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Abstract 

The codes d³f and r³t are well established for modelling density-driven flow and nuclide 

transport in the far field of repositories for hazardous material in deep geological for-

mations. They are applicable in porous media as well as in fractured rock or mudstone, 

for modelling salt- and heat transport as well as a free groundwater surface. 

Development of the basic framework of d³f and r³t had begun more than 20 years ago. 

Since that time significant advancements took place in the requirements for safety as-

sessment as well as for computer hardware development. The period of safety as-

sessment for a repository of high-level radioactive waste was extended to 1 million 

years, and the complexity of the models is steadily growing. Concurrently, the demands 

on accuracy increase. Additionally, model and parameter uncertainties become more 

and more important for an increased understanding of prediction reliability. All this 

leads to a growing demand for computational power that requires a considerable soft-

ware speed-up. An effective way to achieve this is the use of modern, hybride comput-

er architectures which requires basically the set-up of new data structures and a corre-

sponding code revision but offers a potential speed-up by several orders of magnitude. 

The original codes d³f and r³t were applications of the software platform UG /BAS 94/ 

whose development had begun in the early nineteennineties. However, UG had recent-

ly been advanced to the C++ based, substantially revised version UG4 /VOG 13/. To 

benefit also in the future from state-of-the-art numerical algorithms and to use hybrid 

computer architectures, the codes d3f and r3t were transferred to this new code plat-

form. Making use of the fact that coupling between different sets of equations is native-

ly supported in UG4, d³f and r³t were combined to one conjoint code d³f++. 

A direct estimation of uncertainties for complex groundwater flow models with the help 

of Monte Carlo simulations will not be possible in the near future because of the related 

high computational effort. Therefore handling uncertainties was paid special attention 

here, and particular models were developed. 

The VRL based graphical user interface was advanced and adapted to the new code 

developments and the user demands. Based on Java, it allows a visual as well as a 

script based controlling and was extended by an integrated visualization tool. The out-

put of files in the vtk-format allows the use of modern postprocessors. The preproces-



IV 

sor ProMesh for the data input, creation of model geometries and grid generation was 

also extended and improved thereby facilitating the application of d³f++ considerably. 

Finally, the newly developed code d³f++ underwent a series of tests. It was successful-

ly applied to several large complex models in crystalline as well as in sedimentary rock. 
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Zusammenfassung 

Die Programme d³f und r³t wurden mit dem Ziel entwickelt, die dichtebeeinflusste 

Grundwasserströmung und den Transport von Nukliden und anderen Schadstoffen im 

Fernfeld von Endlagern in tiefen geologischen Formationen modellieren zu können. Sie 

sind sowohl in porösen Medien als auch in Kluftgesteinen, zur Modellierung des Salz- 

und Wärmetransportes sowie in Gebieten mit freier Grundwasseroberfläche einsetzbar. 

Die Entwicklung der Grundstruktur der Programme d³f und r³t liegt bereits mehr als 20 

Jahre zurück. Seit den 90er Jahren haben sich sowohl die Anforderungen an eine 

Langzeitsicherheitsanalyse als auch die Rechentechnik erheblich weiterentwickelt. Der 

Nachweiszeitraum für die Sicherheit eines Endlagers für stark wärmeentwickelnde ra-

dioaktive Abfälle wurde auf eine Million Jahre ausgedehnt, und die Modelle werden 

immer komplexer. Zusätzlich steigen die Ansprüche an die Genauigkeit und Zuverläs-

sigkeit von Modellen. Hinzu kommt die wachsende Bedeutung der Berücksichtigung 

von Modell- und Parameterungewissheiten zur Erhöhung der Vorhersagezuverlässig-

keit. All dies bedeutet ein wesentliches Anwachsen des Rechenaufwandes, der es 

notwendig macht, die Software erheblich zu beschleunigen und moderne, hybride 

Rechnerarchitekturen effizient zu nutzen. Dies erforderte den Aufbau neuer Daten-

strukturen und damit eine grundlegende Überarbeitung der Simulationsprogramme, er-

öffnet jedoch Beschleunigungsmöglichkeiten um mehrere Größenordnungen.  

Die Programme d³f und r³t  stellten Anwendungen der Software-Plattform UG /BAS 94/ 

dar. Diese Plattform wurde innerhalb der letzten Jahre zu einer auf C++ basierenden, 

substantiell überarbeiteten Version UG4 weiterentwickelt /VOG 13/. Um weiterhin nu-

merische Verfahren auf dem neuesten Stand der Wissenschaft und hybride Rech-

nerstrukturen nutzen zu können, war es notwendig, auch die Funktionalitäten von d³f 

und r³t auf der Basis von UG4 neu zu implementieren. Dabei wurde die in der Struktur 

von UG4 angelegte Möglichkeit genutzt, die Lösung verschiedener Differentialglei-

chungssysteme miteinander zu koppeln. So entstand aus d³f und r³t der gekoppelte 

Code d³f++. 

Eine direkte Abschätzung von Datenungewissheiten mit Hilfe von Monte-Carlo-

Simulationen wird für komplexe Grundwassermodelle wegen des hohen Rechenauf-

wandes in naher Zukunft nicht möglich sein. Deshalb wurde ein neues Modell entwi-

ckelt, das Ungewissheiten direkt mit in das Differentialgleichungssystem integriert. 
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Die VRL-basierte Benutzeroberfläche wurde weiterentwickelt und an die Neuentwick-

lungen und den Bedarf der Benutzer angepasst. Auf Java-Basis erlaubt sie sowohl ei-

ne visuelle als auch eine textbasierte Programmierung. Sie wurde außerdem um eine 

integrierte Visualisierungsmöglichkeit erweitert. Die zusätzliche Ausgabe von Files im 

VTK-Format ermöglicht die Nutzung moderner Postprozessoren. Auch der Präprozes-

sor ProMesh zum Einlesen von Daten und zum Aufbau von Modellgeometrien sowie 

zur Gittergenerierung wurde erweitert und verbessert.  

Die Neuentwicklungen wurden umfangreichen Tests unterzogen. Der neue Code d³f++ 

wurde erfolgreich auf große, komplexe Modellgebiete sowohl im Kristallin als auch im 

Sedimentgestein angewendet. 
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1 Introduction  

In Germany, radioactive waste is to be disposed in deep geological formations. Long 

term safety assessment for a repository requires a comprehensive system understand-

ing and qualified high-performance tools. These tools have to be able to describe all 

relevant processes concerning nuclide transport through the host rock or the overlying 

geological formations, respectively. 

To meet the needs of modeling groundwater flow and nuclide transport, in the period 

from October 1994 to August 1998 under the identification numbers 02 C 0254 6 (GSF) 

and 02 C 0465 0 (GRS) and from October 1 1998 to December 2003 under the identifi-

cation number 02 E 9148 2 the computer codes d³f (distributed density-driven flow) and 

r³t (radio-nuclides, reaction, retardation, and transport) were developed /FEI 99/, /FEI 

04/. Afterwards, these codes were substantially advanced and continuously adapted to 

the state-of-the-art of science and technology. (“E-DuR”, 02 E 10336, /SCH 12/, „A-

DuR“, 02E10558, /SCH 13/, and “ESTRAL 02E10518, /NOS 12/”. They were applied 

and qualified in different projects such as WEIMAR (02 E 11072A), URSEL (02 E 

10750), KOLLORADO (02 E 10669), ISIBEL (02 E 10719) and QUADER (02 E 11213). 

All these works were funded by the Federal Ministry of Education and Research 

(BMBF) and by the Federal Ministry of Economics and Technology (BMWi), respective-

ly. By means of these two computer codes it became feasible to simulate density driv-

en flow and pollutant transport in porous and fractured media, including heat transport 

as well as free surface flow. They enable to handle large models with complex hydro-

geological structures within reasonable processing times.  

With an increasing degree of approximation towards the real, three-dimensional geo-

logical and hydrogeological conditions including all relevant processes, the modelling 

becomes more and more complex. According to the German safety case requirements 

for heat-generating radioactive waste an assessment period of one million years has to 

be regarded. The demands for accuracy and grid resolution are growing, and model 

and parameter uncertainties have to be taken into account. This implies a substantially 

increase of computational effort and leads easily to inadmissibly long computing times. 

Therefore, the most advanced hardware and cutting edge numerical solvers have to be 

used at all times. 
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The codes d³f and r³t were based on version 3 of the UG Toolbox, developed at the 

Frankfurt University /BAS 94/. In the H-DuR project, they were adapted to the substan-

tially updated, C++-based version UG4 /VOG 13/. During this process the codes were 

combined to one conjoint code named d³f++. 

State-of-the art computer codes have not only to run on massively parallel computers, 

they also have to make use of modern multicore and hybrid computer structures. Each 

processor consists of multiple cores that are accessing at the same, hierarchically 

structured main memory, and, moreover, the cache memory may be organized in a 

much more complex way. In many cases processors of this type are supplemented by 

very specialized processors like GPUs and Cell processors. The efficient use of these 

modern computer architectures relies on appropriate data structures. Additionally, the 

solvers have to be adapted to these new structures. That means conventional comput-

er codes need basically to be restructured to be able to employ these modern comput-

er types. In this report the porting of d³f++ to multicore and hybrid computer systems is 

described as well as the enhancement of its multigrid solvers. 

At every site investigated some of the the rock properties as well as flow and transport 

parameters remain partially unknown. These uncertainties can be taken into account 

by stochastic modeling. But in the case of regional groundwater models it can be antic-

ipated that Monte Carlo simulations will not be applicable in the medium-term future 

because of their high computational costs. Therefore special attention is paid to the 

adaption and application of a new stochastic approach resulting in the replacement of 

the salt concentration by a so called “filtered probability density function“ directly in the 

differential equation system. This leads, on the other hand, to higher dimensional equa-

tion systems requiring new numerical solvers. 

Finally, a modern computer code needs an integrated user interface including comfort-

able pre- and postprocessing tools that enable the user to set-up regional, complex-

structured models, reduce input data errors and ease code handling. 
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2 Design of UG4 

 General 2.1

The codes d3f (distributed density-driven flow, /FEI 99/) and r3t (radionuclides, reaction, 

retardation, and transport, /FEI 04/) enable the simulation of density driven flow and 

pollutant transport in porous media. Both codes are based on the simulation toolbox 

UG (unstructured grids, /BAS 94/, /BAS 97/), a software framework for the numerical 

solution of coupled systems of partial differential equations. The code basis UG has 

been created during the early 1990s and continuously enhanced subsequently. Using a 

modular software design and focusing on geometric and algebraic multigrid solvers – 

asymptotically optimal solvers for large sparse systems of equations – this approach 

has been successfully applied to the field of flow and transport in porous media. 

While a lot of concepts in the overall design of the software layout in the UG library 

have proven to be successful, some external requirements to efficient numerical soft-

ware have changed in the past decades. In order to adapt the flow and transport simu-

lations to this needs, the renewed code basis UG4 for the simulation of coupled partial 

differential equations has been developed /VOG 13/. The new implementation is 

grounded on an object-oriented software design and written in C++. It is strongly influ-

enced by the predecessor version transferring all concepts that have proven to be use-

ful. However, some design aspects have been redesigned and are described subse-

quently. 

In the original design of the UG library applications such as d3f and r3t have been built 

as separate applications on top of the core libraries. While this design enabled the re-

usage of core components like solvers and discretizations, the coupling and thereby 

simultaneous simulation of the flow field and species transport was not natively sup-

ported. In contrast, a transport simulation had to be carried out after an entire computa-

tion for the flow equations writing the flow field to hard disk and read in afterwards. This 

prevented the direct coupling. In the renewed code version UG4 coupling between dif-

ferent sets of equations is natively supported and the standard way to implement dis-

cretizations for physical systems. Grounded on this coupling mechanism the codes d3f 

and r3t have been transferred to the new code basis and composed to one coupled 

code d³f++. 
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To allow for such a tight coupling of subsystems while still maintaining a modular soft-

ware layout, different discretizations are implemented as separate plugins in the new 

code. On start-up UG4 calls the initialization routine of each plugin and passes a refer-

ence to the central registry object (cf. /VOG 13/). Each plugin then registers its func-

tionality (functions, classes, and methods) at this registry. After all plugins are initial-

ized, the registry thus contains information on all functions and classes in all available 

plugins, together with extensive information on parameter- and return-types. Since 

plugins are built on a common core functionality and mainly implement methods that 

operate on this core functionality, the interaction between different plugins is straight 

forward given in this setup. 

Frontends like UG4’s scripting system (cf. /VOG 13/), ProMesh (/REI 14/) or the Visual 

Reflection Language VRL (cf. /HOF 13/) query the registry for available functionality 

and build script bindings or visual representations for the different classes and algo-

rithms. 

The registry thus provides a reflection mechanism for UG4’s functionality which not on-

ly allows to build flexible frontends but also to couple functionality from different plugins 

which transform a common set of core functionality. An overview over the different 

modules of UG4 and their interplay is depicted in Fig. 1. 

  

Fig. 2.1 UG4 software layout. Arrows point in the direction of dependencies. Shown 

are the core libraries, plugins, the reflection system, the script binding and 

various frontends 
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Larger and more refined simulations are nowadays carried out on modern parallel 

computer clusters that easily reach hundred thousands of computing cores and can be 

accelerated using a hybrid architecture using GPUs. In order to use these growing 

computing resources a code must be efficiently scalable to these architectures. Within 

UG4 a strong focus is given to highly efficient multigrid methods that have proven to 

scale close to optimal up to hundred thousands of cores /REI 13/. 

User interfaces are important to handle numerous input specifications and control the 

simulations. This topic is addressed by the new software basis in manifold ways. First, 

a common basis for the control flow through a registry function provides the possibility 

to dock both graphical user interfaces as well as script based interfaces to the simula-

tion codes. Second, the grid format ugx is now used as a standard for all simulations 

and computational domains can be created, adapted, optimized and partitioned into 

physical subsets using the preprocess mesh-generation software ProMesh. Third, for 

the output of the created data an interface to the established VTK framework has been 

created. 
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 Coupling of different systems of equations 2.2

The discretization interfaces in UG4 have been realized with a strong focus on the pos-

sibility to couple different physical systems if required. To this end, all different modules 

fulfil the specification of standardized modules that can be combined. In the following 

the relevant techniques and implementations are described that enable the coupling of 

the d3f and r3t modules on the new code basis. Further details on the implementation 

can be found in /VOG 13/, /VOG 14/. 

2.2.1 Systems of partial differential equations 

During the modelling process for flow and transport in porous media a set of partial dif-

ferential equations for a set of unknown functions arises. In the most general descrip-

tion this set of equations can be formally described as follows. 

Definition (General system of differential equations) 

Let ߗ ⊂ Թௗ be a physical domain and denote by ࢛ ∶ൌ ሺݑଵ, … , -ேሻ the set of the unݑ

known functions ݑ௜: ߗ ↦ Թ௡೔, ݊௜ ∈ Գ, ሺ݅ ൌ 1, … ,ܰሻ. Provided functionals 

ࣛ௜ሺ࢛ሻ, ௜ࣧሺ࢛ሻ, ࣶ௜, ሺ݅ ൌ 1,… ,ܰሻ a general system of time-dependent partial differential 

equations is given by 

ە
ۖ
۔

ۖ
ۓ
࢛	݀݊݅ܨ ∶ൌ ሺݑଵ, … , ,ேሻݑ ݐ݄ܽݐ	݄ܿݑݏ

	
		߲௧ ଵࣧሺ࢛ሻ ൅	ࣛଵሺ࢛ሻ ൌ 	ࣶଵ,			݅݊	ߗ,

⋮
		߲௧ ேࣧሺ࢛ሻ ൅	ࣛேሺ࢛ሻ ൌ 	ࣶே,		 ݅݊ ,ߗ

 (2.1)

and additional boundary conditions.  

In UG4 every physical system is modelled by one set of differential equations. These 

problem descriptions are intended to be closed systems. However, coupling of several 

systems will be allowed by an appropriate specification of the data specified for the us-

er parameters. 

In the following the most important physical systems are listed that have been imple-

mented for the transfer of d3f and r3t to the new code basis. 
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2.2.1.1 Haline Flow 

The transport of dissolved salt in ground water flow in porous media is modelled by two 

nonlinear, coupled, time-dependent differential equations for the brine mass fraction 

and the pressure. 

Definition (Haline Flow) 

Let ߗ ⊂ Թௗ be a physical domain and let the brine mass fraction ߱:ߗ ↦ Թ		ሾ	െ	ሿ and the 

pressure ݌: ߗ ↦ Թ		ሾ	ܲܽ	ሿ be the unknown functions. The system of equations for haline 

flow is given by  

ە
ۖ
۔

ۖ
ۓ

,ሺ߱	݀݊݅ܨ ,ሻ݌ ݄ܿݑݏ ݐ݄ܽݐ
	

																						߲௧ሺ߶ߩሻ 	൅ ߘ ⋅ ሺࢗߩሻ ൌ ,ߗ	݊݅			,ݍ	
		߲௧ሺ߶߱ߩሻ ൅ ߘ ⋅ ሺࢗ߱ߩ െ ሻ߱ߘࡰߩ ൌ 				,ߗ	݊݅			,௦ݍ	

ࢗ	 ൌ 	െ	
ܓ
ߤ
	ሺ݌ߘ െ .ሻࢍߩ

 (2.2)

The physical parameters are given by: 

- ߶ [ - ]: the porosity 

ߩ - ≡  ݉ିଷሿ: the fluid density	݇݃	ሾ	ሺ߱ሻߩ

ߤ - ≡  ଵሿ: the fluid viscosityିݏ	݉ିଵ	݇݃	ሾ	ሺ߱ሻߤ

- ۲ୢ୧ୱ୮ ≡ ۲ୢ୧ୱ୮ሺܙሻ	ሾ	݉ଶିݏଵ	ሿ: the mechanical dispersion tensor 

- D୫ ≡ D୫	ሾ	݉ଶିݏଵ	ሿ: the molecular diffusion coefficient 

 ሿ: the tortuosity tensor	െ	ሾ	܂ -

- ۲ ≡ ܂	௠ܦ	߶ ൅ ۲ୢ୧ୱ୮ሺܙሻ	ሾ݉ଶିݏଵሿ: the hydrodynamic dispersion tensor 

 ሿ: the permeability tensor	݉ଶ	ሾ	ܓ -

 ሿ: the gravity vector	ଶିݏ	݉	ሾ	܏ -

For the dispersion tensor the Bear-Scheidegger-Modell can be used, given by: 

ሻࢗௗ௜௦௣ሺࡰ ൌ ࡵ௅ߙ	 ൅ ሺߙ௅ െ	்ߙሻ	
ࢗ ⋅ ்ࢗ

||ࢗ||
, (2.3)

with the parameters: 

 ௅ [ m ]: the longitudinal dispersion lengthߙ -

 the transverse dispersion length :[ m ] ்ߙ -
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The equations for the haline flow fit into the general framework by setting ࢛ ∶ൌ ሺ߱,  ሻ݌

and defining 

ࣛ௣ሺ࢛ሻ ∶ൌ ߘ ⋅ ሺࢗߩሻ,	

ࣛఠሺ࢛ሻ ∶ൌ ߘ ⋅ ሺࢗ߱ߩ െ 	,ሻ߱ߘࡰߩ

௣ࣧሺ࢛ሻ ∶ൌ 	,ߩ߶

ఠࣧሺ࢛ሻ ∶ൌ  .߱ߩ߶

(2.4)

2.2.1.2 Thermohaline Flow 

The transport of dissolved salt in ground water flow in porous media taking into account 

temperature effects is modelled by three nonlinear, coupled, time-dependent differen-

tial equations for the brine mass fraction, the pressure and the temperature. 

Definition (Thermohaline Flow) 

Let ߗ ⊂ Թௗ be a physical domain and let the brine mass fraction ߱:ߗ ↦ Թ		ሾ	െ	ሿ, the 

pressure ݌: ߗ ↦ Թ		ሾ	ܲܽ	ሿ and the temperature ߠ: ߗ ↦ Թ		ሾ	ܭ	ሿ	be the unknown functions. 

The system of equations for thermohaline flow is given by  

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ

,ሺ߱	݀݊݅ܨ ,݌ ,ሻߠ ݄ܿݑݏ ݐ݄ܽݐ

																																																																	߲௧ሺ߶ߩሻ 	൅ ߘ ⋅ ሺࢗߩሻ ൌ ,ߗ	݊݅			,ݍ	
																																																߲௧ሺ߶߱ߩሻ ൅ ߘ ⋅ ሺࢗ߱ߩ െ ሻ߱ߘࡰߩ ൌ 				,ߗ	݊݅			,௦ݍ	

		߲௧ ቀ൫߶ܥߩ௙ ൅ ሺ1 െ ߶ሻߩ௦ܥ௦൯ߠቁ ൅ ߘ ⋅ ൫ܥߩ௙ߠࢗ െ ൯ߠߘ߉ ൌ ,ߗ	݊݅			,0	

ࢗ	 ൌ െ
࢑
ߤ
ሺ݌ߘ െ .ሻࢍߩ

 (2.5)

The physical parameters as far as not described in Section 2.2.1.1 are given by: 

- Λ	ሾ	ܹ	݉ିଵ	ିܭଵሿ: the thermal conductivity 

- Cୱ	ሾ	ܬ	݇݃ିଵ	ିܭଵሿ: the heat capacity of the solid / rock 

- C୤	ሾ	ܬ	݇݃ିଵ	ିܭଵሿ: the heat capacity of the fluid 

- ρୱ	ሾ	݇݃	݉ିଷሿ: the rock density 

The equations for the thermohaline flow fit into the general framework by setting 

࢛ ∶ൌ ሺ߱, ,݌  ሻ and definingߠ

ࣛ௣ሺ࢛ሻ ∶ൌ ߘ ⋅ ሺࢗߩሻ,	

ࣛఠሺ࢛ሻ ∶ൌ ߘ ⋅ ሺࢗ߱ߩ െ 	,ሻ߱ߘࡰߩ
(2.6)
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ࣛఏሺ࢛ሻ ∶ൌ ߘ ⋅ ൫ܥߩ௙ߠࢗ െ 	,൯ߠߘ߉

௣ࣧሺ࢛ሻ ∶ൌ 	,ߩ߶

ఠࣧሺ࢛ሻ ∶ൌ 	,߱ߩ߶

ఏࣧሺ࢛ሻ ∶ൌ ൫߶ܥߩ௙ ൅ ሺ1 െ ߶ሻߩ௦ܥ௦൯ߠ. 

2.2.1.3 Pressure-driven Flow 

The flow due to pressure effects if modelled by one partial differential equation for the 

pressure. 

Definition (Pressure-driven Flow) 

Let ߗ ⊂ Թௗ be a physical domain and let the pressure ݌: ߗ ↦ Թ		ሾ	ܲܽ	ሿ be the unknown 

function. The system of equations for pressure-driven flow is given by  

ە
ۖ
۔

ۖ
ۓ
,ሻ݌ሺ	݀݊݅ܨ ݄ܿݑݏ ݐ݄ܽݐ

	
ߘ ⋅ ሺࢗߩሻ ൌ ,ߗ	݊݅			,ݍ	

ࢗ ൌ 	െ	
ܓ
ߤ
	ሺ݌ߘ െ .ሻࢍߩ

 (2.7)

The equations for the pressure-driven flow fit into the general framework by setting 

࢛ ∶ൌ ሺ݌ሻ and defining 

ࣛ௣ሺ࢛ሻ ∶ൌ ߘ ⋅ ሺࢗߩሻ,	

௣ࣧሺ࢛ሻ ∶ൌ 0. 
(2.8)

2.2.1.4 Prescribed Flow 

If the flow field is user-specified as a known function of space and time, this is used as 

a very simple system of physics. 

Definition (Prescribed Flow) 

Let ࢹ ⊂ Թࢊ be a physical domain. For the prescribed flow system the Darcy velocity is 

specified as a function 

൛
	

ࢗ	 ≡ ,࢞ሺࢗ ݊݅			,ሻݐ (2.9) ,ߗ



12 

2.2.1.5 Transport equations 

The transport of radionuclides for the r3t functionality is modelled using a physical sys-

tem of convection-diffusion type. The velocity field used for the convection is given by 

the Darcy velocity from the flow equations. 

Definition (Transport equation) 

Let ࢹ ⊂ Թࢊ be a physical domain and let the radionuclide concentration ࢏ࢉ: ࢹ ↦

Թ		ሾ	࢒࢕࢓	࢓૜ሿ be the unknown function. The system of equations for the transport is giv-

en by  

൞

,ሺܿ௜ሻ	݀݊݅ܨ ݄ܿݑݏ ݐ݄ܽݐ

																						߲௧ሺ߶ܴ௜ܿ௜ሻ 	൅ ߘ ⋅ ሺܿ௜ࢗ െ ௜ܿ׏ࡰ ሻ ൅ ߶ܴ௜ߣ௜ܿ௜ ൌ ,௜ݍ ݅݊ .ߗ
 (2.10)

The physical parameters are given by: 

- ߶	ሾെሿ: the porosity 

 ݉ିଷሿ: the rock density	݇݃	ሾ	௥ߩ -

ௗܭ -
ሺ௜ሻ	ሾ	݉ଷ	݇݃ିଵሿ: the distribution coefficient 

- ܴ௜ ൌ 	1	 ൅ 		
ଵିథ

థ
ௗܭ௥ߩ	

ሺ௜ሻ	ሾ	െ	ሿ: the retardation factor 

- ۲	ሾ	݉ଶିݏଵ	ሿ: the diffusion-dispersion tensor 

 ሿ: the darcy velocity	ଵିݏ	݉	ሾ	ܙ -

- ଵܶ/ଶ
ሺ௜ሻ 	ሾ	ݏ	ሿ: the half-life 

- λ୧ ൌ 	
୪୬ ଶ

భ்/మ
ሺ೔ሻ 	ሾ	ݏ

ିଵ		ሿ: the decay constant 

The source term ݍ௜ includes those radionuclides ݇ that decay into radionuclide ݅, 

௜ݍ ൌ ߶෍ܴ௞ߣ௞ ܿ௞
௞

, (2.11)

with: 

 ݇ ௞: the decay constant of radionuclideߣ -

- ܿ௞: the concentration of radionuclide ݇ 

The equations for the transport fit into the general framework by setting ࢛ ∶ൌ ሺܿ௜ሻ and 

defining 
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ࣛ௖ሺ࢛ሻ ∶ൌ ߘ ⋅ ሺܿ௜ࢗ െ ௜ሻܿࢺ	ࡰ 	൅ ,௜ܴ௜ܿ௜ߣ߶

௖ࣧሺ࢛ሻ ∶ൌ ߶ܴ௜ܿ௜. 
(2.12)

2.2.2 Discretization of the equations 

The partial differential equations describing the flow and the transport in porous media 

can be derived using Reynold’s transport theorem and the fact that certain quantities 

obey a conservation law, i.e., within a closed volume and in the absence of sinks or 

sources the overall quantity within the volume is conserved over time. In order to reflect 

the conservation law on the discrete level, finite volume methods are used that ensure 

the balance equation for discrete so-called control volumes. 

The discretization of the domain is obtained by a partition into a finite element grid. 

Definition (Grid) 

Let ࢹ ⊂ Թࢊ be a physical domain. A set of disjoint sets ࢎࢹ ൌ 	 ሼࡷ૚, … ,ሽࡺࡷ, ࢏ࡷ ⊂  is ,ࢹ

called a grid (or mesh), if it forms partition of ࢹ, i.e.,  

ߗ ൌ ራ ܭ
௄∈ఆ೓

ܭ				, ∩ ᇱܭ ൌ ∅ ݎ݋݂ ݈݈ܽ ܭ ് ᇱ. (2.13)ܭ

The functions that must be computed (e.g., brine mass fraction, pressure, solute densi-

ty) are represented using this grid in order to define an appropriate discrete function 

space. 

Definition (Discrete function spaces)  

Let ࢎࢹ ൌ 	 ሼࡷ૚, … ,ሽࡺࡷ, ࢏ࡷ ⊂ ࢹ be a grid for the domain ࢹ ⊂ Թࢊ. Let ࢑ࡼ be the space of 

all polynomials up to order k, then the discrete function space for a single unknown 

function is given by 

ܷ௛ ൌ ൛ݑ௛ ∈ ;ሻߗሺܥ ௛|௄ݑ ∈ ௞ܲ, ݎ݋݂ ݈݈ܽ ܭ ∈ ௛ൟ. (2.14)ߗ

A discrete function can be represented using shape functions ࢏ࢶ: ௛ߗ ↦ Թ by an addi-

tive composition, 

ሻ࢞௛ሺݑ ൌ 	෍ݑ௛,௜ ሻ࢞ሺ࢏ࢶ
௜

, ௛,௜ݑ ∈ Թ. (2.15)
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The elementwise space is fixed using polynomial spaces of lagrange type, i.e. for an 

appropriate set of points on the element ࢏ࢇ ∈ -the basis functions fulfil the require ,ܭ

ment ࣘ࢐ሺ࢏ࢇሻ ൌ -௜௝. The elementwise space is denoted by ܷ௄, the global space is deߜ	

noted by ܷ௛. 

2.2.3 Element-local considerations 

The general idea for the coupling is to restrict the process to an elementwise consider-

ation. During the assembling process all grid elements are looped and the coupling is 

performed on the element. 

2.2.3.1 Trial spaces on elements 

Let ܷ௄ be the element function space and ܷ௛ the global function space. Denote by |ܷ௄| 

and |ܷ௛| the number of degrees of freedom on the spaces. On each grid element de-

fine the mapping between element-local and global unknown numbering by 

݃ሺܭ, ݆ሻ: ሼ1, … , |ܷ௄|ሽ ∋ ݆ ↦ ݅ ∈ ሼ1,… , |ܷ௛|ሽ (2.16)

Using this mapping the local solution can be extracted from the global space via 

௄,௝ݑ ൌ ,௛,୥ሺ௄,௝ሻݑ 1 ൑ ݆ ൑ |ܷ௄|. (2.17)

2.2.3.2 Defect equation on elements 

The global defect  

݀௛:Թ|௎೓| ≃ ܷ௛ ∋ ௛ݑ ↦ ݀௛ሺݑ௛ሻ ∈ Թ|௏೓| (2.18)

is decomposed into a set of local contributions 

݀௛ሺݑ௛ሻ ൌ ෍
௄∈ஐ೓

݀௛
௄ሺݑ௛ሻ, 								݀௛

௄ሺݑ௛ሻ ∈ Թ|௏೓|. (2.19)

It is assumed that the elementwise contribution only depends on the element-local un-

knowns and thus can write 

݀௄:Թ|௎಼| ≃ ܷ௄ ∋ ௄ݑ ↦ ݀௄ሺݑ௄ሻ ∈ Թ
|௏಼|, (2.20)

by setting 
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݀௄,௝ ൌ ݀௛,୥ሺ௄,௝ሻ
௄ , 1 ൑ ݆ ൑ |ܷ௄|. (2.21)

Example (Flux discretization using finite volumes) 

The flow term of a conservation equation can be discretized as  

݀ࣜ೓,௜ሺݑ௛ሻ ൌ ෍ 	
஻∈ࣜ೓

න 	
ப஻
௛ሻݑሺܨ ⋅ ݊ ߯௜ ൌ ෍

௄∈ఆ೓

෍
஻∈ࣜ೓

න
ப஻∩௄

௛ሻݑሺܨ ⋅ ݊ ߯௜

ൌ: ෍ 	
௄∈ఆ೓

݀ࣜ೓,௜
௄ . 

(2.22)

2.2.3.3 Jacobian on elements 

In the same way the global Jacobian  

:௛ܬ Թ|௎೓| ≃ ܷ௛ ∋ ௛ݑ ↦ ௛ሻݑ௛ሺܬ ∈ Թ|௏೓|ൈ|௎೓| (2.23)

is decomposed into elementwise contributions 

௛ሻݑ௛ሺܬ ൌ ෍ 	
௄∈ஐ೓

௛ܬ
௄ሺݑ௛ሻ, ௛ܬ

௄ሺݑ௛ሻ ∈ Թ|௏೓|ൈ|௎೓| . (2.24)

Given the local solution this can be written as 

:௄ܬ Թ|௎಼| ≃ ܷ௄ ∋ ௄ݑ ↦ ௄ሻݑ௄ሺܬ ∈ Թ|௏಼|ൈ|௎಼|, (2.25)

by setting 

௄,௜௝ܬ ൌ ୥ሺ௄,௝ሻ	௛,୥ሺ௄,௜ሻܬ
௄ ,				1 ൑ ݅ ൑ | ௄ܸ|, 1 ൑ ݆ ൑ |ܷ௄|. (2.26)

Example (Flux discretization using finite volumes) 

The flow term of a conservation equation can be discretized as  

ܬࣜ
೓,௜௝ ൌ ෍ 	

஻∈ࣜ೓

න
ப஻
൫߶௝൯ܨ ⋅ ݊	߯௜ ൌ ෍

௄∈ఆ೓

෍
஻∈ࣜ೓

න
ப஻∩௄

൫߶௝൯ܨ ⋅ ݊ ߯௜

ൌ ෍ 	
௄∈ஐ౞

ܬࣜ
೓,௜௝
௄  

(2.27)
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2.2.3.4 Element based evaluation 

It is thus sufficient to restrict the computation of the defect and jacobian to elements. In 

the equations of the physical systems there are, however, still integrals that must be 

approximated numerically. This is achieved via numerical quadrature rules that give the 

final element-local formulation and show that user data and other numerically provided 

information must be given for point evaluation on an element basis. 

