFs 66,049 263,169 1,050,625 4,198,401 16,785,409

TCPU [s] 0.270 2.730 19.460 178.330 1,249.100

TGPU [s] 0.090 0.390 2.340 16.710 128.990

Acceleration

factor

3 7 8.32 10,.7 9.68

CG Steps 195 383 753 1,487 2,957

3.2.2 Strategy 2: Optimized Implementation for Structured Grids

The approach in the previous section focused on optimizing the linear algebra only.

The goal of Strategy 2 is to exploit the capabilities of the GPGPUs to a maximum ex-

tent. The whole infrastructure (linear algebra, discretization, solvers) was re-written and

tailored for streaming-type state-of-the-art architectures. The result is a UG4 plugin for

Just In Time compilation for Structured Grids (JITSG). This plugin realizes two strate-

gies of vital importance for high performance on GPGPU systems:

62

3.2.2.1 Just in time (JIT) compilation

JIT is a strategy to generate machine code on the computational device once it is

needed. In UG4, all model components, such as nonlinear density models, coefficients,

boundary conditions etc. are typically formulated as functions in small LUA scripts. LUA

is an interpreted programming language. This means, that the code is not compiled

(translated) into an executable, but is executed in a step-by-step fashion by an inter-

preter. In a typical process, scripts are read at run time and execute a sequence of

commands for C++ functions and objects. When these C++ objects have been pre-

compiled, the loss of performance is typically within acceptable bounds. However, a

severe problem occurs, if the member functions of the C++ object depend on LUA code

themselves: Then, in each call of such function, the LUA interpreter is executed to per-

form some computation. Since calling the interpreter is slower and since addresses

need to be resolved indirectly using pointers to LUA functions, this typically slows down

the code by orders of magnitude and should be avoided by all means.

On a system with a single CPU as execution unit, this is typically not a problem, as

LUA code can be transformed in C++ code manually. In a JIT framework, this can be

done automatically; the implemented approach supports C++, Cuda and OpenCL. As

an additional trick, the assembly of the matrix and the defect occurs just-in-time. In the

classical d3f framework, matrix and vector entries are stored in memory explicitly. In the

new approach, they are only given implicitly by functions that are compiled just-in-time.

Thus, the evaluation of a matrix entry the defect at a particular physical grid point cor-

responds to the call of a function.

3.2.2.2 Structured grids

The second component that is crucial for high performance is the use of structured

(i.e., logically rectangular) grids. As all elements of the grid and all control volume for

the finite volume method have essentially the same shape, this reduces the occurrence

of branching and is suitable for the streaming architecture on accelerators. All entities

such as elements, vertices, and matrix entries can be accessed by a triple (I,j,k) char-

acterizing its position. References to neighbours are made by incrementing and dec-

rementing the corresponding component accordingly. Since the size of matrices and

vectors for each thread on the accelerator is known a-priori, there is also no need for

dynamic memory allocation.

63

3.2.2.3 Numerical Results

The test problem for Strategy 2 is a convection diffusion equation in steady state

െ ᇞ ݑ ሿݑݒሾ̅ ,ݔሺݎ ݑሻݕ ൌ 0 in Ω ൌ ሺ0,1ሻଶ (3.1)

with ݑሺݔ, ሻݕ ൌ
௬ሺଵି௬ሻ

ଶ
 for x ൌ 0, and ݑሺݔ, ሻݕ ൌ 0 in any other case on the boundary ߲Ω.

Tab. 3.2 shows that the GPU implementation yields accelerations up to a factor of 40.

However, since the accelerator features a smaller memory, the problem size is limited.

Going beyond would require additional accelerators. Again the configuration is a CPU

system with 2x8cores of the Intel Xeon with 32 GB RAM vs. a GPU system with 2 Tes-

la K 20 (2496 CUDA cores, 5GB memory each).

Tab. 3.2 Wall clock times for the solution with of a convection diffusion problem

using JITSG (CPU vs. GPU implementation respectively)

1/h 256 512 1024 2048 4096 8192 16384

DoFs 66,049263,169 1,050,6254,198,40116,785,40967,125,249 268,468,225

TCPU [s] 0.103 0.331 1.203 4.842 19.344 77.710 317.179

TGPU [s] 0.016 0.023 0.047 0.138 0.488 1.899 ---

Acceleration

factor

6.44 14.39 25.6 35.09 39.64 40.92 ---

Lack of data (---) indicates that for the corresponding run, the machine ran out of
memory.

64

 Multigrid solvers 3.3

In /REI 13/, /HEP 13/, /VOG 13/ a massively parallel geometric multigrid approach im-

plemented in the software framework UG4 has been presented. This approach has

shown very good weak scaling properties up to hundred thousands of computing cores

on largest computer clusters for the laplacian equation. Further details on the imple-

mentation and algorithmical aspects can be found in above references and in /REI 14/,

/VOG 14/.

This parallel geometric multigrid approach has been adapted for problems of density

driven flow type. In the following the analysis of the parallel efficiency and speedup

gained with this approach for haline flow problems is presented.

For the benchmark problem the solver shows very good scaling properties on massive-

ly parallel systems.The benchmark problem focuses on the following haline flow prob-

lem.

ە
ۖ
۔

ۖ
ۓ

,ሺ߱	݀݊݅ܨ ,ሻ ݄ܿݑݏ ݐ݄ܽݐ
	

																						߲௧ሺ߶ߩሻ 	 ߘ ⋅ ሺߩሻ ൌ ,ߗ	݊݅			,ݍ	
		߲௧ሺ߶߱ߩሻ ߘ ⋅ ሺ߱ߩ െ ሻ߱ߘࡰߩ ൌ 				,ߗ	݊݅			,௦ݍ	

	 ൌ 	െ	
ܓ
ߤ
	ሺߘ െ .ሻࢍߩ

 (3.2)

Tab. 3.3 Physical parameter for the scaling benchmark problem

symbol quantity unit value

߶ porosity െ 0.1

D୫ mol. diffusion ݉ଶିݏଵ 3.565e-6

۲ୢ୧ୱ୮ mech. dispersion ݉ଶିݏଵ 0

permeability ݉ଶ ܓ 4.845e-13

݉ gravity ଶିݏ - 9.81

݃݇ density ߩ ݉ିଷ 1000 200 ߱

݃݇ viscosity ߤ ݉ିଵ ଵିݏ 1e-3

The physical parameters are chosen as listed in Tab. 2.1.

The equations are considered on a 2m x 1m domain and the boundary conditions are

chosen as shown in Fig. 2.6.

65

Fig. 3.1 Domain and boundary conditions for the parallel scaling problem

As initial condition hydrostatic pressure is set and for the brine mass fraction a linear

function from 1 at the top of the domain to 0 at the bottom is. Since the fluid with higher

density is situated in the upper part of the model a downward flow is expected.

In order to test the parallel multigrid solver the first time-step and the first newton linear-

ization is considered. The solver inverts the Jacobian matrix using multiplicative multi-

grid, V-cycle, ILU smoother, two pre- and postsmoothing steps and a LU factorization

as base solver. The system of equations is solved until an absolute size of the residu-

um of 1e-9 is reached in the L2-norm. Thus, the number of iterations is not fixed a-

priori and constant iteration counts indicate a robustness of the solver.

The results of the scaling study are shown in Tab. 3.4. Up to 131,072 computing cores

are used. With every increase of the number of processes the solved problem has also

been increased by one more grid refinement such that at the largest process number

the problem has about 8.6 billion degrees of freedom.

Focussing on the algorithmic aspect of the multigrid iteration the results are very satis-

factory since the number of iterations needed to achieve the prescribed accuracy re-

mains constant over the whole range of problem and process numbers. In addition the

consumed wallclock time to solve the entire problem – including programm startup, grid

loading and refinement, problem setup, matrix assembling and matrix inversion – is

presented. The achieved parallel efficiency of about 70% is very satisfactory.

In Tab. 3.5 a closer look at separate code phases and its performances is shown for

the weak scaling study. Since the assembling process is inherently parallel a perfect

parallel efficiency of 100% is observed as expected. The time and efficiency for the

solver initialization and the solver execution show good results. A parallel efficiency of

over 80 % at 131 thousand computing cores is achieved. The timings are graphically

66

shown in Fig. 3.3. In Fig. 3.2 the ideal speedup is compared to the gained speedup for

the different execution phases. A close to optimal speedup is observed.

Tab. 3.4 Weak scaling results

Level: Grid refinements, DoFs: degrees of freedom, Iterations: number of

multigrid iterations, Time: whole program run, Efficiency: parallel efficiency

Processes Level DoFs Iterations Time [s] Efficiency [%]

32 8 2’102’274 11 37.96 -

128 9 8’398’850 11 38.15 99.5

512 10 33’574’914 11 39.37 96.4

2’048 11 134’258’690 11 40.18 94.5

8’192 12 536’952’834 11 41.11 92.3

32’768 13 2’147’647’490 10 48.45 78.3

131’072 14 8’590’262’274 10 53.37 71.1

Tab. 3.5 Weak scaling: Times and efficiency for code phases

Processes Time [s]

Assemble

Eff. [%]

Assemble

Time [s]

Setup

Eff. [%]

Setup

Time [s]

Solve

Eff. [%]

Solve

32 6.15 - 4.93 - 8.62 -

128 6.16 99.8 4.86 101.4 8.70 99.1

512 6.11 100.7 4.97 99.2 9.31 92.6

2’048 6.18 99.5 5.09 96.9 9.45 91.2

8’192 6.13 100.3 5.03 98.0 9.96 86.6

32’768 6.17 99.6 6.22 79.3 10.84 79.6

131’072 6.10 100.7 5.99 82.3 10.66 80.9

67

Fig. 3.2 Measured speedup for the parallel scaling problem

Fig. 3.3 Measured timings for the parallel scaling problem

S
pe

ed
up

 (
w

ea
k

sc
al

in
g)

Number of processes

T
im

e
[s

]

Number of processes

68

 Solvers for nonlinear transient problems 3.4

The demand for fast solvers for this time-dependent, non-linear process is obvious: In

each single time step, a non-linear equation must be solved. In a classic setup, this is

typically achieved by some fixed-point iteration. Since a fully coupled Newton iteration

is regarded being very demanding with respect to both discretization and solvers, often

variants of Picard or Newton iterations are preferred. These are investigated in Section

3.4.2. As an alternative to the fixed point iteration, one can consider linear implicit itera-

tions. These are discussed in Section 3.4.3. Parts of this section have also been pub-

lished in /NAE 15/.

3.4.1 Preliminaries

The governing equations in this section are the continuity equations for fluid and salt

mass /BEA 91/, /HOL 98/:

∂௧ሺΦρሻ ⋅ ሾρܙሿ ൌ ρQ (3.3)

∂௧ሺΦρωሻ ⋅ ሾωρܙ െ ρ॰ωሿ ൌ ρQ (3.4)

The system is closed by constitutive equations, e.g., for the Darcy velocity

ܙ ൌ െ
ܭ
ߤ
ሺp െ ρሻ

(3.5)

as well as for the permeability K, viscosity	ߤ etc. For the sake of simplicity boundary

conditions are not considered explicitly.

The goal is to introduce solvers for problems (3.3) and (3.4). These are based on fixed-

point iterations. In an abstract setting, a solution ݑ ൌ ሺ, ߱ሻ் has to be found for

࣠ሺ, ߱ሻ ൌ 0, (3.6)

ఠ࣠ሺ, ߱ሻ ൌ 0. (3.7)

69

For the purpose of illustration and motivation, e.g., /JOH 06/, considers ࣠ given by (3.6)

and (3.7). Linearising at ݑ ൌ ሺ, ߱ሻ் the Newton method determines a search direc-

tion ሺߜ, ሻ் as the solution of߱ߜ

 ⋅ െ
ܭ
ߤ
δp ൨߱ߜᇱܙ ൌ െ࣠,

(3.8)

∂௧ሺΦ߱ߜሻ ⋅ െ߱
ܭ
ߤ
ߜ ሺ߱ܙᇱ ߱ߜሻܙ െ ۲߱ߜ൨ ൌ െ࣠ఠ,

(3.9)

Here, all quantities with the subscript 0 are evaluated at the linearization point ݑ. In

particular

:ൌܙ െ
ܭ
ߤ
ሺ െ :ᇱܙ				,ሻߩ ൌ

ܭ
ߤ
,′ߩ ′ߩ ൌ ሺ߱ሻ′ߩ

(3.10)

are the Darcy velocity, its derivative w.r.t. ߱, and the derivative of ߩ in the linearization

point respectively. For the sake of simplicity, derivatives of the dispersion tensor ۲

and the viscosity ߤ have been neglected.

Eqs. (3.8) and (3.9) allow deducing the following facts for this system: First, the prob-

lem is elliptic w.r.t. and the parabolic w.r.t. ߱. Second, if ߱ ൌ const, the variables de-

couple, since the dependence on ߜ in (3.9) may be eliminated by means of (3.8). In

this case, one can first solve for ߱ߜ and then, in a next step for ߜ. Note that although

this assumption is unrealistic, it may be fulfilled in parts of the computational domain,

e.g. /NAE 15/.

3.4.2 Nonlinear Solvers I: Classic Newton-type schemes

The aforementioned system is discretized in space and time. For times ݐ let ܝ
ሺሻ ൌ

ሺܘ
ሺሻ, ߱

ሺሻሻ் denote the vector with coefficients w.r.t. the space discretisation. Given

ܝ
ሺሻ assume that the step ݐ → :ାଵݐ ൌ ݐ ߬ is performed using an implicit Euler

method. This yields a non-linear equation for ܝ
ሺାଵሻ at time ݐାଵ:

۴ሺܝ
ሺାଵሻሻ ൌ ܝሺۺ

ሺାଵሻሻ ۳ሺܝ
ሺሻሻ ൌ 0 (3.11)

70

The term ۳ሺܝ
ሺሻሻ summarizes all explicit dependencies on the solution ܝ

ሺሻ at the old

time, whereas ۺሺܝ
ሺାଵሻሻ summarizes the implicit, non-linear dependencies on the so-

lution ܝ
ሺାଵሻ. As a result of the time discretisation may be written ۺ ൌ ۻ .ۯ߬

Rewriting (3.11) componentwise yields

۴,ሺܘ
ሺାଵሻ, ߱

ሺାଵሻሻ ൌ 0, (3.12)

۴,ሺܘ
ሺାଵሻ, ߱

ሺାଵሻሻ ൌ 0. (3.13)

This must be solved by some fixed-point iteration. Various strategies exist; in this

study, three different iterative approaches are focussed:

 Early works, e.g., /PUT 95/, highlighted the benefits of a partial Newton method.

These approximate the Jacobian and consider only the self couplings for each un-

known component. This strategy is also employed, e.g., in FEFLOW /DIE 98/,

/DIE 09/. These works describe a predictor-corrector with an explicit predictor and

an implicit corrector. The scheme is also suitable for thermohaline flow and features

a time stepping strategy and error estimates.

 A related class of solvers are iterative coupling strategies. These provide a natural

way to couple different modules and can be considered as variants of operator split-

ting technique. This class has widely been applied, e.g., to multiphase flow

/LAC 01/, /LU 09/, or geomechanics /KIM 11a/, /KIM 11b/, /MIK 13/, /MIK 14/. Based

on a Picard iteration a similar (partially explicit) strategy is pursued in MODFLOW

/LAN 06/, /LAN 08/.

 However, fully coupled Newton iterations have also been applied successfully to

both density driven /JOH 02/, /LAN 05/ and thermohaline flow /GRI 10/ based on the

݀ଷ݂ software /FEI 99/, /JOH 04/.

To look for the solution at a fixed time ݐାଵ, the time superscript index ݊ 1 is dropped.

Instead the iteration index is introduced as a subscript , i.e., ܝ, ൌ ሺܘ,, ߱,ሻ்.

71

3.4.2.1 Full coupling: Newton method

The standard approach is to employ a Newton method to the fully coupled system. De-

fining

,ାଵܝ ൌ ,ܝ (3.14)ܝߜ

The objective is to find a root of the linearised defect equation

۴ሺܝ,ାଵሻ ൎ ۴ሺܝ,ሻ ,ܝߜ,ሻܝሺܬ ൌ 0, i.e.,

ܓ,ܐܝߜܬ ൌ ቆ
ܬ
 ܬ

௪

ܬ
௪ ܬ

௪௪ቇ ൬
ܘߜ
߱ߜ

൰ ൌ െ۴ሺܝ,ሻ.
(3.15)

Here, ۴ሺܝ,ሻ from (3.11) is the nonlinear defect of the current iterate, and ܬ ൌ

 is the resulting correction and search direction ܐܝߜ ,ሻ is the Jacobian. The vectorܝሺܬ

respectively. Typically, a line search strategy is employed for a globalisation of the

method.

3.4.2.2 Approximate Coupling: Partial Newton

Modifying (3.15) slightly one can approximate ܬ by its diagonal /PUT 95/, /DIE 98/:

ܓ,ܐܝߜሚܬ ൌ ቆ
ܬ
 0
0 ܬ

௪௪ቇ ൬
ܘߜ
߱ߜ

൰ ൌ െ۴ሺܝ,ሻ.
(3.16)

This strategy is also referred to as partial Newton method /PUT 95/, /DIE 09/. Note that

solving (3.16) is much easier than solving the fully coupled system (3.15): Since the

matrices ܬ
 and ܬ

 correspond to discretisations of a Poisson-type problem and con-

vection-diffusion equation respectively, good preconditioners are available. As a down-

side of this advantage, the method will, in general, only provide linear convergence.

One should stress that (3.16) can be viewed as a single Newton step applied to the

system

۴,ሺܘାଵ, ߱ሻ ൌ 0, (3.17)

۴ఠ,ሺܘ, ߱ାଵሻ ൌ 0. (3.18)

72

This corresponds to an inexact nonlinear Jacobi iteration, where a potential line-search

strategy provides a suitable damping factor.

3.4.2.3 Iterative Coupling: Nonlinear Gauss-Seidel

 As a last alternative, a strategy is studied also referred to as iterative coupling in the

context of different equations /LAC 01/, /LU 09/, /KIM 11a/, /MIK 13/. Starting from

(3.1.2), it is stated as a non-linear Gauss-Seidel type iteration /RHE 98/ here:

۴ఠ,ሺܘ, ߱ାଵሻ ൌ 0, (3.19)

۴,ሺܘାଵ, ߱ାଵሻ ൌ 0. (3.20)

Again, both equations are treated and solved independently. In contrast to (3.1.2), each

substep employs the latest update that is available. Following /ACK 04/, it is solved for

߱ first and then for . In this ߱, ordering, a new distribution of salt is firstly computed-

as a result of an unmodified pressure distribution. Then, in the next step, a suitable

pressure is determined. This can be viewed as a projection of the solution into the

space where the conservation of fluid mass holds.

Like the partial Newton method from the previous subsection, this approach will at best

provide linear convergence. The method is in particular attractive, when flow and

transport equation are discretised and solved in different code modules. By adding an

additional outer loop, the problem can be solved without any changes to the algorithmic

design.

3.4.3 Nonlinear Solvers II: Linear Implicit schemes

The algorithmic description in Section 3.4.2 followed the classical approach solving a

nonlinear problem in each time step. In the following, it shall be suggested an alterna-

tive that comes from the theory of ordinary differential equations /DEU 90/, /DEU 02/.

Its major advantages are that (i) it requires to solve a single system of equations only,

and (ii) can elegantly be combined with error estimates and adaptive time-stepping.

73

The first step is to reformulate (3.3), (3.4): For ݑ ൌ ሺω, pሻ, let

࣫ሺuሻ ≝ ൬
Φρሺωሻ
Φρω

൰ , ࣠ሺuሻ ≝ ൬
ωρQ െ ⋅ ሾωρܙ െ ρ॰ωሿ

ρQ െ ⋅ ሾρܙሿ
൰

(3.21)

Then (3.3), (3.4) may be restated as

߲࣫ሺݑሻ
ݐ߲

ൌ ࣠ሺuሻ
(3.22)

The next step is to bring this into a Cauchy problem in quasi-linear form. Assuming that

ρ ൌ ρሺωሻ is differentiable the left hand side can be evaluated component-wise:

∂௧ሺΦρሻ ൌ Φ	
∂ρ
∂ω

∂ω
∂t

(3.23)

∂௧ሺΦρωሻ ൌ 	Φ ൬ϱ 	߱
∂ρ
∂ω

൰
∂ω
∂t

(3.24

or equivalently:

	
߲࣫ሺݑሻ
ݐ߲

ൌ ࣜሺݑሻ
ݑ߲
ݐ߲
	≝ ൮

Φ൬ϱሺ߱ሻ 	߱
∂ρ
∂ω

൰ 0

Φ
∂ρ
∂ω

0
൲൮

∂ω
∂t
∂p
∂t

൲

(3.25)

This stresses that (3.3), (3.4) is in essence a differential-algebraic equation (DAE): The

continuity of the salt mass is described as a transient process (w.r.t. w), while the con-

tinuity of the fluid mass is a static process w.r.t. p.

The linear-implicit Euler is now defined as follows: For an arbitrary linear operator	ࣤ,

one may subtract the product ࣤu on both sides:

ࣜሺuሻ
ݑ߲
ݐ߲

െ ࣤu ൌ ࣠ሺuሻ െ ࣤu
(3.26)

74

The purpose of this is to remove stiff components from the right hand side. Evaluating

the modified right hand side at u௧ yields the linear-implicit Euler:

ሺࣜሺu௧ሻ െ τࣤሻu௧ାఛ ൌ ߬	࣠ሺݑ௧ሻ ሺࣜሺu௧ሻ െ ߬ ࣤሻu௧ (3.27)

As pointed out in /DEU 90/, one suitable choice for J

ࣤ ൌ
∂
∂u

൬࣠ሺuሻ െ ࣜሺݑሻ
ݑ߲
ݐ߲
൰
|௨ୀ௨బ

(3.28)

or a computationally feasible approximation thereof.

For practical purposes, one can use

ሺࣜሺu௧ሻ െ ߬ࣤሻ ൌ
∂
∂u

ሺτ	࣠ሺuሻ െ ࣫ሺuሻ ࣫ሺu௧ሻሻ|௨ୀ௨
(3.29)

i.e., the linearization in the previous point.

3.4.4 Numerical Experiments

Section 3.4.2 introduced three different solvers. These were compared and evaluated

with respect to performance. As a benchmark the Elder problem is used. This features

a highly dynamic velocity field in the beginning, which then stabilizes for larger times.

Since effects of the linear solver should be avoided, a coarse spatial mesh with 4420

degrees of freedom (1024 elements) is used. The tests are conducted for the full non-

linear equations (3.3)-(3.5) using ug4 /VOG 13/.

The first test investigates the convergence of the two decoupling nonlinear solvers. In

the first time step, the partial Newton and the iterative coupling achieve a reduction of

the residual by 0.5 ൈ 10ି in 26 and 21 steps respectively.

75

Fig. 3.4 Defect reduction of Partial Newton (diamond) and Iterative Coupling

(triangle) for computing t=τ=0.025a in the first time step

Fig. 3.4 visualizes details about the reduction of the nonlinear defects

݀,
 : ൌ∥ ۴,, ∥ଶ, ݀ఠ,

 ൌ∥ ۴,, ∥ଶ (3.30)

of the ݇-th iterate. The vectors ۴ఈ,, are defined by (3.6)-(3.7) for both components

ߙ ∈ ሼ, ߱ሽ.

Both methods converge linearly with similar rates of convergence. However, it is ob-

served that ݀,
 and ݀ఠ,

 behave differently: While they resemble each other in the or-

der of magnitude for the iterative coupling, they differ substantially for the partial New-

ton. In the latter case, an oscillating behavior can be observed.

Fig. 3.5 provides a history of the nonlinear iteration steps required for each single time

step over a complete simulation run of 5 years. As expected, the full Newton method

performs best. Large time steps are permitted (߬ ൌ 0.1ܽ), at the same time, only a con-

stant number of 4 iterations per time step, i.e., a total of 80 iterations is required.

Both decoupling iterations require a smaller time step ߬ ൌ 0.025ܽ. In the comparison for

a full simulation run, however, they behave differently: The partial Newton requires 25-

76

30 iterations per time step, resulting in a total of 6,384 iterations. Although the iterative

coupling also starts with ~ 25 iterations in the first steps, the number of required itera-

tions gradually decreases to 8-10 iterations per time step. This leads to a total of 1,925

iterations.

Fig. 3.5 Iterations per time step for a full simulation run:

Newton (time step ߬ ൌ 0.1ܽ), Partial Newton (߬ ൌ 0.025ܽ), and Iterative

Coupling (߬ ൌ 0.025ܽ)

The previous analysis was based on fixed step sizes. As a next step, the three algo-

rithms are tested with an adaptive time stepping strategy. The problem was the fully

non-linear Elder problem with three levels of refinement. Coincidence of the solutions

was tested with the Euclidean norm for the salt mass fraction. The tolerance for guiding

the time step was set to 0.01. If the solution process failed, the time step was bisected.

The error was controlled by an extrapolation technique /DEU 90/, /DEU 02/. Results

are shown in Fig. 3.6. The result is the same as for the previous test: The Full Newton

outperforms the two other approaches from Section 3.4.2.

Finally, this can also be employed for the linear-implicit schemes presented in Section

3.4.3. As shown in Fig. 3.7, the method allows for time steps that are similar to the Full

Newton. However, since only a single linear system is solved per step, the total number

of iterations is reduced significantly by a factor of 4.

77

Fig. 3.6 Time steps within an adaptive time-stepping strategy for the algorithms

from Section 3.4.2: Partial Newton, Iterative Coupling, and Full Newton

Fig. 3.7 Time steps within an adaptive time-stepping strategy:

Full Newton (Section 3.4.2) vs. Linear Implicit scheme (Section 3.4.3)

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0 1 2 3 4 5 6

T
im

e
 s
te
p
 [y

rs
]

Simulated me [yrs]

Fully Coupled

Itera ve Coupling
(Gauss‐Seidel)

Par al Newton
(Non‐linear Jacobi)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 1 2 3 4 5 6 7 8 9 10

Ti
m
e
st
e
p
 [y

rs
]

Simulated me [yrs]

Full Newton (179 iter/44 steps)

Linear Implicit (44 iter/ 44 steps)

78

3.4.5 Conclusion

This chapter compared different types of non-linear solvers. The first class of solvers

are fixed point iterations introduced in Section 3.4.2. According to this data, the iterative

coupling should be preferred over a partial Newton. In particular, if the alterations in the

velocity field are small, i.e., the corresponding initial guess for the nonlinear scheme is

sufficiently good, the Gauss-Seidel-style arrangement of the iterative coupling seems to

be more appropriate. However, as expected, the Full Newton method outperforms both

previously mentioned methods. The reason is that decoupling iterations produce iter-

ates that oscillate around the fixed point: For the iterative coupling, for example, an er-

roneous velocity in the transport equation (3.19) tends to overshoot the concentration,

which is then corrected in the next step (3.20) by the flow equation. Similar results have

previously been reported, e.g., for fluid structure interactions /HEI 04/, /MAT 06/.

A potent alternative to Newton-type fixed point iterations are linear-implicit schemes in-

troduced in Section 3.4.3. These schemes allow to linearize the problem only once,

and thus, when compared to the Full Newton, the number of linear iterations is reduced

considerably. Moreover, since the error is controlled for the solution (and not for the re-

sidual, as it is typically done for Newton approaches), this can elegantly be combined

with adaptivity. Although this study focused on adaptivity of the time step, the same al-

so holds true for the error of the spatial discretisation.

79

 Higher Dimensional Problems 3.5

3.5.1 Introduction: Transport equations for probability density

In the traditional formulation of transport problems in porous media, the concentration

is regarded as completely determined by the convective velocity, the molecular diffu-

sion as well as by initial and boundary conditions. However, the stochastic structure of

these media motivates a probabilistic consideration of the distribution of the concentra-

tion (see chapter 4): At every point ࢞ ∈ ષ ⊂ Թௗ, concentrations ܿଵ,… , ܿே of the dis-

solved substances are described by a probability density function ݂:Թା ൈ ષ ൈ Թା
ே →

Թା, so that ݂ሺݐ, ,࢞ ܿଵ, … , ܿேሻ is the probability that at time ݐ and point ࢞, the concentra-

tions attain values ܿଵ, … , ܿே. For simplicity, only one concentration ܿ (i.e. ܰ ൌ 1) is con-

sidered. Depending on the mixing model, the following law can be stated for the evolu-

tion of ݂:

߲௧݂ ࢞ ⋅ ሺ݂࢛ሻ െ ࢞ ⋅ ሺ݂࢞ܦሻ ൌ ߲ሾߗ ⋅ ሺܿ െ 〈ܿ〉ሻ ⋅ ݂ሿ, (3.31)

where ࢛ is the convective velocity, ܦ is the diffusion coefficient (without the dispersion

tensor), 〈ܿ〉 is the mean concentration at given time ݐ and point ࢞,

〈ܿ〉ሺݐ, ሻ࢞ ൌ න ݂ሺݐ, ,࢞ ܿሻ ⋅ ܿ	dc
ାஶ

, (3.32)

and the constant parameter ߗ of the mixing model is given by

ߗ ൌ
୬ୱୣܦఆܥ
ଶߣ

, (3.33)

-the correlation length of the permea ߣ ,୬ୱ being the ensemble dispersion coefficientୣܦ

bility field and ܥఆ a scaling factor.

Equation (3.31) is a convection-diffusion PDE. Nevertheless it has some special fea-

tures. First of all, it is formulated in a high-dimensional domain ષ ൈ Թା. Taking into ac-

count, that ષ is 3-dimensional, the dimensionality of the whole problem is at least 4. (It

can be greater if several transported concentrations are considered). This requires a

special discretization approach since the usual triangulations of the whole domain be-

80

come inefficient due to a large number of degrees of freedom. Therefore, a sparse grid

method described in Section 3.5.2 is used.

Furthermore, one should take into account the non-local coupling due to the presence

of the mean concentration 〈ܿ〉 in (3.31), cf. (3.32). This term is evaluated using the data

from the old time step, cf. Section 3.5.2.

Problem (3.31) must be closed by a specification of boundary and initial conditions. As

(3.31) has convection as well as diffusion terms in the geometric space, boundary con-

ditions should be imposed on ݂ for all ࢞ ∈ -A particular example for this is the Di .ࢹ߲

richlet boundary condition

݂ሺݐ, ,࢞ ܿሻ ൌ ݂ሺݐ, ,࢞ ܿሻ,								࢞ ∈ ߲ષ. (3.34)

In contrast to (3.31) ,࢞ is completely hyperbolic in ܿ. The direction of the corresponding

component of the velocity depends on the sign of the factor ሺܿ െ 〈ܿ〉ሻ. Due to this factor,

the characteristics run out of the domain, so that no boundary conditions at ܿ ൌ 0 and

ܿ ൌ ∞ are needed. Therefore, ߲ષ ൈ Թା is the only part of the high-dimensional do-

main where the boundary conditions must be set.

The initial conditions must be set on the whole ષ ൈ Թା. Note that typically, only the de-

pendence of the concentration on ࢞ is known for the initial and the Dirichlet boundary

conditions. To extend this dependence into the ܿ-direction, it is multiplied by some

standard distribution, for example, by the Gaussian pulse.

In the numerical methods, the interval Թା for ܿ in the definition of ષ ൈ Թା and in (3.32)

is replaced by some finite interval ሾ0, ܿ୫ୟ୶ሿ. This restriction influences the choice of

possible initial and boundary distributions for ܿ, or introduces errors in 〈ܿ〉, but is in ac-

cordance with the presence of physical bounds for the concentration.

3.5.2 Sparse grids for discretization of high-dimensional PDEs

A discretization replaces the domain ષ ൈԹା
ே (the space of the geometrical and proba-

bility dimensions) by a finite grid. At elements of the grid (typically at vertices), degrees

of freedom describing possible approximations of ݂ are placed. The PDEs (3.31) are

replaced by a system of algebraic equations for these degrees of freedom, and this

81

system is solved. The obtained numerical solution has an error tending to zero, as the

grid is refined. Therefore, possibly finer grids should be used. However the grids, grid

functions and grid operators have to be represented in the computer memory and this

restricts their maximum size. Furthermore the numerical complexity of the algebraic

solvers grows, as the grid is refined, in particular due to reduction of the efficiency of

the algorithms. This leads to essential problems in the application of the numerical

methods to the high-dimensional problems because the number of degrees of freedom

is increasing rapidly with grid refinement. For example, as the total dimensionality of

ષ෩ ≔ ષ ൈ Թା
ே is ሚ݀ ൌ ݀ ܰ, the number of grid points for a quasi-regular triangulation is

proportional to ݄ିௗ෨ , where ݄ is the grid length. This results in extremely large discre-

tized systems for an appropriate accuracy of the numerical solution.

A principal reduction of the necessary number of degrees of freedom can be achieved

by application of the so-called sparse grids, cf. /ZEN 91/, /GSZ 92/, /REI 04/, /REI 07/.

This approach exists in two forms:

 The sparse grid can be represented by a set of vertices located at special posi-

tions in the domain. A suitable finite-difference discretization is used for the PDE.

 A set of specially refined Cartesian grids is considered, and the PDEs are discre-

tized separately on every of them. (The sparse grid in the sense of the previous

item is the union of vertices of all these grids.) The numerical solutions obtained

on these grids are then summarized to an approximation of the analytical solu-

tion. This method is said to be the combination technique for the sparse grid.

Whereas the first approach needs quite specific and relatively inefficient data struc-

tures, the combination technique is very flexible and can be used for a wide class of

problems. This approach has been used for the discretization of (3.31).

To introduce the method, the following sets of grids are defined recursively:

 consists of only one initially specified grid covering ષ෩ࡳ .1 . This is the coarsest grid

that can contain for example only boundary grid nodes.

 by refining every ષ෩ࡳ ାଵ is obtained fromࡳ .2 ∈ . separately in every dimensionࡳ

82

Fig. 3.8 Grids in the combination technique approach for the sparse grids. Only the

blue and the red sets (ࡳ and ࡳ) are used in the computation on grid level

2, cf. (3.35)

This construction is illustrated in Fig. 3.8 for a 2-dimensional square domain and ݈ ≤ 3.

For a computation on grid level ݈, only grids from ࡳ,… , ାௗିଵ are used. The totalࡳ

number of grid nodes on all these grids is ܱ൫݄ିଵ|logଶ ݄ିଵ|ௗ
෨ିଵ൯, i.e. essentially less then

that for the regularly refined grid.

On every grid ષ෩ ∈ ࡳ ∪ …∪ ାௗିଵ, Equation (3.31) and the boundary conditions areࡳ

discretized by a finite-difference scheme. In particular, the full-upwind scheme is used

for the convective terms. The discretization is implicit in time. This results in a large

sparse linear system, which is solved by the linear iteration preconditioned with the V-

cycle of the geometric multigrid method with the Gauss-Seidel smoothers. Although

most of the grids in ࡳ ∪ …∪ ାௗିଵ are strongly anisotropic, this solver converged onlyࡳ

in several iterations.

Denote the solution computed on the grid ષ෩ in time step ݇ by ષ݂෩
 . In terms of the mul-

tilinear basis functions, this function is defined on the whole domain ષ෩ . Then the

sparse-grid approximation of the analytical solution is

83

݂
 ൌ 	 ܽષ෩

ା
ષ݂෩

ષ෩∈ࡳశ

ௗିଵ

ୀ

, (3.35)

where ܽષ෩
 are scalar coefficients depending on the grid sizes of ષ෩, cf. /REI 04/. Func-

tion ݂
 converges to the analytical solution as ݄ → 0. For (3.31) the discretization error

is ܱሺ݄ሻ.

The time discretization is based on the implicit Euler method. Note that the time steps

are computed for every ષ෩ ∈ ࡳ ∪ …∪ ାௗିଵ separately (with the same time stepࡳ

length), so that ષ݂෩
 depends only on ષ݂෩

ିଵ, but not on the solutions on the other grids.

This concerns in particular the term with 〈ܿ〉 in (3.31): For the spatial discretization in

time step ݇ on grid ષ෩, this term is computed from ષ݂෩
ିଵ:

〈ܿ〉ષ෩
 ሺ࢞ሻ ൌ න ષ݂෩

ିଵሺ࢞, ܿሻ ⋅ ܿ	݀ܿ
ାஶ

, (3.36)

(cf. (3.32)) and this 〈ܿ〉ષ෩
 is used for the computation of ષ݂෩

 . The formula (3.35) is there-

fore used only for the output of the numerical solution.

Parallelization of the computations is based on the distribution of the grids from

ࡳ ∪ …∪ -ାௗିଵ between processors. Communication is only necessary for the compuࡳ

tation of ݂
 by (3.35) for example after every time step.

3.5.3 Numerical tests

As an example, results of simple numerical tests are presented. A rectangular geomet-

ric domain ષ ൌ ሾ0,4ሿ ൈ ሾ0,2ሿ ൈ ሾ0,2ሿ ሾ݉ଷሿ and segment ሾ0,1ሿ ሾെሿ for the normalized con-

centration are taken, so that (3.31) is considered on the 4-dimensional domain

ષ෩ ൌ ሾ0,4ሿ ൈ ሾ0,2ሿ ൈ ሾ0,2ሿ ൈ ሾ0,1ሿ.

Furthermore, the Dirichlet-0 boundary conditions are imposed on ߲ષ. Specification of

the initial conditions is based on the distribution of concentration

84

ܿୟ୴ୣ,ሺ࢞ሻ ൌ ቐܿ ⋅ ቆ
ܴଶ െ ࢞‖ െ ‖ଶ࢞

ଶ

ܴଶ
ቇ
ଷ

, ࢞‖ െ ‖࢞ ܴ,

0, ࢞‖ െ ‖࢞ ܴ

 (3.37)

around the injection point ࢞ in ષ: At every geometric point, the initial concentration is

defined as

݂ሺ0, ,࢞ ܿሻ ൌ
ܿୟ୴ୣ,ሺ࢞ሻ

ߨ2√ߪ
⋅ expቌ

ቀܿ െ ܿୟ୴ୣ,ሺ࢞ሻቁ
ଶ

2^ߪ
ቍ. (3.38)

Values of the coefficients for (3.31), (3.33), (3.37) and (3.38) are listed in Tab. 3.6.

Tab. 3.6 Coefficients for the numerical test

Parameter Value Unit

ሺ1.1574 ࢛ ⋅ 10ିହ, 0, 0ሻ ሾ݉ ⋅ ଵሿିݏ

1.1574 ܦ ⋅ 10ି ሾ݉ଶ ⋅ ଵሿିݏ

 ఆ 3 ሾെሿܥ

୬ୱ 1.1574ୣܦ ⋅ 10ି ሾ݉ଶ ⋅ ଵሿିݏ

 ሾ݉ሿ 1 ߣ

, ሺ1࢞ 1, 1ሻ ሾ݉ሿ

ܴ 0.5 ሾ݉ሿ

ܿ 0.5 ሾെሿ

 ሾെሿ 0.1 ߪ

85

Fig. 3.9 Isosurface of the averaged concentration

(0.25 of the averaged maximum concentration) in the test computation: Ini-

tial condition (above) and solution at time step 64 (below)

The computation has been performed on the sparse grid level 5 with the time step

 consisted of the Cartesian 5ࡳ The set .ݏ 1000 ൈ 5 ൈ 5 ൈ 5-grid. Fig. 3.9 presents the

evolution of the averaged concentration 〈ܿ〉 in this computation.

In the second test, a stochastic velocity field is considered, and the numerical solution

of the problem is compared with the analytical one. For the comparison, the averaged

concentration 〈ܿ〉 (for the numerical solution: computed by combination technique on

the regular 33 ൈ 33 ൈ 33-grid) was integrated over the ݖݕ-planes for every ݔ. These dis-

tributions in a neighbourhood of the injection point ݔ are presented in Fig. 3.8. The

computations have been performed for same parameters of the transport problem

(3.31), as above (cf. Tab. 3.6), except for the velocity ࢛. The mean value of the sto-

86

chastic velocity field was 1.1574 ⋅ 10ିହ	݉ ⋅ ଵ (i.e. 1 ݉ a day), the correlation lengthିݏ

1	݉, and the variance 0.005.

Fig. 3.10 Comparison of numerical and analytical solution in the experiment with the

stochastic velocity field. Integrals of the mean concentration over the ࢠ࢟-

planes in ષ are plotted along the ࢟-axis of the graph. The distance from the

injection point (the ࢞-axis of the graph) is measured in the units of the cor-

relation length of the stochastic velocity

87

4 Modelling uncertainty in salt transport

 Motivation 4.1

Transport of dissolved substances is determined by groundwater flow, which in turn is

strongly influenced by the properties of the formation. Formation properties like the hy-

draulic conductivity are generally highly heterogeneous on many different scales.

These heterogeneities range from the order of magnitude of individual grains to large

geologic structures like facies, fractures and sediment layers.

Conversely, the heterogeneities of the formation make the transport of the contami-

nants also highly heterogeneous. Contaminated water volume elements which travel

very closely together can be separated and follow distinct and separated flow paths. An

enhanced spreading of the plume is the result of it. Thus, in order to predict the

transport of contaminants deterministically, it is necessary to know all aquifer properties

influencing the transport everywhere. Monitoring the complete formation down to the

smallest scales on which heterogeneities appear is neither feasible nor possible. If only

partial knowledge of the formation can be retrieved, the formation properties and flow

and transport parameters remain partially unknown. This uncertainty of formation prop-

erties and model parameters can be taken into account by using a stochastic represen-

tation of the formation. By applying a stochastic framework, hydraulic properties be-

come stochastic and in turn the contaminant concentration as well.

The mean transport behavior can be calculated by taking the ensemble average of the

heterogeneous transport equation. The resulting equation is a transport equation for

the ensemble averaged concentration with the following characteristics: The highly

heterogeneous and spatially fluctuating groundwater velocity is replaced by an ensem-

ble averaged velocity field and the effect of the fluctuating velocity on the transport is

modelled by an enhanced dispersion called macro dispersion or ensemble dispersion.

The limitation of this approach is that the ensemble averaged concentration first of all

describes the mean plume behavior, sometimes also the most probable behavior, but

not necessarily the behavior of a specific plume in a single formation (see Fig. 4.1). On-

ly if the plume has sampled a representative part of the formation it becomes ergodic,

and the individual transport behavior can be modelled by the ensemble average behav-

ior.

88

Deviations from the mean behavior can be quantified by calculating the concentration

variance. It is not only transported by advection and dispersion, like the mean concen-

tration, but is also generated by mean concentration gradients and destroyed by dissi-

pation processes. The latter need a closure model in order to limit the computational ef-

fort. There exist different suggestions to close the equation of the concentration

variance. Unfortunately, these closure models were developed in turbulence theory and

have not been fully adapted yet to flows in porous media. Here it is supposed that

adapting the closure model is necessary since the mixing behavior in turbulent flows

and in porous media flow is very different. The most important difference is the speed

at which heterogeneity induced mixing takes place. In turbulent flows it is very fast due

to chaotic flow behavior and the large scale dispersion coefficients can be approximat-

ed by their asymptotic limits and thus by a constant. In porous media flows, flow is not

chaotic and heterogeneity impacted mixing takes much longer times to develop.

/DEN 00/. This effective mixing or dispersion is small at early times and increase only

slowly with time. Therefore, early time concentration gradients are steep and remain

steep for a prolonged time, which in turn prevents smoothing variable concentrations

and preserves concentration uncertainty.

In addition, the closure problem becomes even more difficult for reactive transport,

since the concentration gradients and the reactions both dominantly influence the be-

havior of the reactive contaminants. Often, the reaction terms are non-linear and are

especially difficult to model at steep concentration gradients.

If the predictions made by a contaminant transport model are to be used for risk analy-

sis, even more information than the mean concentration and the variance is needed. In

risk analysis, the quantity of interest is the exceedance probability, which can only be

calculated if the complete one-point probability density function of the concentration is

known. The exceedance probability is defined as

ProbሺR rୡ୰୧୲ሻ ൌ 1 െ 	Fሺrୡ୰୧୲ሻ. (4.1)

with F being the cumulative distribution function and Fሺrୡ୰୧୲ሻ being a threshold, regulat-

ed for example by an environmental agency /AND 96/. The concentration variance can

only be used as an upper limit to the exceedance probability. Therefore, a second ap-

proach – the PDF approach- is very promising. It yields an equation for the whole pdf of

the concentration.

89

Fig. 4.1 A measure is needed to quantify how good the mean concentration

approximates the measured concentration

In this project, the transport equations for the mean concentration and the concentra-

tion variance have been derived and parametrized. The parameters of the equation for

the mean concentration are given by the mean velocity and the ensemble dispersion

coefficients which have been explicitly evaluated already in previous projects, see e. g.

/SCH 12/ and /SCH 13/. The equation for the concentration variance needs a new clo-

sure for the mixing model adapted to porous media flow. Making use of these two

equations and the new closure model, an approximation for transport equation for the

whole concentration PDF could be derived, parametrized and finally verified by numeri-

cal simulations. Our new closure model enables to establish transport equations for the

whole pdf of non-reactive and reactive transport. The new pdf transport equations are

defined in a higher dimensional space but with the new numerical methods for higher

dimensional problems developed as presented in Section 3.5 it is now possible to nu-

merically solve the pdf equation very efficiently.

90

 Methods 4.2

The transport of a solute in groundwater can be described by

∂C
∂t
 ܄ ∙ C ൌ D∆C,

(4.2)

where V is a random velocity field and D the dispersion coefficient. Important statistical

quantities of a probability distribution PDF are its moments, like e.g. mean and vari-

ance. The mean concentration and its variance are defined by

,ܠሺ〈ܥ〉 tሻ ≔ නcPሺc; ,ܠ	 tሻ dc (4.3)

σୡଶሺܠ, tሻ ≔ නcଶPሺc; ,ܠ	 tሻ dc െ ,ܠଶሺ〈ܥ〉 tሻ. (4.4)

Thus, if the parameters of the transport equation are known the transport of the PDF

can be derived.