Example (Flux discretization using finite volumes) 

The local defect for the convection diffusion equation  

െ׏ ⋅ ሺݑ׏ܦሻ ൅ ݑݎ ൌ 0,				in	Ω, (2.28)

is discretized using a reference element mapping ௄ܶ: Թௗᇱ ⊃ ෡ܭ ∋ ݔ ↦ ݔ ൌ ௄ܶሺݔሻ ∈ Թௗ, 

the corresponding jacobian of the transformation ܬ௄ሺݔොሻ: ൌ
ப಼்ሺࣈሻ

பࣈ
ቚ
ୀ௫ොࣈ

 and an appropriate 

quadrature rule ሼ߱௞
ப஻; ො௞ݔ

ப஻ሽ
௞ୀଵ,…,௡೔೛

ಢಳ෡  (weights and points) using the following evaluations: 

 ݀௄,௜ሺݑ௛ሻ ൌ െ׬ 	ப஻೔∩௄
ሻݔ௛ሺݑ௫׏ሻݔሺܦ ⋅ ݊ሺݔሻ߯௜ሺݔሻ݀ܵሺݔሻ	

 				൅ ׬ 	஻೔∩௄
	ݔሻ݀ݔሻ߯௜ሺݔ௛ሺݑሻݔሺݎ

 ൌ െ׬ 	ப஻෠೔∩௄෡
൫ܦ ிܶሺݔሻ൯ܬ௄

ି்ሺݔොሻ׏௫ݑො௛ሺݔሻ ⋅ ݊ሺݔሻටdet݃ப஻೔∩௄ሺݔොሻ	݀	

 				൅ ׬ 	஻෠೔∩௄෡
൫ݎ ௄ܶሺݔሻ൯ݑො௛ሺݔሻ	หdetܬ஻೔∩௄ሺݔොሻห݀ݔ	

 ൎ െ∑ 	
௡೔೛
ಢಳ෡

௞ୀଵ ܦ ቀ ிܶ൫ݔ௞
ப஻൯ቁ ௄ܬ

ି்൫ݔො௞
ப஻൯׏௫ݑො௛൫ݔ௞

ப஻൯ ⋅ ݊൫ݔ௞
ப஻൯ටdet݃ப஻೔∩௄൫ݔො௞

ப஻൯	߱௞
ப஻	

 				൅∑ 	
௡೔೛
ಳ෡

௟ୀ଴ ሺݎ ௄ܶሺݔ௟
஻ሻሻ	ݑො௛ሺݔ௟

஻ሻ		|detܬ஻೔∩௄ሺݔො௟
஻ሻ|	߱௟

஻ 

Example (Gradients and values of shape functions) 

For the local evaluation of the discrete solutions the shape functions must be evaluat-

ed. This is done on an element basis. Using the reference element transformation 

௄ܶ: Թௗᇱ ⊃ ෡ܭ ∋ ݔ ↦ ݔ ൌ ௄ܶሺݔሻ ∈ Թௗ this evaluation can be reduced to evaluations on the 

reference elements. 
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Value of discrete function 

Φ୧ሺݔሻ ൌ ϕ௜ ቀ ௄ܶ
ିଵሺݔሻቁ ൌ Φ௜

୰ୣ୤ሺݔොሻ (2.29)

Gradient 

ϕ௜|௫	௫׏ ൌ ௄ܬ
ି்ሺݔොሻ	׏௫ො	Φ௜

୰ୣ୤|௫ො (2.30)

2.2.4 Coupling of discretizations 

The previous section has shown how the discrete computation of the solutions can be 

reduced to an elementwise consideration. In particular the solutions as well as the de-

fect and jacobian have been written in an element fashion and the required computa-

tion were based on the integration points of the finite volume scheme. This is the basis 

for the coupling mechanism that is described in the following considerations. All men-

tioned physical systems have been implemented using this approach and thus are 

available for simultaneous computation of coupled systems and can be used as build-

ing blocks to construct combined models. 

2.2.4.1 Systems 

It is assumed that the overall solution can be partitioned into several parts that form a 

reasonable subdivision of the solution space. For example, every physical system of 

partial differential equations (e.g., haline flow, thermohaline flow, transport) can be 

considered as a single system and the associated unknown functions are a useful split-

ting of the overall function space. Now, the solution space on every element is parti-

tioned. 

Definition (System function spaces) 

Let ࡷࢁ be the function space of the whole system on a grid element ࡷ ∈ -A parti .ࢎࢹ

tioning into ࢙࢙࢟࢔ ∈ Գ system spaces ࡷ,࢙ࢁ, ૚ ൑ ࢙ ൑  is a partitioning of the solution ,࢙࢙࢟࢔

space such that it can be written as 

ܷ௄ ൌ ଵܷ,௄ ൈ …ൈ ܷ௡౩౯౩,௄, (2.31)

with |ܷ௄| ൌ ∑ 	
௡౩౯౩
௦ୀଵ ห ௦ܷ,௄ห. By this splitting of the function space also the element-local so-

lution ݑ௄ ∈ Թ|௎಼| is splitted into the solution parts ݑ௦,௄ ∈ Թ|௎ೞ,಼| associated with the sub-

system s and using the formal mapping 
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g௦ሺܭ, ݅ሻ: ሼ1, … , | ௦ܷ,௄|ሽ ∋ ݅ ↦ ݆ ∈ ሼ1,… , |ܷ௄|ሽ (2.32)

this can be written as association 

௄,୥ೞሺ௄,௜ሻݑ ൌ ௦,௄,௜ݑ ,				1 ൑ ݅ ൑ | ௦ܷ,௄|. (2.33)

2.2.4.2 Data imports 

Due to the splitting of the function spaces into several subspaces the overall set of 

equations can be partitioned into subsets of equations that are associated with the sys-

tem components. However, this relates to a set of unrelated physical systems. In order 

to allow the coupling of the different physics a mechanism must be introduced that 

takes care of this coupling. Therefore, it is assumed that the equations for a physical 

system explicitly depend on their associated solutions only. The coupling with other 

physical systems is achieved via the data that must be specified for the equations. This 

data is allowed to depend on other solutions from the overall problem.  

Definition (Import) 

Let ࡷ ∈  be partitioned into system ࡷࢁ be a grid element and let the solution space ࢎࢹ

solutions ሼࢁ૚,ࡷ, … , ,ሽࡷ,࢙࢙࢟࢔ࢁ ૚ ൑ ࢙ ൑  A data import is a functionality that allows the	.࢙࢙࢟࢔

position based read of some C++-Type data ࡰ ≃ Թ࢓ and may depend on the solution 

of the entire problem, i.e., 

ࣣ: Թௗ ൈ Թ ൈ Թ|௎಼| ↦ D,

,ݔ ,ݐ ௄ݑ ↦ ࣣሺݔ, ,ݐ  .௄ሻݑ
(2.34)

Using the imports of the restriction, that every system defect is allowed to depend on its 

own solutions only, the defect can now be formalized as 

݀௦,௄ ≡ ݀௦,௄ሺݑ௦,௄, ௦ࣣ,ଵ, … , ௦ࣣ,௡ࣣೞ
ሻ,  ݊

ೞࣣ
∈ Գ (number of imports), (2.35)

and the coupling with other solution components is realized via the imports. 

Example (Imports for convection diffusion type) 

Let c be a unknown density of a solute. The finite volume discretization forms a system 

with the associated subsolution c. Different types of imports appear: 

The reaction rate ݎ௥ is an import of type Թ and used as  
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݀௖,௄,௜൫ݑ௖,௄൯ ൌ න 	
஻೔

௥ܿݎ ൌ෍	
௜௣

୧୮ݓ
஻೔ ୧୮൯. (2.36)ݔ୧୮൯ܿ൫ݔ௥൫ݎ

The velocity ࢜ is an import of type Թௗ and used as 

݀௖,௄,௜ሺݑ௖,௄ሻ ൌ න 	
ப஻೔

࢜	ܿ ⋅ ݊ ൌ෍
௜௣

୧୮ݓ
ப஻೔ ܿሺݔ୧୮ሻ ୧୮ሻݔሺ࢜ ⋅ ݊ሺݔ୧୮ሻ. (2.37)

The diffusion ࡰ is an import of type Թௗൈௗ and used as 

݀௖,௄,௜ሺݑ௖,௄ሻ ൌ െන 	
ப஻೔

ܿ׏ࡰ ⋅ ݊ ൌ െ෍
௜௣

୧୮ݓ
ப஻೔ ୧୮ሻݔሺܿ׏୧୮ሻݔሺࡰ ⋅ ݊ሺݔ୧୮ሻ. (2.38)

2.2.4.3 Computation of Jacobian for coupled systems 

Given that every system defect depends on the system solutions only and other solu-

tions are incorporated via imports, the computation of the jacobian can be automated. 

This is due to the fact that the chain rule can be employed to first compute the lineari-

zation of the defect with respect to the imports and then compute the derivative of the 

import with respect to the solution components. Formally, give a defect as 

݀௦,௄:Թ|௎ೞ,಼| ∋ ௦,௄ݑ ↦ ݀௦,௄ሺݑ௦,௄, ௦ࣣ,ଵ, … , ௦ࣣ,௡ࣣೞ
ሻ ∈ Թ|௏ೞ,಼|, (2.39)

the entries of the jacobian are given by 

௄ሻݑ௦௦,௄ሺܬ ൌ
∂݀௦,௄
௦,௄ݑ∂

ቤ
௨಼

൅෍ 	

௡ࣣೞ

௞ୀଵ

∂݀௦,௄
∂ ௦ࣣ,௞

ቤ
௨಼

⋅
∂ ௦ࣣ,௞

௦,௄ݑ∂
ቤ
௨಼

 (2.40)

for the diagonal part (i.e., the dependency w.r.t. the system unknowns) and 

௄ሻݑ௦௧,௄ሺܬ ൌ ෍

௡ࣣೞ

௞ୀଵ

∂݀௦,௄
∂ ௦ࣣ,௞

ቤ
௨಼

⋅
∂ ௦ࣣ,௞

௧,௄ݑ∂
ቤ
௨಼

 (2.41)

for the dependencies w.r.t. other solution components which are introduced via the da-

ta imports. This shows the general idea to implement the physical systems: First, the 

computation of the defect w.r.t. its own unknowns must be implemented. Second, the 

linearization of the defect w.r.t. the data imports must be available. In addition the data 

import must provide the dependency of the import w.r.t. the solution components that it 

depends on. 
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Example (Linearization of defect for convection diffusion type) 

Let c be an unknown density of a solute. The finite volume discretization forms a sys-

tem with the associated subsolution c. The required derivations are: 

For the reaction rate term ݎ௥ܿ one computes 

Թ ∋
∂݀௖,௄,௜
௖,௄,௝ݑ∂

ൌ න
஻೔

௥߶௝ݎ ൌ෍	
௜௣

୧୮ݓ
஻೔ݎ௥|୧୮ ߶௝|୧୮ , (2.42)

Թ ∋
∂݀௖,௄,௜
௥ݎ∂

ฬ
୧୮
ൌ ୧୮ݓ

஻೔ܿ|୧୮	. (2.43)

For the convection term ׏ ⋅ ሺܿݒሻ one computes 

Թ ∋
∂݀௖,௄,௜
௖,௄,௝ݑ∂

ൌ න 	
ப஻೔

߶௝	ݒ ⋅ ݊ ൌ෍
௜௣

୧୮ݓ
ப஻೔ ߶௝|୧୮ ୧୮|ݒ ⋅ ݊|୧୮ , (2.44)

Թௗ ∋
∂݀௖,௄,௜
ݒ∂

ฬ
୧୮
ൌ ୧୮ݓ

ப஻೔	ܿ|୧୮	݊|୧୮ . (2.45)

For the diffusion term െ׏ ⋅ ሺܿ׏ܦሻ one computes 

Թ ∋
∂݀௖,௄,௜
௖,௄,௝ݑ∂

ൌ െන 	
ப஻೔

௝߶׏ܦ ⋅ ݊ ൌ െ෍
௜௣

୧୮ݓ
ப஻೔ ୧୮|ܦ ௝|୧୮߶׏ ⋅ ݊|୧୮ , (2.46)

Թௗൈௗ ∋
∂݀௖,௄,௜
ܦ∂

ฬ
୧୮
ൌ െݓ୧୮

ப஻೔	݊|୧୮ ୧୮|்ܿ׏ . (2.47)

2.2.4.4 Computation of user data 

It remains to specify how the data imports are filled with data. This is accomplished by 

connecting an import to a user data item. This can be done at runtime of the program 

and allows for the flexibility to couple together several systems. In order to be as gen-

eral as possible the minimum requirement for the user data interface is chosen as fol-

lows.   

Definition (User data) 

Let ܭ ∈  ௛ be a grid element and let the solution space ܷ௄ be the entire elemtentlocalߗ

function space.	A user data is a functionality that allows the position based evaluation 

of some C++-Type data ܦ ≃ Թ௠ and the derivates w.r.t. to the solution ܷ௄, i.e.,  

ࣞ:Թௗ ൈ Թ ൈ Թ|௎಼| ↦ D	 (2.48)
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,ݔ ,ݐ ௄ݑ ↦ ࣞሺݔ, ,ݐ  .௄ሻݑ

Several kinds of user data have been implemented and can be categorized as follows. 

Constant data 

The data is given as constant function. 

Position- and time-dependent data 

The data is provided as a function of space and time 

System-dependent data 

The data is computed by a physical system. In this case the data will depend on the so-

lution components that are associated with the system and the derivate w.r.t. the func-

tions must be implemented. An important example of such a system-dependent data 

export is the computation of the Darcy velocity that is known to the haline/thermohaline 

system and can be imported into the convection equation for the solute transport. 

Data linker 

Even more flexibility in the coupling of user data is gained via the implementation of a 

so-called data linker. These objects take some user data as input and combine existing 

data to these new user data. The derivative of the new data is automatically available 

using the chain rule and the known dependencies of the combined data. Using such 

kind of data combination a broad variety of couplings can easily be realized with small 

implementation effort or even just by connection on a script level. This gives a large 

flexibility for the future generalization for other kind of data dependencies. Formally, 

one can define this setup as a functionality 

ࣞ:ࣞଵ ൈ …ൈ ࣞ௡ࣞ ↦ D,	
ࣞଵ, … ,ࣞ௡ࣞ ↦ Dሺࣞଵ,… , ࣞ௡ࣞሻ. 

(2.49)

and thus compute the derivatives via 

∂ࣞ
௧,௄ݑ∂

ቤ
௨಼

ൌ ෍

௡ࣞ

௞ୀଵ

∂ࣞ
∂ࣞ௞

ฬ
௨಼

⋅
∂ࣞ௞
௧,௄ݑ∂

ቤ
௨಼

. (2.50)
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 Script interface 2.3

One way to control the execution of the code is via user scripts. For the new code basis 

the scripting language LUA1 has been chosen in order to specify the required user data 

and the solver control parameters. Thereby one script file is used to specify an entire 

problem. 

2.3.1 General introduction 

Every script starts by including the necessary utility for density driven flow problems. 

This is accomplished using the code line shown in Fig. 2.2. 

 

Fig. 2.2 Loading the utility for density driven flow problems 

The utility script contains a central function that starts and controls the whole solution 

process. It is called passing a LUA-table that specifies the problem and the solvers. 

This line is shown in Fig. 2.3. 

 

Fig. 2.3 Starting the computation: “problem” is the LUA-table with the model specifi-

cation and the solver setup 

A LUA-table is created opening a pair of brackets. The most simple (empty) specifica-

tion of the problem is as demonstrated in Fig. 2.4. 

 

Fig. 2.4 Starting a new problem specification using bracket-notation 

                                                 

1 LUA project site, http://www.lua.org 
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Inside the problem table the specifications are grouped with respect to their content. 

This not only allows a better overview but is also used in order to activate or deactivate 

an entire problem part, e. g. the transport part can be turned on or off by using or not 

using this subgroup and is independent from the flow section. The basic sub-

specification syntax is presented in  

 

Fig. 2.5 Starting a new sub-specification using bracket-notation 

The available sub-specifiers are shown in Tab. 2.1.  

Tab. 2.1 Available sub-specifier for the d3f++ utility 

Specifier Specification for … 

domain … the grid, world dimension and refinements 

flow … the flow problem to be solved 

transport … the transport problem to be solved 

time … the time control 

output … the output / balancing options 

2.3.2 The domain and grid specification 

The physical domain is provided as a file in ugx-format. Such grids are created using 

the software tool ProMesh and provide a geometric description of the domain, the grid 

as well as a partitioning of the grid into distinguished subsets that can be used to set 

different types of equations or boundary conditions for different subsets. One, two and 

three dimensional grids are supported. Starting from a coarser grid the number of re-

finements is controlled by the numRef specification. An example for the domain entry is 

shown in Fig. 2.6. 



24 

 

Fig. 2.6 Entry for the domain specific setup 

2.3.3 The flow module (integrated d3f) 

On the given grid a flow field can be computed, controlled by the specifications in the 

flow section. The flow field can be used in the transport section in order to compute 

simultaneously the transport of radionuclides.  

There are several types of flow that can be computed and they require different type of 

user data input. In any case the entry “type” must be specified. This item allows to 

choose between the different physics. The variables or functions to be computed are 

specified by the item “cmp”. An example is shown in Fig. 2.7. 

 

Fig. 2.7  Starting a specification for density driven flow 

The available types are listed in Tab. 2.2. All types characterize a physical system as 

described in Section 2.2.1 and can thus be coupled with other systems. This is used 

e.g. to use the Darcy velocity as user data for the import of the velocity in the transport 

section. 
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Tab. 2.2 Physical systems for the flow section and examples for the component 

specification dependent on the chosen type 

type description cmp 

prescribed user defined flow field  - 

pressure-driven pressure dependent flow field { “p” } 

haline density driven flow { “w”, “p” } 

thermohaline thermohaline flow { “w”, “p”, “T” } 

In the following for every type the required data input is presented. 

2.3.3.1 Prescribed flow 

The prescribed flow equation (see Section 2.2.1.4) is given by  

ࢗ				 ≡ ,࢞ሺࢗ (2.51) ߗ	݊݅			,ሻݐ

and requires the specification of the Darcy velocity as a known function. This can be 

given in two ways. First, the velocity can be specified as a constant field by simply 

passing the vector as shown in Fig. 2.8. 

 

Fig. 2.8  A constant flow field specification 

Alternatively, the flow field can be specified as a function of spatial coordinates and 

time. To this end one can specify a LUA-function (see Fig. 2.9) before and then pass 

this function as a flow field specification (see Fig. 2.10).  

 

Fig. 2.9  A LUA-function specifying a flow field 



26 

 

Fig. 2.10 Passing the Lua-function as data value 

Alternatively, the user function can be specified inline as shown in Fig. 2.11. 

 

Fig. 2.11 Inline version of the user function specification 

2.3.3.2 Pressure-driven flow 

The pressure-driven flow (see Section 2.2.1.3) is computed as follows: 

ە
ۖ
۔

ۖ
ۓ
,ሻ݌ሺ	݀݊݅ܨ ݄ܿݑݏ ݐ݄ܽݐ

	
ߘ ⋅ ሺࢗߩሻ ൌ ,ߗ	݊݅			,ݍ	

ࢗ ൌ 	െ	
ܓ
ߤ
	ሺ݌ߘ െ .ሻࢍߩ

 (2.52)

The parameters can be set as shown in Fig. 2.12. 

 

Fig. 2.12 Example for the pressure-driven setup 
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2.3.3.3 Haline flow 

The haline flow (see Section 2.2.1.1) is computed by 

ە
ۖ
۔

ۖ
ۓ

,ሺ߱	݀݊݅ܨ ,ሻ݌ ݄ܿݑݏ ݐ݄ܽݐ
	

																						߲௧ሺ߶ߩሻ 	൅ ߘ ⋅ ሺࢗߩሻ ൌ ,ߗ	݊݅			,ݍ	
		߲௧ሺ߶߱ߩሻ ൅ ߘ ⋅ ሺࢗ߱ߩ െ ሻ߱ߘࡰߩ ൌ 				,ߗ	݊݅			,௦ݍ	

ࢗ	 ൌ 	െ	
ܓ
ߤ
	ሺ݌ߘ െ .ሻࢍߩ

 (2.53)

The parameters are specified as shown in Fig. 2.13. 

 

Fig. 2.13 Example for the density-driven flow setup 
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2.3.3.4 Thermohaline flow 

The thermohaline flow (see Section 2.2.1.2) is computed using the equation 

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ

,ሺ߱	݀݊݅ܨ ,݌ ,ሻߠ ݄ܿݑݏ ݐ݄ܽݐ

																																																																	߲௧ሺ߶ߩሻ 	൅ ߘ ⋅ ሺࢗߩሻ ൌ ,ߗ	݊݅			,ݍ	
																																																߲௧ሺ߶߱ߩሻ ൅ ߘ ⋅ ሺࢗ߱ߩ െ ሻ߱ߘࡰߩ ൌ 				,ߗ	݊݅			,௦ݍ	

		߲௧ ቀ൫߶ܥߩ௙ ൅ ሺ1 െ ߶ሻߩ௦ܥ௦൯ߠቁ ൅ ߘ ⋅ ൫ܥߩ௙ߠࢗ െ ൯ߠߘ߉ ൌ ,ߗ	݊݅			,0	

ࢗ	 ൌ െ
ܓ
ߤ
ሺ݌ߘ െ .ሻࢍߩ

 

The parameter can be set as shown in Fig. 2.14. 

 

Fig. 2.14 Example for the thermohaline density-driven flow setup 
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2.3.4 The reaction-transport module (integrated r3t) 

The transport equation uses the Darcy velocity q provided by the flow section in order 

to simulate the transport of radionuclides or other substancies. Thereby, effects as 

sorption or radioactive decay have to be regarded. The parameters have to be speci-

fied in the transport section as shown in Fig. 2.15. 

 

Fig. 2.15 Starting the transport problem section 

As detailed in Section 2.2.1.5 the equation for a radionuclide is given by 

൞

,ሺܿ௜ሻ	݀݊݅ܨ ݄ܿݑݏ ݐ݄ܽݐ

																						߲௧ሺ߶ܴ௜ܿ௜ሻ 	൅ ߘ ⋅ ሺܿ௜ࢗ െ ࡰ ௜ሻܿࢺ ൅ ௜ܴ௜ܿ௜ߣ߶ ൌ ,௜ݍ ݅݊ .ߗ
 (2.54)

For every radionuclide the parameters are thus specified as shown in Fig. 2.16 

 

Fig. 2.16 Adding a radionuclide to the transport problem 

2.3.5 Start values, boundary conditions and subset data  

In general the presented user data can be specified not only by a constant value. For 

most of the data the input can also be a LUA-function. They can be specified by a pre-

defined function or inline analogously as shown in Fig. 2.9 to Fig. 2.11.  
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For all variables start values have to be specified in the initial section. For every com-

ponent a constant value as well as any user-defined function can be used. Fig. 2.17 

provides an illustration. 

 

Fig. 2.17 Start value specification 

Boundary conditions are specified in the boundary section. Fig. 2.18 illustrates the set-

up.  

 

Fig. 2.18 Boundary condition specification 

In addition to these global definitions, parameters also may be specified on certain 

subsets. Usually e. g. the permeability varies over different parts of the domain and 

must be set therefore for each subset. This can be accomplished in two ways. First the 

user can simply open a new bracket within a section and use the subset keyword to re-

strict the subsequent specifications to this subset only. This is shown in Fig. 2.19. 
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Fig. 2.19 Using different specifications on subsets 

Second, a data table can be used to give the parameters in a table format. An example 

is shown in Fig. 2.20. 

 

Fig. 2.20 Data table format for user data specification 

2.3.6 Solver setup and time control 

A special section in the LUA script is reserved for the solver settings. The nonlinear 

solver needs the parameters shown in Fig. 2.21. 
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Fig. 2.21 Specification of the newton solver setup 

The linear solver can be controlled as presented in Fig. 2.22. 

 

Fig. 2.22 Specification of the linear solver setup 

For the control of the time stepping the section “time” is used. This is shown in Fig. 

2.23. 
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Fig. 2.23 Specification of the time control 
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   Graphical user interface 2.4

2.4.1  Introduction 

The new code structure as well as the enhanced functionality of d³f++ necessitates the 

development of a new, integrated graphical user interface. 

The first problem in applying a groundwater code is the set-up of of the hydrogeological 

structure that may be arbitrarily complicated and based on huge amounts of data pro-

vided in various different formats. To support the user in this stage of work the 

ProMesh tool was created that allows compiling of hydrological layers to a regional, 

hydrogeological model, designing fractures or other structures and that also includes a 

grid generator (see chapter 2.4.3). 

Using a comprehensive code like d³f++ requires an in-depth knowledge of its function-

ality as well as a good understanding of mathematical modelling and numerical meth-

ods. The complete functionality of the code may be accessed with the help of the LUA 

scripts described in chapter 0. Operating with scripts offers a high flexibility. To make 

the application of d³f++ more convenient and clear and to help the user in avoiding er-

rors, the graphical user interface is created, based on the “Virtual Reflection Library” 

(VRL, cf. /HOF 13/, see chapter 2.4.2). 

2.4.2 VRL-Studio 

2.4.2.1 Introduction 

VRL-Studio is an interactive visual programming environment for controlling complex 

simulation workflows. It can be easily extended with the help of a capable plugin archi-

tecture. To use VRL-Studio efficiently, several plugins have been developed to provide 

interactive access to UG4 and d3f++ based applications. 

As mentioned in chapter 2.1 VRL-Studio plugins for UG4 have access to the UG regis-

try and use it to provide interactive user interfaces for registered UG functionality. 
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Fig. 2.24  VRL-Studio and UG4 Registry 

2.4.2.2 Server-Client Communication 

Interactive access to the simulation tool chain is a huge improvement. However, prob-

lems may arise if the simulation is computationally too expensive. Therefore, the UG 

plugin for VRL contains a server-client infrastructure for remotely controlling simula-

tions. This type of remote computation retains most interactive aspects of the simula-

tion, i.e., the user gets notified of intermediate results, as well as errors that may have 

occurred during the simulation. 

In the current implementation the server-client communication is based on the XML-

RPC protocol and does not require additional infrastructure.  

2.4.2.3 Console Application Support 

To run VRL-Studio workflows in a text based, non-graphical environment, VRL-Studio 

projects can be exported as console applications. This enables the user to run applica-

tions remotely, if interactive server-client execution is not applicable.  
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Therefore, VRL-Studio converts visually defined workflows into a code representation 

that can be compiled as regular Java library (JAR-File). To further improve the user ex-

perience, VRL-Studio also bundles all necessary plugins and a start script for UNIX 

based operating systems and Windows that can be used to run the workflow. 

Exported projects can be easily transferred to a different computer. The user does not 

have to manually install plugins. Plugins are installed on the target system on first us-

age. To maintain compatibility, each exported console app comes with its own set of 

plugins and configuration files. 

To execute a console app called console-app.zip on UNIX/Linux the following com-

mands can be used: 

#> unzip console-app.zip && sh console-app/run.sh 

Console apps can be used in combination with SCP and SSH to execute them on re-

mote computers. 

2.4.2.4 LUA Support for VRL-Studio 

For simulations that cannot be executed interactively, e.g. if they are running in batch-

mode on high performance computers, it is important for VRL-Studio to have full script-

ing support. 

Therefore, the UG plugin for VRL provides a LUA executor that can be fully integrated 

into visual VRL-Studio workflows and projects. Scripts that are designed for being used 

on high performance computers can be executed with no or little modifications. 

2.4.2.5 Integrated LUA Editor 

Introduction 

The scripting language LUA is used in many projects based on the scientific simulation 

system UG4. LUA is tightly integrated into UG4 via a customized LUA-based shell envi-

ronment. The LUA-based shell environment is interfaced with the C++ implementation 

of all UG4 classes and functions, and allows modelling UG4 control flows/work flows 

from within a flexible and untyped language. 
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The LUA scripts are also commonly used to define simulation parameters and con-

straints, as well as to implement and integrate domain specific algorithms with the ca-

pabilities of the UG4 environment. While integrated development environments (IDEs) 

like Eclipse, IntelliJ or Netbeans offer support for writing LUA scripts, the available li-

braries lack specific support for the UG4 shell environment and/or are too tightly bound 

to a given IDE in order to be easily ported to the VRL-Studio IDE. 

The presented LUA auto-completion extension for the VRL-Studio IDE solves this for 

the UG4 user, and offers a viable auto-completion and LUA scripting support for UG4 

development within VRL-Studio. The feature is realized as a VRL plugin. VRL plugins 

are loaded by the VRL-Studio IDE at start-up and provide seamless extensions to ex-

isting IDE functionality and other plugins for d3f++, UG and data visualisation. The fol-

lowing language features of LUA are supported in the current implementation: 

 UG shell-specific functions, classes and their respective documentation 

 Global and local variables from the current and all included LUA scripts 

 Functions, parameters and Doxygen2-style comments from current and all included 

LUA scripts 

 Nested hash tables and arrays 

 LUA (pseudo) class definitions 

The auto-completion feature is context-sensitive. Proposed completions are valid within 

the variable scope at the cursor position. 

Component Architecture 

The LUA auto-completion feature is based on the ANTLR3 4.x parser library (Another 

Tool for Language Recognition). The used parser definition fully supports the LUA lan-

guage version 5.2. 

The Java code of the LUA parser is generated as part of the build of the LUA auto-

completion plugin by the ANTLR plugin. Fig. 2.25 shows a sample ANTLR definition for 

a string (“NORMALSTRING”) in test and visual notation: 

                                                 

2 Doxygen web site, http://www.stack.nl/~dimitri/doxygen 

3 /ANTLR/ ANTLR project main page, http://www.antlr.org 
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Fig. 2.25  Lua Grammar Visualisation 

At run-time, the parser code builds an abstract syntax tree from arbitrary LUA scripts. 

The parser can partially handle scripts that contain syntax errors. Fig. 2.26 details a 

sample syntax tree generated by ANTLR for a simple function definition. 

 

Fig. 2.26  Parse Tree (Lua Grammar) 

The ANTLR syntax tree is then analysed by two separate components, the LuaAuto-

Complete library and the UG4LuaAutoComplete library, like UG-specific functions and 

classes. Using the current cursor position within the document and the current text un-

der the cursor position, those two components generate a set of proposals. The first li-
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brary generates generic completion proposals for pure LUA code, the second adds UG 

shell specific proposals. This allows the LuaAutoComplete library to be used separately 

for pure LUA scripts that are not executed within the UG shell environment. The gener-

ated proposals take the current cursor position into consideration. Global and local var-

iable scopes, scopes local to function and loop declarations are taken into account.  

The run-time data type of the generated proposal objects is not specific for a given IDE. 

This allows the libraries to be reused in other IDEs like Eclipse or IntelliJ by mapping 

the generic library type to the specific IDE type. In the provided implementation a map-

ping between library and IDE types is performed for the VRL IDE. Here, the target data 

types are the data types used by the RSyntaxTextArea library, which provides a rich 

Swing-based text editor with syntax highlighting support. 

UG shell-specific functions and classes with documentation 

The UG shell provides several thousands of functions and hundreds of classes to a 

LUA script executed within its context. The underlying C++ implementation of the func-

tions and classes often has extensive user documentation. This documentation as well 

as the function and class signatures are used by the LUA support to compute comple-

tion proposals. The function and class signatures are included from a custom 

“UGCompleter” file format provided during the build process of the UG4 environment. 

As it is possible that different UG shell versions are used between projects, specific 

“UGCompleter” files can be configured. 

 

Fig. 2.27  Auto Completion for UG scripts 
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Fig. 2.27 shows a completion proposal for the function SetOutputProfileStats, a UG4 

shell function. In the text editor in the left part of the screenshot the curser position is at 

the end of the word ‘set’. A small popup window below the cursor lists set of possible 

completions for the word ‘set’. To the right of the selected list item is a descriptive pop-

up window with details for the selected function SetOutputProfileStats. 

Global and local variables from the current and included LUA scripts 

The LUA support provides completion proposals for global and local variables and 

properly recognizes variable scopes, e.g. local variables only valid within a function or 

loop declaration. 

 

Fig. 2.28  Auto Completion for Variables  

In Fig. 2.28 the code defines two functions foo, bar with local variables ‘abar’ and 

‘afoo’, as well as a global variable ‘aVar’. For line 12 the LUA support proposes only 

the variables ‘afoo’ and ‘aVar’, and properly ignores the variable ‘abar’ which is not vis-

ible within the scope of the function ‘bar()’. The descriptive window also provides the 

line number of the source code location used to generate the proposal. 

Functions, parameters comments from current and included LUA scripts 

Functions, their parameters and comments (with leading ‘—!’ statement) from the cur-

rent script and all included scripts are provided as completion proposals. In the follow-
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ing sample a function ‘foo’ is defined with two parameters and a Doxygen parameter. 

The parameter list and the comment content are provided by the LUA support. 

 

Fig. 2.29  Auto Completion for LUA Functions 

The parameters param1 and param2 in Fig. 2.29 can directly be taken from the pro-

posal list, the Doxygen comment is provided via the descriptive window to the right of 

the list. 

Nested hash tables and arrays 

A practical LUA language feature is its unverbose support for generic nested hash ta-

bles and arrays. The LUA support for hash tables recognizes defined literal keys and 

detects the full path to a nested variable declaration for completion proposals. 

In Fig. 2.30 a hash table ‘foo’ is defined, with a nested set of keys ‘bar’ and ‘foo’. The 

LUA auto-completion proposes then completion for ‘foo.bar.foo’. 
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Fig. 2.30  Nested Tables 

Arrays are supported too, when a variable is recognized as array proposals will be fol-

lowed by a bracket like in the screen shot in Fig. 2.31. 

 

Fig. 2.31  Array Completion 

LUA class definitions 

While there is no full class semantic defined in the LUA language specification, class-

style semantics can be emulated by a mix of hash tables definitions and function point-

ers. A common way to define a class in LUA is depicted in the next screen shot, to-
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gether with a sample proposal pop-up generated when listing the available class meth-

ods.  

Support for the ‘self’ keyword is implemented. Within the scope of a member function of 

an existing class, all variables implicitly declared by a leading ‘self’ in other member 

functions are proposed by the auto completion feature. An example is shown in Fig. 

2.32, where the member variable ‘self.bar’ declared in line 7 and used in line 13 is pro-

posed within the block of the new member function ‘bar()’. 

 

Fig. 2.32  Auto Completion for Self Keyword 

2.4.3 ProMesh 

A crucial aspect in simulations of groundwater flow is the accurate representation of the 

physical domain in which a problem is considered. Special features of such domains, 

like the extension and shape of different soil layers or the nature of possibly present 

fracture networks, can have a severe impact on the obtained flow patterns. Therefore a 

faithful reconstruction of those features in the computational domain is required. 

Simulations of groundwater flow are not restricted to specific domains or even to spe-

cific scales. A toolchain that allows for the generation of the underlying computational 
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grids thus shouldn’t impose any unnecessary restrictions either. Instead such a tool 

should feature a set of specialized algorithms together with a broad set of more general 

meshing tools, which allow for the preparation, visualization, and manipulation of a 

broad range of grids through a common user interface. This high degree of flexibility 

and accessibility plays a key role in the design, implementation, and evolution of the 

cross platform meshing software ProMesh (cf. Fig. 2.33, /REI 14/). 

Originally, ProMesh was developed as a stand-alone meshing software. However, with 

the development of UG4 and its powerful reflection mechanism (cf. /VOG 13/), the idea 

arose that a tighter coupling of the meshing functionality of ProMesh with the simulation 

aspects of UG4 could allow for the realization of even more complex simulation setups. 

Especially since UG4’s reflection mechanism would then allow users to define integrat-

ed meshing and simulation procedures in one common script or graphical user inter-

face. 