4.2.1 PDF transport equations

The derivation is shown in detail for example in /SUC 15/. Here only the most important

steps are sketched. The PDF is defined as the ensemble average of the so-called fine-

grained PDF, which is a delta function

Pሺc; ,ܠ	 tሻ ≔ 〈δሺCሺܠ, tሻ െ cሻ〉. (4.5)

The PDF evolution equation can be derived by taking the time derivative of (4.5) which

can be evaluated using the following relation

,ܠδሺCሺ tሻ െ cሻ ൌ െCሺܠ, tሻ
∂
∂c
δሺCሺܠ, tሻ െ cሻ.

(4.6)

Applying this relation to the PDF (4.5) and inserting the definition of the conditional av-

erage ۦQሺܠ, tሻ|cۧ ൌ 〈Qሺܠ, tሻδሺCሺܠ, tሻ െ cሻ〉/Pሺc; ,ܠ	 tሻ results in

∂
∂t
Pሺc; ,ܠ	 tሻ ൌ െ

∂
∂c
ቈൽ
∂Cሺܠ, tሻ

∂t
ቤcඁ Pሺc; ,ܠ tሻ.

(4.7)

Evolution equation (4.2) can now be used to obtain the PDF transition

∂
∂t
Pሺc; ,ܠ	 tሻ ൌ

∂
∂c
ሾሼ܄ۦ ∙ ,ܠCሺ tሻ|cۧ ,ܠD∆Cሺۦ tሻ|cۧሽPሺc; ,ܠ tሻሿ.

(4.8)

91

The two terms on the right hand side are unclosed and a closure model is needed in

order to be able to calculate the time evolution of the PDF. The advective term can be

closed by making use of the knowledge that the impact of velocity fluctuations on

transport can be modelled by an enhanced dispersion

∂
∂c
ሾ܄ۦ ∙ ,ܠCሺ tሻ|cۧPሺc; ,ܠ	 tሻሿ ൌ െሾ〈܄〉Pሺc; ,ܠ tሻሿ ∙ Dୣ୬ୱPሺc; ,ܠ tሻ,

(4.9)

where Dୣ୬ୱ is an upscaled dispersion coefficient. The unclosed difference can be trans-

formed to

∂
∂c
ሾۦD∆Cሺܠ, tሻ|cۧPሺc; ,ܠ	 tሻሿ ൌ ∙ DP െ

∂ଶ

∂cଶ
ሾۦDሺCሻଶ|cۧሿ,

(4.10)

For the last term on the right hand side, a mixing model ܯ ൌ .Cሻଶ|cۧ is neededDሺۦ

/DOP 75/ formulated a closure model called Interaction Exchange with the Mean (IEM)

which is widely used for modelling reactive and turbulent flows (see /AND 98/;

/POP 14/). It closes the mixing term by approximating it with

∂ଶ

∂cଶ
۱Dۦ ∙ cۧ|۱ ൌ

∂
∂c
൫Mሾc െ 〈Cሺܠ, tሻ〉ሿPሺc; ,ܠ tሻ൯,

(4.11)

where M is a dissipation rate, which will be discussed in Section 4.3. The dissipation

model causes concentration fluctuations to relax exponentially towards the mean con-

centration.

With the IEM model inserted into equation (4.9), a closed transport equation for the

PDF can be stated

∂Pሺc; ,ܠ	 tሻ

∂t
 〈܄〉 ∙ ;Pሺc ,ܠ	 tሻ െ ∙ Dୣ୬ୱPሺc; ,ܠ tሻ

ൌ
∂
∂c
ሺMሾc െ 〈Cሺܠ, tሻ〉ሿPሺc; ,ܠ tሻሻ.

(4.12)

4.2.2 Mean and Variance Transport Equations

The transport equation for the first statistical moment, the mean concentration, can be

derived from the PDF transport equation (4.12) by multiplying it with c and integrating

over the complete concentration space,

නc
∂P
∂t
dc නc〈܄〉 ∙ dc	P െ නcDୣ୬ୱ∆P dc ൌනc

∂
∂c
ሺMሾc െ 〈C〉ሿPሻ dc.

(4.13)

92

The order of integration and derivation can be interchanged and on the right hand side

the product rule can be applied.

∂
∂t
න cPdc 〈܄〉

∙ න cP	dc െ Dୣ୬ୱ∆න cP	dc

ൌන ൜
∂
∂c
ሺcMሾc െ 〈C〉ሿPሻ െ Mሾc െ 〈C〉ሿP

∂c
∂c
ൠ dc.

(4.14)

On the left hand side, the definition of the mean concentration can be inserted and on

the right hand side, the integral is evaluated:

∂〈C〉

∂t
 〈܄〉 ∙ 〈C〉 െ Dୣ୬ୱ∆〈C〉 ൌ cMሾc െ 〈C〉ሿP|ୡୀ

ଵ െ Mሾ〈C〉 െ 〈C〉ሿ.
(4.15)

Both terms on the right hand side vanish. The second one obviously cancels out, but

the first one needs further explanations. The lower boundary case c = 0 does not con-

tribute, but the upper boundary could potentially result in a non-zero value, if all con-

centration is located at one singular point as a Dirac function. But this situation does

not exist in real transport situations. Thus, the transport equation for the mean concen-

tration is given by

∂〈C〉

∂t
 〈܄〉 ∙ 〈C〉 െ Dୣ୬ୱ∆〈C〉 ൌ 0.

(4.16)

The M-term does not influence the mean motion since it cancels out.

The second statistical moment, the variance, is defined by

σୡଶ ≔ නcଶP dc െ 〈C〉ଶ. (4.17)

Now, the PDF transport equation is multiplied and integrated over the whole concentra-

tion space. The order of integration and derivation is also being interchanged and the

product rule is applied on the right hand side:

∂
∂t
න cଶP dc 〈܄〉

∙ න cଶP	dc െ Dୣ୬ୱ∆න cଶ P	dc

ൌන ൜
∂
∂c
ሺcMሾc െ 〈C〉ሿPሻ െ 2cMሾcଶ െ 〈C〉ሿPൠ dc.

(4.18)

93

The first term on the right hand side vanishes for the same reason as in the derivation

of the mean concentration.

∂
∂t
න cଶP dc 〈܄〉 ∙ න cଶP	dc െ Dୣ୬ୱ∆න cଶ P dc ൌ

െ 2M ൜න cଶ P	dc െ 〈C〉ଶൠ.

(4.19)

The brackets on the right hand side could already be replaced by the concentration

variance, but in order to do, the transport equation for 〈C〉ଶ needs to be subtracted from

equation (4.19) and the equation for the squared mean concentration needs to be de-

rived first. Equation (4.16) is multiplied by 〈C〉:

〈C〉
∂〈C〉

∂t
 〈C〉〈܄〉 ∙ 〈C〉 െ 〈C〉Dୣ୬ୱ∆〈C〉 ൌ 0.

(4.20)

By making extensive use of the product rule one arrives at

∂〈C〉ଶ

∂t
െ 〈C〉

∂〈C〉

∂t
 〈܄〉 ∙ ଶ〈C〉 െ 〈C〉〈܄〉 ∙ 〈C〉

െ Dୣ୬ୱሾ ∙ ሺ〈C〉〈C〉ሻ െ ሺ〈C〉ሻଶሿ ൌ 0.

(4.21)

The dispersion term can be further modified by using the product

Dୣ୬ୱሾ ∙ ሺ〈C〉〈C〉ሻ െ ሺ〈C〉ሻଶሿ ൌ

Dୣ୬ୱሾ ∙ ሺ〈C〉ଶ െ 〈C〉〈C〉ሻ െ ሺ〈C〉ሻଶሿ ൌ

Dୣ୬ୱሾ∆〈C〉ଶ െ ሺ〈C〉ሻଶ 〈C〉∆〈C〉 െ ሺ〈C〉ሻଶሿ.

(4.22)

Thus, equation (4.21) can be transformed to

∂〈C〉ଶ

∂t
 〈܄〉 ∙ ଶ〈C〉 െ Dୣ୬ୱ∆〈C〉ଶ 2Dୣ୬ୱሺ〈C〉ଶሻ െ 〈C〉

∂〈C〉

∂t
െ 〈C〉〈܃〉 ∙ 〈C〉

െ 〈C〉Dୣ୬ୱ∆〈C〉 ൌ 0.

(4.23)

Comparing the second line of equation (4.23) with equation (4.21), the transport equa-

tion for the squared mean concentration 〈C〉ଶ follows as

∂〈C〉ଶ

∂t
 〈܄〉 ∙ ଶ〈C〉 െ Dୣ୬ୱ∆〈C〉ଶ 2Dୣ୬ୱሺ〈C〉ଶሻ ൌ 0.

(4.24)

Now, equation (4.24) can be subtracted from equation (4.19):

94

∂
∂t
න cଶP dc െ 〈C〉ଶ൨ 〈܄〉 ∙ න cଶP dc െ 〈C〉ଶ൨െDୣ୬ୱ∆ න cଶP dc െ 〈C〉ଶ൨

ൌ 2Dୣ୬ୱሺ〈C〉ଶሻ െ 2M න cଶ P dc െ 〈C〉ଶ൨.

(4.25)

Finally, the definition of the concentration variance (4.18) can be inserted, which yields

the final transport equation of the concentration variance

∂
∂t
σୡଶ 〈܄〉 ∙ σୡଶെDୣ୬ୱ∆σୡଶ ൌ 2Dୣ୬ୱሺ〈C〉ଶሻ െ 2Mσୡଶ.

(4.26)

The most interesting term of equation (4.26) is the last one on the right hand side. The

same dissipation rate M as in the transport equation of the full PDF (4.12) appears

here. Therefore, different propositions of the dissipation rate can be tested as a closure

assumption for the transport equation of the concentration variance. The big advantage

of testing different closures for the variance is that this equation is much easier to han-

dle than the equation for the full concentration PDF.

4.2.3 Analytical Solutions of the First Moment

An analytical solution of the transport equation of the mean concentration (4.24) with a

Gaussian initial condition centered at the position x0 evolving from time t0 can easily be

found, for example by transforming equation (4.24) into the frequency domain, which

makes it an ordinary differential equation. This ODE can be solved and the solution can

then be transformed back into the time domain, which gives:

〈C〉 ൌ ൫4πDୣ୬ୱሺt tሻ൯
ିୢ/ଶ

exp ቊെ
ሺܠ െ ܠ െ tሻଶ〈܄〉

2Dୣ୬ୱሺt tሻ
ቋ.

(4.27)

4.2.4 Analytical Solution of the Second Moment

An analytical solution for the variance transport equation (4.26) needs a more tedious

derivation. A semi-analytical solution can be found by using Green's function. A deriva-

tion similar to the one presented by /KAP 94/ will be presented here. The differential

operator Lሺܠ, tሻ is defined by

Lσୡଶ ൌ
∂
∂t
σୡଶ 〈܄〉 ∙ σୡଶെDୣ୬ୱ∆σୡଶ െ 2Mσୡଶ ൌ 2Dୣ୬ୱሺ〈C〉ଶሻ,

(4.28)

with the inhomogeneity

95

gሺܠ, tሻ ൌ 2Dୣ୬ୱሺ〈C〉ଶሻ. (4.29)

Then, equation (4.26) can be rewritten as

Lሺܠ, tሻσୡଶሺܠ, tሻ ൌ gሺܠ, tሻ. (4.30)

The Green's function Gሺܠ െ ,ᇱܠ t, t′ሻ is defined as the solution to the differential operator

Lሺܠ, tሻ with delta functions on the right hand side

Lሺܠ, tሻGሺܠ െ ,ᇱܠ t, t′ሻ ൌ δሺܠ െ ሻδሺt′ܠ െ t′ሻ. (4.31)

It can be shown that the general solution of equation (4.26) is given by

σୡଶሺܠ, tሻ ൌ σୡଶ୦ሺܠ, tሻ න න Gሺܠ െ ,ᇱܠ t, t′ሻ
ԹౚԹ

gሺܠ′, t′ሻdܠᇱdt′.
(4.32)

where σୡଶ୦ሺܠ, tሻ is the solution of equation (4.26) without an inhomogeneity. Assuming

that the initial condition is known without any uncertainty, the variance at time t = 0 is

 σୡଶሺܠ, t ൌ 0ሻ ൌ 0.

But without the inhomogeneity, which acts as the only source term, the solution of the

homogeneous PDE is σୡଶ୦ሺܠ, tሻ ൌ 0 for all times. Therefore, the solution to the homoge-

neous problem can be dropped. If the Green's function is known, the solution to equa-

tion (4.26) can be calculated from equation (4.32), which is a convolution in space of

Green's function and the inhomogeneity:

σୡଶሺܠ, tሻ ൌ න න dtᇱ	Gሺܠ െ ,ᇱܠ t, t′ሻ
ԹౚԹ

gሺܠ′, t′ሻdܠᇱ

ൌ න dtᇱ	Gሺܠ, t, t′ሻ
Թ

∗ gሺܠ′, t′ሻ

ൌ 	න dtᇱ	࣠ିଵ	൛G෩ሺܠ, t, t′ሻgሺܠ′, t′ሻൟ
Թ

,

(4.33)

where a tilde denotes the Fourier transform of a variable. Hence, G෩ and g need to be

calculated in order to obtain the solution σୡଶ. Fourier transforming both sides of equation

(4.30) gives an ODE in the frequency domain, which can be solved by separation of

variables, resulting in

G෩ሺܓ, t, tᇱሻ ൌ Θሺt െ tᇱሻ	exp൛െ൫i〈܄〉 ∙ ܓ Dୣ୬ୱܓ൯ሺt െ tᇱሻൟ

∙ exp ቊെ2න dtᇱᇱ Mሺt′′ሻ
୲

୲ᇱ
ቋ.

(4.34)

96

In order to transform the inhomogeneity (4.29), the transformed mean concentration 〈C〉

from equation (4.27) needs to be inserted:

gሺܓ, tሻ ൌ ࣠ሾ2Dୣ୬ୱሺ〈C〉ଶሻሿ ൌ
െ1

ሺ2πሻୢ/ଶ
〈C෨〉ܓ ∗ .〈C෨〉ܓ

(4.35)

Simply using equation (4.27) leads to a singularity for t = 0, as the Gaussian distribu-

tion tends to a delta function for small times. This unnatural behavior can be avoided by

modifying solution (4.27) in a way that for t = 0 it stays a finite Gaussian distribution. If a

time t0 is introduced by which the solution is shifted forward in time exactly the wished

behavior is achieved. By inserting the shifted concentration

〈C෨〉 ൌ
〈C〉

ሺ2πሻୢ/ଶ
exp ൜െ

Dୣ୬ୱ

n
ሺtܓ tሻ െ iܓ ∙ ൬ܠ 〈܄〉

t
n
൰ൠ

(4.36)

into the transport equation, it can be shown that this is still a correct solution to the orig-

inal PDE (4.27). With this new solution, the Fourier transformed inhomogeneity can be

calculated:

gሺܓ, tሻ ൌ
〈C〉

ଶ	Dୣ୬ୱ

2ሺ2πሻୢ
1

൫2	Dୣ୬ୱሺt tሻ൯
ୢ/ଶ

1
	Dୣ୬ୱሺt tሻ

െ ൨ܓ exp ൬
1
2
	Dୣ୬ୱሺt tሻܓ െ iሺܠ 〈U〉tሻ ∙ .൰ܓ

(4.37)

Finally, everything can be combined into equation (4.32) and a final time integral re-

mains to be calculated:

σୡଶ ൌ 2Dୣ୬ୱ නdtᇱ
୲

൫4πଶሺDୣ୬ୱሻଶሺtᇱ tሻሺ2t t െ tᇱሻ൯
ି
ୢ
ଶ

∙
݀ሺt െ tᇱሻ

2Dୣ୬ୱሺtᇱ tሻሺ2t t െ tᇱሻ

ሺܠ െ tሻଶ〈܄〉

൫2Dୣ୬ୱሺ2t t െ tᇱሻ൯
ଶ		൩

∙ exp ൭െ
ሺܠ െ tሻଶ〈܄〉

൫2Dୣ୬ୱሺ2t t െ tᇱሻ൯
ଶ൱ exp ൭െ2න dtᇱᇱ

୲

୲ᇲ
Mሺtᇱᇱሻ൱.

(4.38)

This integral can either be evaluated analytically by using a long time approximation or

by applying numerical methods. In this case, the short time behavior is also of interest,

thus the integral is solved numerically using an adaptive quadrature.

97

 A Time Dependent Extension of the IEM Model time dependent mixing 4.3

model

The original IEM model approximates the conditional diffusion term by

∂ଶ

∂cଶ
۱Dۦ ∙ cۧ|۱ ൌ

∂
∂c
൫Mሾc െ 〈Cሺܠ, tሻ〉ሿPሺc; ,ܠ tሻ൯,

(4.39)

where the dissipation rate M is assumed to be constant. M is determined by the en-

semble dispersion divided by a characteristic mixing length to the square. As discussed

before, in heterogeneity induced mixing in porous media flow needs more time to be-

come ergodic. A more realistic dissipation rate should be determined by Deff(t) instead

of Dens. since the ensemble dispersion coefficient accounts for the fluctuations of the

center of mass of the concentration plume from realization to realization. These fluctua-

tions do not exist in a single realization and play no role for the mixing. The long time

behavior of both coefficients is identical and because the mixing in turbulent flows is so

much faster than it is in groundwater flows, the difference does not matter for turbulent

flows. Therefore, the mathematically simpler to handle ensemble dispersion coefficient

is used in studies concerning turbulent flows. In addition, the characteristic squared

mixing length scale is given by Dt where D is the local dispersion.

Therefore, a time-dependent dissipation rate is proposed

Mሺtሻ ൌ ݇ெ
Dୣሺtሻ

Dt
,

(4.40)

M(t) has larger values at early times than the constant one, which causes a stronger

dissipation. But then it drops below the constant mixing frequency and approaches the

limit M(t) = 0.

With this adaptation, the simplicity and low computational costs of the IEM model are

preserved, while at the same time, the dissipation rate accounts for the physical mixing

and dissipation effects in porous media flows.

As demonstrated in Fig. 4.2, the standard IEM model predicts a constant dissipation

rate of the solute plume. The new time dependent IEM model, models a stronger dissi-

pation at early times and a weaker dissipation at later times.

98

Fig. 4.2 Dissipation M of the standard IEM model

and the newly proposed time dependent IEM model plotted against time t

99

 Simulations 4.4

4.4.1 Simulation Setup

In order to verify the theoretical results and the newly time dependent IEM model, nu-

merical simulations were performed. The simulations follow the set-up described in

/DEN 02/. The heterogeneous flow field was modelled as a solution of the linearised

Darcy equation by the Kraichnan algorithm /KRA 70/. The mean flow velocity is set to

〈V〉 ൌ 1m	dିଵ, and a Gaussian covariance structure with an integral scale of λ ൌ 1m	and

a variance of ߪଶ ൌ 0.1	is chosen. The flow fields are generated by using 6400 Fourier

modes. The particles moving in the velocity field and performing random jumps were

modelled according to

dX୧ሺtሻ ൌ V୧ሺ܆ሻdt √2D	݀W୧ሺtሻ, (4.41)

where W୧ሺtሻ are independent standard Wiener processes /SUC 15/. An extended

Runge-Kutta scheme /DRU 84/ with an accuracy of order ሺ∆ݐሻଷ/ଶ is used to discretize

the Langevin equations (4.41).

The particles undergo diffusive jumps with isotropic local dispersion coefficients of

D ൌ 0.01mଶ	dିଵ. The particles are distributed uniformly in a rectangle with side lengths

according to an initial diffusion time of t0 = 10 d. A time step of ∆ݐ ൌ 0.5݀	 is used. 1000

realisations are calculated to create a statistical ensemble.

In order to reduce the computational effort, the so called GRW-algorithm is used here

as a second option according to the same set up as described by /SUC 15/. The GRW

uses a superposition of many weak solutions to Langevin equations projected on a

regular grid. The particles solving the Langevin equations are spread on the grid glob-

ally according to the advection and dispersion coefficients of the transport equation. By

construction, this algorithm is free of numerical diffusion and can be used for practically

arbitrary numbers of particles without an impact on the computational costs. The

transport parameters are set to the same as for the standard particle tracking. A nor-

malized 2-dimensional histogram on grid cells with a size of 1݉ ൈ 1݉ was performed to

calculate concentrations from the particle positions.

100

4.4.2 Concentration Variance

Monte Carlo Simulations are used to determine the reference concentration variance.

This solution is compared to the analytical solution (4.38) of equation (4.26) making

use of the two different proposed dissipation rates. At early times, the concentration

variance shows a unimodal distribution with a transition to a bimodal distribution at later

times as described already in /AND 98/.

The concentration variance computed from both, the Monte Carlo particle tracking and

the GRW simulations are compared to the analytical solution (4.26) with the two differ-

ent mixing models, the standard IEM model and the time dependent IEM model (4.40)

in Fig. 4.3. The different solutions are plotted 50 d, 100 d, 200 d, 300 d, 400 d and

500 d after injection. First of all, it should be noted that the two independent numerical

simulations match well. But the most obvious feature of the figure is the large discrep-

ancy at early times between the analytical solution with the standard IEM closure and

the numerical reference runs.

Fig. 4.3 Analytical solution with the classical and time dependent IEM mixing model

compared to particle tracking and GRW simulations at different times

The variance dissipation at short times is underestimated by the standard IEM model

whereas the time-dependent IEM-model causes a much larger dissipation at short

101

times. Consequently, the temporal evolvement of the concentration variance models by

the new IEM model matches the reference simulation runs much better.

4.4.3 PDF Modelling

The solutions of the PDF evolution equations depend on 3 N independent variables

plus the time variable, with N ൌ 1 being the number of species forming a higher di-

mensional system of equations. In turbulence theory, mostly particles methods are

used to solve for the PDF. These particle methods avoid errors by numerical diffusion

/RAD 11/, unavoidable in classical schemes for PDF equations, which usually result in

strongly advection-dominated problems. Here solutions of particle methods are pre-

sented which are also used a test case for higher dimensional numerical solvers pre-

sented in Section 3.4. In the case of Pope’s /POP 85/ particles approach and also other

particle tracking methods, the computational cost increases linearly with the number of

particles. The GRW algorithm /VAM 03/ is insensitive to the increase of the number of

particles. The GRW algorithm is equivalent to a finite difference scheme for advection–

diffusion problems with constant coefficients. But in case of variable coefficients it is

faster and free of numerical diffusion.