 

Fig. 2.33 The ProMesh user interface 

The implementation of ProMesh thus was split into a stand-alone graphical user inter-

face (GUI), which is maintained to allow for manual editing, and a separate UG4 plugin, 

in which ProMesh’s data-structures and algorithms are implemented and exposed to 

UG4’s registry module. This registry serves as a C++ runtime reflection system which 

allows other programs to query for, to instantiate and to execute registered data-

structures and algorithms. This reflection system is not only used by the ProMesh-GUI 
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to automatically generate tool-representations for available meshing algorithms in its 

graphical user interface (cf. /VOG 13/), it is also used to expose ProMesh’s meshing 

functionality to UG4’s scripting system and to the Java based Visual Reflection Library 

(VRL, cf. /HOF 13/). This drastically broadens the scope of application in which 

ProMesh may be used. For example, one can now prepare a grid for simulation by em-

bedding fully automated meshing steps in a simulation setup using the VRL or UG4 

scripts. The potential of this interplay with regards to a unified and accessible meshing 

solution will be considered in the remainder of this section. 

First, the general concepts behind ProMesh are reconsidered in Section 2.4.3.1. The 

interplay between UG4, ProMesh, and VRL is then examined in Section 2.4.3.2. Final-

ly, examples that demonstrate the potential of the given approach with regards to a uni-

fied and accessible meshing toolset are given in Section 2.4.3.3. 

2.4.3.1 Concepts 

A central aspect of ProMesh is the visualization and manipulation of one-, two-, and 

three-dimensional grids consisting of edges, triangular and quadrilateral elements as 

well as tetrahedra, hexahedra, prisms and pyramids. Furthermore, ProMesh allows for 

the partitioning of a grid into subsets (or parts), which may then be used to associate 

different material properties or boundary conditions with the different parts of the grid 

during a simulation run. Those subsets are preserved even if topological or geometric 

changes are performed to the underlying grid. 

Below, the basic concepts used by ProMesh will be given in more detail. Those con-

cepts build a common ground on which the different meshing algorithms operate. Build-

ing on a set of such well defined concepts has the advantage that different algorithms 

can easily be combined to define more complex meshing methods (cf. /REI 14/). 

Grids and Grid-Elements 

Algorithms in ProMesh operate on grids consisting of vertices, edges, faces and vol-

ume-elements. The name grid-element refers to any of these. For a given grid ܩ the set 

of vertices of ܩ is denoted by ீܰ, the set of edges by ீܧ, the set of faces by ீܨ , and the 

set of volume elements by ܸீ . The grid ܩ itself is then defined as the union of those el-

ement sets: ܩ ≔ ሼ ீܰ ∪ ீܧ ∪ ܨீ ∪ ܸீ ሽ. 
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With each vertex ݊ ∈ ீܰ a point in Թௗ is associated through the mapping 

:݌ ீܰ → Թௗ. (2.55) 

Each grid-element ݁ ∈ ,is defined by its set of corner vertices ݊ଵ ܩ ݊ଶ, … , ݊௠,݉ ൒ 1 

through the mapping 

ሾ∙,∙, … ,∙ሿ:	ሺ ீܰሻ௠ →  (2.56) .ܩ

Let Φ:ܩ → Թௗ be an embedding of ܩ into Թௗ such that: 

1. For each vertex ݊ ∈ ீܰ: Φሺ݊ሻ ≔  .ሺ݊ሻ݌

2. For each edge ݁ ∈ ,ீܧ ݁ ൌ ሾ݊ଵ, ݊ଶሿ: ∃߶:	Φሺ݁ሻ → ሾ0,1ሿ, where ߶ is a homeo-

morphism and ߲Φሺ݁ሻ ൌ ሼΦሺ݊ଵሻ,Φሺ݊ଶሻሽ. 

3. For each face ݂ ∈ ܨீ : ∃߶:Φሺ݂ሻ → ሼݔ ∈ Թଶ	|	‖ݔ‖ ൑ 1ሽ, where ߶ is a homeo-

morphism and ∃	݊ଵ, … , ݊௠ ∈ ீܰ, ݁ଵ, … , ݁௠ ∈ :ீܧ ߲Φሺ݂ሻ ൌ ⋃ Φሺ݊௜ሻ
௠
௜ୀଵ ∪ ⋃ Φሺ݁௜ሻ

௠
௜ୀଵ . 

4. For each volume-element v∈ ܸீ : ∃߶:Φሺݒሻ → ሼݔ ∈ Թଷ	|	‖ݔ‖ ൑ 1ሽ, where ߶ is a 

homeomorphism and ∃݊ଵ, … , ݊௠ ∈ ீܰ, ݁ଵ, … , ݁௟ ∈ ,ீܧ ଵ݂, … , ௞݂ ∈ ܨீ : 

߲Φሺ݂ሻ ൌ ⋃ Φሺ݊௜ሻ
௠
௜ୀଵ ∪ ⋃ Φሺ݁௜ሻ

௠
௜ୀଵ ∪ ⋃ Φሺ ௜݂ሻ

௠
௜ୀଵ . 

For each ݁ ∈  .݁ Φሺeሻ is then called the geometric representation of,ܩ

A grid ܩ is called consistent if the following conditions hold for all elements ݁ଵ, ݁ଶ ∈

,ܩ ݁ଵ ് ݁ଶ: 

1. Φሺ݁ଵሻ ∩ Φሺ݁ଶሻ ൌ ∅, and 

2. if dimሺ݁ଵሻ ൌ ݀݅݉ሺ݁ଶሻ: 

 Φሺ݁ଵሻ ∩ Φሺ݁ଶሻ ൌ ∅, or 

 ∃݁ ∈ ,ܩ dimሺ݁ሻ ൏ dimሺ݁ଵሻ: Φሺ݁ሻ ൌ Φሺ݁ଵሻ ∩ Φሺ݁ଶሻ. 
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For elements ݁ଵ, ݁ଶ ∈  :the following notation is used ܩ

݁ଵ ∈ ݁ଶ ⇔ dimሺ݁ଵሻ ൏ dimሺ݁ଶሻ ܽ݊݀ Φሺ݁ଵሻ ⊂ Φሺ݁ଶሻ. (2.57) 

If ܩ is consistent and ݁ଵ ∈ ݁ଶ holds, then ݁ଵ is called an associated element of ݁ଶ and 

vice versa. If furthermore dimሺ݁ଵሻ ൌ dimሺ݁ଶሻ െ 1	holds, then ݁ଵ is called a side of ݁ଶ. If 

two elements share a common associated element, the elements are called neigh-

boured elements. 

Element selections 

Element selections provide a central facility through which users can interact with 

ProMesh. Each element is therefore considered to be either selected or deselected. 

The set of selected elements will be denoted by ܵீ ≔ ሼ݁ ∈  .is selectedሽ	݁|	ܩ

Elements can be assigned to ܵீ by user input, e.g. mouse gestures in the graphical 

user interface, or algorithmically. A vast variety of such selection algorithms exists. 

Such algorithms, for example, allow for the automated selection of neighboured ele-

ments of selected ones, or for the selection of elements based on special geometric or 

topological properties. 

Many meshing algorithms require the user to specify the set of elements of a grid, on 

which the algorithm shall operate, e.g., for adaptive or anisotropic refinement, retri-

angulation, assignment of subsets (see below), and many other purposes. Through the 

concept of element selections, ProMesh provides an unified approach to specify those 

elements independent of the actual meshing algorithm that shall be applied. On the 

other hand, new meshing algorithms which build upon the concept of selections can 

easily be integrated into ProMesh’s toolchain and user interface. 

Subdomains (Subsets) 

The partitioning of a domain into different subdomains can be very useful to allow for 

the definition of different parameter sets, discretization methods, or boundary condi-

tions on those subdomains. ProMesh features so called subsets, which allow for an 

analogous partitioning of a grid. To this end, an index ݅ ∈ ሼെ1ሽ ∪ Գ଴ is associated with 

each element through the mapping ீܾݑݏ: ܩ → ሼെ1ሽ ∪ Գ଴: 
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ሺ݁ሻீܾݑݏ ≔ 	 ൜
݅ ∈ Գ଴, ݁	is assigned to subset ݅,
െ1 ݁	is not assigned to any subset.

 (2.58) 

Subsets are typically defined by the user by assigning all elements of the current selec-

tion to a given subset. This has the advantage that the whole set of selection tools 

available in ProMesh can be used to efficiently and comfortably define subsets. During 

algorithms like refinement and remeshing, subsets are automatically preserved. 

Fig. 2.34 illustrates how a subset can be defined on a given mesh using element selec-

tions. 

     

Fig. 2.34  Raw mesh (left), selected elements (middle), and new subset (right) 

Tools and Scripting 

Each algorithm that defines an operation that transforms a mesh, the current selection, 

or the subset structure, is accessible through a tool-dialog in the ProMesh-GUI. Using 

UG4’s reflection mechanism, those tool-dialogs are automatically generated from the 

function signatures of the different registered meshing algorithms. 

Furthermore it is possible to write scripts that call different algorithms on a given mesh. 

Those scripts can define import parameters using a special syntax in the comments 

section of each script. For each such script ProMesh then generates an additional tool-

dialog through which the script can be executed. Those script-tools integrate seamless-

ly with the existing predefined tools, thus allowing for easy extendibility of ProMesh (cf. 

Fig. 2.35 and Fig. 2.36). 
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2.4.3.2 Integration of ProMesh into UG4 and VRL 

While ProMesh already features an easy to use graphical user interface, it is often de-

sirable to perform some of the required meshing steps as a part of a simulation run. 

Especially when the mesh properties have to be varied between different runs, e.g., for 

parameter estimation runs or uncertainty quantification, automated meshing can be-

come a crucial step in the simulation setup. 

To this end all meshing functionality previously only available in ProMesh has been 

transferred to a ProMesh-plugin for UG4. The ProMesh application thus now only con-

tains code related to the graphical user interface as well as code that creates the tool-

dialogs from available meshing algorithms. The meshing algorithms themselves are 

now provided by the ProMesh-plugin and are accessible through UG4’s reflection 

mechanism. This setup has numerous advantages: 

1. All meshing algorithms registered at UG4’s registry are immediately available in 

UG4’s scripting environment and can thus be used in script based simulation 

setups. 

2. Users of ProMesh’s graphical user interface can now use UG4’s scripting facili-

ty to define more complex meshing algorithms by combining the already availa-

ble ones in custom scripts. Those scripts are then available in the graphical us-

er interface as additional tools. 

3. All algorithms are also available in the VRL and can be used directly through 

visual representations as well as through UG4’s scripting environment. They 

can thus easily be embedded in visual simulation setups. Furthermore scripts 

that define more involved meshing procedures for ProMesh or UG4 can be ap-

plied in between other meshing steps thanks to the new UG4-script integration 

in the VRL. 

4. Using automated test scripts instead of manually executing algorithms in the 

graphical user interface for debugging purposes allows for a more rapid devel-

opment of new meshing-algorithms. 

One key feature for reusability and code reduction in this setup is the availability of a 

common scripting language which can be used by the ProMesh-GUI, the UG4 shell in-
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terpreter and the VRL. This allows for the implementation of utility methods in common 

scripts. The overall workflow and the objects on which those utility scripts operate are 

still defined by the respective application. This new approach is possible thanks to two 

key aspects. One is the already known reflection mechanism implemented in UG4 

through the registry module. The other integral part is the availability of the script inter-

preter as a registered object itself. The interpreter can thus be queried and used 

through the already established registry binding for a given language. The interpreter 

features facilities to set and get parameters and object-references and to load and run 

scripts. Instances of this interpreter can then be used by the ProMesh-GUI, the UG4 

shell interpreter and the VRL to load and run common meshing scripts with the provid-

ed mesh instance and custom parameters.  

This new setup obviously allows for a very tight integration of meshing and simulation 

on many different levels. It reduces the implementation overhead tremendously, since 

script-bindings, tool-dialogs, and visual representations in the VRL are all created au-

tomatically from UG4’s reflection mechanism. At the same time a highly specialized 

and intuitive graphical user interface is still available (ProMesh-GUI) and allows for the 

preparation of complex grids that require manual adjustment. 

The approach presented above is an important step towards a work environment with 

clearly defined and coherent user interfaces and drastically improves the interoperabil-

ity of the different tools involved. 

2.4.3.3 Fractured domain meshing example with ProMesh, UG4, and VRL 

To demonstrate the different meshing approaches, a sample domain shall be meshed 

using different frontends. The domain will contain two intersecting low dimensional frac-

tures surrounded by a tetrahedral net representing the matrix. First the manual con-

struction method using ProMesh’s user interface is described. Then a script will be 

specified which automates the process, and finally, the whole meshing procedure will 

be specified using the visual programming language VRL. All three approaches are 

equivalent and result in the same grid (cf. Fig. 2.38), which demonstrates the high flex-

ibility achieved through the new implementation of the ProMesh meshing functionality 

as a UG4 plugin. 
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Meshing with ProMesh-GUI 

When manually meshing a domain with the ProMesh-GUI (cf. Fig. 2.33), a user exe-

cutes a sequence of algorithms which create or transform the element structure of the 

currently active mesh. As depicted in Fig. 2.33 (left), those algorithms are represented 

by graphical tools in the Tool-Browser. By specifying the parameters of each tool and 

pressing the ‘apply’ button, a user can execute one tool after the other. The exact se-

quence in which the tools have to be applied to the current mesh in order to generate 

the desired grid is the same as in the scripting example in Fig. 2.35.  

Meshing with ProMesh-Scripts 

As detailed above, all meshing functionality available in the ProMesh-GUI is also avail-

able in the ProMesh/UG4 scripting environment. A mechanism was implemented in the 

ProMesh-GUI that automatically searches for meshing scripts in predefined folders. 

Furthermore, ProMesh-GUI features tools to generate new scripts easily (Menu-

Scripts-NewScript). For each script a tool representation is created in the ProMesh-

GUI, which allows users to specify custom parameters and to execute the script on the 

currently selected mesh (cf. Fig. 2.36 for the tool to the script from Fig. 2.35). 

-- pm-declare-name: fracgen_sample 

-- pm-declare-input: w | width | double | val = 8; min = 0 

-- pm-declare-input: d | depth | double | val = 4; min = 0 

-- pm-declare-input: h | height | double | val = 4; min = 0 

CreatePlane(mesh, MakeVec(-2, 1, 0), MakeVec(2, 1, 0), 

            MakeVec(-2, -1, 0), MakeVec(2, -1, 0), 0, true) 

CreatePlane(mesh, MakeVec(-2, 1, 0), MakeVec(2, 1, 0), 

            MakeVec(-2, -1, 0), MakeVec(2, -1, 0), 1, true) 

RotateAroundCenter(mesh, MakeVec(0.4, 0.4, 0)) 

Move(mesh, MakeVec(0, 0.25, 0)) 

SelectAll(mesh) 

ResolveSelfIntersections(mesh, 0.01) 

Retriangulate(mesh, 20) 

CreateBox(mesh, MakeVec(-0.5 * w, -0.5 * d, -0.5 * h), 

          MakeVec(0.5 * w, 0.5 * d, 0.5 * h), 2, false) 

Tetrahedralize(mesh, 10, false, false, false, true, 0) 

Fig. 2.35  Mesh generation with ProMesh-Script. The variables mesh, w, d, h are 

provided by the calling application or script 
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The first lines contain comments describing the variables required by the script. Those 

variables have to be defined in the calling script interpreter. When a script is loaded in-

to ProMesh-GUI, the script is automatically parsed for such comments and a tool-

representation is created through which users can supply the required parameters. 

Those parameters are then set in the used script interpreter before actually executing 

the script itself. 

All further lines contain code that operates on the provided mesh object. Most of those 

methods are provided by the UG4 ProMesh-plugin. It is of course also possible to mix 

in functions defined by other plugins, as well. 

Instead of executing a script in the ProMesh-GUI, one could of course also run the 

script using ugshell or VRL by means of the UG4 script interpreter, after providing val-

ues for the required variables.  

 

Fig. 2.36  Tool representation generated by the ProMesh graphical user interface for 

the script from Fig. 2.35 

Meshing with ProMesh-VRL 

In the VRL, all available meshing algorithms provided by UG4’s registry can be ac-

cessed through their visual representations. By creating a chain of such visual repre-

sentations, one can describe complex meshing algorithms. Fig. 2.37 shows a setup 

that describes the exact same meshing procedure as specified in the script from Fig. 

2.35. 
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Fig. 2.37  VRL meshing sample 

 

Fig. 2.38  Constrained Delaunay triangulation/tetrahedrization  

of intersecting fractures (left) and surrounding matrix (right). Grid generated 

with the meshing script from Fig. 2.35 

2.4.4 Data output and visualisation 

2.4.4.1 Overview 

Visualising simulation data is an essential part of the simulation workflow and often 

necessary for developing an understanding of the simulation results. Therefore, it is 

important to provide capable visualisation tools within the application tool chain. 

For UG based applications and d3f++, several visualisation frameworks, such as VTK 

and JFreeChart have been integrated. 



54 

2.4.4.2 VTK 

VTK is a powerful framework for interactive 2d and 3d visualisations. It provides a flexi-

ble API that supports several different programming languages /VTK 06/. Among oth-

ers VTK provides components for complex surface rendering and volume rendering. 

Simulation results from UG4 based applications such as d3f++ can be saved as VTK 

compatible output. This enables a broad variety of options for visualising simulation re-

sults. 

2.4.4.3 VTK Plugin for d3f++ based VRL-Studio Projects 

For VRL-Studio, a plugin has been developed that enables direct interaction with VTK 

visualisations. In previous projects the plugin mainly provided predefined visualisation 

components. In addition to this, the direct access to the VTK API via the VRL-Studio 

IDE has been improved. It allows for fully customised visualisation components that are 

specifically designed for the problem at hand. Fig. 2.39 shows a custom VTK visualisa-

tion that has been developed inside a VRL-Studio project. 

 

Fig. 2.39 Custom VTK Component, JFreeChart 

JFreeChart is a Java based charting library. It supports various chart types, such as 

line chart, bar chats and histograms. For d3f++ based applications a simplified API is in-

tegrated that can be directly used inside VRL-Studio projects. 2d charts can be gener-
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ated with the JFreeChart plugin for VRL-Studio. Fig. 2.40 shows a custom 2d line chart 

visualisation. 

 

Fig. 2.40 2d Chart based on simplified JFreeChart API 
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 Summary 2.5

In order to adapt the flow and transport simulations to the growing requirements of 

modern efficient numerical software, the renewed code basis UG4 for the simulation of 

coupled partial differential equations has been developed /VOG 13/. The new imple-

mentation is grounded on an object-oriented software design and written in C++.  

To be able to participate in the current and future enhancements and numerical ad-

vances the UG-applications d³f and r³t had to be transformed to this new software plat-

form. Benfitting the fact that coupling between different sets of equations is natively 

supportet by UG4, both codes were coupled in this process to the new code d³f++. This 

allows the simultaneous simulation of density-driven groundwater flow and pollutant 

transport. 

UG4 applications are controlled by scripting or a graphical user interface. Therefore, 

LUA-scripting and the Visual Reflection Language VRL had to be adapted to the needs 

of d³f++. Additionally, d³f++ profits of the UG4 pre-processor ProMesh that enables the 

user to set-up model geometries based on different types of data input and to generate 

the computational grid. ProMesh was also enhanced by several features that are help-

ful in the buildup of hydrogeological models in the new grid format ugx that is now used 

as a standard for all simulations.  

For the output of the simulation results an interface to the well established VTK frame-

work has been created, offering the possibility to use e. g. PARAVIEW or VISIT for vis-

ualisation. 
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3 Solvers 

 Multicore architectures and GPU 3.1

3.1.1 Multicore CPUs 

Until recently, Moore’s Law (rather an extrapolation from the past than a natural law) 

predicted that the number of transistors incorporated in a chip and the performance 

achieved therewith doubles about every two years. Nowadays, only the part about the 

biannual doubling of transistors per chip still holds, while the performance increase of 

individual processing units manufactured with new semiconductor technology is be-

coming smaller and smaller. The reason is simply that the clock speeds of current pro-

cessors are hitting hard physical limits. Consequently, as performance can no longer 

be increased with higher clock frequencies, the industries’ solution is to put more and 

more individual processing units (CPU cores) on a single chip. Such a multicore pro-

cessor appears to a computer’s operating system basically as a collection of multiple 

single CPUs, something long supported by all major server operating systems in use 

today. However, programs cannot use these additional CPU cores automatically, they 

will have to be rewritten and parallelized to benefit from multiple cores. This is in con-

trast to the old picture where new CPUs always ran faster than the previous models 

and software directly profited from this without any modification to the code. Another 

point to consider is the divergence of CPU speed and memory bandwidth. This gap has 

been widening all the time because increases in memory bandwidth could never keep 

up with the much faster increases in CPU clock speed. Now, with multicore processors 

including up to 16 cores and more to come, all sharing a single bus to the memory 

subsystem, things are getting worse and worse. Even codes that have grown up on 

traditional supercomputers like d3f++ and therefore should already be capable of using 

multicore CPUs efficiently will have to be modified to be better adapted to these recent 

trends in microprocessor technology. 

3.1.2 GPUs 

A second new trend are “boosters”, coprocessor cards that are put in computers along-

side the CPUs and that are intended to accelerate certain parts of a traditional comput-
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er program that are offloaded to them. These boosters mostly stem from the graphics 

processing units (GPUs) of graphics cards. Trying to use them for non-graphical pur-

poses became known as “general purpose computation on GPUs” (GPGPU). Early 

GPUs had their functionality mostly hardwired on the chip and they could only be pro-

grammed by presenting the data as textures and the operations to be applied as 

OpenGL drawing commands which made the whole subject rather esoteric. But after 

GPUs turned from hardwired to programmable, graphic card manufacturers saw a new 

market in GPGPU and by now are offering software development kits to target their 

chips directly in C-like programming languages. But GPUs differ considerably from 

CPUs. Their primary design is still targeted on graphics. Most of the chip’s silicon is 

devoted to processing units of which several (16, e.g.) are grouped together with a sin-

gle control unit in a “streaming processor”. These are grouped again in larger units 

called “streaming multiprocessors” (192 cores, e.g.), and finally enough of them to get 

several thousand cores altogether are put on a single chip. Each streaming multipro-

cessor has some very fast local memory and a texture cache. They are all connected 

to the GPU’s main memory (several GB) via some high speed interconnect. A memory 

cache between the GPU’s main memory and the streaming multiprocessors may or 

may not be present. The general idea behind such an architecture is stream or 

throughput computing. Basically, all processing units are executing the same instruc-

tions but on different data. To alleviate the effect of insufficient memory bandwidth (of 

course it’s the same with GPUs as with CPUs) a ratio of 20−40 arithmetical instructions 

per memory access (high computational intensity) is advised. The control units also al-

lows for multiplexing several threads to one streaming processor, with the idea of al-

ways having a thread ready to go in case the current one is waiting for hundreds of 

clock cycles on a memory access. The ideal GPU program has tens of thousands of 

threads active at any time. 

3.1.3 Benefits of Multicore CPUs and GPUs 

Multicore CPUs are not only the industry’s sole answer to the partial invalidation of 

Moore’s Law, there are also amenities for end-users. It’s now possible to put 20 or 

more CPU cores in a single chassis at pretty low costs. So far, d3f dealt with multicore 

CPUs the same way as the operating system does: use every core as a single CPU 

(with a single core). Parallelization is then done via MPI which is already available in d3f 

and r³t since its beginnings. This however does not take into account that now all the 

cores in a multicore CPU share the same memory interface and its available band-
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width. Other programming models, like using OpenMP for the parallelization on a single 

multicore CPU, may be more adequate to tackle this problem. Another general idea is 

to reduce the number of memory accesses in favour of more computational instruc-

tions, e.g. by not assembling matrices for the solution of systems of linear equations 

but to use discretization stencils in connection with regular grids inside the linear solv-

ers. These ideas are discussed in the sections below. 

The primary appeal of boosters and GPUs are their theoretical performance data: over 

one TFlop/s in double precision arithmetic, an aggregated memory bandwidth of about 

ten times of what is available to a multicore CPU (due to optimized circuit board design 

not possible in a server with many memory sockets, and a low number of unsocketed 

memory chips directly soldered on the board, allowing for a much wider 368─512 bits 

memory bus compared to the 64 bits for multicore CPUs), and a power consumption 

that results in at least five times the performance of a multicore CPU at the same watt-

age. The main challenge is of course to reprogram and/or reformulate existing code 

and algorithms so that they fit in the GPU’s stream-processing model described above, 

otherwise GPUs will not deliver anything close to their advertised performance data. 

Ideas to this end are similar to the ones mentioned for multicore CPUs above (namely 

increase data reuse and computational intensity, lower number of memory accesses) 

and will also be discussed in the following sections. An extra point for GPUs is the 

overhead due to data offload from the computer’s main memory to the GPU before a 

GPU-boosted section can run, and the transfer back from the GPU to the computer’s 

main memory afterwards. 

As a general note it might be added that programs like d3f++ do have a relatively high 

number of memory accesses compared to computational instructions and that no pro-

gramming trick can ever change this. It is not expected that any adapted version of 

d3f++ will ever come close to the theoretical peak performance of both multicore CPUs 

and GPUs. It’s still reasonable to tune d3f++ to get the most of current technology. And 

despite GPUs have the same problem with memory bandwidth that CPUs have, their 

overall higher aggregate memory bandwidth makes their use for d3f++ still promising. 
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 Improving the performance in d3f++ using accelerators 3.2

The existing implementation provides a very high level of flexibility with respect to vari-

ous aspects: It supports, e.g., unstructured grids with heterogeneous element types in 

arbitrary dimensions. It not only supports plain density-driven, but also thermal flow. 

Moreover, the discretisation is flexible enough to deal with different type of discretiza-

tions, boundary conditions, upwinding schemes etc.  

Many of these features are of vital important for the end-user. However, this high level 

of flexibility is afflicted with branchings (if-then-else structures) in the machine code. 

Thus, it is inherently conflicting with the streaming properties of hardware architectures 

outlined in the introduction. As a consequence, the optimization of the existing code 

base of d3f++ for a novel hardware paradigm is a challenging task. Seeking for opti-

mality requires defining a trade-off between intrusions in the code and hardware-

optimal execution.  

To that end two different strategies were pursued: The first one, Strategy 1, accelerates 

the code by replacing the sub-routines of the linear algebra module (matrix-vector mul-

tiplications etc) only, while the second one, Strategy 2, aims at an optimization of the 

full code. Both approaches as well as the corresponding results are described in closer 

detail below. 

3.2.1 Strategy 1: General Purpose Acceleration for Unstructured Grids 

The routines of the linear algebra module (access to matrix elements, matrix-vector 

multiplications, solvers, etc) are separated from the rest of the code (grid-geometry and 

discretization and solvers) by a well-separated interface. Replacing this module only 

thus allows for a comparatively non-intrusive way of code-optimization. 

In addition to the existing default CPU-algebra, now a separate GPU-algebra module 

extends UG4. Therein, for all operations on the GPU, specialized code is supplied. For 

the most prominent languages, CUDA and OpenCL, this is achieved by a common in-

terface.  

The lifecycle of objects in this module is as follows: Initially, all matrices and vectors are 

created and reside in the memory of the CPU. After the discretization has assembled 



61 

these objects, they can be shipped (copied) to the GPU. These copy operations are 

expensive w.r.t time. Thus, in order to minimize the number of copy operations, addi-

tional state flags indicate, if the objects reside on CPU and GPU, CPU only, or GPU 

only.  

In a test for strategy 1, test both CPU and GPU implementation are compared. Pois-

son’s equation was solved on the unit square in 2d with Dirichlet boundary conditions. 

The solver was a linear iteration with Jacobi preconditioner, reducing the error by 12 

orders of magnitude. The test was performed on a workstation (2x Intel Xeon, 32 GB 

memory, 8 cores per CPU; 2x NVIDIA® Tesla® GPU Accelerators for GPU boosting, 

each equipped with 5GB memory), with double with accuracy for floating operations. 

Tab. 3.2 shows an acceleration by a factor of about 10. 

Tab. 3.1  Wall clock times for the solution with CPU and GPU implementation  

respectively  

1/h 256 512 1024 2048 4096 

DoFs 66,049 263,169 1,050,625 4,198,401 16,785,409 

TCPU [s] 0.270 2.730 19.460 178.330 1,249.100 

TGPU [s] 0.090 0.390 2.340 16.710 128.990 

Acceleration 

factor 

3 7 8.32 10,.7 9.68 

CG Steps 195 383 753 1,487 2,957 

3.2.2 Strategy 2: Optimized Implementation for Structured Grids 

The approach in the previous section focused on optimizing the linear algebra only. 

The goal of Strategy 2 is to exploit the capabilities of the GPGPUs to a maximum ex-

tent. The whole infrastructure (linear algebra, discretization, solvers) was re-written and 

tailored for streaming-type state-of-the-art architectures. The result is a UG4 plugin for 

Just In Time compilation for Structured Grids (JITSG). This plugin realizes two strate-

gies of vital importance for high performance on GPGPU systems:  
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3.2.2.1 Just in time (JIT) compilation 

JIT is a strategy to generate machine code on the computational device once it is 

needed. In UG4, all model components, such as nonlinear density models, coefficients, 

boundary conditions etc. are typically formulated as functions in small LUA scripts. LUA 

is an interpreted programming language. This means, that the code is not compiled 

(translated) into an executable, but is executed in a step-by-step fashion by an inter-

preter. In a typical process, scripts are read at run time and execute a sequence of 

commands for C++ functions and objects. When these C++ objects have been pre-

compiled, the loss of performance is typically within acceptable bounds. However, a 

severe problem occurs, if the member functions of the C++ object depend on LUA code 

themselves: Then, in each call of such function, the LUA interpreter is executed to per-

form some computation. Since calling the interpreter is slower and since addresses 

need to be resolved indirectly using pointers to LUA functions, this typically slows down 

the code by orders of magnitude and should be avoided by all means.  

On a system with a single CPU as execution unit, this is typically not a problem, as 

LUA code can be transformed in C++ code manually. In a JIT framework, this can be 

done automatically; the implemented approach supports C++, Cuda and OpenCL. As 

an additional trick, the assembly of the matrix and the defect occurs just-in-time. In the 

classical d3f framework, matrix and vector entries are stored in memory explicitly. In the 

new approach, they are only given implicitly by functions that are compiled just-in-time. 

Thus, the evaluation of a matrix entry the defect at a particular physical grid point cor-

responds to the call of a function.  

3.2.2.2 Structured grids 

The second component that is crucial for high performance is the use of structured 

(i.e., logically rectangular) grids. As all elements of the grid and all control volume for 

the finite volume method have essentially the same shape, this reduces the occurrence 

of branching and is suitable for the streaming architecture on accelerators. All entities 

such as elements, vertices, and matrix entries can be accessed by a triple (I,j,k) char-

acterizing its position. References to neighbours are made by incrementing and dec-

rementing the corresponding component accordingly. Since the size of matrices and 

vectors for each thread on the accelerator is known a-priori, there is also no need for 

dynamic memory allocation. 



63 

3.2.2.3 Numerical Results 

The test problem for Strategy 2 is a convection diffusion equation in steady state 

െ ᇞ ݑ ൅ ሿݑݒሾ̅׏ ൅ ,ݔሺݎ ݑሻݕ ൌ 0  in Ω ൌ ሺ0,1ሻଶ (3.1) 

with ݑሺݔ, ሻݕ ൌ
௬ሺଵି௬ሻ

ଶ
 for x ൌ 0, and ݑሺݔ, ሻݕ ൌ 0  in any other case on the boundary ߲Ω. 

Tab. 3.2 shows that the GPU implementation yields accelerations up to a factor of 40. 

However, since the accelerator features a smaller memory, the problem size is limited. 

Going beyond would require additional accelerators. Again the configuration is a CPU 

system with 2x8cores of the Intel Xeon with 32 GB RAM vs. a GPU system with 2 Tes-

la K 20 (2496 CUDA cores, 5GB memory each).  

Tab. 3.2 Wall clock times for the solution with of a convection diffusion problem 

using JITSG (CPU vs. GPU implementation respectively)  

1/h 256 512 1024 2048 4096 8192 16384

DoFs 66,049263,169 1,050,6254,198,40116,785,40967,125,249 268,468,225

TCPU [s] 0.103 0.331 1.203 4.842 19.344 77.710 317.179

TGPU [s] 0.016 0.023 0.047 0.138 0.488 1.899 ---

Acceleration 

factor 

6.44 14.39 25.6 35.09 39.64 40.92 ---

Lack of data (---) indicates that for the corresponding run, the machine ran out of 
memory. 
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 Multigrid solvers 3.3

In /REI 13/, /HEP 13/, /VOG 13/ a massively parallel geometric multigrid approach im-

plemented in the software framework UG4 has been presented. This approach has 

shown very good weak scaling properties up to hundred thousands of computing cores 

on largest computer clusters for the laplacian equation. Further details on the imple-

mentation and algorithmical aspects can be found in above references and in /REI 14/, 

/VOG 14/. 

This parallel geometric multigrid approach has been adapted for problems of density 

driven flow type. In the following the analysis of the parallel efficiency and speedup 

gained with this approach for haline flow problems is presented.  

For the benchmark problem the solver shows very good scaling properties on massive-

ly parallel systems.The benchmark problem focuses on the following haline flow prob-

lem. 

ە
ۖ
۔

ۖ
ۓ

,ሺ߱	݀݊݅ܨ ,ሻ݌ ݄ܿݑݏ ݐ݄ܽݐ
	

																						߲௧ሺ߶ߩሻ 	൅ ߘ ⋅ ሺࢗߩሻ ൌ ,ߗ	݊݅			,ݍ	
		߲௧ሺ߶߱ߩሻ ൅ ߘ ⋅ ሺࢗ߱ߩ െ ሻ߱ߘࡰߩ ൌ 				,ߗ	݊݅			,௦ݍ	

ࢗ	 ൌ 	െ	
ܓ
ߤ
	ሺ݌ߘ െ .ሻࢍߩ

 (3.2)

Tab. 3.3 Physical parameter for the scaling benchmark problem 

symbol quantity unit value 

߶ porosity െ  0.1 

D୫ mol. diffusion ݉ଶିݏଵ  3.565e-6 

۲ୢ୧ୱ୮ mech. dispersion ݉ଶିݏଵ  0 

permeability ݉ଶ ܓ  4.845e-13 

݉ gravity ܏ ଶିݏ  - 9.81 

݃݇ density ߩ ݉ିଷ 1000 ൅ 200 ߱  

݃݇ viscosity ߤ ݉ିଵ ଵିݏ 1e-3 

The physical parameters are chosen as listed in Tab. 2.1. 