Fig. 4.4 The concentration PDF at the center of the plume ݔ ൌ -with the stand ݐܸۧۦ

ard IEM model compared to the PDF with empirically determined dissipa-

tion rates every 10 days. The standard IEM model underestimates the dis-

sipation, which causes the gap between the peaks

102

For instance, when solving flow and transport problems in highly heterogeneous media

by finite element schemes and the transport solvers are replaced by a GRW scheme,

then the numerical diffusion is completely removed and the total computation time is

about 20 times smaller /SUC 13/. Note that for a grid-free particle tracking scheme the

computing time is of the order of the number of particles and for a GRW solution to the

same problem and the same number of time steps it is of the order of grid points occu-

pied by particles. For the solution of the PDF problem solved here, using 10ଶସ particles

which move on a lattice with ∼10ହ points, the GRW computing time is about 0.5s while

a sequential particle tracking would require a computing time ∼10ଵଽ times larger. To il-

lustrate the GRW-PDF approach, a two dimensional PDF problem is considered for

joint concentration–position PDF ܲሺܿ; ,ݔ ሻ, solution of the particular form of (4.12)ݐ

∂ܲ
ݐ∂

 ࣰ
∂ܲ
ݔ∂

 ܸ
∂ܲ
∂ܿ

ൌ ࣞ
∂ଶܲ
ଶݔ∂

 ࣞ
∂ଶܲ
∂ܿଶ

,
(4.42)

with ࣞ and ࣞ being upscaled diffusion coefficients in physical and concentration

space, respectively. ࣰ and ࣰ are upscaled drift coefficients. The solution of the Fok-

ker–Planck equation (4.42) is approximated by the point-density at lattice sites of a

large number of computational particles evolving according to Itô equations

ሻݐሺ܆݀							 ൌ ࣰሺ܆ሺݐሻ, ݐሻ݀ݐ ,ሻݐሺ܆ሺ܅݀ ሻݐ

							݀۱ሺݐሻ ൌ ,ሻݐሺ۱ሺۻ ,ሻݐሺ܆ .ݐሻ݀ݐ

(4.43)

(4.44)

At a given time step, the computational particles on a lattice site are globally scattered

in groups of particles which remain at the position determined by the drift coefficients

and particles undergoing diffusive jumps. The numbers of particles in each group are

binomial random variables with parameters determined by the coefficients of the Itô

equations, the time step, and the lattice constants. The GRW algorithm is thus a su-

perposition of many weak Euler-schemes for systems of Itô equations projected on a

regular lattice. The GRW algorithm is free of numerical diffusion, because the diffusive

jumps and the nominal diffusion coefficients are related to the lattice. It is practically in-

sensitive to the increase of the number of particles (see /SUC 13/ for implementation

details and convergence tests). Since the particles move between lattice sites on which

mean values are also defined through particle densities, the GRW-PDF solution pre-

sented here avoids the artificial diffusion generated in classical PDF methods by inter-

polation to particle positions of the means computed by averaging over computational

cells.

103

Monte Carlo simulations of 2d passive transport of a single chemical species in satu-

rated aquifers were used to estimate the PDF ܲሺܿ; ,ݔ -ሻ of the cross-section spaceݐ

average concentration ܥሺݔ, ሻݐ ൌ

 ܿሺݔ, ,ݕ ௬ is the transverse dimensionܮ where,ݕሻ݀ݐ

of the computational domain, estimated at the x-coordinate of the plume centre of

mass, ݔ ൌ -The upscaled drift coefficient ࣰ in eq. (4.43) is the ensemble mean ve .ݐܸۧۦ

locity, equal to the velocity of the center of mass ܸۧۦ ൌ 1m/day. The upscaled diffusion

coefficient ࣞ is the longitudinal component of the time dependent ensemble Dispersion

coefficient. The latter is a self-averaging quantity for transport in random velocity fields

with finite correlation range, as considered here. Hence, ࣞሺݐሻ was efficiently deter-

mined by using a single particle trajectory of diffusion in a single realization of the ran-

dom velocity field. Two different mixing models M were considered in the concentration

Itô equation (4.44). The first one is the IEM model, a drift term given by the attenuation

of the mean concentration due to the local diffusion, and an additional noise term mod-

eled as a Wiener process, needed to control the shape of the PDF /FOX 03/.

ሻݐሺܥ݀ ൌ െܽሺݐሻሾܥሺݐሻ െ ݐሻۧሿ݀ݐሺܥۦ Δܥۦሺݐሻۧ ܾܹ݀ሺݐሻ. (4.43)

The coefficient ܽሺݐሻ was estimated, similarly to turbulence problems by the inverse of

the diffusion time scale ࣞሺݐሻ/ߣଶ, with ߣ ൌ 1	m, the characteristic correlation scale of the

transport problem. Δܥۦሺݐሻۧ was estimated from a fractional step, performed at each

time step of the GRW-PDF simulation, consisting of a GRW simulation of the 1d diffu-

sion with the constant local diffusion coefficient ܦ ൌ 0.01m²/d considered in the Monte

Carlo simulations. The amplitude ܾ ൎ 10ି 1/d of the Wiener process W(t) was adjust-

ed by comparisons with the Monte-Carlo inferred Eulerian PDF ܲሺܿ; ,ݔ ሻ. The resultsݐ

obtained by this IEM model are represented by the dotted curves in Fig. 4.3

The second model consists of a drift term equal to the rate of decay of the mean con-

centration at mass center ܥۦሺݔ, ሻۧ, determined from the ensemble of Monte Carloݐ

simulations /SUC 06/ and a small diffusion in the concentration space. The correspond-

ing diffusion coefficient starts with an initial value adjusted in the same way as the

noise term in equation (4.45) and decays exponentially in time, as suggested by a pre-

liminary analysis of concentration time series generated during the Monte Carlo simula-

tions, carried out with an automatic algorithm /VAM 12/. The Eulerian concentration

PDF ܲሺܿ; ,ݔ -ሻ was simulated by the GRW algorithm and compared with the Monte Carݐ

lo results. The cross-section concentration ܥሺݔ, ሻ is ergodic with a good approximationݐ

/SUC 06/, thus ܥሺݔ, ሻݐ ≃ ,ݔሺܥۦ ,ݔሻۧ. The initial distribution of particles in the ሺݐ ܿሻ plane

was approximated by multiplying the Monte Carlo PDF at ݐ ൌ 1	d by 10ଶସ particles.

104

Fig. 4.5 The mean concentration ۧܥۦሺݔሻ at fixed times t = 10, 50, 100 days (peaks)

and ۧܥۦሺݐሻ at the centre of mass ݔ ൌ calculated by (monotone curves) ݐࣰ

Monte Carlo methods and by the GRW with the two mixing methods

Fig. 4.6 The cumulative distribution functions cdfሺܿ; ,ݔ ݔ ,ሻݐ ൌ ,at t = 0, 10, 30 ,ݐࣰ

50, 100 d (from right to left) calculated by Monte Carlo methods and the

GRW with two mixing models

105

Fig. 4.5 shows a good agreement of the mean concentration, for both mixing models,

between Monte Carlo results and GRW-PDF simulations. This result is already ex-

pected because ܥۦሺݔ, -ሻۧ is the probability density of the computational particles govݐ

erned by the Itô equation (4.43), which is independent of the concentration Itô equation

(4.44) and of the dissipation model. The comparisons presented in Fig. 4.4 and Fig. 4.6

show that the dissipation model M based on the rate of decay of ‘‘measured’’ (i.e. simu-

lated) concentrations resembles the Monte Carlo results quite well. The IEM model

(4.45) instead fails to capture the transport of the PDF in physical and concentration

space. The discrepancy may be attributed to structural differences between groundwa-

ter and turbulent flows. Such models are better suited for homogeneous systems.

As demonstrated in Fig. 4.4, the standard IEM model predicts dissipation rates of the

solute plume, which are too small. The underestimation possibly stems from the inter-

play of steep concentration gradients at these early times together with the heteroge-

neous velocity fluctuations, because these two effects cause enhanced mixing. Heter-

ogeneity induced mixing is very efficient in the elimination of small scale concentration

fluctuations but it needs time to develop in porous media flows. The IEM model does

not account for this transient behavior, because it is constant in time. To overcome this

problem, a time dependent extension of the IEM model is proposed. As already de-

scribed in Section 4.4.2, the time dependent IEM model greatly improves the results for

the concentration variance. Similar comparisons were done for the concentration PDF.

These results are shown in Fig. 4.7. The concentration PDFs with the standard IEM

model, the time dependent IEM model, and with empirically determined dissipation

rates at the mass center of the plume are compared. It can be seen that the dissipation

rate is larger for the time dependent model than for the standard IEM model. With this

enhanced dissipation rate, the empirically determined rates are matched to a good ex-

tent. Although the shape of the PDF is narrowed too much, it gives much better results

compared to the standard IEM model.

106

Fig. 4.7 The concentration PDF at the center of the plume ݔ ൌ -with the stand ݐܸۧۦ

ard IEM model (blue) and the time dependent IEM model (green) com-

pared to the PDF with empirically determined dissipation rates (red) every

10 days

 Conclusions 4.5

Equations for the mean concentration, the concentration variance and the complete

concentration PDF have been established. To achieve this goal, explicit results for the

ensemble dispersion and the concentration dissipation rate have been derived and in-

serted into the different equation. Solving these three equations and comparing them

with an ensemble of Monte-Carlo simulations showed an excellent agreement. The re-

sults build the basis for a computationally efficient replacement of computer resource

demanding huge Monte-Carlo simulations by simpler equations for the mean concen-

tration, concentration variance or the concentration PDF. The concentration PDF fol-

lows as a solution of a higher dimensional problem that is computationally more de-

manding than solving only for mean and variance of the concentration. However, the

reduction of higher computational costs can be reduced by making use of the efficient

numerical solvers for high dimensional problems as described in Section 3.5.

107

5 Code verification and applications

 Viscosity-dependent flow 5.1

5.1.1 Model description

A vertical two-dimensional flow and heat transport model established in the E-DuR pro-

ject /SCH 12/ was modified to investigate the effect of variable viscosity on the temper-

ature field.

The model domain is depicted in Fig. 5.1. It represents an area of about 814 m width

and 1057 m depth and includes four hydrogeological units (I to IV) as well as five dis-

crete fractures (F1 to F5). The permeability of the hydrogeological layers decreases

strongly with depth. The fractures have a rather high permeability compared to the sur-

rounding rock matrix. They can be traced through the lower two hydrogeological units

and are dipping at angles between 50 and 90 degrees.

Fig. 5.1 Model geometry based on the schematic cross-section

108

Pressure boundary conditions at the left and right boundary represent constant hydrau-

lic heads of 1048.8 m and 1048.4 m, respectively (cp. Fig. 5.2). A groundwater re-

charge of 41.3 mm a-1 is assigned to the top boundary. The bottom of the model is im-

permeable to flow.

A temperature of 2 °C is set at the top and of 32 °C at the bottom of the model. An in-

/outflow boundary condition is assigned to the left boundary which means that the in-

flow temperature reflects the general temperature gradient of about 2.84 °C per 100 m

and the outflow temperature is allowed to vary. On the right boundary, only outflow oc-

curs allowing for variable temperatures. An initial temperature distribution according to

the general temperature gradient is assumed.

Fig. 5.2 Boundary conditions for the groundwater flow and heat transport

Two model variations were set up using the same hydrogeological and heat transport

parameters (cp. Tab. 5.1 and Tab. 5.2). In the constant viscosity model, viscosity is

fixed to 1.002·10-3 Pa s-1 which corresponds to a temperature of 20 °C. In the variable

viscosity model, however, the influence of temperature °ܶ on viscosity	ߟ is considered

according to the following formulation /KRO 10/:

109

ሺߟ °ܶሻ ൌ
3.5

ሺ17 ⋅ °ܶ 575ሻଵ.ଵ଼
 6 ⋅ 10ିହ ൬ °ܶ

200
൰
ଶ

െ 1.2 ⋅ 10ିସ ሾܲܽ ଵሿ (5.1)ିݏ

Viscosity values of 1.7 Pa s at the top to 0.7 Pa s at the bottom of the model follow the

temperature distribution (cp. Fig. 5.3). The influence of temperature on density is ne-

glected because it is very low (changes by 0.5 % between 2 °C and 32 °C) compared

to the effect of temperature on viscosity (changes by 55 % between 2 °C and 32 °C).

Tab. 5.1 Permeability of the four hydrogeological units and the fractures

Hydrogeological unit Permeability [m²]

I: Clay and gravel 2.08·10-12

II: Weathering zone 5.79·10-13

III: Fractured zone
(low water circulation)

1.16·10-17

IV: Fractured zone
(very low water circulation)

1.16·10-21

Fractures 7.52·10-9

Tab. 5.2 Flow and heat transport parameters for the rock matrix and the fractures

 Matrix Fracture

Porosity [-] 4.65·10-3 5.0·10-3

Tortuosity [-] 1.0 1.0

Molecular diffusivity [m2 s-1] 1.0·10-9 1.0·10-9

Longitudinal dispersivity [m] 5.0 5.0

Transversal dispersivity [m] 5.0·10-1 5.0·10-1

Heat capacity of the fluid [J kg-1 K-1] 4.17·103 4.17·103

Heat capacity of the solid [J kg-1 K-1] 733 733

Thermal conductivity of the fluid [J s-1 m-1 K-1] 2.65 2.65

Mass density of the solid phase [kg m-3] 3.0·103 3.0·103

110

Mass density of the fluid phase [kg m-3] 998.2 998.2

Aperture [m] - 1·10-2

Fig. 5.3 Viscosity of pure water according to /KRO 10/

5.1.2 Results

Flow and heat transport simulations were run for about 28 years model time (8.7 ·108 s)

for the constant and the variable viscosity model. The resulting flow fields agree in their

main characteristics (Fig. 5.4): the flow velocity corresponds by and large to the per-

meability of the matrix. The general flow direction is from left to right but vertical com-

ponents are induced on one hand by the groundwater recharge and on the other hand

by the draining effect of the fractures. Flow through the fracture system follows basical-

ly fractures F1 and F5 (cp. Fig. 5.5a,b). They constitute a hydraulic bypass between the

left and the right boundary. Very low flow velocities occur in the lower thirds of the frac-

tures which form dead ends within the very lowly permeable matrix.

The main difference between the flow fields from the constant and the variable viscosi-

ty model concern the position of a flow divide formed in the upper left corner of the

model (Fig. 5.4). This divide arises where a part of the recharge flows to the left

boundary, while the other part flows to the right. In the constant viscosity model, the di-

vide appears at about 130 m from the left boundary. Considering variable viscosity

causes it to move by about 100 m to the right. Further explanations for the appearance

of a divide in this model are given in Appendix B.

111

Fig. 5.4 Flow field for simulations with constant and variable viscosity

At the same time, the impact of the fracture system on the overall flow field decreases

by applying variable viscosity: the flow velocity in the main flow path is diminished by

about 50 % in F1 and about 20 to 50 % in fracture F5. This is mirrored in the outflow

rates of the lateral boundaries (Fig. 5.5 c) which are dominated in the variable viscosity

model by the outflow from unit I and II. On the left side, the outflow rate of the variable

viscosity model is two times higher than the outflow rate of the constant viscosity model

while it amounts only to 20 % of the outflow rate at the right boundary. The integral of

the outflow rates is the same in both models and corresponds to the recharge.

Fig. 5.5 Flow velocities in the fracture system (a, b) and outflow rates

for the lateral boundaries (c) for the constant and variable viscosity model

112

It was shown in a former project that the fracture system influences the temperature

field in its vicinity /SCH 12/. The initially imposed geothermal temperature field is dis-

torted depending on the flow direction and velocity within the fractures. Thus, the dif-

ferences between the constant and the variable viscosity model concerning the flow ve-

locity within the fracture system should lead to differences in the temperature field.

The temperature profiles along the two cross-sections depicted in Fig. 5.6 show the dif-

ferences that arise from the different treatment of the viscosity. If the fractures had no

effect on the thermal field, the temperature would be constant in the two sections. For

both models, however, deviations from the mean value are visible in the vicinity of the

fractures. These deviations are very small at the end of the simulation but are still

growing as steady-state has not yet been reached.

Fig. 5.6 Temperature profiles for the constant and the variable viscosity model

113

The temperature in the matrix around the fractures is either reduced (F1, F2, F3) or in-

creased (F4, F5) to a varying degree. The underlying mechanism is heat exchange be-

tween water in the fracture and the surrounding water-saturated matrix. Along fracture

F1 relatively cold water is drawn down from Unit II and getting in contact with increas-

ingly warmer parts of the matrix. The temperature in the matrix is thus controlled by the

complex interplay of several processes:

- velocity of water

o in the fracture

o exchange with the matrix

- heat flow

o according to the temperature gradient between fracture and matrix,

o due to the geothermal temperature gradient.

The same applies in principle also to fracture F5, except that relatively warm water

flows through increasingly colder parts of the matrix so that the temperature in the ma-

trix is increased.

Differences between the temperature profiles of the constant and the variable viscosity

model thus correlate to the differences in the flow velocities in the fracture system de-

scribed above. In both sections, the temperature deviation at fracture F1 is two times

lower in the variable viscosity model than in the constant viscosity model. At fracture F5

the values for the variable viscosity model are 25 to 20 % less than the values in the

constant velocity model. These differences match the deviances found for the flow ve-

locities in fractures F1 and F5.

The results of this study indicate that the temperature dependence of water viscosity

has a strong influence on groundwater flow. In addition, the resulting effect on the flow

field is hardly to predict, especially when fractures are involved. Exchange of water and

heat between fractures and matrix is strongly affected in the investigated model by the

accuracy with which the water viscosity is described. Even more complex becomes

heat transport in a non-isothermal temperature field. This can obviously become highly

relevant for the prediction of solute transport in the near-filed of a repository. It is there-

fore highly advisable to consider the temperature-dependency of water viscosity in

cases of non-isothermal groundwater flow.

114

 A 3d fracture flow and transport model 5.2

5.2.1 Background

The following modelling exercise is based on the work of the TRUE4 Block Scale Pro-

ject at the Hard Rock Laboratory Äspö /WIN 02/. As one result of this project the so-

called “TRUE Block Scale hydrostructural model” had been defined in the framework of

Task 6c of the Äspö Task Force on Modelling of Groundwater Flow and Transport of

Solutes.This hydrostructural model had a size of 200 m x 200 m x 200 m and formed

the basis for deriving a block scale fracture flow and transport model. The TRUE Block

Scale model consisted of 22 deterministic structures5 with an extension larger than

50 m which were all actually detected in-situ. Smaller ones were called background

fractures and can only be described in terms of geostatistics.

Eleven of the deterministic structures were eliminated in the framework of Task 6c for

different reasons /DER 03/. The remaining structures were treated as planar. Where

actual field data were not available a geostatistical model was set up to fill in the gaps.

19 synthetic 100 m scale structures were generated in just one realisation and then

added to the model. These were therefore also called deterministic adding up to a total

of 30 multiple intersecting discrete fractures. Additionally, 5660 synthetic background

features were also generated and added.

In the framework of the TRUE Block Scale project also the tracer test “C2” was per-

formed /AND 02/. It included injection of an ideal tracer in a certain structure and ex-

traction from a different but hydraulically connected structure. This test formed the ba-

sis for Tasks 6D as well as 6E.

The work described here comprises modelling flow in this complex domain as well as

the tracer transport across several fractures. Some new conclusions will also be drawn

with respect to the flow field in general as well as to the role of the matrix for the tracer

migration.

4 Tracer Retention Understanding Experiments

5 The terms ‘structure’ or ‘feature’ were used to describe the sum of a fracture including fracture fillings as
well as the complex changes in the host rock around the fracture (c.f. section 0). For the sake of sim-
plicity the term “fracture” will be used synonymously further on.

115

5.2.2 Conceptual model

Review of models used in Task 6

All models used in the framework of Task 6 incorporated a discrete fracture network

(DFN). This was generally achieved by either one of two basic approaches. One way

was to emulate fractures in a 3d-grid as highly conductive zones based on the

“smeared fracture approach” (e.g. /FOU 03/). Alternatively, special 1d- or 2d-elements

in space were used. Obviously, the first approach works on a reasonably fine grid only

with a limited number of fractures.

In case of more complex fracture systems as in Task 6E matrix flow was simply ig-

nored by several models e.g. /CRA 06/, (q.v. /MOR 08/), /CHE 06/. Where the matrix

was not modelled explicitly, analytical solutions for diffusion in the matrix were applied

e.g. /POT 06/ (q.v. /POT 09/), /DER 06/ (q.v. /UCH 09/). One model from a Japanese

team and one from a French team /GRE 06/ was based on an equivalent continuum

replacing matrix and background features by a “smeared fracture model”. Unfortunate-

ly, there exists no citable source for the Japanese model. The only hint was found in

/TAN 03/. The procedure for finding parameters for the equivalent continuum is con-

ceptually rather simple. For a 3D volume element an equivalent conductivity Ke is cal-

culated as the volume weighed mean of fracture and matrix permeabilities:

e

n

i
ifimm

e V

VKVK
K

 (5.2)

Using the data from the semisynthetic hydrogeological model presented in /DER 03/

this method yielded an equivalent conductivity for the continuum of Ke = 10-9 m/s.

In some cases also the background fractures were at least partly ignored /GRE 06/

(q.v. /GRE 08/). In /SVE 06/ fractures below a predefined cell size were only consid-

ered as storage volumes but did not take part in the flow.

Adopted approach

Fractured rock is often conceptualised as a so-called “intact rock” that is interspersed

with stochastically distributed fractures. Other than in the Canadian Shield, where the

116

granite can be sparsely fractured (e.g. /KUZ 08/), the granite at Äspö proves to be

comparatively highly fractured. It is even commonly assumed here that fractures exist

on all length-scales implying that the hydraulically relevant rock porosity is basically

made up of micro fractures (e.g. /DER 03/).

Obviously, there is a lower limit to the size of the fractures that can be incorporated in

any of these models. However, the minimum size of the considered fractures can be

considerably less in a stochastic fracture network model without a matrix than in a case

where the matrix is included.

It is common practice to distinguish between large fractures and the remaining set of

smaller fractures, also called “background fractures”. There is no general definition of

background fractures, though. Basically, they are defined by their size (e.g. /DER 03/,

/BLE 11/) or by their transmissivity (e.g. /CVE 06/, /BLE 13/) or a combination.

/CVE 10/ add that background fractures typically come in numbers so that a discrete

description of them is only possible by means of geostatistics. Since the background

fractures are less transmissive than the large fractures6 and more evenly distributed

they can arguably be replaced by a second continuum that effectively increases the

matrix permeability (e.g. /BLE 11/). It has to be noted, though, that outflow from the

rock into the probing boreholes at the BRIE-site varied roughly over two orders of mag-

nitude already over a distance of just 1.5 m /BOC 13/. This observation suggests that

relevant water-bearing fractures at Äspö may become scarce on a scale of a few me-

tres or less /KRO 16a/.

In the light of these considerations a model concept has been developed in the frame-

work of Task 8 where the undisturbed matrix and the background fractures are com-

bined to one continuum with effective flow parameters /KRO 16a/ as proposed earlier

by /GRE 06/. The large fractures, however, are represented discretely by 2d-elements

in space. The following calculations of flow and transport according to Task 6 are

based on this concept. As an approach to the conceptual model outlined in /DER 03/

only the 100-m scale structures are considered to be large.