The equations are considered on a 2m x 1m domain and the boundary conditions are 

chosen as shown in Fig. 2.6. 
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Fig. 3.1   Domain and boundary conditions for the parallel scaling problem 

As initial condition hydrostatic pressure is set and for the brine mass fraction a linear 

function from 1 at the top of the domain to 0 at the bottom is. Since the fluid with higher 

density is situated in the upper part of the model a downward flow is expected. 

In order to test the parallel multigrid solver the first time-step and the first newton linear-

ization is considered. The solver inverts the Jacobian matrix using multiplicative multi-

grid, V-cycle, ILU smoother, two pre- and postsmoothing steps and a LU factorization 

as base solver. The system of equations is solved until an absolute size of the residu-

um of 1e-9 is reached in the L2-norm. Thus, the number of iterations is not fixed a-

priori and constant iteration counts indicate a robustness of the solver. 

The results of the scaling study are shown in Tab. 3.4. Up to 131,072 computing cores 

are used. With every increase of the number of processes the solved problem has also 

been increased by one more grid refinement such that at the largest process number 

the problem has about 8.6 billion degrees of freedom.  

Focussing on the algorithmic aspect of the multigrid iteration the results are very satis-

factory since the number of iterations needed to achieve the prescribed accuracy re-

mains constant over the whole range of problem and process numbers. In addition the 

consumed wallclock time to solve the entire problem – including programm startup, grid 

loading and refinement, problem setup, matrix assembling and matrix inversion – is 

presented. The achieved parallel efficiency of about 70% is very satisfactory. 

In Tab. 3.5 a closer look at separate code phases and its performances is shown for 

the weak scaling study. Since the assembling process is inherently parallel a perfect 

parallel efficiency of 100% is observed as expected. The time and efficiency for the 

solver initialization and the solver execution show good results. A parallel efficiency of 

over 80 % at 131 thousand computing cores is achieved. The timings are graphically 
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shown in Fig. 3.3. In Fig. 3.2 the ideal speedup is compared to the gained speedup for 

the different execution phases. A close to optimal speedup is observed. 

Tab. 3.4 Weak scaling results 

Level: Grid refinements, DoFs: degrees of freedom, Iterations: number of 

multigrid iterations, Time: whole program run, Efficiency: parallel efficiency 

Processes Level DoFs Iterations Time [s] Efficiency [%] 

32 8 2’102’274 11 37.96 - 

128 9 8’398’850 11 38.15 99.5 

512 10 33’574’914 11 39.37 96.4 

2’048 11 134’258’690 11 40.18 94.5 

8’192 12 536’952’834 11 41.11 92.3 

32’768 13 2’147’647’490 10 48.45 78.3 

131’072 14 8’590’262’274 10 53.37 71.1 

Tab. 3.5 Weak scaling: Times and efficiency for code phases 

Processes Time [s] 

Assemble 

Eff. [%] 

Assemble 

Time [s] 

Setup 

Eff. [%] 

Setup 

Time [s] 

Solve 

Eff. [%]

Solve 

32 6.15 - 4.93 - 8.62 -

128 6.16 99.8 4.86 101.4 8.70 99.1

512 6.11 100.7 4.97 99.2 9.31 92.6

2’048 6.18 99.5 5.09 96.9 9.45 91.2

8’192 6.13 100.3 5.03 98.0 9.96 86.6

32’768 6.17 99.6 6.22 79.3 10.84 79.6

131’072 6.10 100.7 5.99 82.3 10.66 80.9
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Fig. 3.2   Measured speedup for the parallel scaling problem 

 

Fig. 3.3  Measured timings for the parallel scaling problem 
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 Solvers for nonlinear transient problems 3.4

The demand for fast solvers for this time-dependent, non-linear process is obvious: In 

each single time step, a non-linear equation must be solved. In a classic setup, this is 

typically achieved by some fixed-point iteration. Since a fully coupled Newton iteration 

is regarded being very demanding with respect to both discretization and solvers, often 

variants of Picard or Newton iterations are preferred. These are investigated in Section 

3.4.2. As an alternative to the fixed point iteration, one can consider linear implicit itera-

tions. These are discussed in Section 3.4.3. Parts of this section have also been pub-

lished in /NAE 15/. 

3.4.1 Preliminaries 

The governing equations in this section are the continuity equations for fluid and salt 

mass /BEA 91/, /HOL 98/: 

∂௧ሺΦρሻ ൅ ׏ ⋅ ሾρܙሿ ൌ ρQ (3.3) 

∂௧ሺΦρωሻ ൅ ׏ ⋅ ሾωρܙ െ ρ॰׏ωሿ ൌ ρQ (3.4) 

The system is closed by constitutive equations, e.g., for the Darcy velocity 

ܙ ൌ െ
ܭ
ߤ
ሺ׏p െ ρ܏ሻ 

(3.5) 

as well as for the permeability K, viscosity	ߤ etc. For the sake of simplicity boundary 

conditions are not considered explicitly. 

The goal is to introduce solvers for problems (3.3) and (3.4). These are based on fixed-

point iterations. In an abstract setting, a solution ݑ ൌ ሺ݌, ߱ሻ் has to be found for  

௣࣠ሺ݌, ߱ሻ ൌ 0, (3.6) 

ఠ࣠ሺ݌, ߱ሻ ൌ 0. (3.7) 
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For the purpose of illustration and motivation, e.g., /JOH 06/, considers ࣠ given by (3.6) 

and (3.7). Linearising at ݑ଴ ൌ ሺ݌଴, ߱଴ሻ் the Newton method determines a search direc-

tion ሺ݌ߜ,   ሻ் as the solution of߱ߜ

׏ ⋅ ൤െ
ܭ
ߤ
δp׏ ൅ ൨߱ߜ଴ᇱܙ ൌ െ࣠௣,଴ 

(3.8) 

∂௧ሺΦ߱ߜሻ ൅ ׏ ⋅ ൤െ߱଴
ܭ
଴ߤ
݌ߜ׏ ൅ ሺ߱଴ܙ଴ᇱ ൅ ߱ߜ଴ሻܙ െ ۲଴߱ߜ׏൨ ൌ െ࣠ఠ,଴ 

(3.9) 

Here, all quantities with the subscript 0 are evaluated at the linearization point ݑ଴. In 

particular 

଴:ൌܙ െ
ܭ
ߤ
ሺ݌׏଴ െ :଴ᇱܙ				,ሻ܏଴ߩ ൌ

ܭ
ߤ
,܏଴′ߩ ଴′ߩ ൌ  ሺ߱଴ሻ′ߩ

(3.10) 

are the Darcy velocity, its derivative w.r.t. ߱, and the derivative of ߩ in the linearization 

point respectively. For the sake of simplicity, derivatives of the dispersion tensor ۲଴ 

and the viscosity ߤ଴ have been neglected. 

Eqs. (3.8) and (3.9) allow deducing the following facts for this system: First, the prob-

lem is elliptic w.r.t. ݌ and the parabolic w.r.t. ߱. Second, if ߱଴ ൌ const, the variables de-

couple, since the dependence on ݌ߜ in (3.9) may be eliminated by means of (3.8). In 

this case, one can first solve for ߱ߜ and then, in a next step for ݌ߜ. Note that although 

this assumption is unrealistic, it may be fulfilled in parts of the computational domain, 

e.g. /NAE 15/. 

3.4.2 Nonlinear Solvers I: Classic Newton-type schemes  

The aforementioned system is discretized in space and time. For times ݐ௡ let ܝ௛
ሺ௡ሻ ൌ

ሺܘ௛
ሺ௡ሻ, ߱௛

ሺ௡ሻሻ் denote the vector with coefficients w.r.t. the space discretisation. Given 

௛ܝ
ሺ௡ሻ assume that the step ݐ௡ → :௡ାଵݐ ൌ ௡ݐ ൅ ߬ is performed using an implicit Euler 

method. This yields a non-linear equation for ܝ௛
ሺ௡ାଵሻ at time ݐ௡ାଵ:  

۴௛ሺܝ௛
ሺ௡ାଵሻሻ ൌ ௛ܝ௛ሺۺ

ሺ௡ାଵሻሻ ൅ ۳௛ሺܝ௛
ሺ௡ሻሻ ൌ 0 (3.11) 
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The term ۳௛ሺܝ௛
ሺ௡ሻሻ summarizes all explicit dependencies on the solution ܝ௛

ሺ௡ሻ at the old 

time, whereas ۺ௛ሺܝ௛
ሺ௡ାଵሻሻ summarizes the implicit, non-linear dependencies on the so-

lution ܝ௛
ሺ௡ାଵሻ. As a result of the time discretisation may be written ۺ௛ ൌ ௛ۻ ൅  .௛ۯ߬

Rewriting (3.11) componentwise yields   

۴௣,௛ሺܘ௛
ሺ௡ାଵሻ, ߱௛

ሺ௡ାଵሻሻ ൌ 0, (3.12) 

۴௣,௛ሺܘ௛
ሺ௡ାଵሻ, ߱௛

ሺ௡ାଵሻሻ ൌ 0. (3.13) 

This must be solved by some fixed-point iteration. Various strategies exist; in this 

study, three different iterative approaches are focussed: 

 Early works, e.g., /PUT 95/, highlighted the benefits of a partial Newton method. 

These approximate the Jacobian and consider only the self couplings for each un-

known component. This strategy is also employed, e.g., in FEFLOW /DIE 98/, 

/DIE 09/. These works describe a predictor-corrector with an explicit predictor and 

an implicit corrector. The scheme is also suitable for thermohaline flow and features 

a time stepping strategy and error estimates. 

 A related class of solvers are iterative coupling strategies. These provide a natural 

way to couple different modules and can be considered as variants of operator split-

ting technique. This class has widely been applied, e.g., to multiphase flow 

/LAC 01/, /LU 09/, or geomechanics /KIM 11a/, /KIM 11b/, /MIK 13/, /MIK 14/. Based 

on a Picard iteration a similar (partially explicit) strategy is pursued in MODFLOW 

/LAN 06/, /LAN 08/. 

 However, fully coupled Newton iterations have also been applied successfully to 

both density driven /JOH 02/, /LAN 05/ and thermohaline flow /GRI 10/ based on the 

݀ଷ݂ software /FEI 99/, /JOH 04/. 

To look for the solution at a fixed time ݐ௡ାଵ, the time superscript index ݊ ൅ 1 is dropped. 

Instead the iteration index is introduced as a subscript , i.e., ܝ௛,௞ ൌ ሺܘ௛,௞, ߱௛,௞ሻ். 
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3.4.2.1 Full coupling: Newton method 

The standard approach is to employ a Newton method to the fully coupled system. De-

fining  

௛,௞ାଵܝ ൌ ௛,௞ܝ ൅  ௛ (3.14)ܝߜ

The objective is to find a root of the linearised defect equation  

۴௛ሺܝ௛,௞ାଵሻ ൎ ۴௛ሺܝ௛,௞ሻ ൅ ௛,௞ܝߜ௛,௞ሻܝ௛ሺܬ ൌ 0, i.e.,  

ܓ,ܐܝߜ௛ܬ ൌ ቆ
௛ܬ
௣௣ ௛ܬ

௣௪

௛ܬ
௪௣ ௛ܬ

௪௪ቇ ൬
௛ܘߜ
௛߱ߜ

൰ ൌ െ۴௛ሺܝ௛,௞ሻ. 
(3.15) 

Here, ۴௛ሺܝ௛,௞ሻ from (3.11) is the nonlinear defect of the current iterate, and ܬ௛ ൌ

 is the resulting correction and search direction ܐܝߜ ௛,௞ሻ is the Jacobian. The vectorܝ௛ሺܬ

respectively. Typically, a line search strategy is employed for a globalisation of the 

method. 

3.4.2.2 Approximate Coupling: Partial Newton 

Modifying (3.15) slightly one can approximate ܬ௛ by its diagonal /PUT 95/, /DIE 98/:  

ܓ,ܐܝߜሚ௛ܬ ൌ ቆ
௛ܬ
௣௣ 0
0 ௛ܬ

௪௪ቇ ൬
௛ܘߜ
௛߱ߜ

൰ ൌ െ۴௛ሺܝ௛,௞ሻ. 
(3.16)

This strategy is also referred to as partial Newton method /PUT 95/, /DIE 09/. Note that 

solving (3.16) is much easier than solving the fully coupled system (3.15): Since the 

matrices ܬ௛
௣௣ and ܬ௛

௣௣ correspond to discretisations of a Poisson-type problem and con-

vection-diffusion equation respectively, good preconditioners are available. As a down-

side of this advantage, the method will, in general, only provide linear convergence. 

One should stress that (3.16) can be viewed as a single Newton step applied to the 

system   

۴௣,௛ሺܘ௞ାଵ, ߱௞ሻ ൌ 0,  (3.17) 

۴ఠ,௛ሺܘ௞, ߱௞ାଵሻ ൌ 0.  (3.18) 
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This corresponds to an inexact nonlinear Jacobi iteration, where a potential line-search 

strategy provides a suitable damping factor. 

3.4.2.3 Iterative Coupling: Nonlinear Gauss-Seidel 

 As a last alternative, a strategy is studied also referred to as iterative coupling in the 

context of different equations /LAC 01/, /LU 09/, /KIM 11a/, /MIK 13/. Starting from 

(3.1.2), it is stated as a non-linear Gauss-Seidel type iteration /RHE 98/ here:   

۴ఠ,௛ሺܘ௞, ߱௞ାଵሻ ൌ 0, (3.19) 

۴௣,௛ሺܘ௞ାଵ, ߱௞ାଵሻ ൌ 0. (3.20) 

Again, both equations are treated and solved independently. In contrast to (3.1.2), each 

substep employs the latest update that is available. Following /ACK 04/, it is solved for 

߱ first and then for ݌. In this ߱,  ordering, a new distribution of salt is firstly computed-݌

as a result of an unmodified pressure distribution. Then, in the next step, a suitable 

pressure is determined. This can be viewed as a projection of the solution into the 

space where the conservation of fluid mass holds. 

Like the partial Newton method from the previous subsection, this approach will at best 

provide linear convergence. The method is in particular attractive, when flow and 

transport equation are discretised and solved in different code modules. By adding an 

additional outer loop, the problem can be solved without any changes to the algorithmic 

design. 

3.4.3 Nonlinear Solvers II: Linear Implicit schemes 

The algorithmic description in Section 3.4.2 followed the classical approach solving a 

nonlinear problem in each time step. In the following, it shall be suggested an alterna-

tive that comes from the theory of ordinary differential equations /DEU 90/, /DEU 02/.  

Its major advantages are that (i) it requires to solve a single system of equations only, 

and (ii) can elegantly be combined with error estimates and adaptive time-stepping. 
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The first step is to reformulate (3.3), (3.4): For ݑ ൌ ሺω, pሻ, let  

࣫ሺuሻ ≝ ൬
Φρሺωሻ
Φρω

൰ , ࣠ሺuሻ ≝ ൬
ωρQ െ ׏ ⋅ ሾωρܙ െ ρ॰׏ωሿ

ρQ െ ׏ ⋅ ሾρܙሿ
൰ 

(3.21) 

Then (3.3), (3.4) may be restated as  

߲࣫ሺݑሻ
ݐ߲

ൌ ࣠ሺuሻ 
(3.22) 

The next step is to bring this into a Cauchy problem in quasi-linear form. Assuming that 

ρ ൌ ρሺωሻ is differentiable the left hand side can be evaluated component-wise: 

∂௧ሺΦρሻ ൌ Φ	
∂ρ
∂ω

∂ω
∂t

 
(3.23) 

∂௧ሺΦρωሻ ൌ 	Φ ൬ϱ ൅ 	߱
∂ρ
∂ω

൰
∂ω
∂t

 
(3.24 

or equivalently: 

	
߲࣫ሺݑሻ
ݐ߲

ൌ ࣜሺݑሻ
ݑ߲
ݐ߲
	≝ ൮

Φ൬ϱሺ߱ሻ ൅ 	߱
∂ρ
∂ω

൰ 0

Φ
∂ρ
∂ω

0
൲൮

∂ω
∂t
∂p
∂t

൲ 

(3.25) 

This stresses that (3.3), (3.4) is in essence a differential-algebraic equation (DAE): The 

continuity of the salt mass is described as a transient process (w.r.t. w), while the con-

tinuity of the fluid mass is a static process w.r.t. p.  

The linear-implicit Euler is now defined as follows: For an arbitrary linear operator	ࣤ, 

one may subtract the product ࣤu on both sides:  

ࣜሺuሻ
ݑ߲
ݐ߲

െ ࣤu ൌ ࣠ሺuሻ െ ࣤu 
(3.26) 
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The purpose of this is to remove stiff components from the right hand side. Evaluating 

the modified right hand side at u௧ yields the linear-implicit Euler: 

ሺࣜሺu௧ሻ െ τࣤሻu௧ାఛ ൌ ߬	࣠ሺݑ௧ሻ ൅ ሺࣜሺu௧ሻ െ ߬ ࣤሻu௧ (3.27) 

As pointed out in /DEU 90/, one suitable choice for J  

ࣤ ൌ
∂
∂u

൬࣠ሺuሻ െ ࣜሺݑሻ
ݑ߲
ݐ߲
൰
|௨ୀ௨బ

 
(3.28) 

or a computationally feasible approximation thereof. 

For practical purposes, one can use 

ሺࣜሺu௧ሻ െ ߬ࣤሻ ൌ
∂
∂u

ሺτ	࣠ሺuሻ െ ࣫ሺuሻ ൅ ࣫ሺu௧ሻሻ|௨ୀ௨೟ 
(3.29) 

i.e., the linearization in the previous point. 

3.4.4 Numerical Experiments 

Section 3.4.2 introduced three different solvers. These were compared and evaluated 

with respect to performance. As a benchmark the Elder problem is used. This features 

a highly dynamic velocity field in the beginning, which then stabilizes for larger times. 

Since effects of the linear solver should be avoided, a coarse spatial mesh with 4420 

degrees of freedom (1024 elements) is used. The tests are conducted for the full non-

linear equations (3.3)-(3.5) using ug4 /VOG 13/. 

The first test investigates the convergence of the two decoupling nonlinear solvers. In 

the first time step, the partial Newton and the iterative coupling achieve a reduction of 

the residual by 0.5 ൈ 10ି଺ in 26 and 21 steps respectively.  
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Fig. 3.4  Defect reduction of Partial Newton (diamond) and Iterative Coupling  

(triangle) for computing t=τ=0.025a in the first time step 

Fig. 3.4 visualizes details about the reduction of the nonlinear defects  

݀௣,௞
௡௟ : ൌ∥ ۴௣,௛,௞ ∥ଶ, ݀ఠ,௞

௡௟ ൌ∥ ۴௣,௛,௞ ∥ଶ (3.30)

of the ݇-th iterate. The vectors ۴ఈ,௛,௞ are defined by (3.6)-(3.7) for both components 

ߙ ∈ ሼ݌, ߱ሽ.  

Both methods converge linearly with similar rates of convergence. However, it is ob-

served that ݀௣,௞
௡௟  and ݀ఠ,௞

௡௟  behave differently: While they resemble each other in the or-

der of magnitude for the iterative coupling, they differ substantially for the partial New-

ton. In the latter case, an oscillating behavior can be observed. 

Fig. 3.5 provides a history of the nonlinear iteration steps required for each single time 

step over a complete simulation run of 5 years. As expected, the full Newton method 

performs best. Large time steps are permitted (߬ ൌ 0.1ܽ), at the same time, only a con-

stant number of 4 iterations per time step, i.e., a total of 80 iterations is required.  

Both decoupling iterations require a smaller time step ߬ ൌ 0.025ܽ. In the comparison for 

a full simulation run, however, they behave differently: The partial Newton requires 25-
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30 iterations per time step, resulting in a total of 6,384 iterations. Although the iterative 

coupling also starts with ~ 25 iterations in the first steps, the number of required itera-

tions gradually decreases to 8-10 iterations per time step. This leads to a total of 1,925 

iterations. 

 

Fig. 3.5  Iterations per time step for a full simulation run:  

Newton (time step ߬ ൌ 0.1ܽ), Partial Newton ( ߬ ൌ 0.025ܽ), and Iterative 

Coupling (߬ ൌ 0.025ܽ) 

The previous analysis was based on fixed step sizes. As a next step, the three algo-

rithms are tested with an adaptive time stepping strategy. The problem was the fully 

non-linear Elder problem with three levels of refinement. Coincidence of the solutions 

was tested with the Euclidean norm for the salt mass fraction. The tolerance for guiding 

the time step was set to 0.01. If the solution process failed, the time step was bisected. 

The error was controlled by an extrapolation technique /DEU 90/, /DEU 02/. Results 

are shown in Fig. 3.6. The result is the same as for the previous test: The Full Newton 

outperforms the two other approaches from Section 3.4.2.  

Finally, this can also be employed for the linear-implicit schemes presented in Section 

3.4.3. As shown in Fig. 3.7, the method allows for time steps that are similar to the Full 

Newton. However, since only a single linear system is solved per step, the total number 

of iterations is reduced significantly by a factor of 4. 
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Fig. 3.6  Time steps within an adaptive time-stepping strategy for the algorithms 

from Section 3.4.2: Partial Newton, Iterative Coupling, and Full Newton 

 

Fig. 3.7  Time steps within an adaptive time-stepping strategy:  

Full Newton (Section 3.4.2) vs. Linear Implicit scheme (Section 3.4.3) 
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3.4.5 Conclusion 

This chapter compared different types of non-linear solvers. The first class of solvers 

are fixed point iterations introduced in Section 3.4.2. According to this data, the iterative 

coupling should be preferred over a partial Newton. In particular, if the alterations in the 

velocity field are small, i.e., the corresponding initial guess for the nonlinear scheme is 

sufficiently good, the Gauss-Seidel-style arrangement of the iterative coupling seems to 

be more appropriate. However, as expected, the Full Newton method outperforms both 

previously mentioned methods. The reason is that decoupling iterations produce iter-

ates that oscillate around the fixed point: For the iterative coupling, for example, an er-

roneous velocity in the transport equation (3.19) tends to overshoot the concentration, 

which is then corrected in the next step (3.20) by the flow equation. Similar results have 

previously been reported, e.g., for fluid structure interactions /HEI 04/, /MAT 06/. 

A potent alternative to Newton-type fixed point iterations are linear-implicit schemes in-

troduced in Section 3.4.3. These schemes allow to linearize the problem only once, 

and thus, when compared to the Full Newton, the number of linear iterations is reduced 

considerably. Moreover, since the error is controlled for the solution (and not for the re-

sidual, as it is typically done for Newton approaches), this can elegantly be combined 

with adaptivity. Although this study focused on adaptivity of the time step, the same al-

so holds true for the error of the spatial discretisation. 
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 Higher Dimensional Problems 3.5

3.5.1 Introduction: Transport equations for probability density 

In the traditional formulation of transport problems in porous media, the concentration 

is regarded as completely determined by the convective velocity, the molecular diffu-

sion as well as by initial and boundary conditions. However, the stochastic structure of 

these media motivates a probabilistic consideration of the distribution of the concentra-

tion (see chapter 4): At every point ࢞ ∈ ષ ⊂ Թௗ, concentrations ܿଵ,… , ܿே of the dis-

solved substances are described by a probability density function ݂:Թା ൈ ષ ൈ Թା
ே →

Թା, so that ݂ሺݐ, ,࢞ ܿଵ, … , ܿேሻ is the probability that at time ݐ and point ࢞, the concentra-

tions attain values ܿଵ, … , ܿே. For simplicity, only one concentration ܿ (i.e. ܰ ൌ 1) is con-

sidered. Depending on the mixing model, the following law can be stated for the evolu-

tion of ݂:  

߲௧݂ ൅ ࢞׏ ⋅ ሺ݂࢛ሻ െ ࢞׏ ⋅ ሺ݂࢞׏ܦሻ ൌ ௖߲ሾߗ௠ ⋅ ሺܿ െ 〈ܿ〉ሻ ⋅ ݂ሿ, (3.31) 

where ࢛ is the convective velocity, ܦ is the diffusion coefficient (without the dispersion 

tensor), 〈ܿ〉 is the mean concentration at given time ݐ and point ࢞, 

〈ܿ〉ሺݐ, ሻ࢞ ൌ න ݂ሺݐ, ,࢞ ܿሻ ⋅ ܿ	dc
ାஶ

଴
, (3.32) 

and the constant parameter ߗ௠ of the mixing model is given by 

௠ߗ ൌ
୬ୱୣܦఆܥ
ଶߣ

, (3.33) 

-the correlation length of the permea ߣ ,୬ୱ being the ensemble dispersion coefficientୣܦ

bility field and ܥఆ a scaling factor. 

Equation (3.31) is a convection-diffusion PDE. Nevertheless it has some special fea-

tures. First of all, it is formulated in a high-dimensional domain ષ ൈ Թା. Taking into ac-

count, that ષ is 3-dimensional, the dimensionality of the whole problem is at least 4. (It 

can be greater if several transported concentrations are considered). This requires a 

special discretization approach since the usual triangulations of the whole domain be-



80 

come inefficient due to a large number of degrees of freedom. Therefore, a sparse grid 

method described in Section 3.5.2 is used. 

Furthermore, one should take into account the non-local coupling due to the presence 

of the mean concentration 〈ܿ〉 in (3.31), cf. (3.32). This term is evaluated using the data 

from the old time step, cf. Section 3.5.2. 

Problem (3.31) must be closed by a specification of boundary and initial conditions. As 

(3.31) has convection as well as diffusion terms in the geometric space, boundary con-

ditions should be imposed on ݂ for all ࢞ ∈ -A particular example for this is the Di .ࢹ߲

richlet boundary condition 

݂ሺݐ, ,࢞ ܿሻ ൌ ஽݂ሺݐ, ,࢞ ܿሻ,								࢞ ∈ ߲ષ. (3.34) 

In contrast to (3.31) ,࢞ is completely hyperbolic in ܿ. The direction of the corresponding 

component of the velocity depends on the sign of the factor ሺܿ െ 〈ܿ〉ሻ. Due to this factor, 

the characteristics run out of the domain, so that no boundary conditions at ܿ ൌ 0 and 

ܿ ൌ ൅∞ are needed. Therefore, ߲ષ ൈ Թା is the only part of the high-dimensional do-

main where the boundary conditions must be set. 

The initial conditions must be set on the whole ષ ൈ Թା. Note that typically, only the de-

pendence of the concentration on ࢞ is known for the initial and the Dirichlet boundary 

conditions. To extend this dependence into the ܿ-direction, it is multiplied by some 

standard distribution, for example, by the Gaussian pulse. 

In the numerical methods, the interval Թା for ܿ in the definition of ષ ൈ Թା and in (3.32) 

is replaced by some finite interval ሾ0, ܿ୫ୟ୶ሿ. This restriction influences the choice of 

possible initial and boundary distributions for ܿ, or introduces errors in 〈ܿ〉, but is in ac-

cordance with the presence of physical bounds for the concentration. 

3.5.2 Sparse grids for discretization of high-dimensional PDEs 

A discretization replaces the domain ષ ൈԹା
ே (the space of the geometrical and proba-

bility dimensions) by a finite grid. At elements of the grid (typically at vertices), degrees 

of freedom describing possible approximations of ݂ are placed. The PDEs (3.31) are 

replaced by a system of algebraic equations for these degrees of freedom, and this 
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system is solved. The obtained numerical solution has an error tending to zero, as the 

grid is refined. Therefore, possibly finer grids should be used. However the grids, grid 

functions and grid operators have to be represented in the computer memory and this 

restricts their maximum size. Furthermore the numerical complexity of the algebraic 

solvers grows, as the grid is refined, in particular due to reduction of the efficiency of 

the algorithms. This leads to essential problems in the application of the numerical 

methods to the high-dimensional problems because the number of degrees of freedom 

is increasing rapidly with grid refinement. For example, as the total dimensionality of 

ષ෩ ≔ ષ ൈ Թା
ே is ሚ݀ ൌ ݀ ൅ ܰ, the number of grid points for a quasi-regular triangulation is 

proportional to ݄ିௗ෨ , where ݄ is the grid length. This results in extremely large discre-

tized systems for an appropriate accuracy of the numerical solution. 

A principal reduction of the necessary number of degrees of freedom can be achieved 

by application of the so-called sparse grids, cf. /ZEN 91/, /GSZ 92/, /REI 04/, /REI 07/. 

This approach exists in two forms: 

 The sparse grid can be represented by a set of vertices located at special posi-

tions in the domain. A suitable finite-difference discretization is used for the PDE. 

 A set of specially refined Cartesian grids is considered, and the PDEs are discre-

tized separately on every of them. (The sparse grid in the sense of the previous 

item is the union of vertices of all these grids.) The numerical solutions obtained 

on these grids are then summarized to an approximation of the analytical solu-

tion. This method is said to be the combination technique for the sparse grid. 

Whereas the first approach needs quite specific and relatively inefficient data struc-

tures, the combination technique is very flexible and can be used for a wide class of 

problems. This approach has been used for the discretization of (3.31). 

To introduce the method, the following sets of grids are defined recursively: 

଴ consists of only one initially specified grid covering ષ෩ࡳ .1 . This is the coarsest grid 

that can contain for example only boundary grid nodes. 

௟ by refining every ષ෩௛ࡳ ௟ାଵ is obtained fromࡳ .2 ∈  .௟ separately in every dimensionࡳ
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Fig. 3.8  Grids in the combination technique approach for the sparse grids. Only the 

blue and the red sets (ࡳ૛ and ࡳ૜) are used in the computation on grid level 

2, cf. (3.35) 

This construction is illustrated in Fig. 3.8 for a 2-dimensional square domain and ݈ ≤ 3. 

For a computation on grid level ݈, only grids from ࡳ௟,… ,  ௟ାௗିଵ are used. The totalࡳ

number of grid nodes on all these grids is ܱ൫݄ିଵ|logଶ ݄ିଵ|ௗ
෨ିଵ൯, i.e. essentially less then 

that for the regularly refined grid. 

On every grid ષ෩௛ ∈ ௟ࡳ ∪ …∪  ௟ାௗିଵ, Equation (3.31) and the boundary conditions areࡳ

discretized by a finite-difference scheme. In particular, the full-upwind scheme is used 

for the convective terms. The discretization is implicit in time. This results in a large 

sparse linear system, which is solved by the linear iteration preconditioned with the V-

cycle of the geometric multigrid method with the Gauss-Seidel smoothers. Although 

most of the grids in ࡳ௟ ∪ …∪  ௟ାௗିଵ are strongly anisotropic, this solver converged onlyࡳ

in several iterations.  

Denote the solution computed on the grid ષ෩௛ in time step ݇ by ષ݂෩೓
௞ . In terms of the mul-

tilinear basis functions, this function is defined on the whole domain ષ෩ . Then the 

sparse-grid approximation of the analytical solution is 
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௛݂
௞ ൌ ෍ 	 ෍ ܽષ෩೓

௟ା௜
ષ݂෩೓
௞

ષ෩೓∈ࡳ೗శ೔

ௗିଵ

௜ୀ଴

, (3.35) 

where ܽષ෩೓
௟  are scalar coefficients depending on the grid sizes of ષ෩௛, cf. /REI 04/. Func-

tion ௛݂
௞ converges to the analytical solution as ݄ → 0. For (3.31) the discretization error 

is ܱሺ݄ሻ. 

The time discretization is based on the implicit Euler method. Note that the time steps 

are computed for every ષ෩௛ ∈ ௟ࡳ ∪ …∪  ௟ାௗିଵ separately (with the same time stepࡳ

length), so that ષ݂෩೓
௞  depends only on ષ݂෩೓

௞ିଵ, but not on the solutions on the other grids. 

This concerns in particular the term with 〈ܿ〉 in (3.31): For the spatial discretization in 

time step ݇ on grid ષ෩௛, this term is computed from ષ݂෩೓
௞ିଵ: 

〈ܿ〉ષ෩೓
௞ ሺ࢞ሻ ൌ න ષ݂෩೓

௞ିଵሺ࢞, ܿሻ ⋅ ܿ	݀ܿ
ାஶ

଴
, (3.36) 

(cf. (3.32)) and this 〈ܿ〉ષ෩೓
௞  is used for the computation of ષ݂෩೓

௞ . The formula (3.35) is there-

fore used only for the output of the numerical solution. 

Parallelization of the computations is based on the distribution of the grids from 

௟ࡳ ∪ …∪ -௟ାௗିଵ between processors. Communication is only necessary for the compuࡳ

tation of ௛݂
௞ by (3.35) for example after every time step. 

3.5.3 Numerical tests 

As an example, results of simple numerical tests are presented. A rectangular geomet-

ric domain ષ ൌ ሾ0,4ሿ ൈ ሾ0,2ሿ ൈ ሾ0,2ሿ ሾ݉ଷሿ and segment ሾ0,1ሿ ሾെሿ for the normalized con-

centration are taken, so that (3.31) is considered on the 4-dimensional domain 

ષ෩ ൌ ሾ0,4ሿ ൈ ሾ0,2ሿ ൈ ሾ0,2ሿ ൈ ሾ0,1ሿ.  

Furthermore, the Dirichlet-0 boundary conditions are imposed on ߲ષ. Specification of 

the initial conditions is based on the distribution of concentration 
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ܿୟ୴ୣ,଴ሺ࢞ሻ ൌ ቐܿ଴ ⋅ ቆ
ܴଶ െ ࢞‖ െ ଴‖ଶ࢞

ଶ

ܴଶ
ቇ
ଷ

, ࢞‖ െ ‖଴࢞ ൒ ܴ,

0, ࢞‖ െ ‖଴࢞ ൒ ܴ

 (3.37) 

around the injection point ࢞଴ in ષ: At every geometric point, the initial concentration is 

defined as 

݂ሺ0, ,࢞ ܿሻ ൌ
ܿୟ୴ୣ,଴ሺ࢞ሻ

ߨ2√ߪ
⋅ expቌ

ቀܿ െ ܿୟ୴ୣ,଴ሺ࢞ሻቁ
ଶ

2^ߪ
ቍ. (3.38) 

Values of the coefficients for (3.31), (3.33), (3.37) and (3.38) are listed in Tab. 3.6. 