6 Note that a direct proportionality between fracture size and transmissivity has been established for the
granite at Äspö (e.g. /BOC 13/).

117

However, there is little information coming from the Task 6 descriptions that can be

used to derive the effective flow parameters for the continuum. Main reason for this is

that the focus of Task 6 had lain on the modelling of tracer tests as well as the appro-

priate description of the influence of microstructural effects in the fractures on the

transport behaviour. Characterising the flow field played a secondary role. Data from

/KRO 16a/ are thus adopted for the Task 6 model where applicable.

5.2.3 Fractures

Structure

On a micro scale level of observation a fracture is a rather complex structure as shown

in Fig. 5.7 so that in principle no fracture is identical to another one. Basically, the

structures investigated in the TRUE Block consist of open fractures with mineral coat-

ing. They are embedded in a comparatively large altered zone and often include sub-

parallel fractures. Some fractures contain additionally breccia7 and fine-grained fault

gouge8. Also adjacent cataclasit9 and mylonite10 can be found. The thickness data for

the different structure components are compiled in Tab. 5.3. Despite these complexi-

ties, however, the fractures are conceptualised as planar parallel plates for the purpose

of modelling fracture flow and transport.

7 Fault breccia: a medium- to coarse-grained cataclasite containing >30% visible fragments /WIK
10/.Millimetre to centimeter (> 2 mm) sized pieces of altered wall rock/cataclasite and/or mylonite. The
chemical and mineralogical composition is usually similar to that of the (altered) wall rock /POT 02/.

8 Fault gouge: an incohesive, clay-rich fine- to ultrafine-grained cataclasite, which may possess a planar
fabric and containing <30% visible fragments. Rock clasts may be present /WIK 10/. Fragments and
mineral grains (≤ 2 mm) of altered wall rock and secondary minerals (clay minerals and calcite)
/POT02/.

9 Cataclasite: a fault rock which is cohesive with a poorly developed or absent planar fabric, or which is
incohesive, characterised by generally angular clasts and rock fragments in a finer-grained matrix of
similar composition /WIK 10/.

10 Mylonite: a fault rock which is cohesive and characterized by a well developed planar fabric resulting
from tectonic reduction of grain size, and commonly containing rounded porphyroclasts and rock frag-
ments of similar composition to minerals in the matrix /WIK 10/.

118

Tab. 5.3 Extent of structure components

Rock type Extent [cm]

Intact wall rock −

Altered zone 10 - 20

Cataclasitedcat 2

Fault gouge dg 0.5

Fracture coating dc 0.05

Fig. 5.7 Generalised conceptual model of a typical conductive structure;

from /WIN 02/

119

Geometry of the fracture system

Coordinates are generally given in relation to an Äspö-specific reference point. The

centre of the cube-shaped model domain is defined in these local coordinates by

 easting: 1900 m

 northing: 7170 m

 elevation: -450 amsl

Real as well as synthetic 100-m scale structures are defined by three, four or five cor-

ner points given also in terms of the Äspö reference system.The names of the struc-

tures are taken over from /DER 03/, definitions are compiled in Tab. C.1 and Tab. C.2

in Appendix C. Also included are the corner coordinates corrected for fitting into the

cubic model domain where applicable. Note that clipping produced further pentagonal

and triangular structures in some cases. Note further that the assumption of planar

fractures introduced an aberration of the fracture location of up to 10 m compared to

the real fracture system.

Fig. 5.8 100-m structures in the 200-m model block; real in grey, synthetic in green

120

5.2.4 Hydraulic properties

It was possible to assign characteristic hydraulic parameters to each fracture in the

TRUE block by means of in-situ tests and modelling exercises /DER 03/. Resistance to

flow is given in terms of transmissivities. Also listed are the transport relevant apertures

so that permeabilities can be calculated. These three properties are compiled in Tab.

C.3. Variability of permeability and aperture are illustrated in Fig. 5.9 and Fig. 5.10.

Fig. 5.9 Permeability of the fractures

Fig. 5.10 Aperture of the fractures

121

An impression of the system of background fractures as well as the related transmissiv-

ities gives Fig. 5.11. It strongly supports the notion of representing this fracture system

by an equivalent continuum. While the data from /GRE 06/ indicated a permeability of

10-16 m² for the equivalent continuum representing matrix and background fractures,

modelling Task 8 provided a related value of 10-17 m² /KRO 16a/, /KRO 16b/. Adopted

was the latter value for the modelling as it was confirmed by two other participants of

Task 8. Also adopted was the suggested porosity value of �= 0.005.

Fig. 5.11 Transmissivities of the background fractures; from /DER 03/

5.2.5 Hydraulic boundary conditions

Boundary conditions were given in terms of piezometric heads across the surface of

the 200 m cube. These heads were calibrated in such a way that modelling the under-

ground openings like tunnels and boreholes is not necessary /DER 03/. A characteristic

head value is given for each 22 m x 22 m square on the surface. In the two plots in Fig.

5.12 these values are already interpolated. The original roughness can be appreciated,

though, by the regular 22 m grid that is also shown.

122

Fig. 5.12 Hydraulic heads on the surface of the 200-m model block

5.2.6 Tracer test

The tracer test “C2” included a source in structure 23 at (1929.741,

7194.840, -476.100)11 and a sink in structure 21 at (1914.628, 7186.294, -473.065). Di-

rect distance between source and sink amounted to 17 m but the actual flow path cov-

ering structures 23, 22, 20, and 21 (see Fig. 5.13) had a length of about 97 m /AND

02/.

According to /DER 03/ the injection rate was 1.5 10-7 m³/s and the pumping rate was

3.27 10-5 m³/s. These data were later modified to 1.6710-7 m³/s and 3.25 10-5 m³/s, re-

spectively /DER 06/.

The concentration of the injected tracer was given in terms of activity per mass (see

Appendix Tab. C.4). The total amount of the injected activity amounted to 1.71·108 Bq

with an uncertainty of 1.89·106 Bq. As a result of the tracer test the measured extrac-

tion concentration over time is given (see Appendix Tab. C.5). The data is plotted in

Fig. 5.14.

11 Äspö coordinate system

nor
th

ing [m
]

1800

1850

1900

1950

2000
easting [m]

7100
7150

7200
7250

h
eig

h
t(am

sl)
[m

]

-550

-500

-450

-400

-350

X
Y

Z

head [m]

-30
-35
-40
-45
-50
-55
-60
-65
-70
-75
-80
-85

north
ing [m

]

1800

1850

1900

1950

2000
easting [m]

7100
7150

7200
7250

-550

-500

-450

-400

-350

X

h

123

Fig. 5.13 Structures involved in the C2-tracer test

Fig. 5.14 Activity concentrations for the tracer in the C2-test

time [h]

co
n

ce
n

tr
a

tio
n

[B
q

/k
g

]

100 101 102 103

102

103

104

105

106

107

injection
extraction

fracture 23

fracture 22

fracture 20

fracture 21

124

The apparent or effective diffusion is taken here to be a product of the coefficient for

free diffusion in water and a so-called “formation factor” which includes effects from po-

rosity, tortuosity, constrictivity etc. The referring data with respect to each material

found in the fractures is compiled in Tab. 5.4. However, since the parallel plate model

is applied here a formation factor of 2·10-4 is adopted for the fractures and 7.5·10-5 for

the matrix in the calculations.

Tab. 5.4 Transport relevant parameters in different materials;from /DER 03/

 Fracture

coating

Fault

gouge

Cataclasite Altered

zone

Unaltered

wall rock

Porosity (%) 5 20 1 0.6 0.3

Formation factor, F 6.2E-03 5.6E-02 4.9E-04 2.2E-04 7.3E-05

5.2.7 Results

Pressure

The pressure distribution prescribed on the model boundary was rather coarse in com-

parison to the size of the elements representing the matrix. In order to provide a

somewhat smoother distribution for modeling purposes the pressure data for the

boundary was processed by an inverse distance weighing scheme. It appears, though,

that the real data distribution was too complex to be reconstructed by this procedure.

Either the orthogonal pattern from the provided data (c.v. Fig. 5.12) remained to be vis-

ible or certain features of this distribution got lost. Fig. 5.15 shows the adopted com-

promise. For reference the used grid is depicted as well.

The resulting pressure distribution in the fracture system is depicted in Fig. 5.16. Clear-

ly visible is a considerable pressure drop in the middle of the system apparently relat-

ing to the extraction point in the C2-test. This observation is underpinned by the pres-

sure distribution in the matrix in the vicinity of this location as shown in Fig. 5.17

125

Fig. 5.15 Pressure distribution and numerical grid on the model boundary

Fig. 5.16 Pressure distribution in the fractures

126

Fig. 5.17 Pressure distribution in the matrix at the C2-test

Finally confirmed is this conclusion by a closer look at fractures 23, 22, 20, and 21

which are immediately affected by the C2-test. Injection is located in fracture 23 and

extraction in fracture 21. Plotting the related pressure field at a different scale as in the

left graphic of Fig. 5.18 reveals that the pressure drop is indeed caused by the extrac-

tion of water in the C2-test.

Almost not visible by comparison is the slight pressure increase due to the injection of

the tracer in the right plot in Fig. 5.18 showing the pressure at a yet different scale. This

is of course a consequence of the fact that the extraction rate is about 200 times higer

than the injection rate.

127

Fig. 5.18 Two views of the pressure distribution in the fractures related to the C2-test

at different scales

Velocity

While the pressure field looks rather straight forward the resulting velocity field is quite

complex because of the hydraulic interaction of the fractures. Exemplarily for the intri-

cacy of the whole fracture flow system a closer look is taken at the flow fields in the

four fractures immediately involved in the C2-test. However, a much better understand-

ing can be gained if the fractures intersecting this “core group” of four fractures are also

taken into account. The list of fractures connecting to the fractures of the core group

shows already a certain complexity:

 fracture 23 (including injection) connects to fracture 22,

 fracture 22 connects to fractures 23, 20, 06, 07, and 13,

 fracture 20 connects to fractures 22, 21, 07 and 13, and

 fracture 21 (including extraction) to fractures 20, 07, and 13.

Note that fracture 22 does not penetrate fracture 07 but just has a touching line in

common with fracture 07.

fracture 23

fracture 22

fracture 20

fracture 21

fracture 23

fracture 22

fracture 20

fracture 21

128

All fractures from the list are depicted in Fig. 5.19. For the sake of clarity fractures 23,

22, 20, and 21 are plotted in grey while fractures 06, 07, and 13 are showing the hy-

draulic pressure.

Fig. 5.19 Pressure distribution in the fractures cutting through the fractures

related to the C2-test

In the following a series of plots depicting the velocity field in a fracture from the core

group as well as a second fracture intersecting the first one is shown to elucidate the

velocity field in the 3d-fracture system. Injection and extraction points are represented

by a red and a blue sphere, respectively, where applicable. Note that a velocity vector

is plotted for each fracture element which leads in some cases to a local concentration

of vectors that is simply caused by a local grid refinement.

The tracer carrying water is injected into fracture 23 at the location marked by the red

sphere in Fig. 5.20. Fracture 23 is not intersected by any other fracture than fracture 22

which subsequently takes up much of the injected tracer. The flow field in fracture 23 is

therefore basically determined by the injection, by fracture 22 and of course by the sur-

rounding matrix. Clearly visible is the local increase of velocity at the source. The re-

sulting increase of velocity at the intersection with fracture 22 is small, though, com-

fracture 23

fracture 20

fracture 22

fracture 21

fracture 06

fracture 13

fracture 07

129

pared to the flow coming from fracture 22. A considerable decrease of tracer concen-

tration due to mixing with fresh water can thus be expected at this intersection.

Fig. 5.20 Velocity in fractures 23 and 22

Contrary to fracture 23 there are several intersections of other fractures with fracture

22. Fig. 5.21 to Fig. 5.22 show the velocity field of fracture 22 together with one of

these other intersecting fractures. In Fig. 5.21 fracture 22 is depicted together with frac-

ture 20 which is the next fracture along the main flowpath of the tracer. Some mixing is

again to be expected at the intersection of fractures 22 and 20. Also easily recognisa-

ble in Fig. 5.21 is the influence of fractures 06 and 07 on the flow field in fracture 22.

Both fractures are significantly feeding water into fracture 22 which can be also seen in

Fig. 5.22 and Fig. 5.23. Only fracture 13 seems not to influence fracture 22 as depict-

ed in Fig. 5.24.

fracture 22

fracture 23

130

Fig. 5.21 Velocity in fractures 22 and 20

Fig. 5.22 Velocity in fractures 22 and 06

fracture 22

fracture 20

fracture 06

fracture 07

fracture 23

fracture 22

fracture 06

fracture 23

fracture 20

fracture 13

131

Fig. 5.23 Velocity in fractures 22 and 07

Fig. 5.24 Velocity in fractures 22 and 13

Fracture 22 is the second to last fracture before the tracer reaches the extraction point

in fracture 21. Fig. 5.25 shows both fractures but fracture 21 is seen from the side op-

posite to the sink. The influence from the sink on the velocity field in fracture 21 is

fracture 22

fracture 06

fracture 07

fracture 23

fracture 20
fracture 13

fracture 22

fracture 06

fracture 07

fracture 23

fracture 13

fracture 20

132

clearly visible by reference to the flow pattern close to the middle of the intersection

line. Similarly, the water coming from the direction of fracture 20 appears to converge

already towards the same location at the intersection with fracture 21.

Water flow from fracture 22, though, seems to be little as it has no strong influence on

the flow in fracture 20. Yet another considerable dilution of the tracer plume is therefore

to be expected at this intersection.

Fig. 5.25 seems to indicate also only a minor influence of fracture 13 on the flow of

fracture 20 while Fig. 5.26 shows a contribution to fracture 20 that is in the same order

as flow in fracture 20. An increase in flow by a factor of 2 or 3 gets apparently lost in

the logarithmic colour scale for the velocity.

Flow is only significantly changed across the intersection with fracture 07 which is con-

firmed by Fig. 5.27.

Fig. 5.25 Velocity in fractures 20 and 21

fracture 21

fracture 20

fracture 07

fracture 22

fracture 13

133

Fig. 5.26 Velocity in fractures 20 and 13

Fig. 5.27 Velocity in fractures 20 and 07

Finally, flow in fracture 21 is not surprisingly controlled by the extraction at the point

marked with the blue sphere as shown in Fig. 5.28. Again only fracture 07 delivers

fracture 20

fracture 07

fracture 21

fracture 22

fracture 13

fracture 20

fracture 07

fracture 22

fracture 13

fracture 13

fracture 21

134

enough water to change the flow pattern in fracture 21 at the intersection significantly

(see also Fig. 5.29).

Fig. 5.28 Velocity in fractures 21 and 13

Fig. 5.29 Velocity in fractures 21 and 07

fracture 22

fracture 21

fracture 13

fracture 07

fracture 22
fracture 21

fracture 13

fracture 07

135

Tracer concentration

The transport simulation was checked against the measured breakthrough curve of the

tracer. However, breakthrough was not satisfyingly reproduced by the model – neither

in terms of breakthrough time nor in terms of peak value – when using the hydraulic in-

put parameters described in the previous subsections. The tracer plume took too long

to reach the extraction point and did not reach the measured concentration.

Since too much spreading in the matrix and too little velocity in the fractures was sus-

pected the porosity values for matrix and fractures were reduced. A satisfying fit was

achieved reducing the formation factor for the matrix by a factor of 30 and the formation

factor for the fracture by a factor of 10. Note that a related increase of the permeability

would have had the same effect except that higher fluid and solute flow rates would

have been involved. The resulting breakthrough curve with reference to the measured

data is shown in Fig. 5.30. The results presented in the following refer to the model with

modified porosities.

Fig. 5.30 Measured and calculated breakthrough curve

A comparison of the breakthrough curve with the injection curve shows essentially a

decrease in the peak concentration and a phase shift (c.p. Fig. 5.14). These two prop-

erties reflect the effects of the travel time between injection and extraction point and the

effect of mixing with fresh water. Mixing occurs always on a microscopic scale due to

time [h]

co
n

ce
n

tr
at

io
n

[B
q

/k
g

]

200 400 600
101

102

103

104

measured
calculated

136

the hydrodynamic dispersion leading to a certain spreading of the tracer plume. A sec-

ond mixing effect can be observed in the C2-test when the concentration plume is

crossing an intersection of two fractures thus mixing the solution with fresh water.

While the hydrodynamic dispersion smoothens the concentration distribution and is

therefore numerically favourable, mixing at fracture intersections is quite difficult to re-

produce in a numerical model. The problem that arises in this situation is exemplarily il-

lustrated in Fig. 5.31. Assuming the same flow rate in two identical intersecting frac-

tures and assuming further a tracer plume with the concentration c0 arriving at the

intersection from one fracture while the second fracture carries no tracer results in a

mixing concentration of ½c0. The model must therefore represent three different step-

wise changing concentration values at the intersection, c0 upstream of the intersection

in one fracture, 0 in the other fracture upstream of the intersection and ½c0 in both frac-

tures downstream of the intersection. These step functions can lead to severe oscilla-

tions in the solution of numerical schemes that are based on continuous basis functions

(e.g. /KRO 91/) if they persist as part of the exact solution and if hydrodynamic disper-

sion is insufficient to dampen the oscillations. Since the chosen dispersion lengths

amount only to 10 cm thus leading to high Peclet-numbers it is of specific interest how

d3f++ handles this situation.

Fig. 5.31 Illustration of concentration changes at a fracture intersection

Additionally, the numerical model faces a similar problem where the streamlines con-

verge towards the sink. Without hydrodynamic dispersion the boundary of the tracer

plume would be characterized by a step function orthogonal to the flow direction. Even

more problematic for the numerical scheme is calculating the concentration distribution

at the very sink because a step function is also required in the direction of flow. This

situation is illustrated by Fig. 5.32. Ususally, a sufficient amount of hydrodynamic dis-

persion is required to minimize numerical problems from step functions in the solution

which can be interpreted as introducing longitudinal and transverse mixing.

v

c0

v

½ c0

½ c0

137

Fig. 5.32 Illustration of a solute plume migrating towards a sink

without hydrodynamic dispersion

An example for the consequences of this sort of problem is given in Fig. 5.33 showing

the model results for a steady-state gas saturation distribution. In a dipole test gas had

been injected and extracted in a fracture at the HRL Äspö /KUL 02/. While the gas in

the model forms a plume that correlates nicely with the depicted flow field, a curious

saturation peak is visible close to the sink. It shows higher values than the maximum

saturation at the source which can in reality not be exceeded and is thus an artefact

that is caused by the numerical difficulties at the sink.

Fig. 5.33 Model results for the steady-state gas saturation (SG) in a dipole test;

from /KUL 02/

source

sink
peak

138

The results for tracer migration in Task 6 are illustrated in Fig. 5.34 to Fig. 5.36 by plots

showing the concentration distribution as well as the velocity field in fractures 23, 22,

20, and 21 at 10h, 50h, and 200h. The adopted three points in time represent the end

of the high tracer injection rate and the beginning of a strong reduction of this rate as

shown in Fig. 5.14 (the fluid injection was kept constant for 10 hours), an interesting

phase of the transport dynamics where the tracer plume has already affected three of

the four fractures (at 50 hours), and reaching the maximum concentration at the sink at

200 hours.

Since there is no meaningful view from which the injection and the extraction point is

visible, the group of the four fractures is depicted from two sides. Apparently, the plume

follows the streamlines at the source that are indicated in Fig. 5.20 at all times. This in-

cludes flow from the source against the general flow direction over a short distance in

fracture 23. After the tracer injection rate had almost dropped to zero, a ringlike con-

centration distribution developes around the injection point that can be seen in the plot

for 200 h in Fig. 5.36.

The concentration distribution along the fractures 23, 22, 20, and towards the extrac-

tion point in fracture 21 shows a large decrease of concentration with increasing dis-

tance to the source. The peak concentration is reduced by 4 orders of magnitude while

reliable concentration values span a range of more than 6 orders of magnitude. From

this fact a strong dilution of the tracer at the fracture intersections can be inferred which

could easily provoke large oscillations due to the little influence of hydrodynamic dis-

persion. However, looking at the concentration distribution in fractures 20 and 21 at

200 h model time (when the tracer reached the maximum at the sink) reveals no such

errors in the numerical solution as depicted in Fig. 5.37. On the contrary, the concen-

tration contrasts at the intersections are quite sharp.

To corroborate this observation the four fractures were scanned closely for negative

concentration values as indicators for oscillations. But only three pointlike locations

could be identified, two in fracture 23 and one in fracture 20 where a negative concen-

tration developed. These negative concentrations did not exceed 16 Bq/kg, though, in

comparison to the maximum of 2.7·107 Bq/kg at the injection point.

139

Fig. 5.34 Concentrations in fractures 23, 22, 20, and 21 at 10h

injection point

extraction point

140

Fig. 5.35 Concentrations in fractures 23, 22, 20, and 21 at 50h

injection point

extraction point

141

Fig. 5.36 Concentrations in fractures 23, 22, 20, and 21 at 200h

injection point

extraction point

142

Fig. 5.37 Concentrations in fractures 20 and 21 at 200h

5.2.8 Conclusions

Modelling flow and tracer transport according to the description of Task 6 of the Task

Force on Groundwater Flow and Transport of Solutes demonstrated effectively the abil-

ity of d3f++ to cope with flow and tracer transport in highly fractured porous media.

Even if reproducing the C2-test required some parameter modifications the measured

breakthrough curve was met rather well. This is even more remarkable as the peak

concentration was reduced by four orders of magnitude and reliable concentration val-

ues were calculated even at 1 % of the reduced peak concentration at the sink. The

sharp concentration changes at the fracture intersections due to mixing were very well

captured without provoking oscillations as often seen in other models. The same ap-

plies also to the model results for the sink area where sharp concentration contrasts

are naturally part of the solution.

While the model performed technically very well, explanations for the necessary con-

siderable reduction of the formation factor remain somewhat in the dark. Referring to

the fractures an error in the transformation from transmissivities to permeabilities for

the fractures was suspected. To confirm this, the exact measurement procedures as

well as a clear understanding of the physical implications of the transformation with a

view to the complex fracture structure would have been required. However, this could

not be achieved based on the available reports only.With respect to the matrix the re-

duction of the formation factor seems to indicate deficiencies in the conceptual model.

While replacing the matrix as well as the background fractures by one effective contin-

uum appears to be justifiable when simulating flow this might not be the case if simulat-

fracture 20 fracture 21

143

ing solute transport. In case of transport modelling additional hydraulic properties are

required. While the permeability is sufficient to characterize steady-state flow, transport

is also based on the pore velocity thus requiring the porosity. Moreover, solute migra-

tion is additionally sensitive to the actual transport path. This includes spreading of a

plume not only because of the microscopic dispersion but also because of macroscopic

spreading in the network of background fractures. The model concept for tracer

transport in fractured porous media should thus be reconsidered in the future.

Further conclusions can be drawn with respect to the C2-test. Analyzing the pressure

distribution in the fractures as well as in the matrix shows that the flow field is dominat-

ed by the extraction of water. Water is basically drawn from the boundary to the sink.

The sophisticated pressure distribution at the boundary that has been applied for the

model is therefore only of secondary relevance for this task. Flow, however, does not

follow a straight line through the matrix but takes mostly detours along the hydraulically

better conducting fractures. This phenomenon ensures that water drawn from the injec-

tion point to the extraction location is essentially flowing along fractures.

In general, this leads to highly complex flow patterns as the fracture orientations and in-

tersections are seemingly at random. The complexity of the flow field became obvious

by analyzing the velocity field along the transport path of the injected solution. While

only four fractures covered this path the additionally three fractures that intersect these

four fractures influenced the underlying velocity field significantly. Further analyses in

this detail were not feasible in a reasonable time frame as the model comprised a total

of 30 discrete fractures.

Finally, the difficulties should be acknowledged that are encountered when visualizing

physical quantities in a fracture network. One is the inherent problem with the results of

3d-models that can only be presented in 2d thereby loosing easily the orientation of ob-

jects and the relation of two or more objects in space to each other. Another problem

arises clarifying graphically interactions between two fractures that are intersecting at

narrow angles. Scalar or vector plots of the two fracture faces are not discernable if

they are meeting under narrow angles. And of course one half of the graphics are al-

ways on the far side of the observer which becomes even more serious if several frac-

tures are shown. These challenges culminated at illustrating the time-dependent tracer

transport by combined plots depicting concentration distributions and the underlying ve-

locity field at the same time.

144

 3d regional free surface flow with well pumping, variable recharge 5.3

conditions and river discharge

The d³f++ code handles free surface groundwater flow using level set methods, see

/FRO 12/ and /SCH 12/. Previously, this implementation has only been tested on the

basis of small 2d examples. Within the BMBF-funded NAWAK project (“Development of

sustainable adaption strategies for the water supply and distribution infrastructure on

condition of climatic and demographic change”, identification number 033W007) d³f++

is applied to a regional 3d model of a coastal aquifer near the German North Sea, tak-

ing into account variable recharge, river discharge and the pumping wells of three wa-

terworks. The objective is forecasting the impact of several demographic and climate

change scenarios on the position of the seawater-freshwater interface. Here, this mod-

el is used as a huge 3d test case for the correct implementation of the level set meth-

ods in d³f++, the increased performance of the new code and the implementation of

new features such as as variable recharge rates in space and time as well as river dis-

charge.

5.3.1 Free groundwater table in d³f++

In d³f++ the time dependent position of the groundwater table ߁ሺݐሻ in a fixed domain

D	is described implicitly as the zero level set of a level set function ߶ሺݔ, ሻݐሺ߁	߳	ݔ .ሻ, i. eݐ

⇔ 	߶ሺݔ, ሻݐ ൌ ሻ, where Darcy’s law isݐdivides D into the fully saturated zone Ωሺ	ሻݐሺ߁ .0

valid, and the partially saturated zone D\Ωሺݐሻ that is regarded to be outside of the

model domain, see Fig. 5.38.

Fig. 5.38 Model domain D divided by ߁ሺݐሻ	 D into a fully saturated zone Ωሺݐሻ

and a partially saturated zone D\Ωሺݐሻ

145

As a proper choice of a level set function the signed distance function ߔ is used with

∥ ߔ	 ∥	ൌ 1 and ߔሺߛሻ ൌ 0, ሻ forms the time dependent part of the boundaryݐሺ߁ .ሻݐሺ߁	߳	ߛ

of Ω, moving with a normal velocity ܵሺߛሻ ≔ ሬܰሬԦሺߛሻ ∙ ,ߛሬԦሺݑ	 ,ሻݐ -ሻ. These normal velociݐሺ߁	߳	ߛ

ty can easily be interpolated to ܦ\Ωሺݐሻ, which is necessary to compute the movement

of ߁ሺݐሻ /FRO 12/.

Using level set functions for the description of ߁ሺݐሻ implicates some restrictions to

these part of the model boundary: Regarding the pressure, the boundary condition

 ൌ 0 on ߁ሺݐሻ at any fixed time ݐ is set directly by numerical discretization and cannot

be changed /SCH 12/. That means groundwater recharge as well as discharge may not

be treated as boundary conditions, both effects have to be modelled as factors directly

influencing the normal velocity ܵ, see /SCH 12/:

ܵ ൌ 	 ൬
1
߶
	

ݎ
߶
௭ࢋ

ܿ
߶
௭൰ࢋ ∙ 	 ሬܰሬԦ

(5.3)

where ߶ stands for the effective porosity of the medium in the corresponding subdo-

main, ݎ ൌ ,ݐሺ	ݎ ܿ is the groundwater recharge caused by precipitation and	ሻߛ ൌ

ܿ	ሺݐ, ,ߛ ௭ is the unitࢋ) .is a special source due to the rivers on the top of the domain	ሻ߁

vector of the z-direction.) The values of ݎ ൌ ,ݐሺ	ݎ -ሻ are specified as a piecewise conߛ

stant function over the projection of the domain to the xy-plane, and are periodic in

time.

The rivers are considered to be a one-dimensional projection to the xy-plane, but to

hve an arbitrary depth in the z-direction. They are represented as a separate grid of

segments in the xy-plane. The source ܥ ൌ ,ݐሺ	ܥ ,ߛ due to the rivers is given by the	ሻ߁

following formula:

ܥ ൌ െ
ౙ∙ఘ౨∙

ఌ∙ఓ౨
∙ ൫݄ୱሺߛሻ െ ݄ୱሺݐ, ,ߛ ሻ൯߁ ∙ (5.4) .ݓ

Here, ݃ is the gravity, ݓ is the width of the river, ݇ୡ and ߝ are the effective permeability

and the thickness of the colmation layer, ߩ୰ and ߤ୰ are the effective density and viscosi-

ty of the water in the river, ݄ୱሺߛሻ is the specified water level in the river (absolutely or

optionally relatively to ground level, depending on the specification of ݄ୱሺߛሻ), whereas

݄ୱሺݐ, ,ߛ :ܥ ሻ is the depths of the groundwater table. The function ܿ is smoothed߁

146

ܿሺݐ, ,ߛ ሻ߁ ൌ න ,ݐሺܥ ,ᇱߛ ሻ߁ ∙ ,ߛሺܯ ᇱሻߛ ∙ ᇱߛ݀
	

ഃ
ೣሺఊሻ

,
(5.5)

where ߜ is the specified smoothing length, ܤఋ
௫௬ሺߛሻ is the circle of radius ߜ in the xy-

plane around the projection of ߛ to that plane, and ܯሺߛ, ᇱሻ is the mollifierߛ

,ߛሺܯ ᇱሻߛ ൌ ቐ
ߜ െ ݀ሺߛ, ᇱሻߛ

ଷߜߨ 3⁄
, ݀ሺߛ, ᇱሻߛ ൏ ߜ

0, ݀ሺߛ, ᇱሻߛ ߜ

(5.6)

with ݀ሺߛ, .to the xy-plane ′ߛ and ߛ ᇱሻ being the distance between the projections ofߛ

There is a further option to restrict the value ݄ୱሺߛሻ െ ݄ୱሺݐ, ,ߛ -ሻ if it exceeds some spec߁

ified maximum (to avoid unphysically strong sources).

5.3.2 The Sandelermöns model

The Sandelermöns model covers an area of about 1,000 km² situated at the German

North sea coast as shown in Fig. 5.39. Almost half of the model region is low-lying and

formed part of the North Sea some hundred years ago so that the aquifers lead saline

groundwaters. The south-western part consists of moraines with notable recharge rates

and freshwater aquifers below. The three waterworks Sandelermöns, Feldhausen and

Klein Horsten are situated in these areas, competing for pumping concessions and

worrying about the close-by saline waters.

Fig. 5.39 Situation of the Sandelermöns model area including the wells

of the three waterworks and area of saline groundwater

147

The hydrogeological model was set up by the Oldenburg-Ostfriesian Water Company

(OOWV). Six formations are distinguished, starting with a thick layer of fluvial sands at

the bottom, followed by small fields of Tergast clay and a continuous layer of melt-

water sands. The top of the model consists of thin layers of Lauenburg clay, dune

sands and silty materials. The base surface of each hydrogeological layer was read-in

into the ProMesh tool and together with ground surface data composed to a 3d model.

Fig. 5.40 shows the hydrogeological model created and the start values for the perme-

abilities and porosities.

Fig. 5.40 3d hydrogeological model of the Sandelermöns region,

exaggerated in vertical direction by a factor of 30

One challenge was the generation of a coarse grid with advantageous numerical prop-

erties. Because tetrahedral grids turned out to be not suitable, d³f++ had to be enabled

to handle prism grids, including the option of anisotrope grid refinements and adaptions

of the implementation of the levelset method. The result was a coarse grid consisting of

only 18,000 prisms.

The south-western boundary of the model is located on a watershed and therefore as-

sumed to be impermeable. The salt concentration is set to zero. The north-western and

south-eastern boundaries are choosen to be perpendicular to the water table isohypses

and therefore also regarded as impermeable for the flow. The coastal boundary is

equipped with a hydrostatic pressure for seawater and a salt concentration of

34 kg kg-1. The bottom of the model is also assumed to be impermeable because geo-

logical knowledge suggests almost impermeable clayey formations here.

On the upper boundary, a Dirichlet boundary condition p = 0 has to be choosen for the

pressure as already mentioned in Chapter 5.3.1. The concentration is also set to zero.

148

Time dependent groundwater recharge data were provided by the Braunschweig

Technical University. 147 polygonal recharge zones were distinguished as shown in

Fig. 5.42.

The north-eastern region of the model domain is characterized by a dense net of small

draining ditches and rivers conducting water to the coastal pumping stations in the

dikes to keep the groundwater level below land surface. This drainage plays a crucial

role in the hydraulic regime and had to be incorporated in the model. Because an ex-

plicite mapping of all ditches in a regional model is impossible, only the rivers of first

and second orders were integrated, and their influence was smeared over a user de-

fined range of surface elements.

Fig. 5.41 Influence of river drainage, exemplarily (red: 0.0, blue: 1e-8 m³ s-1)

 right: real network of draining ditches in the black marked detail

Regrettably there exists only little information about the water levels of the receiving

streams in the Sandelermöns region as well as the pumping rates of the coastal sta-

tions. Missing information was replaced by reasonable assumptions to meet the natural

hydraulic regime by a careful calibration process.

Furthermore, the 51 pumping wells of the waterworks were included into the model.

Additionally, 36 private wells are regarded.

149

Fig. 5.42 Sandelermöns model with prism grid, boundary conditions,

receiving streams (blue) and pumping wells (light blue);

right: groundwater recharche distinguished on 147 polygons

To find an appropriate initial condition for the free groundwater table the data of 284

gauge wells were averaged over the year 2011, interpolated and converted into a

ProMesh data set. Unfortunately, only few gauges exist near the coastal line, and the

model reacts very sensitive on changes in these settings.

The initial condition for the salt concentration is based on geoelectromagnetic data pro-

vided by the Leibniz Institute for Applied Geology, see Fig. 5.43. Therefore, specific re-

sistance measurements had to be converted into salt concentrations and the resulting

3d data field had to be read in by the ProMesh tool.

150

Fig. 5.43 Initial conditions,

left: groundwater surface

right: 3-Ωm-isosurface resulting from geoelectromagnetic measurements

5.3.3 Sandelermöns simulations

Simulations started with the initial and boundary conditions as described in Chapter

5.3.2. Fig. 5.44 shows the salt concentration at the first step of simulation, where ܿ ൌ 1

means seawater concentration (34 kg kg-1), as well as well fields and rivers.

Fig. 5.44 Initial state of the Sandelermöns model with river system (blue), pumping

wells (red) and salt concentration

151

The first simulations were performed on grid level 1 consisting of only 72 000 nodes

with the objective to calibrate the model. In a first step, the fluid volume in the model

had to be stabilized. Factors influencing this volume are the initial state of the ground-

water level, sea level, recharge rates, river drainage and pumping rates.

The model reacts mostly sensitive against variations in sea level, represented by the

hydrostatic pressure boundary condition at the north-eastern boundary, relatively to the

initial groundwater level at the coastal line. River drainage relatively to the recharche

rates is much more influencing the results than well pumping, which plays a less im-

portant role. Theses sensitivities form a huge problem because of the poor knowledge

about groundwater levels in the coastal zone as well as river drainage. Another prob-

lem is that the results for the fluid volume may completely fail without an adequate grid

refinement.

Fig. 5.45 shows the simulated groundwater surface after a model time of 6 years as a

result of the calibration process as a contour map. In the scatter plot on the right simu-

lated groundwater levels are compared with measured data. Therefore, the simulated

values had to be approximated from the grid nodes next to the gauge points which

leads to errors especially in the depression cones of the wells.

Fig. 5.45 Simulated groundwater level with gauge wells;

right: comparison of measured and simulated data during calibration

after a model time of 6 years

152

In consideration of the lack of data and the coarse grid the calibration results are rather

good and plausible. Nevertheless, further grid refinements are necessary for a better

calibration. To improve simulation results, it is desireable to achieve grid convergence,

that means at least grid levels 3 or 4 (1.1 or 4.6 millions of nodes) have to be used.

As shown in Fig. 5.46, the influence of the hydrostatic pressure boundary condition is

restricted to a zone near the coastal boundary. Saline waters detected by measures

outside this zone must result from former inundations hundreds of years ago, before

the areas were protected by dikes. That means the simulated salt distribution is mainly

determined of the initial condition.

Fig. 5.46 Simulated flow field on a cutting plane

The main objective of the NAWAK project is predicting the situation of the freshwater-

/saltwater interface up to the year 2050. This work is in progress. Fig. 5.47 shows ex-

emplarily the concentration isosurface of 500 mg l-1 (drinking water standard) relatively

to the well fields.

153

Fig. 5.47 Simulated drinking water/seawater interface

in relation to the pumping wells

5.3.4 Conclusions

The Sandelermöns model represents an highly challenging test case for d³f++ with re-

spect to free groundwater surface modelling and provoked several crucial improve-

ments of the code. At the same time, it allows a broad examination of the correct trans-

fer of the level set methods from UG3 to UG4. Additionally, Sandelermöns posed

challenges to the d³f++ preprocessing and initiated a series of very useful enhance-

ments of ProMesh. In this way it made also a contribution to an improved applicability

of d³f++ to large, regional problems with thin layers.

Furthermore it was detected that a minimum grid refinement is crucial for getting cor-

rect results for the fluid volume or the position of the groundwater surface, respectively.

Thereby it turned out again that grid convergence is an indispensable precondition for

confidable simulation results, especially regarding forcasts.

155

6 Summary

The codes d³f and r³t are well established for modelling density-driven flow and nuclide

transport in the far field of repositories for hazardous material in deep geological for-

mations. They may be used in porous media as well as fractured rock or mudstone, for

modelling salt- and heat transport as well as in models with free groundwater surface.

Both codes were applications of the software platform UG /BAS 94/ that was developed

in the early nineties. In order to adapt the flow and transport simulations to the growing

requirements of modern efficient numerical software, the renewed code basis UG4 for

the simulation of coupled partial differential equations has been developed /VOG 13/.

The new implementation is grounded on an object-oriented software design and written

in C++.

To be able to participate in the current and future enhancements and numerical ad-

vances the UG-applications d³f and r³t had also to be transformed to this new software

platform. Benfitting the fact that coupling between different sets of equations is natively

supportet by UG4, both codes were coupled in this process to the new conjoint code

d³f++. This allows the simultaneous simulation of density-driven groundwater flow and

pollutant transport.

State-of-the art computer codes have not only to run on massively parallel computers,

they also have to use modern multicore and hybrid computer structures. Each proces-

sor consists of multiple cores that are accessing at the same, hierarchically structured

main memory, and, moreover, the cache memory may be organized in a much more

complex way. In many cases processors of this type are supplemented by very special-

ized processors like GPUs and Cell processors. The efficient use of these modern

computer architectures relies on appropriate data structures that had to be implement-

ed in UG4 and d³f++, respectively. Additionally, the multigrid solvers had to be adapted

to these new structures and advanced. In tests with up to131,000 processors a very

good scaling behavior could be shown.

To improve efficiency, different types of non-linear solvers were compared. As an alter-

native to Newton-type fixed point iterations linear-implicit schemes were introduced.

These schemes allow to linearize the problem only once, and thus, when compared to

156

the Full Newton algoritm, the number of linear iterations is reduced considerably.

Moreover, this method can elegantly be combined with a timestep control and also with

spatial adaptivity.

In every site investigated some of the the rock properties as well as flow and transport

parameters remain partially unknown. These uncertainties are usually taken into ac-

count by stochastic modeling. However, Monte Carlo simulations with respect to re-

gional groundwater flow are not applicable because of their high computational costs. A

new stochastic approach was therefore adapted and applied. It is based on the idea

that a scalar variable like the salt concentration is replaced by a so called “filtered

probability density function“in the differential equation system. This leads, though, to

higher dimensional equation systems requiring new numerical solvers. These were al-

so developed.

UG4 applications are controlled by scripting or a graphical user interface. Therefore,

lua-scripting and the Visual Reflection Language VRL had to be adapted to the needs

of d³f++. Additionally, d³f++ profits from the UG4 pre-processor ProMesh that enables

the user to set-up model geometries based on different types of data input and to gen-

erate the computational grid. ProMesh was also enhanced by several features that are

helpful in the buildup of hydrogeological models. Data exchange between d³f++ and

pre- and postprocessors has been standardised using exclusively the new grid format

ugx. For the output of the simulation results an interface to the well established VTK

framework has been created, offering the possibility to use e. g. PARAVIEW or VISIT

for visualisation.

The new, modern code d³f++ underwent a series of tests, and it was already success-

fully applied to large complex models such as Task 6 of the Task Force on Groundwa-

ter Flow and Transport of Solutes and a regional groundwater flow model near the

German North Sea coast. This demonstrated the ability of d³f++ to handle models in

crystalline as well as in sedimentary rock at acceptable computational effort. The mod-

els were thereby of a higher complexity than previous models calculated with the for-

mer versions d³f and r³t.

Furthermore, the handling of d³f++ has become much more user-friendly, and, finally,

the data interface by standardised files opens up the use of a wide spectrum of post-

processing software.

157

7 References

/ACK 04/ Ackerer, P., Younes, A., Mancip, M.: A new coupling algorithm for density-

driven flow in porous media, GEOPHYSICAL RESEARCH LETTERS 31

(2004) L12506, 1–4. doi:10.1029/2004GL019496.

/AND 96/ Andricevic, R., V. Cvetkovic (1996), Evaluation of Risk from Contaminants

Migrating by Groundwater, Water Resour. Res., 32 (3), 611-621.

/AND 98/ Andricevic, R. (1998), Effects of local dispersion and sampling volume on

the evolution of concentration uctuations in aquifers, Water Resour. Res.,

34 (5), 1115-1129.

/AND 02/ Andersson, P., Byegård, J., Winberg, A.: Final report of the TRUE Block

Scale project - 2. Tracer tests in the block scale. Technical Report TR-02-

14, Swedish Nuclear Fuel and Waste Management Company (SKB), 2002.

/BAS 94/ Bastian, P., and Wittum, G.: Robustness and adaptivity: The UG concept.

In: Multigrid Methods IV, proceedings of the fourth european multigrid con-

ference, ed. by Hemker, P., Wesseling, P., 1994.

/BAS 97/ Bastian, P., Birken, K., Johannsen, K., Lang, S., Neuß, N., Rentz-Reichert,

H., Wieners, C.: UG – A flexible software tool for solving partial differential

equations. Computing and Visualization in Science 1, 27-40, 1997.

/BEA 91/ Bear, J., Bachmat, Y.: Introduction to Modeling of Transport Phenomena in

Porous Media, Theory and applications of transport in porous media,

Kluwer Academic, Dordrecht, 1991.

/BLE 11/ Blessent, D., Therrien, R. and Lemieux J.-M.: Inverse modeling of hydraulic

tests in fractured crystalline rock based on a transition probability geostatis-

tical approach. Water Resources Research, Vol. 47, W12530, doi:

10.1029/2011WR011037, 2011.

/BLE 13/ Blessant, D.: Stochastic fractured rock facies for groundwater flow model-

ling. Dyna rev.fac.nac.minas vol.80 no.182, Medellín, 2013.

158

/BOC 13/ Bockgård, N., Vidstrand, P., Åkesson, M.: Modelling the interaction be-

tween engineered and natural barriers – An assessment of a fractured bed-

rock description in the wetting process of bentonite at deposition tunnel

scale. Technical Committee of Task 8, SKB, Rev. 2013-10-27, 2013.

/CHE 06/ Cheng, H., Cvetcovic, V.: Äspö Task Force on modelling of groundwater

flow and transport of solutes; Modelling of Task 6D, 6E, and 6F, flow and

transport simulations in fracture networks. International Progress Report

IPR-06-20, Swedish Nuclear Fuel and Waste Management Company

(SKB), 2006.

/CRA 06/ Crawford, J., Moreno, L.: Äspö Task Force on modelling of groundwater

flow and transport of solutes; Modelling of Task 6D, 6E and 6F, using

CHAN3D. International Progress Report IPR-06-19, Swedish Nuclear Fuel

and Waste Management Company (SKB), 2006.

/CVE 10/ Cvetkovic, V. and Frampton, A.: Transport and retention from single to mul-

tiple fracturesin crystalline rock at Äspö (Sweden): 2. Fracture network sim-

ulations and generic retention model. Water Resources Research, Vol. 46,

W05506, doi: 10.1029/2009WR008030, 2010.

/DEN 00/ Dentz, M., H. Kinzelbach, S. Attinger, and W. Kinzelbach (2000), Temporal

behavior of a solute cloud in a heterogeneous porous medium 1. Point-like

injection, Water Resour. Res., 36 (12), 3591-3604.

/DEN 02/ Dentz, M., H. Kinzelbach, S. Attinger, and W. Kinzelbach (2002), Temporal

behavior of a solute cloud in a heterogeneous porous medium 3. Numerical

simulations, Water Resour. Res., 38 (7), 23-1-23-13.

/DER 03/ Dershowitz, W., Winberg, A., Hermanson, J., Byegård, J., Tullborg, E.-L.,

Andersson, P., Mazurek, M.: Äspö Task Force on modelling of groundwater

flow and transport solutes; Task 6c - A semi-sythetic model of block scale

conductive structures at the Äspö HRL. International Progress Report IPR-

03-13, Swedish Nuclear Fuel and Waste Management Company (SKB),

2003.

159

/DER 06/ Dershowitz, W.,Fox, A., Lee, G., van Fossen, M., Uchida, M.: Äspö Task

Force on modelling of groundwater flow and transport solutes; Discrete

fracture network flow and transport modelling at the rock block scale: Task

6D, 6E, 6F and 6F2. International Progress Report IPR-06-22, Swedish

Nuclear Fuel and Waste Management Company (SKB), 2006.