Tab. 3.6 Coefficients for the numerical test 

Parameter Value Unit 

ሺ1.1574 ࢛ ⋅ 10ିହ, 0, 0ሻ  ሾ݉ ⋅  ଵሿିݏ

1.1574 ܦ ⋅ 10ି଻ ሾ݉ଶ ⋅  ଵሿିݏ

 ఆ 3 ሾെሿܥ

୬ୱ 1.1574ୣܦ ⋅ 10ି଻ ሾ݉ଶ ⋅  ଵሿିݏ

 ሾ݉ሿ 1 ߣ

,଴ ሺ1࢞ 1, 1ሻ  ሾ݉ሿ 

ܴ 0.5 ሾ݉ሿ 

ܿ଴ 0.5 ሾെሿ 

 ሾെሿ 0.1 ߪ
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Fig. 3.9  Isosurface of the averaged concentration  

(0.25 of the averaged maximum concentration) in the test computation: Ini-

tial condition (above) and solution at time step 64 (below) 

The computation has been performed on the sparse grid level 5 with the time step 

଴ consisted of the Cartesian 5ࡳ The set .ݏ 1000 ൈ 5 ൈ 5 ൈ 5-grid. Fig. 3.9 presents the 

evolution of the averaged concentration 〈ܿ〉 in this computation. 

In the second test, a stochastic velocity field is considered, and the numerical solution 

of the problem is compared with the analytical one. For the comparison, the averaged 

concentration 〈ܿ〉 (for the numerical solution: computed by combination technique on 

the regular 33 ൈ 33 ൈ 33-grid) was integrated over the ݖݕ-planes for every ݔ. These dis-

tributions in a neighbourhood of the injection point ݔ଴ are presented in Fig. 3.8. The 

computations have been performed for same parameters of the transport problem 

(3.31), as above (cf. Tab. 3.6), except for the velocity ࢛. The mean value of the sto-
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chastic velocity field was 1.1574 ⋅ 10ିହ	݉ ⋅  ଵ (i.e. 1 ݉ a day), the correlation lengthିݏ

1	݉, and the variance 0.005. 

 

Fig. 3.10 Comparison of numerical and analytical solution in the experiment with the 

stochastic velocity field. Integrals of the mean concentration over the ࢠ࢟-

planes in ષ are plotted along the ࢟-axis of the graph. The distance from the 

injection point (the ࢞-axis of the graph) is measured in the units of the cor-

relation length of the stochastic velocity
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4 Modelling uncertainty in salt transport 

 Motivation  4.1

Transport of dissolved substances is determined by groundwater flow, which in turn is 

strongly influenced by the properties of the formation. Formation properties like the hy-

draulic conductivity are generally highly heterogeneous on many different scales. 

These heterogeneities range from the order of magnitude of individual grains to large 

geologic structures like facies, fractures and sediment layers. 

Conversely, the heterogeneities of the formation make the transport of the contami-

nants also highly heterogeneous. Contaminated water volume elements which travel 

very closely together can be separated and follow distinct and separated flow paths. An 

enhanced spreading of the plume is the result of it. Thus, in order to predict the 

transport of contaminants deterministically, it is necessary to know all aquifer properties 

influencing the transport everywhere. Monitoring the complete formation down to the 

smallest scales on which heterogeneities appear is neither feasible nor possible. If only 

partial knowledge of the formation can be retrieved, the formation properties and flow 

and transport parameters remain partially unknown. This uncertainty of formation prop-

erties and model parameters can be taken into account by using a stochastic represen-

tation of the formation. By applying a stochastic framework, hydraulic properties be-

come stochastic and in turn the contaminant concentration as well. 

The mean transport behavior can be calculated by taking the ensemble average of the 

heterogeneous transport equation. The resulting equation is a transport equation for 

the ensemble averaged concentration with the following characteristics: The highly 

heterogeneous and spatially fluctuating groundwater velocity is replaced by an ensem-

ble averaged velocity field and the effect of the fluctuating velocity on the transport is 

modelled by an enhanced dispersion called macro dispersion or ensemble dispersion. 

The limitation of this approach is that the ensemble averaged concentration first of all 

describes the mean plume behavior, sometimes also the most probable behavior, but 

not necessarily the behavior of a specific plume in a single formation (see Fig. 4.1). On-

ly if the plume has sampled a representative part of the formation it becomes ergodic, 

and the individual transport behavior can be modelled by the ensemble average behav-

ior. 
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Deviations from the mean behavior can be quantified by calculating the concentration 

variance. It is not only transported by advection and dispersion, like the mean concen-

tration, but is also generated by mean concentration gradients and destroyed by dissi-

pation processes. The latter need a closure model in order to limit the computational ef-

fort. There exist different suggestions to close the equation of the concentration 

variance. Unfortunately, these closure models were developed in turbulence theory and 

have not been fully adapted yet to flows in porous media. Here it is supposed that 

adapting the closure model is necessary since the mixing behavior in turbulent flows 

and in porous media flow is very different. The most important difference is the speed 

at which heterogeneity induced mixing takes place. In turbulent flows it is very fast due 

to chaotic flow behavior and the large scale dispersion coefficients can be approximat-

ed by their asymptotic limits and thus by a constant. In porous media flows, flow is not 

chaotic and heterogeneity impacted mixing takes much longer times to develop. 

/DEN 00/. This effective mixing or dispersion is small at early times and increase only 

slowly with time. Therefore, early time concentration gradients are steep and remain 

steep for a prolonged time, which in turn prevents smoothing variable concentrations 

and preserves concentration uncertainty. 

In addition, the closure problem becomes even more difficult for reactive transport, 

since the concentration gradients and the reactions both dominantly influence the be-

havior of the reactive contaminants. Often, the reaction terms are non-linear and are 

especially difficult to model at steep concentration gradients. 

If the predictions made by a contaminant transport model are to be used for risk analy-

sis, even more information than the mean concentration and the variance is needed. In 

risk analysis, the quantity of interest is the exceedance probability, which can only be 

calculated if the complete one-point probability density function of the concentration is 

known. The exceedance probability is defined as 

ProbሺR ൐ rୡ୰୧୲ሻ ൌ 1 െ 	Fሺrୡ୰୧୲ሻ. (4.1)

with F being the cumulative distribution function and Fሺrୡ୰୧୲ሻ being a threshold, regulat-

ed for example by an environmental agency /AND 96/. The concentration variance can 

only be used as an upper limit to the exceedance probability. Therefore, a second ap-

proach – the PDF approach- is very promising. It yields an equation for the whole pdf of 

the concentration.  
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Fig. 4.1  A measure is needed to quantify how good the mean concentration  

approximates the measured concentration 

In this project, the transport equations for the mean concentration and the concentra-

tion variance have been derived and parametrized. The parameters of the equation for 

the mean concentration are given by the mean velocity and the ensemble dispersion 

coefficients which have been explicitly evaluated already in previous projects, see e. g. 

/SCH 12/ and /SCH 13/. The equation for the concentration variance needs a new clo-

sure for the mixing model adapted to porous media flow. Making use of these two 

equations and the new closure model, an approximation for transport equation for the 

whole concentration PDF could be derived, parametrized and finally verified by numeri-

cal simulations. Our new closure model enables to establish transport equations for the 

whole pdf of non-reactive and reactive transport. The new pdf transport equations are 

defined in a higher dimensional space but with the new numerical methods for higher 

dimensional problems developed as presented in Section 3.5 it is now possible to nu-

merically solve the pdf equation very efficiently. 
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 Methods 4.2

The transport of a solute in groundwater can be described by 

∂C
∂t
൅ ܄ ∙ C׏ ൌ D∆C, 

(4.2)

where V is a random velocity field and D the dispersion coefficient. Important statistical 

quantities of a probability distribution PDF are its moments, like e.g. mean and vari-

ance. The mean concentration and its variance are defined by 

,ܠሺ〈ܥ〉 tሻ ≔ නcPሺc; ,ܠ	 tሻ dc (4.3)

σୡଶሺܠ, tሻ ≔ නcଶPሺc; ,ܠ	 tሻ dc െ ,ܠଶሺ〈ܥ〉 tሻ.  (4.4)

Thus, if the parameters of the transport equation are known the transport of the PDF 

can be derived. 

4.2.1 PDF transport equations 

The derivation is shown in detail for example in /SUC 15/. Here only the most important 

steps are sketched. The PDF is defined as the ensemble average of the so-called fine-

grained PDF, which is a delta function 

Pሺc; ,ܠ	 tሻ ≔ 〈δሺCሺܠ, tሻ െ cሻ〉. (4.5)

The PDF evolution equation can be derived by taking the time derivative of (4.5) which 

can be evaluated using the following relation  

,ܠδሺCሺ׏ tሻ െ cሻ ൌ െ׏Cሺܠ, tሻ
∂
∂c
δሺCሺܠ, tሻ െ cሻ. 

(4.6)

Applying this relation to the PDF (4.5) and inserting the definition of the conditional av-

erage ۦQሺܠ, tሻ|cۧ ൌ 〈Qሺܠ, tሻδሺCሺܠ, tሻ െ cሻ〉/Pሺc; ,ܠ	 tሻ results in 

∂
∂t
Pሺc; ,ܠ	 tሻ ൌ െ

∂
∂c
ቈൽ
∂Cሺܠ, tሻ

∂t
ቤcඁ Pሺc; ,ܠ tሻ቉. 

(4.7)

Evolution equation (4.2) can now be used to obtain the PDF transition 

∂
∂t
Pሺc; ,ܠ	 tሻ ൌ

∂
∂c
ሾሼ܄ۦ ∙ ,ܠCሺ׏ tሻ|cۧ ൅ ,ܠD∆Cሺۦ tሻ|cۧሽPሺc; ,ܠ tሻሿ. 

(4.8)
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The two terms on the right hand side are unclosed and a closure model is needed in 

order to be able to calculate the time evolution of the PDF. The advective term can be 

closed by making use of the knowledge that the impact of velocity fluctuations on 

transport can be modelled by an enhanced dispersion 

∂
∂c
ሾ܄ۦ ∙ ,ܠCሺ׏ tሻ|cۧPሺc; ,ܠ	 tሻሿ ൌ െ׏ሾ〈܄〉Pሺc; ,ܠ tሻሿ ൅ ׏ ∙ Dୣ୬ୱ׏Pሺc; ,ܠ tሻ, 

(4.9)

where Dୣ୬ୱ is an upscaled dispersion coefficient. The unclosed difference can be trans-

formed to 

∂
∂c
ሾۦD∆Cሺܠ, tሻ|cۧPሺc; ,ܠ	 tሻሿ ൌ ׏ ∙ D׏P െ

∂ଶ

∂cଶ
ሾۦDሺ׏Cሻଶ|cۧሿ, 

(4.10)

For the last term on the right hand side, a mixing model ܯ ൌ  .Cሻଶ|cۧ is needed׏Dሺۦ

/DOP 75/ formulated a closure model called Interaction Exchange with the Mean (IEM) 

which is widely used for modelling reactive and turbulent flows (see /AND 98/; 

/POP 14/). It closes the mixing term by approximating it with 

∂ଶ

∂cଶ
۱׏Dۦ ∙ cۧ|۱׏ ൌ

∂
∂c
൫Mሾc െ 〈Cሺܠ, tሻ〉ሿPሺc; ,ܠ tሻ൯, 

(4.11)

where M is a dissipation rate, which will be discussed in Section 4.3. The dissipation 

model causes concentration fluctuations to relax exponentially towards the mean con-

centration. 

With the IEM model inserted into equation (4.9), a closed transport equation for the 

PDF can be stated 

∂Pሺc; ,ܠ	 tሻ

∂t
൅ 〈܄〉 ∙ ;Pሺc׏ ,ܠ	 tሻ െ ׏ ∙ Dୣ୬ୱ׏Pሺc; ,ܠ tሻ

ൌ
∂
∂c
ሺMሾc െ 〈Cሺܠ, tሻ〉ሿPሺc; ,ܠ tሻሻ. 

(4.12)

4.2.2 Mean and Variance Transport Equations 

The transport equation for the first statistical moment, the mean concentration, can be 

derived from the PDF transport equation (4.12) by multiplying it with c and integrating 

over the complete concentration space, 

නc
∂P
∂t
dc ൅ නc〈܄〉 ∙ dc	P׏ െ නcDୣ୬ୱ∆P dc ൌනc

∂
∂c
ሺMሾc െ 〈C〉ሿPሻ dc. 

(4.13)
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The order of integration and derivation can be interchanged and on the right hand side 

the product rule can be applied. 

∂
∂t
න cPdc ൅ 〈܄〉

∙ න׏ cP	dc െ Dୣ୬ୱ∆න cP	dc

ൌන ൜
∂
∂c
ሺcMሾc െ 〈C〉ሿPሻ െ Mሾc െ 〈C〉ሿP

∂c
∂c
ൠ dc. 

(4.14)

On the left hand side, the definition of the mean concentration can be inserted and on 

the right hand side, the integral is evaluated: 

∂〈C〉

∂t
൅ 〈܄〉 ∙ 〈C〉 െ Dୣ୬ୱ∆〈C〉 ൌ cMሾc െ 〈C〉ሿP|ୡୀ଴

ଵ െ Mሾ〈C〉 െ 〈C〉ሿ. 
(4.15)

Both terms on the right hand side vanish. The second one obviously cancels out, but 

the first one needs further explanations. The lower boundary case c = 0 does not con-

tribute, but the upper boundary could potentially result in a non-zero value, if all con-

centration is located at one singular point as a Dirac function. But this situation does 

not exist in real transport situations. Thus, the transport equation for the mean concen-

tration is given by 

∂〈C〉

∂t
൅ 〈܄〉 ∙ 〈C〉 െ Dୣ୬ୱ∆〈C〉 ൌ 0. 

(4.16)

The M-term does not influence the mean motion since it cancels out.  

The second statistical moment, the variance, is defined by 

σୡଶ ≔ නcଶP dc െ 〈C〉ଶ. (4.17)

Now, the PDF transport equation is multiplied and integrated over the whole concentra-

tion space. The order of integration and derivation is also being interchanged and the 

product rule is applied on the right hand side:  

∂
∂t
න cଶP dc ൅ 〈܄〉

∙ න׏ cଶP	dc െ Dୣ୬ୱ∆න cଶ P	dc

ൌන ൜
∂
∂c
ሺcMሾc െ 〈C〉ሿPሻ െ 2cMሾcଶ െ 〈C〉ሿPൠ dc. 

(4.18)
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The first term on the right hand side vanishes for the same reason as in the derivation 

of the mean concentration.  

∂
∂t
න cଶP dc ൅ 〈܄〉 ∙ න׏ cଶP	dc െ Dୣ୬ୱ∆න cଶ P dc ൌ

െ 2M ൜න cଶ P	dc െ 〈C〉ଶൠ. 

(4.19)

The brackets on the right hand side could already be replaced by the concentration 

variance, but in order to do, the transport equation for 〈C〉ଶ needs to be subtracted from 

equation (4.19) and the equation for the squared mean concentration needs to be de-

rived first. Equation (4.16) is multiplied by 〈C〉: 

〈C〉
∂〈C〉

∂t
൅ 〈C〉〈܄〉 ∙ 〈C〉׏ െ 〈C〉Dୣ୬ୱ∆〈C〉 ൌ 0. 

(4.20)

By making extensive use of the product rule one arrives at 

∂〈C〉ଶ

∂t
െ 〈C〉

∂〈C〉

∂t
൅ 〈܄〉 ∙ ଶ〈C〉׏ െ 〈C〉〈܄〉 ∙ 〈C〉׏

െ Dୣ୬ୱሾ׏ ∙ ሺ〈C〉׏〈C〉ሻ െ ሺ׏〈C〉ሻଶሿ ൌ 0. 

(4.21)

The dispersion term can be further modified by using the product  

Dୣ୬ୱሾ׏ ∙ ሺ〈C〉׏〈C〉ሻ െ ሺ׏〈C〉ሻଶሿ ൌ

Dୣ୬ୱሾ׏ ∙ ሺ׏〈C〉ଶ െ 〈C〉׏〈C〉ሻ െ ሺ׏〈C〉ሻଶሿ ൌ

Dୣ୬ୱሾ∆〈C〉ଶ െ ሺ׏〈C〉ሻଶ ൅ 〈C〉∆〈C〉 െ ሺ׏〈C〉ሻଶሿ. 

(4.22)

Thus, equation (4.21) can be transformed to 

∂〈C〉ଶ

∂t
൅ 〈܄〉 ∙ ଶ〈C〉׏ െ Dୣ୬ୱ∆〈C〉ଶ ൅ 2Dୣ୬ୱሺ׏〈C〉ଶሻ െ 〈C〉

∂〈C〉

∂t
െ 〈C〉〈܃〉 ∙ 〈C〉׏

െ 〈C〉Dୣ୬ୱ∆〈C〉 ൌ 0. 

(4.23)

Comparing the second line of equation (4.23) with equation (4.21), the transport equa-

tion for the squared mean concentration 〈C〉ଶ follows as 

∂〈C〉ଶ

∂t
൅ 〈܄〉 ∙ ଶ〈C〉׏ െ Dୣ୬ୱ∆〈C〉ଶ ൅ 2Dୣ୬ୱሺ׏〈C〉ଶሻ ൌ 0. 

(4.24)

Now, equation (4.24) can be subtracted from equation (4.19): 
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∂
∂t
൤න cଶP dc െ 〈C〉ଶ൨ ൅ 〈܄〉 ∙ ׏ ൤න cଶP dc െ 〈C〉ଶ൨െDୣ୬ୱ∆ ൤න cଶP dc െ 〈C〉ଶ൨

ൌ 2Dୣ୬ୱሺ׏〈C〉ଶሻ െ 2M ൤න cଶ P dc െ 〈C〉ଶ൨. 

(4.25)

Finally, the definition of the concentration variance (4.18) can be inserted, which yields 

the final transport equation of the concentration variance 

∂
∂t
σୡଶ ൅ 〈܄〉 ∙ σୡଶെDୣ୬ୱ∆σୡଶ׏ ൌ 2Dୣ୬ୱሺ׏〈C〉ଶሻ െ 2Mσୡଶ. 

(4.26)

The most interesting term of equation (4.26) is the last one on the right hand side. The 

same dissipation rate M as in the transport equation of the full PDF (4.12) appears 

here. Therefore, different propositions of the dissipation rate can be tested as a closure 

assumption for the transport equation of the concentration variance. The big advantage 

of testing different closures for the variance is that this equation is much easier to han-

dle than the equation for the full concentration PDF. 

4.2.3 Analytical Solutions of the First Moment 

An analytical solution of the transport equation of the mean concentration (4.24) with a 

Gaussian initial condition centered at the position x0 evolving from time t0 can easily be 

found, for example by transforming equation (4.24) into the frequency domain, which 

makes it an ordinary differential equation. This ODE can be solved and the solution can 

then be transformed back into the time domain, which gives: 

〈C〉 ൌ ൫4πDୣ୬ୱሺt ൅ t଴ሻ൯
ିୢ/ଶ

exp ቊെ
ሺܠ െ ૙ܠ െ tሻଶ〈܄〉

2Dୣ୬ୱሺt ൅ t଴ሻ
ቋ. 

(4.27)

4.2.4 Analytical Solution of the Second Moment 

An analytical solution for the variance transport equation (4.26) needs a more tedious 

derivation. A semi-analytical solution can be found by using Green's function. A deriva-

tion similar to the one presented by /KAP 94/ will be presented here. The differential 

operator Lሺܠ, tሻ is defined by 

Lσୡଶ ൌ
∂
∂t
σୡଶ ൅ 〈܄〉 ∙ σୡଶെDୣ୬ୱ∆σୡଶ׏ െ 2Mσୡଶ ൌ 2Dୣ୬ୱሺ׏〈C〉ଶሻ, 

(4.28)

with the inhomogeneity 
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gሺܠ, tሻ ൌ 2Dୣ୬ୱሺ׏〈C〉ଶሻ. (4.29)

Then, equation (4.26) can be rewritten as 

Lሺܠ, tሻσୡଶሺܠ, tሻ ൌ gሺܠ, tሻ. (4.30)

The Green's function Gሺܠ െ ,ᇱܠ t, t′ሻ is defined as the solution to the differential operator 

Lሺܠ, tሻ with delta functions on the right hand side  

Lሺܠ, tሻGሺܠ െ ,ᇱܠ t, t′ሻ ൌ δሺܠ െ ሻδሺt′ܠ െ t′ሻ. (4.31)

It can be shown that the general solution of equation (4.26) is given by 

σୡଶሺܠ, tሻ ൌ σୡଶ୦ሺܠ, tሻ ൅ න න Gሺܠ െ ,ᇱܠ t, t′ሻ
ԹౚԹ

gሺܠ′, t′ሻdܠᇱdt′. 
(4.32)

where σୡଶ୦ሺܠ, tሻ is the solution of equation (4.26) without an inhomogeneity. Assuming 

that the initial condition is known without any uncertainty, the variance at time t = 0 is 

 σୡଶሺܠ, t ൌ 0ሻ ൌ 0. 

But without the inhomogeneity, which acts as the only source term, the solution of the 

homogeneous PDE is σୡଶ୦ሺܠ, tሻ ൌ 0 for all times. Therefore, the solution to the homoge-

neous problem can be dropped. If the Green's function is known, the solution to equa-

tion (4.26) can be calculated from equation (4.32), which is a convolution in space of 

Green's function and the inhomogeneity: 

σୡଶሺܠ, tሻ ൌ න න dtᇱ	Gሺܠ െ ,ᇱܠ t, t′ሻ
ԹౚԹ

gሺܠ′, t′ሻdܠᇱ

ൌ න dtᇱ	Gሺܠ, t, t′ሻ
Թ

∗ gሺܠ′, t′ሻ

ൌ 	න dtᇱ	࣠ିଵ	൛G෩ሺܠ, t, t′ሻg෤ሺܠ′, t′ሻൟ
Թ

, 

(4.33)

where a tilde denotes the Fourier transform of a variable. Hence, G෩ and g෤ need to be 

calculated in order to obtain the solution σୡଶ. Fourier transforming both sides of equation 

(4.30) gives an ODE in the frequency domain, which can be solved by separation of 

variables, resulting in 

G෩ሺܓ, t, tᇱሻ ൌ Θሺt െ tᇱሻ	exp൛െ൫i〈܄〉 ∙ ܓ ൅ Dୣ୬ୱܓ૛൯ሺt െ tᇱሻൟ  

∙ exp ቊെ2න dtᇱᇱ Mሺt′′ሻ
୲

୲ᇱ
ቋ. 

(4.34)
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In order to transform the inhomogeneity (4.29), the transformed mean concentration 〈C〉 

from equation (4.27) needs to be inserted:   

g෤ሺܓ, tሻ ൌ ࣠ሾ2Dୣ୬ୱሺ׏〈C〉ଶሻሿ ൌ
െ1

ሺ2πሻୢ/ଶ
〈C෨〉ܓ ∗  .〈C෨〉ܓ

(4.35)

Simply using equation (4.27) leads to a singularity for t = 0, as the Gaussian distribu-

tion tends to a delta function for small times. This unnatural behavior can be avoided by 

modifying solution (4.27) in a way that for t = 0 it stays a finite Gaussian distribution. If a 

time t0 is introduced by which the solution is shifted forward in time exactly the wished 

behavior is achieved. By inserting the shifted concentration  

〈C෨〉 ൌ
〈C〉଴

ሺ2πሻୢ/ଶ
exp ൜െ

Dୣ୬ୱ

n
ሺtܓ ൅ t଴ሻ െ iܓ ∙ ൬ܠ૙ ൅ 〈܄〉

t
n
൰ൠ 

(4.36)

into the transport equation, it can be shown that this is still a correct solution to the orig-

inal PDE (4.27). With this new solution, the Fourier transformed inhomogeneity can be 

calculated: 

g෤ሺܓ, tሻ ൌ
〈C〉଴

ଶ	Dୣ୬ୱ

2ሺ2πሻୢ
1

൫2	Dୣ୬ୱሺt ൅ t଴ሻ൯
ୢ/ଶ ൤

1
	Dୣ୬ୱሺt ൅ t଴ሻ

െ ૛൨ܓ exp ൬
1
2
	Dୣ୬ୱሺt ൅ t଴ሻܓ૛ െ iሺܠ૙ ൅ 〈U〉tሻ ∙  .൰ܓ

(4.37)

Finally, everything can be combined into equation (4.32) and a final time integral re-

mains to be calculated: 

σୡଶ ൌ 2Dୣ୬ୱ නdtᇱ
୲

଴

൫4πଶሺDୣ୬ୱሻଶሺtᇱ ൅ t଴ሻሺ2t ൅ t଴ െ tᇱሻ൯
ି
ୢ
ଶ  

∙ ൥
݀ሺt െ tᇱሻ

2Dୣ୬ୱሺtᇱ ൅ t଴ሻሺ2t ൅ t଴ െ tᇱሻ
൅

ሺܠ െ tሻଶ〈܄〉

൫2Dୣ୬ୱሺ2t ൅ t଴ െ tᇱሻ൯
ଶ		൩ 

∙ exp ൭െ
ሺܠ െ tሻଶ〈܄〉

൫2Dୣ୬ୱሺ2t ൅ t଴ െ tᇱሻ൯
ଶ൱ exp ൭െ2න dtᇱᇱ

୲

୲ᇲ
Mሺtᇱᇱሻ൱. 

(4.38)

This integral can either be evaluated analytically by using a long time approximation or 

by applying numerical methods. In this case, the short time behavior is also of interest, 

thus the integral is solved numerically using an adaptive quadrature. 
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 A Time Dependent Extension of the IEM Model time dependent mixing 4.3

model 

The original IEM model approximates the conditional diffusion term by 

∂ଶ

∂cଶ
۱׏Dۦ ∙ cۧ|۱׏ ൌ

∂
∂c
൫Mሾc െ 〈Cሺܠ, tሻ〉ሿPሺc; ,ܠ tሻ൯, 

(4.39)

where the dissipation rate M is assumed to be constant. M is determined by the en-

semble dispersion divided by a characteristic mixing length to the square. As discussed 

before, in heterogeneity induced mixing in porous media flow needs more time to be-

come ergodic. A more realistic dissipation rate should be determined by Deff(t) instead 

of Dens. since the ensemble dispersion coefficient accounts for the fluctuations of the 

center of mass of the concentration plume from realization to realization. These fluctua-

tions do not exist in a single realization and play no role for the mixing. The long time 

behavior of both coefficients is identical and because the mixing in turbulent flows is so 

much faster than it is in groundwater flows, the difference does not matter for turbulent 

flows. Therefore, the mathematically simpler to handle ensemble dispersion coefficient 

is used in studies concerning turbulent flows. In addition, the characteristic squared 

mixing length scale is given by Dt where D is the local dispersion. 

Therefore, a time-dependent dissipation rate is proposed 

Mሺtሻ ൌ ݇ெ
Dୣ୤୤ሺtሻ

Dt
, 

(4.40)

M(t) has larger values at early times than the constant one, which causes a stronger 

dissipation. But then it drops below the constant mixing frequency and approaches the 

limit M(t) = 0.  

With this adaptation, the simplicity and low computational costs of the IEM model are 

preserved, while at the same time, the dissipation rate accounts for the physical mixing 

and dissipation effects in porous media flows. 

As demonstrated in Fig. 4.2, the standard IEM model predicts a constant dissipation 

rate of the solute plume. The new time dependent IEM model, models a stronger dissi-

pation at early times and a weaker dissipation at later times. 
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Fig. 4.2  Dissipation M of the standard IEM model  

and the newly proposed time dependent IEM model plotted against time t 
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 Simulations  4.4

4.4.1 Simulation Setup 

In order to verify the theoretical results and the newly time dependent IEM model, nu-

merical simulations were performed. The simulations follow the set-up described in 

/DEN 02/. The heterogeneous flow field was modelled as a solution of the linearised 

Darcy equation by the Kraichnan algorithm /KRA 70/. The mean flow velocity is set to 

〈V〉 ൌ 1m	dିଵ, and a Gaussian covariance structure with an integral scale of λ ൌ 1m	and 

a variance of ߪଶ ൌ 0.1	is chosen. The flow fields are generated by using 6400 Fourier 

modes. The particles moving in the velocity field and performing random jumps were 

modelled according to 

dX୧ሺtሻ ൌ V୧ሺ܆ሻdt ൅ √2D	݀W୧ሺtሻ, (4.41)

where W୧ሺtሻ are independent standard Wiener processes /SUC 15/. An extended 

Runge-Kutta scheme /DRU 84/ with an accuracy of order ሺ∆ݐሻଷ/ଶ is used to discretize 

the Langevin equations (4.41).  

The particles undergo diffusive jumps with isotropic local dispersion coefficients of 

D ൌ 0.01mଶ	dିଵ. The particles are distributed uniformly in a rectangle with side lengths 

according to an initial diffusion time of t0 = 10 d. A time step of ∆ݐ ൌ 0.5݀	 is used. 1000 

realisations are calculated to create a statistical ensemble.  

In order to reduce the computational effort, the so called GRW-algorithm is used here 

as a second option according to the same set up as described by /SUC 15/. The GRW 

uses a superposition of many weak solutions to Langevin equations projected on a 

regular grid. The particles solving the Langevin equations are spread on the grid glob-

ally according to the advection and dispersion coefficients of the transport equation. By 

construction, this algorithm is free of numerical diffusion and can be used for practically 

arbitrary numbers of particles without an impact on the computational costs. The 

transport parameters are set to the same as for the standard particle tracking. A nor-

malized 2-dimensional histogram on grid cells with a size of 1݉ ൈ 1݉ was performed to 

calculate concentrations from the particle positions. 
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4.4.2 Concentration Variance 

Monte Carlo Simulations are used to determine the reference concentration variance. 

This solution is compared to the analytical solution (4.38) of equation (4.26) making 

use of the two different proposed dissipation rates. At early times, the concentration 

variance shows a unimodal distribution with a transition to a bimodal distribution at later 

times as described already in /AND 98/.  

The concentration variance computed from both, the Monte Carlo particle tracking and 

the GRW simulations are compared to the analytical solution (4.26) with the two differ-

ent mixing models, the standard IEM model and the time dependent IEM model (4.40) 

in Fig. 4.3. The different solutions are plotted 50 d, 100 d, 200 d, 300 d, 400 d and 

500 d after injection. First of all, it should be noted that the two independent numerical 

simulations match well. But the most obvious feature of the figure is the large discrep-

ancy at early times between the analytical solution with the standard IEM closure and 

the numerical reference runs. 

 

Fig. 4.3  Analytical solution with the classical and time dependent IEM mixing model 

compared to particle tracking and GRW simulations at different times 

The variance dissipation at short times is underestimated by the standard IEM model 

whereas the time-dependent IEM-model causes a much larger dissipation at short 
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times. Consequently, the temporal evolvement of the concentration variance models by 

the new IEM model matches the reference simulation runs much better. 

4.4.3 PDF Modelling 

The solutions of the PDF evolution equations depend on 3 ൅ N஑ independent variables 

plus the time variable, with N஑ ൌ 1 being the number of species forming a higher di-

mensional system of equations. In turbulence theory, mostly particles methods are 

used to solve for the PDF. These particle methods avoid errors by numerical diffusion 

/RAD 11/, unavoidable in classical schemes for PDF equations, which usually result in 

strongly advection-dominated problems. Here solutions of particle methods are pre-

sented which are also used a test case for higher dimensional numerical solvers pre-

sented in Section 3.4. In the case of Pope’s /POP 85/ particles approach and also other 

particle tracking methods, the computational cost increases linearly with the number of 

particles. The GRW algorithm /VAM 03/ is insensitive to the increase of the number of 

particles. The GRW algorithm is equivalent to a finite difference scheme for advection–

diffusion problems with constant coefficients. But in case of variable coefficients it is 

faster and free of numerical diffusion. 

 

Fig. 4.4  The concentration PDF at the center of the plume ݔ ൌ -with the stand ݐܸۧۦ

ard IEM model compared to the PDF with empirically determined dissipa-

tion rates every 10 days. The standard IEM model underestimates the dis-

sipation, which causes the gap between the peaks 
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For instance, when solving flow and transport problems in highly heterogeneous media 

by finite element schemes and the transport solvers are replaced by a GRW scheme, 

then the numerical diffusion is completely removed and the total computation time is 

about 20 times smaller /SUC 13/. Note that for a grid-free particle tracking scheme the 

computing time is of the order of the number of particles and for a GRW solution to the 

same problem and the same number of time steps it is of the order of grid points occu-

pied by particles. For the solution of the PDF problem solved here, using 10ଶସ particles 

which move on a lattice with ∼10ହ points, the GRW computing time is about 0.5s while 

a sequential particle tracking would require a computing time ∼10ଵଽ times larger. To il-

lustrate the GRW-PDF approach, a two dimensional PDF problem is considered for 

joint concentration–position PDF ܲሺܿ; ,ݔ  ሻ, solution of the particular form of (4.12)ݐ

∂ܲ
ݐ∂

൅ ࣰ
∂ܲ
ݔ∂

൅ ௖ܸ
∂ܲ
∂ܿ

ൌ ࣞ
∂ଶܲ
ଶݔ∂

൅ ࣞ௖
∂ଶܲ
∂ܿଶ

, 
(4.42)

with ࣞ and ࣞ௖ being upscaled diffusion coefficients in physical and concentration 

space, respectively. ࣰ and ௖ࣰ are upscaled drift coefficients. The solution of the Fok-

ker–Planck equation (4.42) is approximated by the point-density at lattice sites of a 

large number of computational particles evolving according to Itô equations  

ሻݐሺ܆݀							 ൌ ࣰሺ܆ሺݐሻ, ݐሻ݀ݐ ൅ ,ሻݐሺ܆ሺ܅݀  ሻݐ

							݀۱ሺݐሻ ൌ ,ሻݐሺ۱ሺۻ ,ሻݐሺ܆  .ݐሻ݀ݐ

(4.43)

(4.44)

At a given time step, the computational particles on a lattice site are globally scattered 

in groups of particles which remain at the position determined by the drift coefficients 

and particles undergoing diffusive jumps. The numbers of particles in each group are 

binomial random variables with parameters determined by the coefficients of the Itô 

equations, the time step, and the lattice constants. The GRW algorithm is thus a su-

perposition of many weak Euler-schemes for systems of Itô equations projected on a 

regular lattice. The GRW algorithm is free of numerical diffusion, because the diffusive 

jumps and the nominal diffusion coefficients are related to the lattice. It is practically in-

sensitive to the increase of the number of particles (see /SUC 13/ for implementation 

details and convergence tests). Since the particles move between lattice sites on which 

mean values are also defined through particle densities, the GRW-PDF solution pre-

sented here avoids the artificial diffusion generated in classical PDF methods by inter-

polation to particle positions of the means computed by averaging over computational 

cells. 
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Monte Carlo simulations of 2d passive transport of a single chemical species in satu-

rated aquifers were used to estimate the PDF ܲሺܿ; ,ݔ -ሻ of the cross-section spaceݐ

average concentration ܥሺݔ, ሻݐ ൌ ׬
௅೤
଴ ܿሺݔ, ,ݕ  ௬ is the transverse dimensionܮ where,ݕሻ݀ݐ

of the computational domain, estimated at the x-coordinate of the plume centre of 

mass, ݔ ൌ -The upscaled drift coefficient ࣰ in eq. (4.43) is the ensemble mean ve .ݐܸۧۦ

locity, equal to the velocity of the center of mass ܸۧۦ ൌ 1m/day. The upscaled diffusion 

coefficient ࣞ is the longitudinal component of the time dependent ensemble Dispersion 

coefficient. The latter is a self-averaging quantity for transport in random velocity fields 

with finite correlation range, as considered here. Hence, ࣞሺݐሻ was efficiently deter-

mined by using a single particle trajectory of diffusion in a single realization of the ran-

dom velocity field. Two different mixing models M were considered in the concentration 

Itô equation (4.44). The first one is the IEM model, a drift term given by the attenuation 

of the mean concentration due to the local diffusion, and an additional noise term mod-

eled as a Wiener process, needed to control the shape of the PDF /FOX 03/. 