/DEU 02/ Deuflhard, P., Bornemann, F.: Scientific computing with ordinary differential

equations. Springer Science & Business Media, 2002, 42.

/DEU 90/ Deuflhard, P., Nowak, U., Wulkow, M.: Recent Developments in Chemical

Computing, Computers & Chemical Engineering 14(11) (1990) 1249–1258.

/DIE 98/ Diersch, H.-J. G., Kolditz, O.: Coupled groundwater flow and transport: 2.

Thermohaline and 3D convection systems, Advances in Water Resources

21 (5) (1998) 401 – 425. doi:10.1016/S0309-1708(97)00003-1.

/DIE 09/ Diersch, H.-J. G., Kolditz, O.: Variable-density flow and transport in porous

media: approaches and challenges, in: FEFLOW © White Paper Volume II,

DHI-WASY GmbH, Berlin, 2009.

/DOP 75/ Dopazo, C.: Probability density function approach for a turbulent axisym-

metric heated jet centerline evolution, Phys. Fluids, 18 (4), 397-404, 1975.

/DRU 84/ Drummond, I. T., S. Duane, and R. R. Horgan (1984), Scalar diffusion in

simulated helical turbulence with molecular diffusivity, J. Fluid Mech.,138,

75-91.

/FEI 99/ Fein, E.; Schneider, A. (eds.): d3f – ein Programmpaket zur Modellierung

von Dichteströmungen. Final report. FKZ-02 C 0465 0. Gesellschaft für An-

lagen- und Reaktorsicherheit (GRS) mbH, GRS-139, Braunschweig 1999.

/FEI 04/ Fein, E. (eds.): Software Package r3t. Model for Transport and Retention in

Porous Media. Final report. FKZ-02 E 9148/2. Gesellschaft für Anlagen-

und Reaktorsicherheit (GRS) mbH, GRS-192, Braunschweig 2004.

160

/FOU 03/ Fourno, A., Grenier, C., Mouche, E., Benabderrahmane, H.: Qualification

and Validity of a Smeared Fracture Modelling Approach for Transfers in

Fractured Media. Proceedings of: Groundwater in Fractured Rocks, 15–19

September 2003, Prag (Czech Republic). IHP-VI, Series on Groundwater,

No. 7, 2003. (cited in /HOD 07/

/FOX 03/ Fox, R. O.: Computational Models for Turbulent Reacting Flows, Cam-

bridge University Press, New York, 2003.

/FRO 12/ Frolkovič, P.: Application of level set method for groundwater flow with

moving boundary, Adv. Wat. Res. 2012

/GRE 06/ Grenier, C., Bernard-Michel, G.: Äspö Task Force on modelling of ground-

water flow and transport of solutes; Modelling of Task 6D, 6E, 6F and 6F2,

using Cast3M code. International Progress Report IPR-06-18, Swedish Nu-

clear Fuel and Waste Management Company (SKB), 2006.

/GRE 08/ Grenier, C., Bernard-Michel, G., Benabderrahmane, H.: Evaluation of reten-

tion properties of a semi-synthetic fractured block from modelling at perfor-

mance assessment time scales (Äspö Hard Rock Laboratory, Sweden).

Hydrogeology Journal 17: 1051–1066, 2009.

/GRI 10/ Grillo, A., Lampe, M., Wittum, G.: Three-dimensional simulation of the

thermohaline-driven buoyancy of a brine parcel, Comput Visual Sci 13 287–

297, 2010.

/GSZ 92/ Griebel, M., Schneider, M., Zenger, C.: A combination technique for the so-

lution of sparse grid problems. In P. de Groen and R. Beauwens (editors),

Iterative Methods in Linear Algebra. IMACS, Elsevier, North Holland, 1992.

/HEI 04/ Heil, M.: An efficient solver for the fully coupled solution of large-

displacement fluid-structure interaction problems, Computer Methods in

Applied Mechanics and Engineering 193,1-2, 1 – 23.

doi:http://dx.doi.org/10.1016/j.cma.2003.09.006 2004.

161

/HEP 13/ Heppner, I., Lampe, M., Nägel, A., Reiter, S., Rupp, M., Vogel, A., Wittum,

G.: Software framework UG4: Parallel multigrid on the hermit supercom-

puter. In: High Performance Computing in Science and Engineering 12, p.

435-449, Springer, 2013.

/HOD 07/ Hodgekinson, D.: Äspö Task Force on modelling of groundwater flow and

transport of solutes. Technical Report TR-07-03, Swedish Nuclear Fuel and

Waste Management Company (SKB), 2007.

/HOF 13/ Hoffer, M., Poliwoda, C., and Wittum, G.: Visual reflection library: a frame-

work for declarative GUI programming on the Java platform. Computing

and Visualization in Science 16 (4), 181-192, 2013.

/HOL 98/ Holzbecher, E.: Modeling density-driven flow in porous media., Springer,

Berlin, Heidelberg, 1998.

/JOH 02/ Johannsen, K., Kinzelbach, W., Oswald, S., Wittum, G.: The saltpool

benchmark problem - numerical simulation of saltwater upconing in a po-

rous medium, ADVANCES IN WATER RESOURCES 25 (2002) 309–1708.

/JOH 04/ Johannsen, K.: Numerische Aspekte dichtegetriebener StrÂšmung in porö-

sen Medien, Habilitationsschrift, 2004.

/JOH 06/ Johannsen, K.: Numerical aspects of density driven flow in porous media,

in: XVI International Conference on Computational Methods in Water Re-

sources, 2006. doi:10.4122/1.1000000246 .

/KAP 94/ Kapoor, V., and L. W. Gelhar: Transport in three-dimensionally heteroge-

neous aquifers: 1. Dynamics of concentration fluctuations, Water Resour.

Res., 30 (6), 1775-1788, 1994.

/KIM 11a/ Kim, J., Tchelepi, H., Juanes, R.: Stability, accuracy, and efficiency of se-

quential methods for coupled flow and geomechanics, SPE Journal 16 (2).

doi:10.2118/119084-PA, 2011.

162

/KIM 11b/ Kim, J., Tchelepi, H., Juanes, R.: Stability and convergence of sequential

methods for coupled flow and geomechanics: Fixed-stress and fixed-strain

splits, Computer Methods in Applied Mechanics and Engineering 200,13-16

(2011) 1591 – 1606. doi:http://dx.doi.org/10.1016/j.cma.2010.12.022

2011.

/KRA 70/ Kraichnan, R. H. (1970), Diffusion by a Random Velocity Field, Phys. Flu-

ids, 13 (1), 22-31.

/KRO 91/ Kröhn, K.-P.: Simulation von Transportvorgängen im klüftigen Gestein mit

der Methode der Finiten Elemente. Bericht 29/1991, Institut für Strö-

mungsmechanik und Elektronisches Rechnen im Bauwesen, Universität

Hannover, 1991.

/KRO 10/ Kröhn, K.-P.: State Variables for Modelling Thermohaline Flow in Rocks.

GRS-268 BMWi-FKZ 02 E 10336, 92 p., Gesellschaft für Anlagen- und Re-

aktorsicherheit (GRS) GmbH, Braunschweig (2010)

/KRO 16a/ Kröhn, K.-P.: Hydraulic Interaction of Engineered and Natural Barriers –

Task 8b-8d,8f of SKB. Summary report, FKZ 02 E 11213 and 02 E 11102

(BMWi), Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, Köln,

2016. (in preparation)

/KRO 16b/ Kröhn, K.-P.: Hydraulic Interaction of Engineered and Natural Barriers –

Task 8e of SKB. Summary report, FKZ 02 E 11213 and 02 E 11102

(BMWi), Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, Köln,

2016. (in preparation)

/KUL 02/ Kull, H. (ed.), Helmig, R., Jacobs, H., Jockwer, N., Kröhn, K.-P., Zimmer,

U.: Two-Phase-Flow Experiment in the Fractured Crystelline Rock of the

Äspö Hard Rock laboratory. Final report FKZ 02 E 9027 8 (BMFT), Report

GRS-183, GRS Braunschweig, 2002.

/KUZ 08/ Kuzyk, G.W. and Martino, J.B.: URL Excavation Design, Construction and

Performance. Report NWMO TR-2008-17, Nuclear Waste Management

Organization (NMWO), Toronto 2008.

163

/LAC 01/ Lacroix, S., Vassilevski, Y. V., Wheeler, M. F.: Decoupling preconditioners

in the implicit parallel accurate reservoir simulator (IPARS), Numerical Lin-

ear Algebra with Applications 8 (8) (2001) 537–549. doi:10.1002/nla.264.

/LAN 06/ Langevin, C. D., Guo, W.: MODFLOW/MT3DMS-Based Simulation of Vari-

able-Density Ground Water Flow and Transport, Ground Water 44 (3)

(2006) 339–351. doi:10.1111/j.1745-6584.2005.00156.x .

/LAN 08/ Langevin, C. D., Daniel, J., Thorne, T., Dausman, A. M., Sukop, M. C.,

Guo, W.: U.S. Geological Survey Techniques and Methods Book 6, U.S.

Geological Survey, Reston, Virginia, 2008, Ch. A22: SEAWAT Version 4: A

Computer Program for Simulation of Multi-Species Solute and Heat

Transport.

/LAN 05/ Lang, S., Wittum, G.: Large scale density driven flow simulations using par-

allel unstructured grid adaptation and local multigrid methods., Concurrency

Computat. 17 (11) (2005) 1415–1440.

/LEI 92/ Leijnse, A.: Three-dimensional modeling of coupled flow and transport in

porous media., Ph.D. thesis, University of Notre Dame, Indiana (1992).

/LU 09/ Lu, B., Wheeler, M.: Iterative coupling reservoir simulation on high perfor-

mance computers, Petroleum Science 6 (2009) 43–50 doi:10.1007/s12182-

009-0008-x.

/MAT 06/ Matthies, H., Niekamp, R., Steindorf, J.: Algorithms for strong coupling pro-

cedures, Computer Methods in Applied Mechanics and Engineering 195

(17-18) (2006) 2028–2049. doi:10.1016/j.cma.2004.11.032 .

/MIK 13/ Mikelic′, A., Wheeler, M. F.: Convergence of iterative coupling for coupled

flow and geomechanics, Computational Geosciences 17 (3) (2013) 455–

461.

/MIK 14/ Mikelic′, A., Wang, B., Wheeler, M. F.: Numerical convergence study of it-

erative coupling for coupled flow and geomechanics, Computational Geo-

sciences (2014) 1–17 doi:10.1007/s10596-013-9393-8.

164

/MOR 08/ Moreno, L. , Crawford, J.: Can we use tracer tests to obtain data for per-

formance assessment of repositories for nuclear waste? Hydrogeology

Journal 17: 1067–1080, 2009.

/NAE 15/ Nägel, A., Vogel, A., Wittum, G.: Evaluating linear and nonlinear solvers for

density driven flow, Computer Methods in Applied Mechanics and Engi-

neering, Elsevier BV, 2015, 292, 3-15.

/NOS 12/ Noseck, U., Brendler, V., Flügge, J., Stockmann, M., Britz, S., Lampe, M.,

Schikora, J., Schneider, A..: Realistic integration of sorption processes in

transport codes for long-term safety assessments, Final Report GRS-297,

BMWi-FKZ 02E10548. Gesellschaft für Anlagen- und Reaktorsicherheit

(mbH), Braunschweig, (2012), 293 p.

/POP 85/ Pope, S. B.: PDF methods for turbulent reactive flows, Prog. Energy Com-

bust. Sci. 11(2), 119-192, 1985.

/POP 14/ Popov, P. P., and S. B. Pope (2014), Implicit and explicit schemes for

massconsistency preservation in hybrid particle/finite-volume algorithms for

turbulent reactive flows, J. Comput. Phys., 257, 352-373.

/POT 06/ Poteri, A.: Äspö Task Force on modelling of groundwater flow and transport

of solutes; Modelling of Task 6D, 6E, 6F and 6F2 using the Posiva

streamtube approach. International Progress Report IPR-06-17, Swedish

Nuclear Fuel and Waste Management Company (SKB), 2006.

/POT 09/ Poteri, A.: Retention properties of flow paths in fractured rock. Hydrogeolo-

gy Journal 17: 1081–1092, 2009.

/PUT 95/ Putti, M., Paniconi, C.: Picard and newton linearization for the coupled

model for saltwater intrusion in aquifers, Advances in Water Resources 18

(3) (1995) 159–170. doi:10.1016/0309-1708(95)00006-5.

/RAD 11/ Radu, F. A., N. Suciu, J. Hoffmann, A. Vogel, O. Kolditz, C.-H. Park, S. At-

tinger, Accuracy of numerical simulations of contaminant transport in heter-

ogeneous aquifers: a comparative study, Adv. Water Res. 34 (1), 47-61,

2011.

165

/REI 04/ Reisinger, C., Numerische Methoden für hochdimensionale parabolische

Gleichungen am Beispiel von Optionspreisaufgaben. PhD Thesis, Universi-

ty of Heidelberg, 2004.

/REI 07/ Reisinger, C., Wittum, G.: Efficient Hierarchical Approximation of High-

Dimensional Option Pricing Problems, SIAM Journal on Scientific Compu-

ting, 29(1), 2007.

/REI 13/ Reiter, S., Vogel, A., Heppner, I., Rupp, M., Wittum, G.: A massively paral-

lel geometric multigrid solver on hierarchically distributed grids. Computing

and Visualization in Science 16 (4), 151-164, 2013.

/REI 14/ Reiter, S.: Effiziente Algorithmen und Datenstrukturen für die Realisierung

von adaptiven, hierarchischen Gittern auf massiv parallelen Systemen. Dis-

sertation, Universität Frankfurt, 2014.

/RHE 98/ W. C. Rheinboldt, Methods for Solving Systems of Nonlinear Equations,

2nd Edition, SIAM, 1998.

/SCH 12/ Schneider, A. (ed.): Enhancement of the codes d3f and r3t. GRS-292

BMWi-FKZ 02 E 10336 , 365 p.; Gesellschaft für Anlagen- und Reaktorsi-

cherheit (GRS) GmbH, Braunschweig, 2012.

/SCH 13/ Schneider, A. (ed.), Representation of inhomogeneities in the flow and

transport codes d³f and r³t, GRS 311, Braunschweig, 2013.

/SUC 06/ Suciu, N., C. Vamos, J. Vanderborght, H. Hardelauf, H. Vereecken: Numer-

ical investigations on ergodicity of solute transport in heterogeneous aqui-

fers, Water Resour. Res., 42 (4), 2006.

/SUC 13/ Suciu, N., F. A. Radu, A. Prechtel, F. Brunner, P. Knabner: A coupled finite

element-global random walk approach to advection-dominated transport in

porous media with random hydraulic conductivity, J. Comput. Appl. Math.,

246, 27-37, 2013.

166

/SUC 15/ Suciu, N., F. A. Radu, S. Attinger, L. Schüler, and P. Knabner: A Fokker-

Planck approach for probability distributions of species concentrations

transported in heterogeneous media, J. Comput. Appl. Math., 289, 241-

252, 2015.

/SVE 06/ Svensson, U.: Äspö Task Force on modelling of groundwater flow and

transport of solutes; Modelling of Task 6D, 6E, 6F and 6F2. Flow, transport

and retention in a sparsely fractured granite. International Progress Report

IPR-06-21, Swedish Nuclear Fuel and Waste Management Company

(SKB), 2006.

/TAN 03/ Tanaka, Y.: Preliminary results of application of FEGM to Task 6D. Presen-

tation at the 17th Workshop of SKB’s Task Force on Groundwater Flow and

Transport of Solutes, Thun, Switzerland, 2003. (Cited in /HOD 07/)

/UCH 09/ Uchida, M., Dershowitz, W., Lee, G., Shuttle, D.: An empirical probabilistic

approach for constraining the uncertainty of long-term solute transport pre-

dictions in fractured rock using in situ tracer experiments. Hydrogeology

Journal 17: 1093–1110, 2009.

/VAM 03/ Vamos, C., N. Suciu, H. Vereecken: Generalized random walk algorithm for

the numerical modeling of complex diffusion processes, J. Comp. Phys.

186 (2), 527-544, 2003

/VAM 12/ Vamos, C., M. Craciun: Automatic Trend Estimation, Springer, Dortrecht,

2012.

/VOG 13/ Vogel, A., Reiter, S., Rupp, M., Nägel, A., Wittum, G.: UG 4: A novel flexi-

ble software system for simulating PDE based models on high performance

computers. Computing and Visualization in Science 16 (4), 165-179, 2013.

/VOG 14/ Vogel, A.: Flexible und kombinierbare Implementierung von Finite-

Volumen-Verfahren höherer Ordnung mit Anwendungen für die Konvekti-

ons-Diffusions-, Navier-Stokes- und Nernst-Planck- Gleichungen sowie

dichtegetriebene Grundwasserströmung in porösen Medien. Doktorarbeit,

Universität Frankfurt am Main, 2014.

167

/VTK 06/ Schröder, W., Martin, K., Lorensen, B.: Visualization Toolkit: An Object-

Oriented Approach to 3D Graphics, 4th Edition, Kitware; 2006.

/WIK 10/ http://en.wikipedia.org

/WIN 02/ Winberg, A., Andersson, P., Byegård, J., Poteri, A.,Cvetkovic, V., Der-

showitz, B., Doe, T., Hermanson, J., Gómez-Hernández, J-J., Hautojärvi,

A., Billaux, D.,Tullborg, E-L., Meier, P. and A. Medina:TRUE Block Scale

Project; FinalReport – 4. Synthesis of flow, transport and retention in the

block scale.Technical Report TR-02-16, Swedish Nuclear Fuel and Waste

Management Company (SKB),2002.

/ZEN 91/ Zenger, C.: Sparse Grids. Parallel Algorithms for Partial Differential Equa-

tions. In: Hackbusch, W. (ed.): Notes on Numerical Fluid Dynamics 31.

Proceedings of the Sixth GAMM-Seminar, 1990.

169

Table of figures

Fig. 2.1 UG4 software layout. Arrows point in the direction of dependencies. 6

Fig. 2.2 Loading the utility for density driven flow problems 22

Fig. 2.3 Starting the computation: “problem” is the LUA-table with the

model specification and the solver setup .. 22

Fig. 2.4 Starting a new problem specification using bracket-notation 22

Fig. 2.5 Starting a new sub-specification using bracket-notation 23

Fig. 2.6 Entry for the domain specific setup ... 24

Fig. 2.7 Starting a specification for density driven flow .. 24

Fig. 2.8 A constant flow field specification ... 25

Fig. 2.9 A LUA-function specifying a flow field ... 25

Fig. 2.10 Passing the Lua-function as data value .. 26

Fig. 2.11 Inline version of the user function specification ... 26

Fig. 2.12 Example for the pressure-driven setup ... 26

Fig. 2.13 Example for the density-driven flow setup .. 27

Fig. 2.14 Example for the thermohaline density-driven flow setup 28

Fig. 2.15 Starting the transport problem section .. 29

Fig. 2.16 Adding a radionuclide to the transport problem... 29

Fig. 2.17 Start value specification .. 30

170

Fig. 2.18 Boundary condition specification ... 30

Fig. 2.19 Using different specifications on subsets .. 31

Fig. 2.20 Data table format for user data specification ... 31

Fig. 2.21 Specification of the newton solver setup ... 32

Fig. 2.22 Specification of the linear solver setup .. 32

Fig. 2.23 Specification of the time control .. 33

Fig. 2.24 VRL-Studio and UG4 Registry .. 35

Fig. 2.25 Lua Grammar Visualisation ... 38

Fig. 2.26 Parse Tree (Lua Grammar) ... 38

Fig. 2.27 Auto Completion for UG scripts ... 39

Fig. 2.28 Auto Completion for Variables .. 40

Fig. 2.29 Auto Completion for LUA Functions .. 41

Fig. 2.30 Nested Tables ... 42

Fig. 2.31 Array Completion .. 42

Fig. 2.32 Auto Completion for Self Keyword .. 43

Fig. 2.33 The ProMesh user interface .. 44

Fig. 2.34 Raw mesh (left), selected elements (middle), and new subset (right) 48

Fig. 2.35 Mesh generation with ProMesh-Script .. 51

Fig. 2.36 Tool representation generated by the ProMesh graphical user interface .. 52

171

Fig. 2.37 VRL meshing sample .. 53

Fig. 2.38 Constrained Delaunay triangulation/tetrahedrization 53

Fig. 2.39 Custom VTK Component, JFreeChart .. 54

Fig. 2.40 2d Chart based on simplified JFreeChart API ... 55

Fig. 3.1 Domain and boundary conditions for the parallel scaling problem 65

Fig. 3.2 Measured speedup for the parallel scaling problem 67

Fig. 3.3 Measured timings for the parallel scaling problem 67

Fig. 3.4 Defect reduction of Partial Newton (diamond) and Iterative

Coupling (triangle) for computing t=τ=0.025a in the first time step. 75

Fig. 3.5 Iterations per time step for a full simulation run:.. 76

Fig. 3.6 Time steps within an adaptive time-stepping strategy for the

algorithms from Section 3.4.2: Partial Newton, Iterative Coupling,

and Full Newton. ... 77

Fig. 3.7 Time steps within an adaptive time-stepping strategy:. 77

Fig. 3.8 Grids in the combination technique approach for the sparse grids. 82

Fig. 3.9 Isosurface of the averaged concentration in the test computation:

Initial condition (above) and solution at time step 64 (below).................... 85

Fig. 3.10 Comparison of numerical and analytical solution in the experiment

with the stochastic velocity field. ... 86

Fig. 4.1 A measure is needed to quantify how good the mean

concentration approximates the measured concentration........................ 89

Fig. 4.2 Dissipation M of the standard IEM model and the newly proposed

time dependent IEM model plotted against time t. 98

172

Fig. 4.3 Analytical solution with the classical and time dependent IEM

mixing model compared to particle tracking and GRW simulations

at different times. ... 100

Fig. 4.4 The concentration PDF at the center of the plume x ൌ Vۧt. 101ۦ

Fig. 4.5 The mean concentration Cx at fixed times t = 10, 50, 100 days 104

Fig. 4.6 The cumulative distribution functions cdfሺc; x, tሻ, x ൌ Vt 104

Fig. 4.7 The concentration PDF at the center of the plume x ൌ Vۧt 106ۦ

Fig. 5.1 Model geometry based on the schematic cross-section 107

Fig. 5.2 Boundary conditions for the groundwater flow and heat transport 108

Fig. 5.3: Viscosity of pure water according to /KRO 10/ .. 110

Fig. 5.4 Flow field for simulations with constant and variable viscosity 111

Fig. 5.5 Flow velocities in the fracture system (a, b) and outflow rates 111

Fig. 5.6 Temperature profiles for the constant and the variable viscosity model . 112

Fig. 5.7 Generalised conceptual model of a typical conductive structure; 118

Fig. 5.8 100-m structures in the 200-m model block .. 119

Fig. 5.9 Permeability of the fractures. .. 120

Fig. 5.10 Aperture of the fractures. .. 120

Fig. 5.11 Transmissivities of the background fractures; from /DER 03/. 121

Fig. 5.12 Hydraulic heads on the surface of the 200-m model block. 122

Fig. 5.13 Structures involved in the C2-tracer test. .. 123

173

Fig. 5.14 Activity concentrations for the tracer in the C2-test. 123

Fig. 5.15 Pressure distribution and numerical grid on the model boundary. 125

Fig. 5.16 Pressure distribution in the fractures. .. 125

Fig. 5.17 Pressure distribution in the matrix at the C2-test. 126

Fig. 5.18 Two views of the pressure distribution in the fractures. 127

Fig. 5.19 Pressure distribution in the fractures. .. 128

Fig. 5.20 Velocity in fractures 23 and 22. ... 129

Fig. 5.21 Velocity in fractures 22 and 20. ... 130

Fig. 5.22 Velocity in fractures 22 and 06. ... 130

Fig. 5.23 Velocity in fractures 22 and 07. ... 131

Fig. 5.24 Velocity in fractures 22 and 13. ... 131

Fig. 5.25 Velocity in fractures 20 and 21. ... 132

Fig. 5.26 Velocity in fractures 20 and 13. ... 133

Fig. 5.27 Velocity in fractures 20 and 07. ... 133

Fig. 5.28 Velocity in fractures 21 and 13. ... 134

Fig. 5.29 Velocity in fractures 21 and 07. ... 134

Fig. 5.30 Measured and calculated breakthrough curve. 135

Fig. 5.31 Illustration of concentration changes at a fracture intersection. 136

Fig. 5.32 Illustration of a solute plume migrating towards a sink

without hydrodynamic dispersion. ... 137

174

Fig. 5.33 Model results for the steady-state gas saturation (SG). 137

Fig. 5.34 Concentrations in fractures 23, 22, 20, and 21 at 10h. 139

Fig. 5.35 Concentrations in fractures 23, 22, 20, and 21 at 50h. 140

Fig. 5.36 Concentrations in fractures 23, 22, 20, and 21 at 200h. 141

Fig. 5.37 Concentrations in fractures 20 and 21 at 200h. 142

Fig. 5.38 Model domain D divided by Γt	 D into a fully saturated zone Ωt 144

Fig. 5.39 Situation of the Sandelermöns model area including the wells 146

Fig. 5.40 3d hydrogelogical model of the Sandelermöns region, 147

Fig. 5.41 Influence of river drainage, exemplarily (red: 0.0, blue: 1e-8 m³ s-1) 148

Fig. 5.42 Sandelermöns model with prism grid, boundary conditions 149

Fig. 5.43 Initial conditions, left: groundwater surface .. 150

Fig. 5.44 Initial state of the Sandelermöns model with river system (blue),

pumping wells (red) and salt concentration ... 150

Fig. 5.45 Simulated groundwater level with gauge wells;....................................... 151

Fig. 5.46 Simulated flow field on a cutting plane .. 152

Fig. 5.47 Simulated drinking water/seawater interface... 153

Fig. B.1 Flow fields obtained with different distributions of the permeability. 180

Fig. B.2 Flow fields obtained with different values for the viscosity. 181

175

List of tables

Tab. 2.1 Available sub-specifier for the d3f++ utility .. 23

Tab. 2.2 Physical systems for the flow section and examples 25

Tab. 3.1 Wall clock times for the solution with CPU and GPU implementation. 61

Tab. 3.2 Wall clock times for the solution .. 63

Tab. 3.3 Physical parameter for the scaling benchmark problem 64

Tab. 3.4 Weak scaling results ... 66

Tab. 3.5 Weak scaling: Times and efficiency for code phases 66

Tab. 3.6 Coefficients for the numerical test ... 84

Tab. 5.1 Permeability of the four hydrogeological units and the fractures 109

Tab. 5.2 Flow and heat transport parameters ... 109

Tab. 5.3 Extent of structure components .. 118

Tab. 5.4 Transport relevant parameters in different materials;from /DER 03/. 124

Tab. C.1 Coordinates of measured deterministic fractures. 183

Tab. C.2 Coordinates of synthetic deterministic fractures...................................... 184

Tab. C.3 Hydraulic properties of deterministic fractures. 185

Tab. C.4 Injection history. .. 186

Tab. C.5 Extraction concentrations .. 187

177

A Notation

The most general notations used in this report are given below.

ܿ - volumetric solute concentration [mol m-³]

 specific heat capacity [J kg-1 K-1] - ܥ

۲ - hydrodynamic-dispersion tensor { ۲ ൌ ܂	ܦ	߶ ۲ୢ୧ୱ୮ሺܙሻ } [݉ଶିݏଵ]

۲ୢ୧ୱ୮ - mechanical dispersion tensor [m² s-1]

 - molecular diffusion coefficient [m² s-1]ܦ

 gravity [m s-²] -

۷ - identity matrix [-]

۸ୢ - diffusive mass flux [kg m-² s-1)]

۸ - heat flux vector [J m-² s-1)]

 permeability tensor [m²] - ܓ

 ௗ - distribution coefficient [m³ kg-1]ܭ

 hydraulic pressure [Pa] -

 Darcy velocity vector [m s-1] - ܙ

ܳ - mass source/sink terms [kg m-³ s-1]

 [-] tortuosity tensor - ܂

ଵܶ/ଶ - half-life [s]

 flow velocity vector [m s-1] - ܝ

 - longitudinal dispersion length [m]ߙ

 transverse dispersion length [m] - ்ߙ

 temperature [K] - ߆

 [ଵିݏ] decay constant - ߣ

 thermal conductivity [W m-1 K-1] - ߉

 viscosity [Pa s] - ߤ

178

߷ - density [kg m-³]

߶ - porosity [-]

߱ - solute mass fraction [-]

179

B Viscosity-dependent flow

One characteristic of the flow field obtained from flow simulations for the test case

Mayak is a divide in the upper three hydrogeological units where a part of the water

leaves the model area to the left, whereas another part leaves it to the right. This char-

acteristic shall be explained in the following section. To simplify matters, the effect is

studied in a system without fractures.

Neglecting the fractures the flow field is controlled by the ration of groundwater re-

charge and horizontal flow imposed by the Dirichlet boundary conditions on the left and

right boundary. Since the recharge is assumed to fixed this ratio can be changed only

by varying the

 horizontal hydraulic gradient,

 permeability, or

 viscosity of water (changes of the density are not considered here)

In this context, the permeability and the viscosity determine whether the vertical com-

ponent introduced by the groundwater recharge or the horizontal component caused by

the hydraulic gradient dominates the flow field. Also the relation between the ground-

water recharge and the hydraulic gradient plays a role.

In the following, it shall be looked at the permeability and the viscosity. The permeabil-

ity is varied in the upper two hydrogeological units to both higher and lower values

compared to the basic scenario described in Chapter 5.1.1. Three different values for

the viscosity are applied for the whole model area mirroring the conditions at 2 °C,

20 °C and 32 °C according to (5.1). The resulting flow fields are shown in Fig. B.1 and

Fig. B.2, respectively.

Flow fields for different distributions of the permeability are shown in Fig. B.1. If the

permeability is rather low or the groundwater recharge is high compared to the applied

horizontal hydraulic gradient, water enters the model area exclusively through the top

boundary and leaves it in equal parts to the right and left forming a vertical divide in the

middle of the model area (Fig. B.1a). This divide shifts to the left for higher permeability

values (Fig. B.1b). If the permeability goes beyond a certain value or if the hydraulic

180

gradient is high compared to the recharge, the horizontal component dominates the

flow field and a flow from the left to the right occurs (Fig. B.1c).

Fig. B.1 Flow fields obtained with different distributions of the permeability

A similar effect is generated by varying the viscosity, only that the relation between hy-

draulic conductivity and viscosity is reciprocal. The values used to obtain the flow fields

in Fig. B.2 correspond to temperatures of 2 °C (Fig. B.2a), 20 °C (Fig. B.2b) and 32 °C

(Fig. B.2c). However, the values vary only slightly compared to the permeability values

used above so that the effect is considerably smaller.

Nevertheless, also in these flow fields a divide occurs at the top boundary (Fig. B.2a)

and is shifted to the left using decreasing values for the viscosity (Fig. B.2b and c).

Simultaneously, also the amount of fluid that leaves the model area to the left decreas-

es and the amount that leaves to the right increases.

181

Further simulations showed that viscosity related by (5.1) to a temperature gradient of

2 °C at the top and 32 °C at the bottom of the model results in a flow field similar to Fig.

B.2a which corresponds to a temperature of 2 °C. Thus, it seems that the viscosity in

the upper hydrogeological units is crucial to the flow pattern that evolves.

Fig. B.2 Flow fields obtained with different values for the viscosity

183

C Data for the Task 6 model

Tab. C.1 Coordinates of measured deterministic fractures

structure easting [m] northing [m] elevation [m amsl]
original clipped original clipped original clipped

5 1736.03 1871.32 7329.37 7270.00 -200.00 -350.00
2150.00 2000.00 7151.68 7214.77 -200.00 -350.00
2150.00 2000.00 7147.35 7213.04 -700.00 -550.00
1849.52 1867.29 7276.33 7270.00 -700.00 -550.00

6 1894.27 as
original

7259.38 as
original

-438.46 as
original 1898.04 7257.10 -515.54

1943.68 7185.50 -515.54
1942.01 7184.49 -438.46

7 1885.40 as
original

7237.62 as
original

-420.87 as
original 1877.60 7222.43 -533.13

1978.11 7172.43 -533.13
1985.91 7187.62 -420.87

10 1799.34 1800.00 7084.83 7084.77 -414.76 -414.76
1807.46 1800.00 7125.05 7088.10 -539.24 -424.88
1931.36 1807.46 7113.05 7125.05 -539.24 -539.24
1923.24 1931.36 7072.83 7113.05 -414.76 -539.24
 1923.24 7072.83 -414.76

13 1844.39 as
original

7198.82 as
original

-397.01 as
original 1890.79 7234.04 -530.33

1955.21 7149.04 -530.33
1908.82 7113.82 -397.01

19 1794.96 1822.89 7316.79 7270.00 -395.48 -395.48
1813.76 1825.15 7289.29 7270.00 -558.52 -550.00
1941.28 1942.19 7075.63 7073.89 -558.52 -550.00
1958.78 1944.24 7042.31 7070.00 -395.48 -530.97
 1942.25 7070.00 -395.48

20 1873.00 as
original

7224.29 as
original

-380.00 as
original 1883.44 7233.52 -537.06

1962.98 7143.52 -537.06
1952.54 7134.29 -380.00

21 1908.28 as
original

7235.88 as
original

-433.46 as
original 1881.06 7224.18 -520.54

1915.45 7144.18 -520.54
1942.67 7155.88 -433.46

22 1933.48 as
original

7211.17 as
original

-439.65 as
original 1903.29 7196.85 -526.80

1924.62 7151.85 -526.80
1954.81 7166.17 -439.65

23 1926.76 as
original

7198.00 as
original

-452.47 as
original 1926.76 7198.00 -501.53

1943.43 7180.00 -501.53
1943.43 7180.00 -452.47

184

24 1931.11 as
original

7220.00 as
original

-459.97 as
original 1923.34 7220.00 -494.03

1949.34 7198.00 -494.03
1957.10 7198.00 -459.97

Tab. C.2 Coordinates of synthetic deterministic fractures

struc-
ture

easting nort-
hing

elevati-
on

struc-
ture

easting nort-
hing

elevati-
on

1S 2000,00 7144,09 -518,82 13S 2000,00 7098,52 -350,00
1988,50 7152,26 -518,73 2000,00 7093,43 -462,08
1998,41 7164,92 -407,44 1886,75 7140,90 -427,98
2000,00 7163,79 -407,46 1908,09 7135,79 -350,00

3S 1967,54 7167,72 -550,00 14S 1943,25 7070,00 -426,75
1851,89 7270,00 -550,00 1940,37 7070,63 -418,98
1846,00 7270,00 -525,30 1941,97 7070,00 -418,34
1966,04 7165,00 -530,80

4S 1800,00 7270,00 -490,05 15S 1984,20 7270,00 -350,00
1800,00 7264,18 -471,84 2000,00 7262,59 -350,00
1849,24 7245,23 -487,83 2000,00 7265,99 -455,46
1838,78 7270,00 -549,39 1991,53 7270,00 -456,66

6S 1928,78 7270,00 -350,00 17S 1800,00 7249,89 -350,00
1968,34 7239,78 -350,00 1829,13 7248,04 -350,00
2000,00 7207,97 -421,90 1900,37 7238,94 -425,00
2000,00 7207,23 -428,90 1800,00 7239,55 -520,41
1908,37 7270,00 -497,02

7S 1969,48 7088,66 -550,00 18S 1913,80 7270,00 -350,00
1929,53 7269,74 -550,00 1915,76 7268,70 -350,00
1929,55 7270,00 -549,53 1969,83 7224,69 -502,29
1936,92 7270,00 -503,11 1898,19 7270,00 -540,82
1973,86 7148,75 -438,96

8S 1913,12 7070,00 -550,00 20S 1890,40 7070,00 -350,00
1800,00 7147,47 -550,00 1904,07 7070,00 -366,00
1800,00 7148,98 -410,96 1884,90 7126,63 -396,50
1913,75 7070,00 -510,78 1837,86 7135,75 -350,00

9S 1800,00 7220,75 -350,00 21S 1800,00 7253,47 -550,00
1802,23 7219,19 -350,00 1800,00 7249,86 -526,09
1829,53 7220,51 -484,26 1840,89 7206,24 -550,00
1800,00 7242,03 -490,06

10S 1878,97 7170,65 -350,00 24S 1800,00 7196,89 -533,05
1928,15 7070,00 -350,00 1856,41 7070,00 -515,95
1931,88 7070,00 -367,60 1849,30 7070,00 -550,00
1901,94 7149,02 -408,54 1800,00 7188,38 -550,00

11S 1879,46 7270,00 -405,10 25S 1800,00 7257,32 -350,00
1954,11 7194,85 -550,00 1876,56 7160,15 -350,00
1889,59 7270,00 -550,00 1800,00 7231,02 -440,42

12S 1878,81 7070,00 -515,33 First node of 18S lies not in the plane of
the following nodes and is thus skipped 1876,14 7078,44 -502,67

1895,09 7070,00 -493,05

185

Tab. C.3 Hydraulic properties of deterministic fractures

structure transmissivity [m²/s] aperture12 [m] permeability [m²]
5 4,020E-07 2,917E-04 1,405E-10
6 1,910E-07 2,010E-04 9,687E-11
7 9,760E-08 1,437E-04 6,923E-11
10 2,980E-08 7,941E-05 3,825E-11
13 1,380E-08 5,404E-05 2,603E-11
19 1,020E-07 1,469E-04 7,078E-11
20 1,430E-07 1,740E-04 8,378E-11
21 6,020E-08 1,129E-04 5,435E-11
22 2,190E-08 6,807E-05 3,280E-11
23 1,660E-07 1,874E-04 9,030E-11
24 8,510E-08 1,342E-04 6,464E-11
1S 3,140E-07 2,576E-04 1,219E-10
3S 2,290E-06 6,965E-04 3,288E-10
4S 1,900E-07 2,007E-04 9,466E-11
6S 6,930E-07 3,830E-04 1,809E-10
7S 7,060E-07 3,865E-04 1,827E-10
8S 1,490E-06 5,611E-04 2,656E-10
9S 3,080E-07 2,552E-04 1,207E-10
10S 5,710E-07 3,475E-04 1,643E-10
11S 2,010E-06 6,528E-04 3,079E-10
12S 1,240E-06 5,131E-04 2,417E-10
13S 5,080E-06 1,037E-03 4,899E-10
14S 6,720E-07 3,772E-04 1,782E-10
15S 1,600E-06 5,810E-04 2,754E-10
17S 1,540E-06 5,701E-04 2,701E-10
18S 1,160E-06 4,946E-04 2,345E-10
20S 1,350E-06 5,336E-04 2,530E-10
21S 1,040E-06 4,688E-04 2,218E-10
24S 9,920E-07 4,581E-04 2,165E-10
25S 3,960E-06 9,158E-04 4,324E-10

12 transport relevant aperture, being 1/8 of hydraulic aperture

186

Tab. C.4 Injection history

Elapsed
time [h]

 C
[Bq/kg]

Elapsed
time [h]

 C
[Bq/kg]

Elapsed
time [h]

 C
[Bq/kg]

0,44 9,54E+05 13,83 8,89E+06 80,72 2,26E+05
0,48 2,45E+06 14,34 8,48E+06 82,72 1,99E+05
0,51 5,42E+06 14,84 8,00E+06 84,72 1,64E+05
0,55 9,50E+06 15,34 7,56E+06 86,73 1,56E+05
0,59 1,41E+07 15,84 7,23E+06 88,73 1,72E+05
0,62 1,85E+07 16,35 6,91E+06 90,73 1,13E+05
0,66 2,22E+07 16,85 6,56E+06 92,74 1,43E+05
0,69 2,45E+07 17,35 6,18E+06 94,74 1,38E+05
0,73 2,76E+07 17,85 5,94E+06 96,75 1,06E+05
0,76 2,94E+07 18,36 5,64E+06 98,75 1,44E+05
0,80 3,15E+07 18,86 5,41E+06 100,75 9,83E+04
0,83 3,35E+07 19,36 5,08E+06 102,75 1,08E+05
0,87 3,44E+07 20,61 4,47E+06 104,76 1,11E+05
0,90 3,64E+07 22,61 3,63E+06 106,76 1,22E+05
0,94 3,79E+07 24,62 2,91E+06 108,76 1,39E+05
0,98 3,80E+07 26,63 2,35E+06 110,76 1,69E+05
1,01 3,63E+07 28,63 1,97E+06 112,76 1,81E+05
1,24 3,30E+07 30,64 1,59E+06 114,77 2,05E+05
1,75 3,12E+07 32,64 1,35E+06 116,77 2,34E+05
2,26 2,92E+07 34,65 1,15E+06 118,77 2,85E+05
2,76 2,77E+07 36,65 1,06E+06 120,78 2,92E+05
3,27 2,62E+07 38,65 9,78E+05 122,78 2,83E+05
3,77 2,47E+07 40,66 8,99E+05 124,60 2,78E+05
4,28 2,34E+07 42,66 8,69E+05 127,40 2,08E+05
4,78 2,24E+07 44,66 8,07E+05 131,41 1,47E+05
5,28 2,14E+07 46,67 7,32E+05 135,41 1,19E+05
5,79 2,01E+07 48,67 7,06E+05 139,42 1,00E+05
6,29 1,92E+07 50,67 6,98E+05 143,42 9,06E+04
6,79 1,81E+07 52,68 7,09E+05 147,42 7,89E+04
7,30 1,71E+07 54,68 7,31E+05 151,42 6,86E+04
7,80 1,65E+07 56,68 7,03E+05 159,43 6,07E+04
8,30 1,55E+07 58,68 6,82E+05 171,44 6,18E+04
8,81 1,48E+07 60,69 6,71E+05 179,45 7,25E+04
9,31 1,39E+07 62,69 6,57E+05
9,81 1,32E+07 64,69 6,36E+05
10,31 1,26E+07 66,69 6,15E+05
10,82 1,19E+07 68,70 5,98E+05
11,32 1,14E+07 70,70 5,22E+05
11,82 1,07E+07 72,70 4,36E+05
12,33 1,02E+07 74,71 3,64E+05
12,83 9,75E+06 76,71 2,90E+05
13,33 9,24E+06 78,71 2,95E+05

187

Tab. C.5 Extraction concentrations

Elapsed time
[h]

 C
[Bq/kg]

Elapsed time
[h]

 C
[Bq/kg]

Elapsed time
[h]

 C
[Bq/kg]

37,88 70,02 121,88 3655,75 297,17 2526,12
39,88 91,15 123,88 3430,74 301,17 2483,65
41,88 129,41 125,02 3833,57 305,17 2360,97
43,88 181,85 129,03 3562,69 309,17 2401,65
45,88 258,72 133,02 3847,86 321,55 2082,17
47,88 307,04 137,03 3792,36 333,55 1945,74
49,88 363,91 141,03 3294,10 345,55 1908,74
51,88 461,23 145,03 3246,17 357,54 1773,43
53,88 587,23 149,03 3717,57 369,54 1779,78
55,88 614,55 153,02 3150,95 381,54 1674,82
57,88 725,80 157,00 3404,15 393,53 1564,90
59,88 909,40 173,19 4960,98 405,53 1546,99
61,88 984,42 177,19 5157,41 417,53 1488,56
63,88 1095,03 181,19 5148,77 429,53 1405,23
65,88 1182,88 185,19 5169,04 441,52 1270,19
67,88 1348,96 189,19 5219,89 453,52 1270,16
69,88 1527,51 193,19 5014,16 465,52 1644,08
71,88 1508,80 197,19 4873,89 477,51 1308,08
73,88 1677,21 201,19 4787,48 489,51 1137,64
75,88 1728,36 205,18 4690,09 501,51 1258,13
77,88 1891,79 209,18 4580,08
79,88 2017,03 213,18 4462,09
81,88 2229,05 217,18 4339,77
83,88 2259,00 221,18 4089,17
85,88 2279,17 225,18 4100,47
87,88 2415,71 229,18 4108,44
89,88 2493,42 233,18 4049,61
91,88 2644,78 237,18 3814,63
93,88 2579,00 241,18 3609,55
95,88 2766,19 245,18 3765,10
97,88 2875,98 249,18 3514,16
99,88 3029,70 253,18 3395,17
101,88 3305,83 257,18 3280,61
103,88 3351,97 261,18 3110,13
105,88 3388,53 265,17 3097,54
107,88 3529,45 269,17 3046,72
109,88 3544,41 273,17 2967,31
111,88 3621,85 277,17 2737,81
113,88 2715,41 281,17 2760,15
115,88 3678,35 285,17 2514,42
117,88 3734,53 289,17 2623,87
119,88 2044,85 293,17 2441,04

Schwertnergasse 1
50667 Köln
Telefon +49 221 2068-0
Telefax +49 221 2068-888

Forschungszentrum
Boltzmannstraße 14
85748 Garching b.München
Telefon +49 89 32004-0
Telefax +49 89 32004-300

Kurfürstendamm 200
10719 Berlin
Telefon +49 30 88589-0
Telefax +49 30 88589-111

Theodor-Heuss-Straße 4
38122 Braunschweig
Telefon +49 531 8012-0
Telefax +49 531 8012-200

www.grs.de

Gesellschaft für Anlagen-
und Reaktorsicherheit
(GRS) gGmbH

ISBN 978-3-944161-73-0

	GRS-392_Umschlag-A4_fuer-Web-PDFTeil1
	Gesamtber-H-DuR-392_InnTitel+Body_2016-08-25_Final
	Innen_Bericht_392_leh-V01
	Gesamtbericht-H-DuR_Body16.08.2016

	GRS-392_Umschlag-A4_fuer-Web-PDFTeil2
	Leere Seite