ሻݐሺܥ݀ ൌ െܽሺݐሻሾܥሺݐሻ െ ݐሻۧሿ݀ݐሺܥۦ ൅ Δܥۦሺݐሻۧ ൅ ܾܹ݀ሺݐሻ. (4.43)

The coefficient ܽሺݐሻ was estimated, similarly to turbulence problems by the inverse of 

the diffusion time scale ࣞሺݐሻ/ߣଶ, with ߣ ൌ 1	m, the characteristic correlation scale of the 

transport problem. Δܥۦሺݐሻۧ was estimated from a fractional step, performed at each 

time step of the GRW-PDF simulation, consisting of a GRW simulation of the 1d diffu-

sion with the constant local diffusion coefficient ܦ ൌ 0.01m²/d considered in the Monte 

Carlo simulations. The amplitude ܾ ൎ 10ି଺ 1/d of the Wiener process W(t) was adjust-

ed by comparisons with the Monte-Carlo inferred Eulerian PDF ܲሺܿ; ,ݔ  ሻ. The resultsݐ

obtained by this IEM model are represented by the dotted curves in Fig. 4.3 

The second model consists of a drift term equal to the rate of decay of the mean con-

centration at mass center ܥۦሺݔ,  ሻۧ, determined from the ensemble of Monte Carloݐ

simulations /SUC 06/ and a small diffusion in the concentration space. The correspond-

ing diffusion coefficient starts with an initial value adjusted in the same way as the 

noise term in equation (4.45) and decays exponentially in time, as suggested by a pre-

liminary analysis of concentration time series generated during the Monte Carlo simula-

tions, carried out with an automatic algorithm /VAM 12/. The Eulerian concentration 

PDF ܲሺܿ; ,ݔ -ሻ was simulated by the GRW algorithm and compared with the Monte Carݐ

lo results. The cross-section concentration ܥሺݔ,  ሻ is ergodic with a good approximationݐ

/SUC 06/, thus ܥሺݔ, ሻݐ ≃ ,ݔሺܥۦ ,ݔሻۧ. The initial distribution of particles in the ሺݐ ܿሻ plane 

was approximated by multiplying the Monte Carlo PDF at ݐ ൌ 1	d by 10ଶସ particles.  
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Fig. 4.5  The mean concentration ۧܥۦሺݔሻ at fixed times t = 10, 50, 100 days (peaks) 

and ۧܥۦሺݐሻ at the centre of mass ݔ ൌ  calculated by (monotone curves) ݐࣰ

Monte Carlo methods and by the GRW with the two mixing methods 

 

Fig. 4.6  The cumulative distribution functions cdfሺܿ; ,ݔ ݔ ,ሻݐ ൌ  ,at t = 0, 10, 30 ,ݐࣰ

50, 100 d (from right to left) calculated by Monte Carlo methods and the 

GRW with two mixing models 
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Fig. 4.5 shows a good agreement of the mean concentration, for both mixing models, 

between Monte Carlo results and GRW-PDF simulations. This result is already ex-

pected because ܥۦሺݔ, -ሻۧ is the probability density of the computational particles govݐ

erned by the Itô equation (4.43), which is independent of the concentration Itô equation 

(4.44) and of the dissipation model. The comparisons presented in Fig. 4.4 and Fig. 4.6 

show that the dissipation model M based on the rate of decay of ‘‘measured’’ (i.e. simu-

lated) concentrations resembles the Monte Carlo results quite well. The IEM model 

(4.45) instead fails to capture the transport of the PDF in physical and concentration 

space. The discrepancy may be attributed to structural differences between groundwa-

ter and turbulent flows. Such models are better suited for homogeneous systems. 

As demonstrated in Fig. 4.4, the standard IEM model predicts dissipation rates of the 

solute plume, which are too small. The underestimation possibly stems from the inter-

play of steep concentration gradients at these early times together with the heteroge-

neous velocity fluctuations, because these two effects cause enhanced mixing. Heter-

ogeneity induced mixing is very efficient in the elimination of small scale concentration 

fluctuations but it needs time to develop in porous media flows. The IEM model does 

not account for this transient behavior, because it is constant in time. To overcome this 

problem, a time dependent extension of the IEM model is proposed. As already de-

scribed in Section 4.4.2, the time dependent IEM model greatly improves the results for 

the concentration variance. Similar comparisons were done for the concentration PDF. 

These results are shown in Fig. 4.7. The concentration PDFs with the standard IEM 

model, the time dependent IEM model, and with empirically determined dissipation 

rates at the mass center of the plume are compared. It can be seen that the dissipation 

rate is larger for the time dependent model than for the standard IEM model. With this 

enhanced dissipation rate, the empirically determined rates are matched to a good ex-

tent. Although the shape of the PDF is narrowed too much, it gives much better results 

compared to the standard IEM model. 
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Fig. 4.7  The concentration PDF at the center of the plume ݔ ൌ -with the stand ݐܸۧۦ

ard IEM model (blue) and the time dependent IEM model (green) com-

pared to the PDF with empirically determined dissipation rates (red) every 

10 days 

 Conclusions 4.5

Equations for the mean concentration, the concentration variance and the complete 

concentration PDF have been established. To achieve this goal, explicit results for the 

ensemble dispersion and the concentration dissipation rate have been derived and in-

serted into the different equation. Solving these three equations and comparing them 

with an ensemble of Monte-Carlo simulations showed an excellent agreement. The re-

sults build the basis for a computationally efficient replacement of computer resource 

demanding huge Monte-Carlo simulations by simpler equations for the mean concen-

tration, concentration variance or the concentration PDF. The concentration PDF fol-

lows as a solution of a higher dimensional problem that is computationally more de-

manding than solving only for mean and variance of the concentration. However, the 

reduction of higher computational costs can be reduced by making use of the efficient 

numerical solvers for high dimensional problems as described in Section 3.5. 
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5 Code verification and applications 

 Viscosity-dependent flow 5.1

5.1.1 Model description 

A vertical two-dimensional flow and heat transport model established in the E-DuR pro-

ject /SCH 12/ was modified to investigate the effect of variable viscosity on the temper-

ature field. 

The model domain is depicted in Fig. 5.1. It represents an area of about 814 m width 

and 1057 m depth and includes four hydrogeological units (I to IV) as well as five dis-

crete fractures (F1 to F5). The permeability of the hydrogeological layers decreases 

strongly with depth. The fractures have a rather high permeability compared to the sur-

rounding rock matrix. They can be traced through the lower two hydrogeological units 

and are dipping at angles between 50 and 90 degrees.  

 

Fig. 5.1  Model geometry based on the schematic cross-section 
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Pressure boundary conditions at the left and right boundary represent constant hydrau-

lic heads of 1048.8 m and 1048.4 m, respectively (cp. Fig. 5.2). A groundwater re-

charge of 41.3 mm a-1 is assigned to the top boundary. The bottom of the model is im-

permeable to flow. 

A temperature of 2 °C is set at the top and of 32 °C at the bottom of the model. An in-

/outflow boundary condition is assigned to the left boundary which means that the in-

flow temperature reflects the general temperature gradient of about 2.84 °C per 100 m 

and the outflow temperature is allowed to vary. On the right boundary, only outflow oc-

curs allowing for variable temperatures. An initial temperature distribution according to 

the general temperature gradient is assumed. 

 

Fig. 5.2  Boundary conditions for the groundwater flow and heat transport 

Two model variations were set up using the same hydrogeological and heat transport 

parameters (cp. Tab. 5.1 and Tab. 5.2). In the constant viscosity model, viscosity is 

fixed to 1.002·10-3 Pa s-1 which corresponds to a temperature of 20 °C. In the variable 

viscosity model, however, the influence of temperature °ܶ஼ on viscosity	ߟ is considered 

according to the following formulation /KRO 10/: 
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ሺߟ °ܶ஼ሻ ൌ
3.5

ሺ17 ⋅ °ܶ஼ ൅ 575ሻଵ.ଵ଼
൅ 6 ⋅ 10ିହ ൬ °ܶ஼

200
൰
ଶ

െ 1.2 ⋅ 10ିସ ሾܲܽ ଵሿ (5.1)ିݏ

Viscosity values of 1.7 Pa s at the top to 0.7 Pa s at the bottom of the model follow the 

temperature distribution (cp. Fig. 5.3). The influence of temperature on density is ne-

glected because it is very low (changes by 0.5 % between 2 °C and 32 °C) compared 

to the effect of temperature on viscosity (changes by 55 % between 2 °C and 32 °C).  

Tab. 5.1 Permeability of the four hydrogeological units and the fractures 

Hydrogeological unit Permeability [m²] 

I: Clay and gravel 2.08·10-12 

II: Weathering zone 5.79·10-13 

III: Fractured zone  
(low water circulation) 

1.16·10-17 

IV: Fractured zone  
(very low water circulation) 

1.16·10-21 

Fractures 7.52·10-9 

Tab. 5.2 Flow and heat transport parameters for the rock matrix and the fractures 

 Matrix Fracture 

Porosity [-] 4.65·10-3 5.0·10-3 

Tortuosity [-] 1.0 1.0 

Molecular diffusivity [m2 s-1] 1.0·10-9 1.0·10-9 

Longitudinal dispersivity [m] 5.0 5.0 

Transversal dispersivity [m] 5.0·10-1 5.0·10-1 

Heat capacity of the fluid [J kg-1 K-1] 4.17·103 4.17·103 

Heat capacity of the solid [J kg-1 K-1] 733 733 

Thermal conductivity of the fluid [J s-1 m-1 K-1] 2.65 2.65 

Mass density of the solid phase [kg m-3] 3.0·103 3.0·103 
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Mass density of the fluid phase [kg m-3] 998.2 998.2 

Aperture [m] - 1·10-2 

 

Fig. 5.3  Viscosity of pure water according to /KRO 10/ 

5.1.2 Results 

Flow and heat transport simulations were run for about 28 years model time (8.7 ·108 s) 

for the constant and the variable viscosity model. The resulting flow fields agree in their 

main characteristics (Fig. 5.4): the flow velocity corresponds by and large to the per-

meability of the matrix. The general flow direction is from left to right but vertical com-

ponents are induced on one hand by the groundwater recharge and on the other hand 

by the draining effect of the fractures. Flow through the fracture system follows basical-

ly fractures F1 and F5 (cp. Fig. 5.5a,b). They constitute a hydraulic bypass between the 

left and the right boundary. Very low flow velocities occur in the lower thirds of the frac-

tures which form dead ends within the very lowly permeable matrix. 

The main difference between the flow fields from the constant and the variable viscosi-

ty model concern the position of a flow divide formed in the upper left corner of the 

model (Fig. 5.4). This divide arises where a part of the recharge flows to the left 

boundary, while the other part flows to the right. In the constant viscosity model, the di-

vide appears at about 130 m from the left boundary. Considering variable viscosity 

causes it to move by about 100 m to the right. Further explanations for the appearance 

of a divide in this model are given in Appendix B. 
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Fig. 5.4  Flow field for simulations with constant and variable viscosity 

At the same time, the impact of the fracture system on the overall flow field decreases 

by applying variable viscosity: the flow velocity in the main flow path is diminished by 

about 50 % in F1 and about 20 to 50 % in fracture F5. This is mirrored in the outflow 

rates of the lateral boundaries (Fig. 5.5 c) which are dominated in the variable viscosity 

model by the outflow from unit I and II. On the left side, the outflow rate of the variable 

viscosity model is two times higher than the outflow rate of the constant viscosity model 

while it amounts only to 20 % of the outflow rate at the right boundary. The integral of 

the outflow rates is the same in both models and corresponds to the recharge. 

 

Fig. 5.5  Flow velocities in the fracture system (a, b) and outflow rates  

for the lateral boundaries (c) for the constant and variable viscosity model 



112 

It was shown in a former project that the fracture system influences the temperature 

field in its vicinity /SCH 12/. The initially imposed geothermal temperature field is dis-

torted depending on the flow direction and velocity within the fractures. Thus, the dif-

ferences between the constant and the variable viscosity model concerning the flow ve-

locity within the fracture system should lead to differences in the temperature field. 

The temperature profiles along the two cross-sections depicted in Fig. 5.6 show the dif-

ferences that arise from the different treatment of the viscosity. If the fractures had no 

effect on the thermal field, the temperature would be constant in the two sections. For 

both models, however, deviations from the mean value are visible in the vicinity of the 

fractures. These deviations are very small at the end of the simulation but are still 

growing as steady-state has not yet been reached. 

 

Fig. 5.6  Temperature profiles for the constant and the variable viscosity model 
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The temperature in the matrix around the fractures is either reduced (F1, F2, F3) or in-

creased (F4, F5) to a varying degree. The underlying mechanism is heat exchange be-

tween water in the fracture and the surrounding water-saturated matrix. Along fracture 

F1 relatively cold water is drawn down from Unit II and getting in contact with increas-

ingly warmer parts of the matrix. The temperature in the matrix is thus controlled by the 

complex interplay of several processes: 

- velocity of water 

o in the fracture 

o exchange with the matrix 

- heat flow 

o according to the temperature gradient between fracture and matrix, 

o due to the geothermal temperature gradient. 

The same applies in principle also to fracture F5, except that relatively warm water 

flows through increasingly colder parts of the matrix so that the temperature in the ma-

trix is increased. 

Differences between the temperature profiles of the constant and the variable viscosity 

model thus correlate to the differences in the flow velocities in the fracture system de-

scribed above. In both sections, the temperature deviation at fracture F1 is two times 

lower in the variable viscosity model than in the constant viscosity model. At fracture F5 

the values for the variable viscosity model are 25 to 20 % less than the values in the 

constant velocity model. These differences match the deviances found for the flow ve-

locities in fractures F1 and F5. 

The results of this study indicate that the temperature dependence of water viscosity 

has a strong influence on groundwater flow. In addition, the resulting effect on the flow 

field is hardly to predict, especially when fractures are involved. Exchange of water and 

heat between fractures and matrix is strongly affected in the investigated model by the 

accuracy with which the water viscosity is described. Even more complex becomes 

heat transport in a non-isothermal temperature field. This can obviously become highly 

relevant for the prediction of solute transport in the near-filed of a repository. It is there-

fore highly advisable to consider the temperature-dependency of water viscosity in 

cases of non-isothermal groundwater flow. 
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 A 3d fracture flow and transport model  5.2

5.2.1 Background 

The following modelling exercise is based on the work of the TRUE4 Block Scale Pro-

ject at the Hard Rock Laboratory Äspö /WIN 02/. As one result of this project the so-

called “TRUE Block Scale hydrostructural model” had been defined in the framework of 

Task 6c of the Äspö Task Force on Modelling of Groundwater Flow and Transport of 

Solutes.This hydrostructural model had a size of 200 m x 200 m x 200 m and formed 

the basis for deriving a block scale fracture flow and transport model. The TRUE Block 

Scale model consisted of 22 deterministic structures5 with an extension larger than 

50 m which were all actually detected in-situ. Smaller ones were called background 

fractures and can only be described in terms of geostatistics.  

Eleven of the deterministic structures were eliminated in the framework of Task 6c for 

different reasons /DER 03/. The remaining structures were treated as planar. Where 

actual field data were not available a geostatistical model was set up to fill in the gaps. 

19 synthetic 100 m scale structures were generated in just one realisation and then 

added to the model. These were therefore also called deterministic adding up to a total 

of 30 multiple intersecting discrete fractures. Additionally, 5660 synthetic background 

features were also generated and added. 

In the framework of the TRUE Block Scale project also the tracer test “C2” was per-

formed /AND 02/. It included injection of an ideal tracer in a certain structure and ex-

traction from a different but hydraulically connected structure. This test formed the ba-

sis for Tasks 6D as well as 6E. 

The work described here comprises modelling flow in this complex domain as well as 

the tracer transport across several fractures. Some new conclusions will also be drawn 

with respect to the flow field in general as well as to the role of the matrix for the tracer 

migration.  

                                                 

4  Tracer Retention Understanding Experiments 

5  The terms ‘structure’ or ‘feature’ were used to describe the sum of a fracture including fracture fillings as 
well as the complex changes in the host rock around the fracture (c.f. section 0). For the sake of sim-
plicity the term “fracture” will be used synonymously further on. 
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5.2.2 Conceptual model  

Review of models used in Task 6 

All models used in the framework of Task 6 incorporated a discrete fracture network 

(DFN). This was generally achieved by either one of two basic approaches. One way 

was to emulate fractures in a 3d-grid as highly conductive zones based on the 

“smeared fracture approach” (e.g. /FOU 03/). Alternatively, special 1d- or 2d-elements 

in space were used. Obviously, the first approach works on a reasonably fine grid only 

with a limited number of fractures.  

In case of more complex fracture systems as in Task 6E matrix flow was simply ig-

nored by several models e.g. /CRA 06/, (q.v. /MOR 08/), /CHE 06/. Where the matrix 

was not modelled explicitly, analytical solutions for diffusion in the matrix were applied 

e.g. /POT 06/ (q.v. /POT 09/), /DER 06/ (q.v. /UCH 09/). One model from a Japanese 

team and one from a French team /GRE 06/ was based on an equivalent continuum 

replacing matrix and background features by a “smeared fracture model”. Unfortunate-

ly, there exists no citable source for the Japanese model. The only hint was found in 

/TAN 03/. The procedure for finding parameters for the equivalent continuum is con-

ceptually rather simple. For a 3D volume element an equivalent conductivity Ke is cal-

culated as the volume weighed mean of fracture and matrix permeabilities: 
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              ( 5.2 ) 

Using the data from the semisynthetic hydrogeological model presented in /DER 03/ 

this method yielded an equivalent conductivity for the continuum of Ke = 10-9 m/s. 

In some cases also the background fractures were at least partly ignored /GRE 06/ 

(q.v. /GRE 08/). In /SVE 06/ fractures below a predefined cell size were only consid-

ered as storage volumes but did not take part in the flow. 

Adopted approach 

Fractured rock is often conceptualised as a so-called “intact rock” that is interspersed 

with stochastically distributed fractures. Other than in the Canadian Shield, where the 
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granite can be sparsely fractured (e.g. /KUZ 08/), the granite at Äspö proves to be 

comparatively highly fractured. It is even commonly assumed here that fractures exist 

on all length-scales implying that the hydraulically relevant rock porosity is basically 

made up of micro fractures (e.g. /DER 03/).  

Obviously, there is a lower limit to the size of the fractures that can be incorporated in 

any of these models. However, the minimum size of the considered fractures can be 

considerably less in a stochastic fracture network model without a matrix than in a case 

where the matrix is included.  

It is common practice to distinguish between large fractures and the remaining set of 

smaller fractures, also called “background fractures”. There is no general definition of 

background fractures, though. Basically, they are defined by their size (e.g. /DER 03/, 

/BLE 11/) or by their transmissivity (e.g. /CVE 06/, /BLE 13/) or a combination. 

/CVE 10/ add that background fractures typically come in numbers so that a discrete 

description of them is only possible by means of geostatistics. Since the background 

fractures are less transmissive than the large fractures6 and more evenly distributed 

they can arguably be replaced by a second continuum that effectively increases the 

matrix permeability (e.g. /BLE 11/). It has to be noted, though, that outflow from the 

rock into the probing boreholes at the BRIE-site varied roughly over two orders of mag-

nitude already over a distance of just 1.5 m /BOC 13/. This observation suggests that 

relevant water-bearing fractures at Äspö may become scarce on a scale of a few me-

tres or less /KRO 16a/. 

In the light of these considerations a model concept has been developed in the frame-

work of Task 8 where the undisturbed matrix and the background fractures are com-

bined to one continuum with effective flow parameters /KRO 16a/ as proposed earlier 

by /GRE 06/. The large fractures, however, are represented discretely by 2d-elements 

in space. The following calculations of flow and transport according to Task 6 are 

based on this concept. As an approach to the conceptual model outlined in /DER 03/ 

only the 100-m scale structures are considered to be large. 

                                                 

6  Note that a direct proportionality between fracture size and transmissivity has been established for the 
granite at Äspö (e.g. /BOC 13/). 
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However, there is little information coming from the Task 6 descriptions that can be 

used to derive the effective flow parameters for the continuum. Main reason for this is 

that the focus of Task 6 had lain on the modelling of tracer tests as well as the appro-

priate description of the influence of microstructural effects in the fractures on the 

transport behaviour. Characterising the flow field played a secondary role. Data from 

/KRO 16a/ are thus adopted for the Task 6 model where applicable. 

5.2.3 Fractures 

Structure 

On a micro scale level of observation a fracture is a rather complex structure as shown 

in Fig. 5.7 so that in principle no fracture is identical to another one. Basically, the 

structures investigated in the TRUE Block consist of open fractures with mineral coat-

ing. They are embedded in a comparatively large altered zone and often include sub-

parallel fractures. Some fractures contain additionally breccia7 and fine-grained fault 

gouge8. Also adjacent cataclasit9 and mylonite10 can be found. The thickness data for 

the different structure components are compiled in Tab. 5.3. Despite these complexi-

ties, however, the fractures are conceptualised as planar parallel plates for the purpose 

of modelling fracture flow and transport. 

 

                                                 

7  Fault breccia: a medium- to coarse-grained cataclasite containing >30% visible fragments /WIK 
10/.Millimetre to centimeter (> 2 mm) sized pieces of altered wall rock/cataclasite and/or mylonite. The 
chemical and mineralogical composition is usually similar to that of the (altered) wall rock /POT 02/. 

8  Fault gouge: an incohesive, clay-rich fine- to ultrafine-grained cataclasite, which may possess a planar 
fabric and containing <30% visible fragments. Rock clasts may be present /WIK 10/. Fragments and 
mineral grains (≤ 2 mm) of altered wall rock and secondary minerals (clay minerals and calcite) 
/POT02/. 

9  Cataclasite: a fault rock which is cohesive with a poorly developed or absent planar fabric, or which is 
incohesive, characterised by generally angular clasts and rock fragments in a finer-grained matrix of 
similar composition /WIK 10/. 

10  Mylonite: a fault rock which is cohesive and characterized by a well developed planar fabric resulting 
from tectonic reduction of grain size, and commonly containing rounded porphyroclasts and rock frag-
ments of similar composition to minerals in the matrix /WIK 10/. 
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Tab. 5.3 Extent of structure components 

Rock type  Extent [cm] 

Intact wall rock  − 

Altered zone  10 - 20  

Cataclasitedcat 2  

Fault gouge dg 0.5  

Fracture coating dc 0.05  

 

Fig. 5.7  Generalised conceptual model of a typical conductive structure;  

from /WIN 02/ 
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Geometry of the fracture system 

Coordinates are generally given in relation to an Äspö-specific reference point. The 

centre of the cube-shaped model domain is defined in these local coordinates by 

 easting:  1900 m 

 northing:  7170 m 

 elevation: -450 amsl 

Real as well as synthetic 100-m scale structures are defined by three, four or five cor-

ner points given also in terms of the Äspö reference system.The names of the struc-

tures are taken over from /DER 03/, definitions are compiled in Tab. C.1 and Tab. C.2 

in Appendix C. Also included are the corner coordinates corrected for fitting into the 

cubic model domain where applicable. Note that clipping produced further pentagonal 

and triangular structures in some cases. Note further that the assumption of planar 

fractures introduced an aberration of the fracture location of up to 10 m compared to 

the real fracture system. 

 

Fig. 5.8  100-m structures in the 200-m model block; real in grey, synthetic in green 
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5.2.4 Hydraulic properties 

It was possible to assign characteristic hydraulic parameters to each fracture in the 

TRUE block by means of in-situ tests and modelling exercises /DER 03/. Resistance to 

flow is given in terms of transmissivities. Also listed are the transport relevant apertures 

so that permeabilities can be calculated. These three properties are compiled in Tab. 

C.3. Variability of permeability and aperture are illustrated in Fig. 5.9 and Fig. 5.10. 

 

Fig. 5.9  Permeability of the fractures 

 

Fig. 5.10 Aperture of the fractures 
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An impression of the system of background fractures as well as the related transmissiv-

ities gives Fig. 5.11. It strongly supports the notion of representing this fracture system 

by an equivalent continuum. While the data from /GRE 06/ indicated a permeability of 

10-16 m² for the equivalent continuum representing matrix and background fractures, 

modelling Task 8 provided a related value of 10-17 m² /KRO 16a/, /KRO 16b/. Adopted 

was the latter value for the modelling as it was confirmed by two other participants of 

Task 8. Also adopted was the suggested porosity value of �= 0.005. 

 

Fig. 5.11 Transmissivities of the background fractures; from /DER 03/ 

5.2.5 Hydraulic boundary conditions 

Boundary conditions were given in terms of piezometric heads across the surface of 

the 200 m cube. These heads were calibrated in such a way that modelling the under-

ground openings like tunnels and boreholes is not necessary /DER 03/. A characteristic 

head value is given for each 22 m x 22 m square on the surface. In the two plots in Fig. 

5.12 these values are already interpolated. The original roughness can be appreciated, 

though, by the regular 22 m grid that is also shown. 
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Fig. 5.12 Hydraulic heads on the surface of the 200-m model block 

5.2.6 Tracer test 

The tracer test “C2” included a source in structure 23 at (1929.741, 

7194.840, -476.100)11 and a sink in structure 21 at (1914.628, 7186.294, -473.065). Di-

rect distance between source and sink amounted to 17 m but the actual flow path cov-

ering structures 23, 22, 20, and 21 (see Fig. 5.13) had a length of about 97 m /AND 

02/.  

According to /DER 03/ the injection rate was 1.5 10-7 m³/s and the pumping rate was 

3.27 10-5 m³/s. These data were later modified to 1.6710-7 m³/s and 3.25 10-5 m³/s, re-

spectively /DER 06/. 

The concentration of the injected tracer was given in terms of activity per mass (see 

Appendix Tab. C.4). The total amount of the injected activity amounted to 1.71·108 Bq 

with an uncertainty of 1.89·106 Bq. As a result of the tracer test the measured extrac-

tion concentration over time is given (see Appendix Tab. C.5). The data is plotted in 

Fig. 5.14.  

                                                 

11  Äspö coordinate system  
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Fig. 5.13 Structures involved in the C2-tracer test 

 

Fig. 5.14 Activity concentrations for the tracer in the C2-test 
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The apparent or effective diffusion is taken here to be a product of the coefficient for 

free diffusion in water and a so-called “formation factor” which includes effects from po-

rosity, tortuosity, constrictivity etc. The referring data with respect to each material 

found in the fractures is compiled in Tab. 5.4. However, since the parallel plate model 

is applied here a formation factor of 2·10-4 is adopted for the fractures and 7.5·10-5 for 

the matrix in the calculations. 

Tab. 5.4 Transport relevant parameters in different materials;from /DER 03/ 

 Fracture 

coating  

Fault 

gouge  

Cataclasite Altered 

zone  

Unaltered 

wall rock  

Porosity (%)  5  20 1 0.6 0.3  

Formation factor, F 6.2E-03 5.6E-02 4.9E-04 2.2E-04 7.3E-05 

5.2.7 Results 

Pressure 

The pressure distribution prescribed on the model boundary was rather coarse in com-

parison to the size of the elements representing the matrix. In order to provide a 

somewhat smoother distribution for modeling purposes the pressure data for the 

boundary was processed by an inverse distance weighing scheme. It appears, though, 

that the real data distribution was too complex to be reconstructed by this procedure. 

Either the orthogonal pattern from the provided data (c.v. Fig. 5.12) remained to be vis-

ible or certain features of this distribution got lost. Fig. 5.15 shows the adopted com-

promise. For reference the used grid is depicted as well. 

The resulting pressure distribution in the fracture system is depicted in Fig. 5.16. Clear-

ly visible is a considerable pressure drop in the middle of the system apparently relat-

ing to the extraction point in the C2-test. This observation is underpinned by the pres-

sure distribution in the matrix in the vicinity of this location as shown in Fig. 5.17 



125 

         

Fig. 5.15 Pressure distribution and numerical grid on the model boundary 

 

Fig. 5.16 Pressure distribution in the fractures 
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Fig. 5.17 Pressure distribution in the matrix at the C2-test 

Finally confirmed is this conclusion by a closer look at fractures 23, 22, 20, and 21 

which are immediately affected by the C2-test. Injection is located in fracture 23 and 

extraction in fracture 21. Plotting the related pressure field at a different scale as in the 

left graphic of Fig. 5.18 reveals that the pressure drop is indeed caused by the extrac-

tion of water in the C2-test.  

Almost not visible by comparison is the slight pressure increase due to the injection of 

the tracer in the right plot in Fig. 5.18 showing the pressure at a yet different scale. This 

is of course a consequence of the fact that the extraction rate is about 200 times higer 

than the injection rate.  
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Fig. 5.18 Two views of the pressure distribution in the fractures related to the C2-test  

at different scales 

Velocity 

While the pressure field looks rather straight forward the resulting velocity field is quite 

complex because of the hydraulic interaction of the fractures. Exemplarily for the intri-

cacy of the whole fracture flow system a closer look is taken at the flow fields in the 

four fractures immediately involved in the C2-test. However, a much better understand-

ing can be gained if the fractures intersecting this “core group” of four fractures are also 

taken into account. The list of fractures connecting to the fractures of the core group 

shows already a certain complexity: 

 fracture 23 (including injection) connects to fracture 22, 

 fracture 22 connects to fractures 23, 20, 06, 07, and 13, 

 fracture 20 connects to fractures 22, 21, 07 and 13, and 

 fracture 21 (including extraction) to fractures 20, 07, and 13. 

Note that fracture 22 does not penetrate fracture 07 but just has a touching line in 

common with fracture 07. 

fracture 23

fracture 22

fracture 20

fracture 21 

fracture 23
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fracture 20 

fracture 21



128 

All fractures from the list are depicted in Fig. 5.19. For the sake of clarity fractures 23, 

22, 20, and 21 are plotted in grey while fractures 06, 07, and 13 are showing the hy-

draulic pressure. 

  

Fig. 5.19 Pressure distribution in the fractures cutting through the fractures  

related to the C2-test 

In the following a series of plots depicting the velocity field in a fracture from the core 

group as well as a second fracture intersecting the first one is shown to elucidate the 

velocity field in the 3d-fracture system. Injection and extraction points are represented 

by a red and a blue sphere, respectively, where applicable. Note that a velocity vector 

is plotted for each fracture element which leads in some cases to a local concentration 

of vectors that is simply caused by a local grid refinement.  

The tracer carrying water is injected into fracture 23 at the location marked by the red 

sphere in Fig. 5.20. Fracture 23 is not intersected by any other fracture than fracture 22 

which subsequently takes up much of the injected tracer. The flow field in fracture 23 is 

therefore basically determined by the injection, by fracture 22 and of course by the sur-

rounding matrix. Clearly visible is the local increase of velocity at the source. The re-

sulting increase of velocity at the intersection with fracture 22 is small, though, com-
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fracture 20

fracture 22

fracture 21 

fracture 06
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pared to the flow coming from fracture 22. A considerable decrease of tracer concen-

tration due to mixing with fresh water can thus be expected at this intersection.  

 

Fig. 5.20 Velocity in fractures 23 and 22 

Contrary to fracture 23 there are several intersections of other fractures with fracture 

22. Fig. 5.21 to Fig. 5.22 show the velocity field of fracture 22 together with one of 

these other intersecting fractures. In Fig. 5.21 fracture 22 is depicted together with frac-

ture 20 which is the next fracture along the main flowpath of the tracer. Some mixing is 

again to be expected at the intersection of fractures 22 and 20. Also easily recognisa-

ble in Fig. 5.21 is the influence of fractures 06 and 07 on the flow field in fracture 22. 

Both fractures are significantly feeding water into fracture 22 which can be also seen in 

Fig. 5.22 and Fig. 5.23.  Only fracture 13 seems not to influence fracture 22 as depict-

ed in Fig. 5.24.  

fracture 22

fracture 23
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Fig. 5.21 Velocity in fractures 22 and 20 

 

Fig. 5.22 Velocity in fractures 22 and 06 
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Fig. 5.23 Velocity in fractures 22 and 07 

 

Fig. 5.24 Velocity in fractures 22 and 13 

Fracture 22 is the second to last fracture before the tracer reaches the extraction point 

in fracture 21. Fig. 5.25 shows both fractures but fracture 21 is seen from the side op-

posite to the sink. The influence from the sink on the velocity field in fracture 21 is 
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clearly visible by reference to the flow pattern close to the middle of the intersection 

line. Similarly, the water coming from the direction of fracture 20 appears to converge 

already towards the same location at the intersection with fracture 21.  

Water flow from fracture 22, though, seems to be little as it has no strong influence on 

the flow in fracture 20. Yet another considerable dilution of the tracer plume is therefore 

to be expected at this intersection.  

Fig. 5.25 seems to indicate also only a minor influence of fracture 13 on the flow of 

fracture 20 while Fig. 5.26 shows a contribution to fracture 20 that is in the same order 

as flow in fracture 20. An increase in flow by a factor of 2 or 3 gets apparently lost in 

the logarithmic colour scale for the velocity. 

Flow is only significantly changed across the intersection with fracture 07 which is con-

firmed by Fig. 5.27. 

 

Fig. 5.25 Velocity in fractures 20 and 21 
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Fig. 5.26 Velocity in fractures 20 and 13 

 

Fig. 5.27 Velocity in fractures 20 and 07 

Finally, flow in fracture 21 is not surprisingly controlled by the extraction at the point 

marked with the blue sphere as shown in Fig. 5.28. Again only fracture 07 delivers 
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enough water to change the flow pattern in fracture 21 at the intersection significantly 

(see also Fig. 5.29).  

 

Fig. 5.28 Velocity in fractures 21 and 13 

 

Fig. 5.29 Velocity in fractures 21 and 07 

fracture 22 

fracture 21

fracture 13

fracture 07

fracture 22 
fracture 21

fracture 13 

fracture 07



135 

Tracer concentration 

The transport simulation was checked against the measured breakthrough curve of the 

tracer. However, breakthrough was not satisfyingly reproduced by the model – neither 

in terms of breakthrough time nor in terms of peak value – when using the hydraulic in-

put parameters described in the previous subsections. The tracer plume took too long 

to reach the extraction point and did not reach the measured concentration.  

Since too much spreading in the matrix and too little velocity in the fractures was sus-

pected the porosity values for matrix and fractures were reduced. A satisfying fit was 

achieved reducing the formation factor for the matrix by a factor of 30 and the formation 

factor for the fracture by a factor of 10. Note that a related increase of the permeability 

would have had the same effect except that higher fluid and solute flow rates would 

have been involved. The resulting breakthrough curve with reference to the measured 

data is shown in Fig. 5.30. The results presented in the following refer to the model with 

modified porosities. 

 

Fig. 5.30 Measured and calculated breakthrough curve 

A comparison of the breakthrough curve with the injection curve shows essentially a 

decrease in the peak concentration and a phase shift (c.p. Fig. 5.14). These two prop-

erties reflect the effects of the travel time between injection and extraction point and the 

effect of mixing with fresh water. Mixing occurs always on a microscopic scale due to 
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the hydrodynamic dispersion leading to a certain spreading of the tracer plume. A sec-

ond mixing effect can be observed in the C2-test when the concentration plume is 

crossing an intersection of two fractures thus mixing the solution with fresh water.  

While the hydrodynamic dispersion smoothens the concentration distribution and is 

therefore numerically favourable, mixing at fracture intersections is quite difficult to re-

produce in a numerical model. The problem that arises in this situation is exemplarily il-

lustrated in Fig. 5.31.  Assuming the same flow rate in two identical intersecting frac-

tures and assuming further a tracer plume with the concentration c0 arriving at the 

intersection from one fracture while the second fracture carries no tracer results in a 

mixing concentration of ½c0. The model must therefore represent three different step-

wise changing concentration values at the intersection, c0 upstream of the intersection 

in one fracture, 0 in the other fracture upstream of the intersection and ½c0 in both frac-

tures downstream of the intersection. These step functions can lead to severe oscilla-

tions in the solution of numerical schemes that are based on continuous basis functions 

(e.g. /KRO 91/) if they persist as part of the exact solution and if hydrodynamic disper-

sion is insufficient to dampen the oscillations. Since the chosen dispersion lengths 

amount only to 10 cm thus leading to high Peclet-numbers it is of specific interest how 

d3f++ handles this situation.  

 

Fig. 5.31 Illustration of concentration changes at a fracture intersection 

Additionally, the numerical model faces a similar problem where the streamlines con-

verge towards the sink. Without hydrodynamic dispersion the boundary of the tracer 

plume would be characterized by a step function orthogonal to the flow direction. Even 

more problematic for the numerical scheme is calculating the concentration distribution 

at the very sink because a step function is also required in the direction of flow. This 

situation is illustrated by Fig. 5.32. Ususally, a sufficient amount of hydrodynamic dis-

persion is required to minimize numerical problems from step functions in the solution 

which can be interpreted as introducing longitudinal and transverse mixing.  
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Fig. 5.32 Illustration of a solute plume migrating towards a sink  

without hydrodynamic dispersion 

An example for the consequences of this sort of problem is given in Fig. 5.33 showing 

the model results for a steady-state gas saturation distribution. In a dipole test gas had 

been injected and extracted in a fracture at the HRL Äspö /KUL 02/. While the gas in 

the model forms a plume that correlates nicely with the depicted flow field, a curious 

saturation peak is visible close to the sink. It shows higher values than the maximum 

saturation at the source which can in reality not be exceeded and is thus an artefact 

that is caused by the numerical difficulties at the sink. 

 

Fig. 5.33 Model results for the steady-state gas saturation (SG) in a dipole test;  

from /KUL 02/ 

source

sink
peak 
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The results for tracer migration in Task 6 are illustrated in Fig. 5.34 to Fig. 5.36 by plots 

showing the concentration distribution as well as the velocity field in fractures 23, 22, 

20, and 21 at 10h, 50h, and 200h. The adopted three points in time represent the end 

of the high tracer injection rate and the beginning of a strong reduction of this rate as 

shown in Fig. 5.14 (the fluid injection was kept constant for 10 hours), an interesting 

phase of the transport dynamics where the tracer plume has already affected three of 

the four fractures (at 50 hours), and reaching the maximum concentration at the sink at 

200 hours.  

Since there is no meaningful view from which the injection and the extraction point is 

visible, the group of the four fractures is depicted from two sides. Apparently, the plume 

follows the streamlines at the source that are indicated in Fig. 5.20 at all times. This in-

cludes flow from the source against the general flow direction over a short distance in 

fracture 23. After the tracer injection rate had almost dropped to zero, a ringlike con-

centration distribution developes around the injection point that can be seen in the plot 

for 200 h in Fig. 5.36.  

The concentration distribution along the fractures 23, 22, 20, and towards the extrac-

tion point in fracture 21 shows a large decrease of concentration with increasing dis-

tance to the source. The peak concentration is reduced by 4 orders of magnitude while 

reliable concentration values span a range of more than 6 orders of magnitude. From 

this fact a strong dilution of the tracer at the fracture intersections can be inferred which 

could easily provoke large oscillations due to the little influence of hydrodynamic dis-

persion. However, looking at the concentration distribution in fractures 20 and 21 at 

200 h model time (when the tracer reached the maximum at the sink) reveals no such 

errors in the numerical solution as depicted in Fig. 5.37. On the contrary, the concen-

tration contrasts at the intersections are quite sharp.  

To corroborate this observation the four fractures were scanned closely for negative 

concentration values as indicators for oscillations. But only three pointlike locations 

could be identified, two in fracture 23 and one in fracture 20 where a negative concen-

tration developed. These negative concentrations did not exceed 16 Bq/kg, though, in 

comparison to the maximum of 2.7·107 Bq/kg at the injection point.
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Fig. 5.34 Concentrations in fractures 23, 22, 20, and 21 at 10h 
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Fig. 5.35 Concentrations in fractures 23, 22, 20, and 21 at 50h 

injection point

extraction point 
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Fig. 5.36 Concentrations in fractures 23, 22, 20, and 21 at 200h

injection point

extraction point 
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Fig. 5.37 Concentrations in fractures 20 and 21 at 200h 

5.2.8 Conclusions 

Modelling flow and tracer transport according to the description of Task 6 of the Task 

Force on Groundwater Flow and Transport of Solutes demonstrated effectively the abil-

ity of d3f++ to cope with flow and tracer transport in highly fractured porous media. 

Even if reproducing the C2-test required some parameter modifications the measured 

breakthrough curve was met rather well. This is even more remarkable as the peak 

concentration was reduced by four orders of magnitude and reliable concentration val-

ues were calculated even at 1 % of the reduced peak concentration at the sink. The 

sharp concentration changes at the fracture intersections due to mixing were very well 

captured without provoking oscillations as often seen in other models. The same ap-

plies also to the model results for the sink area where sharp concentration contrasts 

are naturally part of the solution.  

While the model performed technically very well, explanations for the necessary con-

siderable reduction of the formation factor remain somewhat in the dark. Referring to 

the fractures an error in the transformation from transmissivities to permeabilities for 

the fractures was suspected. To confirm this, the exact measurement procedures as 

well as a clear understanding of the physical implications of the transformation with a 

view to the complex fracture structure would have been required. However, this could 

not be achieved based on the available reports only.With respect to the matrix the re-

duction of the formation factor seems to indicate deficiencies in the conceptual model. 

While replacing the matrix as well as the background fractures by one effective contin-

uum appears to be justifiable when simulating flow this might not be the case if simulat-

fracture 20 fracture 21 
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ing solute transport. In case of transport modelling additional hydraulic properties are 

required. While the permeability is sufficient to characterize steady-state flow, transport 

is also based on the pore velocity thus requiring the porosity. Moreover, solute migra-

tion is additionally sensitive to the actual transport path. This includes spreading of a 

plume not only because of the microscopic dispersion but also because of macroscopic 

spreading in the network of background fractures. The model concept for tracer 

transport in fractured porous media should thus be reconsidered in the future.  

Further conclusions can be drawn with respect to the C2-test. Analyzing the pressure 

distribution in the fractures as well as in the matrix shows that the flow field is dominat-

ed by the extraction of water. Water is basically drawn from the boundary to the sink. 

The sophisticated pressure distribution at the boundary that has been applied for the 

model is therefore only of secondary relevance for this task. Flow, however, does not 

follow a straight line through the matrix but takes mostly detours along the hydraulically 

better conducting fractures. This phenomenon ensures that water drawn from the injec-

tion point to the extraction location is essentially flowing along fractures.  

In general, this leads to highly complex flow patterns as the fracture orientations and in-

tersections are seemingly at random. The complexity of the flow field became obvious 

by analyzing the velocity field along the transport path of the injected solution. While 

only four fractures covered this path the additionally three fractures that intersect these 

four fractures influenced the underlying velocity field significantly. Further analyses in 

this detail were not feasible in a reasonable time frame as the model comprised a total 

of 30 discrete fractures. 

Finally, the difficulties should be acknowledged that are encountered when visualizing 

physical quantities in a fracture network. One is the inherent problem with the results of 

3d-models that can only be presented in 2d thereby loosing easily the orientation of ob-

jects and the relation of two or more objects in space to each other. Another problem 

arises clarifying graphically interactions between two fractures that are intersecting at 

narrow angles. Scalar or vector plots of the two fracture faces are not discernable if 

they are meeting under narrow angles. And of course one half of the graphics are al-

ways on the far side of the observer which becomes even more serious if several frac-

tures are shown. These challenges culminated at illustrating the time-dependent tracer 

transport by combined plots depicting concentration distributions and the underlying ve-

locity field at the same time. 
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 3d regional free surface flow with well pumping, variable recharge 5.3

conditions and river discharge 

The d³f++ code handles free surface groundwater flow using level set methods, see 

/FRO 12/ and /SCH 12/. Previously, this implementation has only been tested on the 

basis of small 2d examples. Within the BMBF-funded NAWAK project (“Development of 

sustainable adaption strategies for the water supply and distribution infrastructure on 

condition of climatic and demographic change”, identification number 033W007) d³f++ 

is applied to a regional 3d model of a coastal aquifer near the German North Sea, tak-

ing into account variable recharge, river discharge and the pumping wells of three wa-

terworks. The objective is forecasting the impact of several demographic and climate 

change scenarios on the position of the seawater-freshwater interface. Here, this mod-

el is used as a huge 3d test case for the correct implementation of the level set meth-

ods in d³f++, the increased performance of the new code and the implementation of 

new features such as as variable recharge rates in space and time as well as river dis-

charge. 

5.3.1 Free groundwater table in d³f++ 

In d³f++ the time dependent position of the groundwater table ߁ሺݐሻ in a fixed domain 

D	is described implicitly as the zero level set of a level set function ߶ሺݔ, ሻݐሺ߁	߳	ݔ .ሻ, i. eݐ

⇔ 	߶ሺݔ, ሻݐ ൌ  ሻ, where Darcy’s law isݐdivides D into the fully saturated zone Ωሺ	ሻݐሺ߁ .0

valid, and the partially saturated zone D\Ωሺݐሻ that is regarded to be outside of the 

model domain, see Fig. 5.38. 

 

Fig. 5.38  Model domain D divided by ߁ሺݐሻ	 D into a fully saturated zone Ωሺݐሻ  

and a partially saturated zone D\Ωሺݐሻ 
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As a proper choice of a level set function the signed distance function ߔ is used with 

∥ ߔ	׏ ∥	ൌ 1 and ߔሺߛሻ ൌ 0,  ሻ forms the time dependent part of the boundaryݐሺ߁ .ሻݐሺ߁	߳	ߛ

of Ω, moving with a normal velocity ܵሺߛሻ ≔ ሬܰሬԦሺߛሻ ∙ ,ߛሬԦሺݑ	 ,ሻݐ -ሻ. These normal velociݐሺ߁	߳	ߛ

ty can easily be interpolated to ܦ\Ωሺݐሻ, which is necessary to compute the movement 

of ߁ሺݐሻ /FRO 12/. 

Using level set functions for the description of ߁ሺݐሻ implicates some restrictions to 

these part of the model boundary: Regarding the pressure, the boundary condition 

݌ ൌ 0 on ߁ሺݐሻ at any fixed time ݐ is set directly by numerical discretization and cannot 

be changed /SCH 12/. That means groundwater recharge as well as discharge may not 

be treated as boundary conditions, both effects have to be modelled as factors directly 

influencing the normal velocity ܵ, see /SCH 12/: 

ܵ ൌ 	 ൬
1
߶
ࢗ	 ൅

ݎ
߶
௭ࢋ ൅

ܿ
߶
௭൰ࢋ ∙ 	 ሬܰሬԦ 

(5.3) 

where ߶ stands for the effective porosity of the medium in the corresponding subdo-

main, ݎ ൌ ,ݐሺ	ݎ ܿ is the groundwater recharge caused by precipitation and	ሻߛ ൌ

ܿ	ሺݐ, ,ߛ  ௭ is the unitࢋ) .is a special source due to the rivers on the top of the domain	ሻ߁

vector of the z-direction.) The values of ݎ ൌ ,ݐሺ	ݎ -ሻ are specified as a piecewise conߛ

stant function over the projection of the domain to the xy-plane, and are periodic in 

time. 

The rivers are considered to be a one-dimensional projection to the xy-plane, but to 

hve an arbitrary depth in the z-direction. They are represented as a separate grid of 

segments in the xy-plane. The source ܥ ൌ ,ݐሺ	ܥ ,ߛ   due to the rivers is given by the	ሻ߁

following formula: 

ܥ ൌ െ
௞ౙ∙ఘ౨∙௚

ఌ∙ఓ౨
∙ ൫݄ୱሺߛሻ െ ݄୤ୱሺݐ, ,ߛ ሻ൯߁ ∙  (5.4) .ݓ

Here, ݃ is the gravity, ݓ is the width of the river, ݇ୡ and ߝ are the effective permeability 

and the thickness of the colmation layer, ߩ୰ and ߤ୰ are the effective density and viscosi-

ty of the water in the river, ݄ୱሺߛሻ is the specified water level in the river (absolutely or 

optionally relatively to ground level, depending on the specification of ݄ୱሺߛሻ), whereas 

݄୤ୱሺݐ, ,ߛ  :ܥ ሻ is the depths of the groundwater table. The function ܿ is smoothed߁
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ܿሺݐ, ,ߛ ሻ߁ ൌ න ,ݐሺܥ ,ᇱߛ ሻ߁ ∙ ,ߛሺܯ ᇱሻߛ ∙ ᇱߛ݀
	

஻ഃ
ೣ೤ሺఊሻ

, 
(5.5) 

where ߜ is the specified smoothing length, ܤఋ
௫௬ሺߛሻ is the circle of radius ߜ in the xy-

plane around the projection of ߛ to that plane, and ܯሺߛ,  ᇱሻ is the mollifierߛ

,ߛሺܯ ᇱሻߛ ൌ ቐ
ߜ െ ݀ሺߛ, ᇱሻߛ

ଷߜߨ 3⁄
, ݀ሺߛ, ᇱሻߛ ൏ ߜ

0, ݀ሺߛ, ᇱሻߛ ൒ ߜ
 

(5.6) 

with ݀ሺߛ,  .to the xy-plane ′ߛ and ߛ ᇱሻ being the distance between the projections ofߛ

There is a further option to restrict the value ݄ୱሺߛሻ െ ݄୤ୱሺݐ, ,ߛ -ሻ if it exceeds some spec߁

ified maximum (to avoid unphysically strong sources). 

5.3.2 The Sandelermöns model 

The Sandelermöns model covers an area of about 1,000 km² situated at the German 

North sea coast as shown in Fig. 5.39. Almost half of the model region is low-lying and 

formed part of the North Sea some hundred years ago so that the aquifers lead saline 

groundwaters. The south-western part consists of moraines with notable recharge rates 

and freshwater aquifers below. The three waterworks Sandelermöns, Feldhausen and 

Klein Horsten are situated in these areas, competing for pumping concessions and 

worrying about the close-by saline waters. 

 

Fig. 5.39 Situation of the Sandelermöns model area including the wells  

of the three waterworks and area of saline groundwater 
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The hydrogeological model was set up by the Oldenburg-Ostfriesian Water Company 

(OOWV). Six formations are distinguished, starting with a thick layer of fluvial sands at 

the bottom, followed by small fields of Tergast clay and a continuous layer of melt-

water sands. The top of the model consists of thin layers of Lauenburg clay, dune 

sands and silty materials. The base surface of each hydrogeological layer was read-in 

into the ProMesh tool and together with ground surface data composed to a 3d model. 

Fig. 5.40 shows the hydrogeological model created and the start values for the perme-

abilities and porosities. 

 

Fig. 5.40 3d hydrogeological model of the Sandelermöns region,  

exaggerated in vertical direction by a factor of 30 

One challenge was the generation of a coarse grid with advantageous numerical prop-

erties. Because tetrahedral grids turned out to be not suitable, d³f++ had to be enabled 

to handle prism grids, including the option of anisotrope grid refinements and adaptions 

of the implementation of the levelset method. The result was a coarse grid consisting of 

only 18,000 prisms. 

The south-western boundary of the model is located on a watershed and therefore as-

sumed to be impermeable. The salt concentration is set to zero. The north-western and 

south-eastern boundaries are choosen to be perpendicular to the water table isohypses 

and therefore also regarded as impermeable for the flow. The coastal boundary is 

equipped with a hydrostatic pressure for seawater and a salt concentration of 

34 kg kg-1. The bottom of the model is also assumed to be impermeable because geo-

logical knowledge suggests almost impermeable clayey formations here. 

On the upper boundary, a Dirichlet boundary condition p = 0 has to be choosen for the 

pressure as already mentioned in Chapter 5.3.1. The concentration is also set to zero. 
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Time dependent groundwater recharge data were provided by the Braunschweig 

Technical University. 147 polygonal recharge zones were distinguished as shown in 

Fig. 5.42.  

The north-eastern region of the model domain is characterized by a dense net of small 

draining ditches and rivers conducting water to the coastal pumping stations in the 

dikes to keep the groundwater level below land surface. This drainage plays a crucial 

role in the hydraulic regime and had to be incorporated in the model. Because an ex-

plicite mapping of all ditches in a regional model is impossible, only the rivers of first 

and second orders were integrated, and their influence was smeared over a user de-

fined range of surface elements.  

   

Fig. 5.41 Influence of river drainage, exemplarily (red: 0.0, blue: 1e-8 m³ s-1) 

   right: real network of draining ditches in the black marked detail 

Regrettably there exists only little information about the water levels of the receiving 

streams in the Sandelermöns region as well as the pumping rates of the coastal sta-

tions. Missing information was replaced by reasonable assumptions to meet the natural 

hydraulic regime by a careful calibration process. 

Furthermore, the 51 pumping wells of the waterworks were included into the model. 

Additionally, 36 private wells are regarded. 
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Fig. 5.42  Sandelermöns model with prism grid, boundary conditions,  

receiving streams (blue) and pumping wells (light blue);  

right: groundwater recharche distinguished on 147 polygons 

To find an appropriate initial condition for the free groundwater table the data of 284 

gauge wells were averaged over the year 2011, interpolated and converted into a 

ProMesh data set. Unfortunately, only few gauges exist near the coastal line, and the 

model reacts very sensitive on changes in these settings. 

The initial condition for the salt concentration is based on geoelectromagnetic data pro-

vided by the Leibniz Institute for Applied Geology, see Fig. 5.43. Therefore, specific re-

sistance measurements had to be converted into salt concentrations and the resulting 

3d data field had to be read in by the ProMesh tool. 
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Fig. 5.43  Initial conditions,  

left: groundwater surface  

right: 3-Ωm-isosurface resulting from geoelectromagnetic measurements 

5.3.3 Sandelermöns simulations 

Simulations started with the initial and boundary conditions as described in Chapter 

5.3.2. Fig. 5.44 shows the salt concentration at the first step of simulation, where ܿ ൌ 1 

means seawater concentration (34 kg kg-1), as well as well fields and rivers.  

 

Fig. 5.44  Initial state of the Sandelermöns model with river system (blue), pumping 

wells (red) and salt concentration 
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The first simulations were performed on grid level 1 consisting of only 72 000 nodes 

with the objective to calibrate the model. In a first step, the fluid volume in the model 

had to be stabilized. Factors influencing this volume are the initial state of the ground-

water level, sea level, recharge rates, river drainage and pumping rates.  

The model reacts mostly sensitive against variations in sea level, represented by the 

hydrostatic pressure boundary condition at the north-eastern boundary, relatively to the 

initial groundwater level at the coastal line. River drainage relatively to the recharche 

rates is much more influencing the results than well pumping, which plays a less im-

portant role. Theses sensitivities form a huge problem because of the poor knowledge 

about groundwater levels in the coastal zone as well as river drainage. Another prob-

lem is that the results for the fluid volume may completely fail without an adequate grid 

refinement.  

Fig. 5.45 shows the simulated groundwater surface after a model time of 6 years as a 

result of the calibration process as a contour map. In the scatter plot on the right simu-

lated groundwater levels are compared with measured data. Therefore, the simulated 

values had to be approximated from the grid nodes next to the gauge points which 

leads to errors especially in the depression cones of the wells. 

  

Fig. 5.45  Simulated groundwater level with gauge wells;  

right: comparison of measured and simulated data during calibration  

after a model time of 6 years 
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In consideration of the lack of data and the coarse grid the calibration results are rather 

good and plausible. Nevertheless, further grid refinements are necessary for a better 

calibration. To improve simulation results, it is desireable to achieve grid convergence, 

that means at least grid levels 3 or 4 (1.1 or 4.6 millions of nodes) have to be used. 

As shown in Fig. 5.46, the influence of the hydrostatic pressure boundary condition is 

restricted to a zone near the coastal boundary. Saline waters detected by measures 

outside this zone must result from former inundations hundreds of years ago, before 

the areas were protected by dikes. That means the simulated salt distribution is mainly 

determined of the initial condition. 

 

Fig. 5.46 Simulated flow field on a cutting plane 

The main objective of the NAWAK project is predicting the situation of the freshwater-

/saltwater interface up to the year 2050. This work is in progress. Fig. 5.47 shows ex-

emplarily the concentration isosurface of 500 mg l-1 (drinking water standard) relatively 

to the well fields. 
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Fig. 5.47 Simulated drinking water/seawater interface  

in relation to the pumping wells 

5.3.4 Conclusions 

The Sandelermöns model represents an highly challenging test case for d³f++ with re-

spect to free groundwater surface modelling and provoked several crucial improve-

ments of the code. At the same time, it allows a broad examination of the correct trans-

fer of the level set methods from UG3 to UG4. Additionally, Sandelermöns posed 

challenges to the d³f++ preprocessing and initiated a series of very useful enhance-

ments of ProMesh. In this way it made also a contribution to an improved applicability 

of d³f++ to large, regional problems with thin layers. 

Furthermore it was detected that a minimum grid refinement is crucial for getting cor-

rect results for the fluid volume or the position of the groundwater surface, respectively. 

Thereby it turned out again that grid convergence is an indispensable precondition for 

confidable simulation results, especially regarding forcasts. 
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6 Summary 

The codes d³f and r³t are well established for modelling density-driven flow and nuclide 

transport in the far field of repositories for hazardous material in deep geological for-

mations. They may be used in porous media as well as fractured rock or mudstone, for 

modelling salt- and heat transport as well as in models with free groundwater surface. 

Both codes were applications of the software platform UG /BAS 94/ that was developed 

in the early nineties. In order to adapt the flow and transport simulations to the growing 

requirements of modern efficient numerical software, the renewed code basis UG4 for 

the simulation of coupled partial differential equations has been developed /VOG 13/. 

The new implementation is grounded on an object-oriented software design and written 

in C++. 

To be able to participate in the current and future enhancements and numerical ad-

vances the UG-applications d³f and r³t had also to be transformed to this new software 

platform. Benfitting the fact that coupling between different sets of equations is natively 

supportet by UG4, both codes were coupled in this process to the new conjoint code 

d³f++. This allows the simultaneous simulation of density-driven groundwater flow and 

pollutant transport.  

State-of-the art computer codes have not only to run on massively parallel computers, 

they also have to use modern multicore and hybrid computer structures. Each proces-

sor consists of multiple cores that are accessing at the same, hierarchically structured 

main memory, and, moreover, the cache memory may be organized in a much more 

complex way. In many cases processors of this type are supplemented by very special-

ized processors like GPUs and Cell processors. The efficient use of these modern 

computer architectures relies on appropriate data structures that had to be implement-

ed in UG4 and d³f++, respectively. Additionally, the multigrid solvers had to be adapted 

to these new structures and advanced. In tests with up to131,000 processors a very 

good scaling behavior could be shown. 

To improve efficiency, different types of non-linear solvers were compared. As an alter-

native to Newton-type fixed point iterations linear-implicit schemes were introduced. 

These schemes allow to linearize the problem only once, and thus, when compared to 
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the Full Newton algoritm, the number of linear iterations is reduced considerably. 

Moreover, this method can elegantly be combined with a timestep control and also with 

spatial adaptivity.  

In every site investigated some of the the rock properties as well as flow and transport 

parameters remain partially unknown. These uncertainties are usually taken into ac-

count by stochastic modeling. However, Monte Carlo simulations with respect to re-

gional groundwater flow are not applicable because of their high computational costs. A 

new stochastic approach was therefore adapted and applied. It is based on the idea 

that a scalar variable like the salt concentration is replaced by a so called “filtered 

probability density function“in the differential equation system. This leads, though, to 

higher dimensional equation systems requiring new numerical solvers. These were al-

so developed. 

UG4 applications are controlled by scripting or a graphical user interface. Therefore, 

lua-scripting and the Visual Reflection Language VRL had to be adapted to the needs 

of d³f++. Additionally, d³f++ profits from the UG4 pre-processor ProMesh that enables 

the user to set-up model geometries based on different types of data input and to gen-

erate the computational grid. ProMesh was also enhanced by several features that are 

helpful in the buildup of hydrogeological models. Data exchange between d³f++ and 

pre- and postprocessors has been standardised using exclusively the new grid format 

ugx. For the output of the simulation results an interface to the well established VTK 

framework has been created, offering the possibility to use e. g. PARAVIEW or VISIT 

for visualisation. 

The new, modern code d³f++ underwent a series of tests, and it was already success-

fully applied to large complex models such as Task 6 of the Task Force on Groundwa-

ter Flow and Transport of Solutes and a regional groundwater flow model near the 

German North Sea coast. This demonstrated the ability of d³f++ to handle models in 

crystalline as well as in sedimentary rock at acceptable computational effort. The mod-

els were thereby of a higher complexity than previous models calculated with the for-

mer versions d³f and r³t. 

Furthermore, the handling of d³f++ has become much more user-friendly, and, finally, 

the data interface by standardised files opens up the use of a wide spectrum of post-

processing software. 

  



157 

7 References 

/ACK 04/ Ackerer, P., Younes, A., Mancip, M.: A new coupling algorithm for density-

driven flow in porous media, GEOPHYSICAL RESEARCH LETTERS 31 

(2004) L12506, 1–4.    doi:10.1029/2004GL019496. 

/AND 96/ Andricevic, R., V. Cvetkovic (1996), Evaluation of Risk from Contaminants 

Migrating by Groundwater, Water Resour. Res., 32 (3), 611-621. 

/AND 98/ Andricevic, R. (1998), Effects of local dispersion and sampling volume on 

the evolution of concentration uctuations in aquifers, Water Resour. Res., 

34 (5), 1115-1129. 

/AND 02/ Andersson, P., Byegård, J., Winberg, A.: Final report of the TRUE Block 

Scale project - 2. Tracer tests in the block scale. Technical Report TR-02-

14, Swedish Nuclear Fuel and Waste Management Company (SKB), 2002. 

/BAS 94/  Bastian, P., and Wittum, G.: Robustness and adaptivity: The UG concept. 

In: Multigrid Methods IV, proceedings of the fourth european multigrid con-

ference, ed. by Hemker, P., Wesseling, P., 1994. 

/BAS 97/  Bastian, P., Birken, K., Johannsen, K., Lang, S., Neuß, N., Rentz-Reichert, 

H., Wieners, C.: UG – A flexible software tool for solving partial differential 

equations. Computing and Visualization in Science 1, 27-40, 1997. 

/BEA 91/ Bear, J., Bachmat, Y.: Introduction to Modeling of Transport Phenomena in 

Porous Media, Theory and applications of transport in porous media, 

Kluwer Academic, Dordrecht, 1991.  

/BLE 11/ Blessent, D., Therrien, R. and Lemieux J.-M.: Inverse modeling of hydraulic 

tests in fractured crystalline rock based on a transition probability geostatis-

tical approach. Water Resources Research, Vol. 47, W12530, doi: 

10.1029/2011WR011037, 2011. 

/BLE 13/ Blessant, D.: Stochastic fractured rock facies for groundwater flow model-

ling. Dyna rev.fac.nac.minas vol.80 no.182, Medellín, 2013. 



158 

/BOC 13/ Bockgård, N., Vidstrand, P., Åkesson, M.: Modelling the interaction be-

tween engineered and natural barriers – An assessment of a fractured bed-

rock description in the wetting process of bentonite at deposition tunnel 

scale. Technical Committee of Task 8, SKB, Rev. 2013-10-27, 2013. 

/CHE 06/ Cheng, H., Cvetcovic, V.: Äspö Task Force on modelling of groundwater 

flow and transport of solutes; Modelling of Task 6D, 6E, and 6F, flow and 

transport simulations in fracture networks. International Progress Report 

IPR-06-20, Swedish Nuclear Fuel and Waste Management Company 

(SKB), 2006. 

/CRA 06/ Crawford, J., Moreno, L.: Äspö Task Force on modelling of groundwater 

flow and transport of solutes; Modelling of Task 6D, 6E and 6F, using 

CHAN3D. International Progress Report IPR-06-19, Swedish Nuclear Fuel 

and Waste Management Company (SKB), 2006. 

/CVE 10/ Cvetkovic, V. and Frampton, A.: Transport and retention from single to mul-

tiple fracturesin crystalline rock at Äspö (Sweden): 2. Fracture network sim-

ulations and generic retention model. Water Resources Research, Vol. 46, 

W05506, doi: 10.1029/2009WR008030, 2010. 

/DEN 00/ Dentz, M., H. Kinzelbach, S. Attinger, and W. Kinzelbach (2000), Temporal 

behavior of a solute cloud in a heterogeneous porous medium 1. Point-like 

injection, Water Resour. Res., 36 (12), 3591-3604. 

/DEN 02/ Dentz, M., H. Kinzelbach, S. Attinger, and W. Kinzelbach (2002), Temporal 

behavior of a solute cloud in a heterogeneous porous medium 3. Numerical 

simulations, Water Resour. Res., 38 (7), 23-1-23-13. 

/DER 03/ Dershowitz, W., Winberg, A., Hermanson, J., Byegård, J., Tullborg, E.-L., 

Andersson, P., Mazurek, M.: Äspö Task Force on modelling of groundwater 

flow and transport solutes; Task 6c - A semi-sythetic model of block scale 

conductive structures at the Äspö HRL. International Progress Report IPR-

03-13, Swedish Nuclear Fuel and Waste Management Company (SKB), 

2003. 



159 

/DER 06/ Dershowitz, W.,Fox, A., Lee, G., van Fossen, M., Uchida, M.: Äspö Task 

Force on modelling of groundwater flow and transport solutes; Discrete 

fracture network flow and transport modelling at the rock block scale: Task 

6D, 6E, 6F and 6F2. International Progress Report IPR-06-22, Swedish 

Nuclear Fuel and Waste Management Company (SKB), 2006. 

/DEU 02/ Deuflhard, P., Bornemann, F.: Scientific computing with ordinary differential 

equations. Springer Science & Business Media, 2002, 42. 

/DEU 90/ Deuflhard, P., Nowak, U., Wulkow, M.: Recent Developments in Chemical 

Computing, Computers & Chemical Engineering 14(11) (1990) 1249–1258. 

/DIE 98/ Diersch, H.-J. G., Kolditz, O.: Coupled groundwater flow and transport: 2. 

Thermohaline and 3D convection systems, Advances in Water Resources 

21 (5) (1998) 401 – 425.    doi:10.1016/S0309-1708(97)00003-1. 

/DIE 09/ Diersch, H.-J. G., Kolditz, O.: Variable-density flow and transport in porous 

media: approaches and challenges, in: FEFLOW © White Paper Volume II, 

DHI-WASY GmbH, Berlin, 2009. 

/DOP 75/ Dopazo, C.: Probability density function approach for a turbulent axisym-

metric heated jet centerline evolution, Phys. Fluids, 18 (4), 397-404, 1975. 

/DRU 84/ Drummond, I. T., S. Duane, and R. R. Horgan (1984), Scalar diffusion in 

simulated helical turbulence with molecular diffusivity, J. Fluid Mech.,138, 

75-91. 

/FEI 99/  Fein, E.; Schneider, A. (eds.): d3f – ein Programmpaket zur Modellierung 

von Dichteströmungen. Final report. FKZ-02 C 0465 0. Gesellschaft für An-

lagen- und Reaktorsicherheit (GRS) mbH, GRS-139, Braunschweig 1999. 

/FEI 04/  Fein, E. (eds.): Software Package r3t. Model for Transport and Retention in 

Porous Media. Final report. FKZ-02 E 9148/2. Gesellschaft für Anlagen- 

und Reaktorsicherheit (GRS) mbH, GRS-192, Braunschweig 2004. 



160 

/FOU 03/ Fourno, A., Grenier, C., Mouche, E., Benabderrahmane, H.: Qualification 

and Validity of a Smeared Fracture Modelling Approach for Transfers in 

Fractured Media. Proceedings of: Groundwater in Fractured Rocks, 15–19 

September 2003, Prag (Czech Republic). IHP-VI, Series on Groundwater, 

No. 7, 2003. (cited in /HOD 07/ 

/FOX 03/ Fox, R. O.: Computational Models for Turbulent Reacting Flows, Cam-

bridge University Press, New York, 2003. 

/FRO 12/ Frolkovič, P.: Application of level set method for groundwater flow with 

moving boundary, Adv. Wat. Res. 2012 

/GRE 06/ Grenier, C., Bernard-Michel, G.: Äspö Task Force on modelling of ground-

water flow and transport of solutes; Modelling of Task 6D, 6E, 6F and 6F2, 

using Cast3M code. International Progress Report IPR-06-18, Swedish Nu-

clear Fuel and Waste Management Company (SKB), 2006. 

/GRE 08/ Grenier, C., Bernard-Michel, G., Benabderrahmane, H.: Evaluation of reten-

tion properties of a semi-synthetic fractured block from modelling at perfor-

mance assessment time scales (Äspö Hard Rock Laboratory, Sweden). 

Hydrogeology Journal 17: 1051–1066, 2009. 

/GRI 10/ Grillo, A., Lampe, M., Wittum, G.: Three-dimensional simulation of the 

thermohaline-driven buoyancy of a brine parcel, Comput Visual Sci 13 287–

297, 2010. 

/GSZ 92/  Griebel, M., Schneider, M., Zenger, C.: A combination technique for the so-

lution of sparse grid problems. In P. de Groen and R. Beauwens (editors), 

Iterative Methods in Linear Algebra. IMACS, Elsevier, North Holland, 1992. 

/HEI 04/ Heil, M.: An efficient solver for the fully coupled solution of large-

displacement fluid-structure interaction problems, Computer Methods in 

Applied Mechanics and Engineering 193,1-2, 1 – 23.    

doi:http://dx.doi.org/10.1016/j.cma.2003.09.006 2004. 



161 

/HEP 13/  Heppner, I., Lampe, M., Nägel, A., Reiter, S., Rupp, M., Vogel, A., Wittum, 

G.: Software framework UG4: Parallel multigrid on the hermit supercom-

puter. In: High Performance Computing in Science and Engineering 12, p. 

435-449, Springer, 2013. 

/HOD 07/ Hodgekinson, D.: Äspö Task Force on modelling of groundwater flow and 

transport of solutes. Technical Report TR-07-03, Swedish Nuclear Fuel and 

Waste Management Company (SKB), 2007. 

/HOF 13/ Hoffer, M., Poliwoda, C., and Wittum, G.: Visual reflection library: a frame-

work for declarative GUI programming on the Java platform. Computing 

and Visualization in Science 16 (4), 181-192, 2013. 

/HOL 98/ Holzbecher, E.: Modeling density-driven flow in porous media., Springer, 

Berlin, Heidelberg, 1998. 

/JOH 02/ Johannsen, K., Kinzelbach, W., Oswald, S., Wittum, G.: The saltpool 

benchmark problem - numerical simulation of saltwater upconing in a po-

rous medium, ADVANCES IN WATER RESOURCES 25 (2002) 309–1708. 

/JOH 04/ Johannsen, K.: Numerische Aspekte dichtegetriebener StrÂšmung in porö-

sen Medien, Habilitationsschrift, 2004. 

/JOH 06/ Johannsen, K.: Numerical aspects of density driven flow in porous media, 

in: XVI International Conference on Computational Methods in Water Re-

sources, 2006.    doi:10.4122/1.1000000246 . 

/KAP 94/ Kapoor, V., and L. W. Gelhar: Transport in three-dimensionally heteroge-

neous aquifers: 1. Dynamics of concentration fluctuations, Water Resour. 

Res., 30 (6), 1775-1788, 1994. 

/KIM 11a/ Kim, J., Tchelepi, H., Juanes, R.: Stability, accuracy, and efficiency of se-

quential methods for coupled flow and geomechanics, SPE Journal 16 (2).    

doi:10.2118/119084-PA, 2011. 



162 

/KIM 11b/ Kim, J., Tchelepi, H., Juanes, R.: Stability and convergence of sequential 

methods for coupled flow and geomechanics: Fixed-stress and fixed-strain 

splits, Computer Methods in Applied Mechanics and Engineering 200,13-16 

(2011) 1591 – 1606.    doi:http://dx.doi.org/10.1016/j.cma.2010.12.022 

2011. 

/KRA 70/ Kraichnan, R. H. (1970), Diffusion by a Random Velocity Field, Phys. Flu-

ids, 13 (1), 22-31. 

/KRO 91/ Kröhn, K.-P.: Simulation von Transportvorgängen im klüftigen Gestein mit 

der Methode der Finiten Elemente. Bericht 29/1991, Institut für Strö-

mungsmechanik und Elektronisches Rechnen im Bauwesen, Universität 

Hannover, 1991. 

/KRO 10/ Kröhn, K.-P.: State Variables for Modelling Thermohaline Flow in Rocks. 

GRS-268 BMWi-FKZ 02 E 10336, 92 p., Gesellschaft für Anlagen- und Re-

aktorsicherheit (GRS) GmbH, Braunschweig (2010) 

/KRO 16a/ Kröhn, K.-P.: Hydraulic Interaction of Engineered and Natural Barriers – 

Task 8b-8d,8f of SKB. Summary report, FKZ 02 E 11213 and 02 E 11102  

(BMWi), Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, Köln, 

2016. (in preparation) 

/KRO 16b/ Kröhn, K.-P.: Hydraulic Interaction of Engineered and Natural Barriers – 

Task 8e of SKB. Summary report, FKZ 02 E 11213 and 02 E 11102  

(BMWi), Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, Köln, 

2016. (in preparation) 

/KUL 02/ Kull, H. (ed.), Helmig, R., Jacobs, H., Jockwer, N., Kröhn, K.-P., Zimmer, 

U.: Two-Phase-Flow Experiment in the Fractured Crystelline Rock of the 

Äspö Hard Rock laboratory. Final report FKZ 02 E 9027 8 (BMFT), Report 

GRS-183, GRS Braunschweig, 2002. 

/KUZ 08/ Kuzyk, G.W. and Martino, J.B.: URL Excavation Design, Construction and 

Performance. Report NWMO TR-2008-17, Nuclear Waste Management 

Organization (NMWO), Toronto 2008. 



163 

/LAC 01/ Lacroix, S., Vassilevski, Y. V., Wheeler, M. F.: Decoupling preconditioners 

in the implicit parallel accurate reservoir simulator (IPARS), Numerical Lin-

ear Algebra with Applications 8 (8) (2001) 537–549.    doi:10.1002/nla.264. 

/LAN 06/ Langevin, C. D., Guo, W.: MODFLOW/MT3DMS-Based Simulation of Vari-

able-Density Ground Water Flow and Transport, Ground Water 44 (3) 

(2006) 339–351.    doi:10.1111/j.1745-6584.2005.00156.x . 

/LAN 08/ Langevin, C. D., Daniel, J., Thorne, T., Dausman, A. M., Sukop, M. C., 

Guo, W.: U.S. Geological Survey Techniques and Methods Book 6, U.S. 

Geological Survey, Reston, Virginia, 2008, Ch. A22: SEAWAT Version 4: A 

Computer Program for Simulation of Multi-Species Solute and Heat 

Transport. 

/LAN 05/ Lang, S., Wittum, G.: Large scale density driven flow simulations using par-

allel unstructured grid adaptation and local multigrid methods., Concurrency 

Computat. 17 (11) (2005) 1415–1440. 

/LEI 92/  Leijnse, A.: Three-dimensional modeling of coupled flow and transport in 

porous media., Ph.D. thesis, University of Notre Dame, Indiana (1992). 

/LU 09/ Lu, B., Wheeler, M.: Iterative coupling reservoir simulation on high perfor-

mance computers, Petroleum Science 6 (2009) 43–50 doi:10.1007/s12182-

009-0008-x. 

/MAT 06/ Matthies, H., Niekamp, R., Steindorf, J.: Algorithms for strong coupling pro-

cedures, Computer Methods in Applied Mechanics and Engineering 195 

(17-18) (2006) 2028–2049.    doi:10.1016/j.cma.2004.11.032 . 

/MIK 13/ Mikelic′, A., Wheeler, M. F.: Convergence of iterative coupling for coupled 

flow and geomechanics, Computational Geosciences 17 (3) (2013) 455–

461. 

/MIK 14/ Mikelic′, A., Wang, B., Wheeler, M. F.: Numerical convergence study of it-

erative coupling for coupled flow and geomechanics, Computational Geo-

sciences (2014) 1–17  doi:10.1007/s10596-013-9393-8. 



164 

/MOR 08/ Moreno, L. , Crawford, J.: Can we use tracer tests to obtain data for per-

formance assessment of repositories for nuclear waste? Hydrogeology 

Journal 17: 1067–1080, 2009. 

/NAE 15/  Nägel, A., Vogel, A., Wittum, G.: Evaluating linear and nonlinear solvers for 

density driven flow, Computer Methods in Applied Mechanics and Engi-

neering, Elsevier BV, 2015, 292, 3-15. 

/NOS 12/ Noseck, U., Brendler, V., Flügge, J., Stockmann, M., Britz, S., Lampe, M., 

Schikora, J., Schneider, A..: Realistic integration of sorption processes in 

transport codes for long-term safety assessments, Final Report GRS-297, 

BMWi-FKZ 02E10548. Gesellschaft für Anlagen- und Reaktorsicherheit 

(mbH), Braunschweig, (2012), 293 p. 

/POP 85/ Pope, S. B.: PDF methods for turbulent reactive flows, Prog. Energy Com-

bust. Sci. 11(2), 119-192, 1985. 

/POP 14/ Popov, P. P., and S. B. Pope (2014), Implicit and explicit schemes for 

massconsistency preservation in hybrid particle/finite-volume algorithms for 

turbulent reactive flows, J. Comput. Phys., 257, 352-373. 

/POT 06/ Poteri, A.: Äspö Task Force on modelling of groundwater flow and transport 

of solutes; Modelling of Task 6D, 6E, 6F and 6F2 using the Posiva 

streamtube approach. International Progress Report IPR-06-17, Swedish 

Nuclear Fuel and Waste Management Company (SKB), 2006. 

/POT 09/ Poteri, A.: Retention properties of flow paths in fractured rock. Hydrogeolo-

gy Journal  17: 1081–1092, 2009. 

/PUT 95/ Putti, M., Paniconi, C.: Picard and newton linearization for the coupled 

model for saltwater intrusion in aquifers, Advances in Water Resources 18 

(3) (1995) 159–170.    doi:10.1016/0309-1708(95)00006-5. 

/RAD 11/ Radu, F. A., N. Suciu, J. Hoffmann, A. Vogel, O. Kolditz, C.-H. Park, S. At-

tinger, Accuracy of numerical simulations of contaminant transport in heter-

ogeneous aquifers: a comparative study, Adv. Water Res. 34 (1), 47-61, 

2011. 



165 

/REI 04/   Reisinger, C., Numerische Methoden für hochdimensionale parabolische 

Gleichungen am Beispiel von Optionspreisaufgaben. PhD Thesis, Universi-

ty of Heidelberg, 2004. 

/REI 07/  Reisinger, C., Wittum, G.: Efficient Hierarchical Approximation of High-

Dimensional Option Pricing Problems, SIAM Journal on Scientific Compu-

ting, 29(1), 2007. 

/REI 13/  Reiter, S., Vogel, A., Heppner, I., Rupp, M., Wittum, G.: A massively paral-

lel geometric multigrid solver on hierarchically distributed grids. Computing 

and Visualization in Science 16 (4), 151-164, 2013. 

/REI 14/ Reiter, S.: Effiziente Algorithmen und Datenstrukturen für die Realisierung 

von adaptiven, hierarchischen Gittern auf massiv parallelen Systemen. Dis-

sertation, Universität Frankfurt, 2014. 

/RHE 98/ W. C. Rheinboldt, Methods for Solving Systems of Nonlinear Equations, 

2nd Edition, SIAM, 1998. 

/SCH 12/ Schneider, A. (ed.): Enhancement of the codes d3f and r3t. GRS-292 

BMWi-FKZ 02 E 10336 , 365 p.; Gesellschaft für Anlagen- und Reaktorsi-

cherheit (GRS) GmbH,  Braunschweig, 2012. 

/SCH 13/  Schneider, A. (ed.), Representation of inhomogeneities in the flow and 

transport codes d³f and r³t, GRS 311, Braunschweig, 2013. 

/SUC 06/ Suciu, N., C. Vamos, J. Vanderborght, H. Hardelauf, H. Vereecken: Numer-

ical investigations on ergodicity of solute transport in heterogeneous aqui-

fers, Water Resour. Res., 42 (4), 2006. 

/SUC 13/ Suciu, N., F. A. Radu, A. Prechtel, F. Brunner, P. Knabner: A coupled finite 

element-global random walk approach to advection-dominated transport in 

porous media with random hydraulic conductivity, J. Comput. Appl. Math., 

246, 27-37, 2013. 



166 

/SUC 15/ Suciu, N., F. A. Radu, S. Attinger, L. Schüler, and P. Knabner: A Fokker-

Planck approach for probability distributions of species concentrations 

transported in heterogeneous media, J. Comput. Appl. Math., 289, 241-

252, 2015. 

/SVE 06/ Svensson, U.: Äspö Task Force on modelling of groundwater flow and 

transport of solutes; Modelling of Task 6D, 6E, 6F and 6F2. Flow, transport 

and retention in a sparsely fractured granite. International Progress Report 

IPR-06-21, Swedish Nuclear Fuel and Waste Management Company 

(SKB), 2006. 

/TAN 03/ Tanaka, Y.: Preliminary results of application of FEGM to Task 6D. Presen-

tation at the 17th Workshop of SKB’s Task Force on Groundwater Flow and 

Transport of Solutes, Thun, Switzerland, 2003. (Cited in /HOD 07/) 

/UCH 09/ Uchida, M., Dershowitz, W., Lee, G., Shuttle, D.: An empirical probabilistic 

approach for constraining the uncertainty of long-term solute transport pre-

dictions in fractured rock using in situ tracer experiments. Hydrogeology 

Journal 17: 1093–1110, 2009. 

/VAM 03/ Vamos, C., N. Suciu, H. Vereecken: Generalized random walk algorithm for 

the numerical modeling of complex diffusion processes, J. Comp. Phys. 

186 (2), 527-544, 2003 

/VAM 12/ Vamos, C., M. Craciun: Automatic Trend Estimation, Springer, Dortrecht, 

2012. 

/VOG 13/  Vogel, A., Reiter, S., Rupp, M., Nägel, A., Wittum, G.: UG 4: A novel flexi-

ble software system for simulating PDE based models on high performance 

computers. Computing and Visualization in Science 16 (4), 165-179, 2013. 

/VOG 14/  Vogel, A.: Flexible und kombinierbare Implementierung von Finite-

Volumen-Verfahren höherer Ordnung mit Anwendungen für die Konvekti-

ons-Diffusions-, Navier-Stokes- und Nernst-Planck- Gleichungen sowie 

dichtegetriebene Grundwasserströmung in porösen Medien. Doktorarbeit, 

Universität Frankfurt am Main, 2014. 



167 

/VTK 06/ Schröder, W., Martin, K., Lorensen, B.: Visualization Toolkit: An Object-

Oriented Approach to 3D Graphics, 4th Edition, Kitware; 2006. 

/WIK 10/ http://en.wikipedia.org 

/WIN 02/ Winberg, A., Andersson, P., Byegård, J., Poteri, A.,Cvetkovic, V., Der-

showitz, B., Doe, T., Hermanson, J., Gómez-Hernández, J-J., Hautojärvi, 

A., Billaux, D.,Tullborg, E-L., Meier, P. and A. Medina:TRUE Block Scale 

Project; FinalReport – 4. Synthesis of flow, transport and retention in the 

block scale.Technical Report TR-02-16, Swedish Nuclear Fuel and Waste 

Management Company (SKB),2002. 

/ZEN 91/  Zenger, C.: Sparse Grids. Parallel Algorithms for Partial Differential Equa-

tions. In: Hackbusch, W. (ed.): Notes on Numerical Fluid Dynamics 31. 

Proceedings of the Sixth GAMM-Seminar, 1990. 

  



 



169 

Table of figures 

Fig. 2.1  UG4 software layout. Arrows point in the direction of dependencies. ......... 6 

Fig. 2.2  Loading the utility for density driven flow problems ................................... 22 

Fig. 2.3  Starting the computation: “problem” is the LUA-table with the  

model specification and the solver setup .................................................. 22 

Fig. 2.4  Starting a new problem specification using bracket-notation .................... 22 

Fig. 2.5  Starting a new sub-specification using bracket-notation ........................... 23 

Fig. 2.6  Entry for the domain specific setup ........................................................... 24 

Fig. 2.7  Starting a specification for density driven flow .......................................... 24 

Fig. 2.8  A constant flow field specification ............................................................. 25 

Fig. 2.9  A LUA-function specifying a flow field ....................................................... 25 

Fig. 2.10  Passing the Lua-function as data value .................................................... 26 

Fig. 2.11  Inline version of the user function specification ......................................... 26 

Fig. 2.12  Example for the pressure-driven setup ..................................................... 26 

Fig. 2.13  Example for the density-driven flow setup ................................................ 27 

Fig. 2.14  Example for the thermohaline density-driven flow setup ........................... 28 

Fig. 2.15  Starting the transport problem section ...................................................... 29 

Fig. 2.16  Adding a radionuclide to the transport problem......................................... 29 

Fig. 2.17  Start value specification ............................................................................ 30 



170 

Fig. 2.18  Boundary condition specification ............................................................... 30 

Fig. 2.19  Using different specifications on subsets .................................................. 31 

Fig. 2.20  Data table format for user data specification ............................................. 31 

Fig. 2.21  Specification of the newton solver setup ................................................... 32 

Fig. 2.22  Specification of the linear solver setup ...................................................... 32 

Fig. 2.23  Specification of the time control ................................................................ 33 

Fig. 2.24   VRL-Studio and UG4 Registry .................................................................. 35 

Fig. 2.25   Lua Grammar Visualisation ....................................................................... 38 

Fig. 2.26   Parse Tree (Lua Grammar) ....................................................................... 38 

Fig. 2.27   Auto Completion for UG scripts ................................................................. 39 

Fig. 2.28   Auto Completion for Variables .................................................................. 40 

Fig. 2.29   Auto Completion for LUA Functions .......................................................... 41 

Fig. 2.30   Nested Tables ........................................................................................... 42 

Fig. 2.31   Array Completion ...................................................................................... 42 

Fig. 2.32   Auto Completion for Self Keyword ............................................................ 43 

Fig. 2.33  The ProMesh user interface ...................................................................... 44 

Fig. 2.34   Raw mesh (left), selected elements (middle), and new subset (right) ....... 48 

Fig. 2.35   Mesh generation with ProMesh-Script ...................................................... 51 

Fig. 2.36   Tool representation generated by the ProMesh graphical user interface .. 52 



171 

Fig. 2.37   VRL meshing sample ................................................................................ 53 

Fig. 2.38   Constrained Delaunay triangulation/tetrahedrization   .............................. 53 

Fig. 2.39  Custom VTK Component, JFreeChart ...................................................... 54 

Fig. 2.40  2d Chart based on simplified JFreeChart API ........................................... 55 

Fig. 3.1  Domain and boundary conditions for the parallel scaling problem ............ 65 

Fig. 3.2  Measured speedup for the parallel scaling problem ................................. 67 

Fig. 3.3  Measured timings for the parallel scaling problem .................................... 67 

Fig. 3.4  Defect reduction of Partial Newton (diamond) and Iterative  

Coupling  (triangle) for computing t=τ=0.025a in the first time step. ......... 75 

Fig. 3.5   Iterations per time step for a full simulation run:........................................ 76 

Fig. 3.6  Time steps within an adaptive time-stepping strategy for the  

algorithms from Section 3.4.2: Partial Newton, Iterative Coupling,  

and Full Newton. ....................................................................................... 77 

Fig. 3.7   Time steps within an adaptive time-stepping strategy:. ............................. 77 

Fig. 3.8  Grids in the combination technique approach for the sparse grids. .......... 82 

Fig. 3.9  Isosurface of the averaged concentration in the test computation:  

Initial condition (above) and solution at time step 64 (below).................... 85 

Fig. 3.10  Comparison of numerical and analytical solution in the experiment  

with the stochastic velocity field. ............................................................... 86 

Fig. 4.1   A measure is needed to quantify how good the mean  

concentration  approximates the measured concentration........................ 89 

Fig. 4.2  Dissipation M of the standard IEM model  and the newly proposed  

time dependent IEM model plotted against time t. .................................... 98 



172 

Fig. 4.3   Analytical solution with the classical and time dependent IEM  

mixing model compared to particle tracking and GRW simulations  

at different times. ..................................................................................... 100 

Fig. 4.4   The concentration PDF at the center of the plume x ൌ  Vۧt. ................... 101ۦ

Fig. 4.5   The mean concentration Cx at fixed times t = 10, 50, 100 days .............. 104 

Fig. 4.6   The cumulative distribution functions cdfሺc; x, tሻ, x ൌ Vt .......................... 104 

Fig. 4.7  The concentration PDF at the center of the plume x ൌ  Vۧt .................... 106ۦ

Fig. 5.1  Model geometry based on the schematic cross-section ......................... 107 

Fig. 5.2  Boundary conditions for the groundwater flow and heat transport .......... 108 

Fig. 5.3:  Viscosity of pure water according to /KRO 10/ ........................................ 110 

Fig. 5.4  Flow field for simulations with constant and variable viscosity ................ 111 

Fig. 5.5  Flow velocities in the fracture system (a, b) and outflow rates ................ 111 

Fig. 5.6  Temperature profiles for the constant and the variable viscosity model . 112 

Fig. 5.7  Generalised conceptual model of a typical conductive structure; ........... 118 

Fig. 5.8  100-m structures in the 200-m model block ............................................ 119 

Fig. 5.9  Permeability of the fractures. .................................................................. 120 

Fig. 5.10  Aperture of the fractures. ........................................................................ 120 

Fig. 5.11  Transmissivities of the background fractures; from /DER 03/. ................ 121 

Fig. 5.12  Hydraulic heads on the surface of the 200-m model block. .................... 122 

Fig. 5.13  Structures involved in the C2-tracer test. ................................................ 123 



173 

Fig. 5.14  Activity concentrations for the tracer in the C2-test. ................................ 123 

Fig. 5.15  Pressure distribution and numerical grid on the model boundary. .......... 125 

Fig. 5.16  Pressure distribution in the fractures. ...................................................... 125 

Fig. 5.17  Pressure distribution in the matrix at the C2-test. ................................... 126 

Fig. 5.18  Two views of the pressure distribution in the fractures. .......................... 127 

Fig. 5.19  Pressure distribution in the fractures. ...................................................... 128 

Fig. 5.20  Velocity in fractures 23 and 22. ............................................................... 129 

Fig. 5.21  Velocity in fractures 22 and 20. ............................................................... 130 

Fig. 5.22  Velocity in fractures 22 and 06. ............................................................... 130 

Fig. 5.23  Velocity in fractures 22 and 07. ............................................................... 131 

Fig. 5.24  Velocity in fractures 22 and 13. ............................................................... 131 

Fig. 5.25  Velocity in fractures 20 and 21. ............................................................... 132 

Fig. 5.26  Velocity in fractures 20 and 13. ............................................................... 133 

Fig. 5.27  Velocity in fractures 20 and 07. ............................................................... 133 

Fig. 5.28  Velocity in fractures 21 and 13. ............................................................... 134 

Fig. 5.29  Velocity in fractures 21 and 07. ............................................................... 134 

Fig. 5.30  Measured and calculated breakthrough curve. ....................................... 135 

Fig. 5.31  Illustration of concentration changes at a fracture intersection. .............. 136 

Fig. 5.32  Illustration of a solute plume migrating towards a sink   

without hydrodynamic dispersion. ........................................................... 137 



174 

Fig. 5.33  Model results for the steady-state gas saturation (SG). .......................... 137 

Fig. 5.34  Concentrations in fractures 23, 22, 20, and 21 at 10h. ........................... 139 

Fig. 5.35  Concentrations in fractures 23, 22, 20, and 21 at 50h. ........................... 140 

Fig. 5.36  Concentrations in fractures 23, 22, 20, and 21 at 200h. ......................... 141 

Fig. 5.37  Concentrations in fractures 20 and 21 at 200h. ...................................... 142 

Fig. 5.38  Model domain D divided by Γt	 D into a fully saturated zone Ωt  ............. 144 

Fig. 5.39  Situation of the Sandelermöns model area including the wells ............... 146 

Fig. 5.40  3d hydrogelogical model of the Sandelermöns region, ........................... 147 

Fig. 5.41  Influence of river drainage, exemplarily (red: 0.0, blue: 1e-8 m³ s-1) ....... 148 

Fig. 5.42  Sandelermöns model with prism grid, boundary conditions .................... 149 

Fig. 5.43  Initial conditions,  left: groundwater surface ............................................ 150 

Fig. 5.44  Initial state of the Sandelermöns model with river system (blue),  

pumping wells (red) and salt concentration ............................................. 150 

Fig. 5.45  Simulated groundwater level with gauge wells;....................................... 151 

Fig. 5.46  Simulated flow field on a cutting plane .................................................... 152 

Fig. 5.47  Simulated drinking water/seawater interface........................................... 153 

Fig. B.1  Flow fields obtained with different distributions of the permeability. ........ 180 

Fig. B.2   Flow fields obtained with different values for the viscosity. .................... 181 



175 

List of tables 

Tab. 2.1  Available sub-specifier for the d3f++ utility ................................................ 23 

Tab. 2.2  Physical systems for the flow section and examples ................................ 25 

Tab. 3.1   Wall clock times for the solution with CPU and GPU implementation. ...... 61 

Tab. 3.2  Wall clock times for the solution ................................................................ 63 

Tab. 3.3  Physical parameter for the scaling benchmark problem ........................... 64 

Tab. 3.4  Weak scaling results ................................................................................. 66 

Tab. 3.5  Weak scaling: Times and efficiency for code phases ................................ 66 

Tab. 3.6  Coefficients for the numerical test ............................................................. 84 

Tab. 5.1  Permeability of the four hydrogeological units and the fractures ............. 109 

Tab. 5.2  Flow and heat transport parameters ....................................................... 109 

Tab. 5.3  Extent of structure components .............................................................. 118 

Tab. 5.4  Transport relevant parameters in different materials;from /DER 03/. ...... 124 

Tab. C.1  Coordinates of measured deterministic fractures. ................................... 183 

Tab. C.2  Coordinates of synthetic deterministic fractures...................................... 184 

Tab. C.3  Hydraulic properties of deterministic fractures. ....................................... 185 

Tab. C.4  Injection history. ...................................................................................... 186 

Tab. C.5  Extraction concentrations ........................................................................ 187 



 



177 

A Notation 

The most general notations used in this report are given below. 

ܿ  -  volumetric solute concentration [mol m-³] 

 specific heat capacity [J kg-1 K-1]  -  ܥ

۲  -  hydrodynamic-dispersion tensor  { ۲ ൌ ܂	௠ܦ	߶ ൅ ۲ୢ୧ୱ୮ሺܙሻ } [݉ଶିݏଵ] 

۲ୢ୧ୱ୮ -  mechanical dispersion tensor [m² s-1] 

 ௠  -  molecular diffusion coefficient [m² s-1]ܦ

 gravity [m s-²]  -  ܏

۷  -  identity matrix [-] 

۸ୢ  -  diffusive mass flux [kg m-² s-1)] 

۸୘  -  heat flux vector [J m-² s-1)] 

 permeability tensor [m²]  -  ܓ

 ௗ  -  distribution coefficient [m³ kg-1]ܭ

 hydraulic pressure [Pa]  -  ݌

 Darcy velocity vector [m s-1]  -  ܙ

ܳ  -  mass source/sink terms [kg m-³ s-1] 

 [-] tortuosity tensor  -  ܂

ଵܶ/ଶ  -  half-life [s] 

 flow velocity vector [m s-1]  -  ܝ

 ௅  -  longitudinal dispersion length [m]ߙ

 transverse dispersion length [m]  -  ்ߙ

 temperature [K]  -  ߆

 [ଵିݏ] decay constant  -  ߣ

 thermal conductivity [W m-1 K-1]  -  ߉

 viscosity [Pa s]  -  ߤ
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߷  -  density [kg m-³] 

߶  -  porosity [-] 

߱  -  solute mass fraction [-] 
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B Viscosity-dependent flow 

One characteristic of the flow field obtained from flow simulations for the test case 

Mayak is a divide in the upper three hydrogeological units where a part of the water 

leaves the model area to the left, whereas another part leaves it to the right. This char-

acteristic shall be explained in the following section. To simplify matters, the effect is 

studied in a system without fractures. 

Neglecting the fractures the flow field is controlled by the ration of groundwater re-

charge and horizontal flow imposed by the Dirichlet boundary conditions on the left and 

right boundary. Since the recharge is assumed to fixed this ratio can be changed only 

by varying the  

 horizontal hydraulic gradient, 

 permeability, or 

 viscosity of water (changes of the density are not considered here) 

In this context, the permeability and the viscosity determine whether the vertical com-

ponent introduced by the groundwater recharge or the horizontal component caused by 

the hydraulic gradient dominates the flow field. Also the relation between the ground-

water recharge and the hydraulic gradient plays a role. 

In the following, it shall be looked at the permeability and the viscosity. The permeabil-

ity is varied in the upper two hydrogeological units to both higher and lower values 

compared to the basic scenario described in Chapter 5.1.1. Three different values for 

the viscosity are applied for the whole model area mirroring the conditions at 2 °C, 

20 °C and 32 °C according to (5.1). The resulting flow fields are shown in Fig. B.1 and 

Fig. B.2, respectively. 

Flow fields for different distributions of the permeability are shown in Fig. B.1. If the 

permeability is rather low or the groundwater recharge is high compared to the applied 

horizontal hydraulic gradient, water enters the model area exclusively through the top 

boundary and leaves it in equal parts to the right and left forming a vertical divide in the 

middle of the model area (Fig. B.1a). This divide shifts to the left for higher permeability 

values (Fig. B.1b). If the permeability goes beyond a certain value or if the hydraulic 



180 

gradient is high compared to the recharge, the horizontal component dominates the 

flow field and a flow from the left to the right occurs (Fig. B.1c). 

 

Fig. B.1 Flow fields obtained with different distributions of the permeability 

A similar effect is generated by varying the viscosity, only that the relation between hy-

draulic conductivity and viscosity is reciprocal. The values used to obtain the flow fields 

in Fig. B.2 correspond to temperatures of 2 °C (Fig. B.2a), 20 °C (Fig. B.2b) and 32 °C 

(Fig. B.2c). However, the values vary only slightly compared to the permeability values 

used above so that the effect is considerably smaller. 

Nevertheless, also in these flow fields a divide occurs at the top boundary (Fig. B.2a) 

and is shifted to the left using decreasing values for the viscosity (Fig. B.2b and c). 

Simultaneously, also the amount of fluid that leaves the model area to the left decreas-

es and the amount that leaves to the right increases. 
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Further simulations showed that viscosity related by (5.1) to a temperature gradient of 

2 °C at the top and 32 °C at the bottom of the model results in a flow field similar to Fig. 

B.2a which corresponds to a temperature of 2 °C. Thus, it seems that the viscosity in 

the upper hydrogeological units is crucial to the flow pattern that evolves. 

 

Fig. B.2  Flow fields obtained with different values for the viscosity
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C Data for the Task 6 model 

Tab. C.1 Coordinates of measured deterministic fractures 

structure easting [m] northing [m] elevation [m amsl] 
original clipped original clipped original clipped 

5  1736.03  1871.32 7329.37  7270.00  -200.00 -350.00    
2150.00 2000.00  7151.68  7214.77  -200.00 -350.00    
2150.00 2000.00  7147.35 7213.04  -700.00 -550.00    
1849.52  1867.29  7276.33  7270.00  -700.00 -550.00    

6  1894.27  as  
original 

7259.38  as  
original 

-438.46    as  
original 1898.04  7257.10  -515.54 

1943.68  7185.50  -515.54 
1942.01  7184.49  -438.46    

7  1885.40  as  
original 

7237.62  as  
original 

-420.87    as  
original 1877.60  7222.43  -533.13    

1978.11  7172.43  -533.13    
1985.91  7187.62 -420.87    

10  1799.34  1800.00  7084.83  7084.77  -414.76    -414.76    
1807.46  1800.00  7125.05  7088.10  -539.24    -424.88    
1931.36  1807.46  7113.05  7125.05  -539.24    -539.24    
1923.24  1931.36  7072.83  7113.05  -414.76    -539.24    
 1923.24   7072.83   -414.76    

13  1844.39  as  
original 

7198.82  as  
original 

-397.01    as  
original 1890.79  7234.04  -530.33    

1955.21  7149.04  -530.33    
1908.82  7113.82  -397.01    

19  1794.96  1822.89  7316.79  7270.00  -395.48    -395.48    
1813.76  1825.15  7289.29  7270.00  -558.52    -550.00    
1941.28  1942.19  7075.63  7073.89  -558.52    -550.00    
1958.78  1944.24  7042.31  7070.00  -395.48    -530.97    
 1942.25   7070.00   -395.48    

20  1873.00  as  
original 

7224.29  as  
original 

-380.00    as  
original 1883.44 7233.52  -537.06    

1962.98  7143.52  -537.06    
1952.54  7134.29  -380.00    

21 1908.28  as  
original 

7235.88  as  
original 

-433.46    as  
original 1881.06  7224.18  -520.54    

1915.45  7144.18  -520.54    
1942.67  7155.88  -433.46    

22  1933.48  as  
original 

7211.17  as  
original 

-439.65    as  
original 1903.29  7196.85  -526.80    

1924.62  7151.85  -526.80    
1954.81  7166.17  -439.65    

23  1926.76  as  
original 

7198.00  as  
original 

-452.47    as  
original 1926.76  7198.00  -501.53    

1943.43  7180.00  -501.53    
1943.43  7180.00  -452.47    
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24  1931.11  as  
original 

7220.00  as  
original 

-459.97    as  
original 1923.34  7220.00  -494.03    

1949.34  7198.00  -494.03    
1957.10  7198.00  -459.97    

Tab. C.2 Coordinates of synthetic deterministic fractures 

struc-
ture 

easting  nort-
hing  

elevati-
on  

struc-
ture 

easting nort-
hing 

elevati-
on 

1S 2000,00 7144,09 -518,82 13S  2000,00 7098,52 -350,00 
1988,50 7152,26 -518,73 2000,00 7093,43 -462,08 
1998,41 7164,92 -407,44 1886,75 7140,90 -427,98 
2000,00 7163,79 -407,46 1908,09 7135,79 -350,00 

3S 1967,54 7167,72 -550,00 14S 1943,25 7070,00 -426,75 
1851,89 7270,00 -550,00 1940,37 7070,63 -418,98 
1846,00 7270,00 -525,30 1941,97 7070,00 -418,34 
1966,04 7165,00 -530,80  

4S 1800,00 7270,00 -490,05 15S 1984,20 7270,00 -350,00 
1800,00 7264,18 -471,84 2000,00 7262,59 -350,00 
1849,24 7245,23 -487,83 2000,00 7265,99 -455,46 
1838,78 7270,00 -549,39 1991,53 7270,00 -456,66 

6S 1928,78 7270,00 -350,00 17S 1800,00 7249,89 -350,00 
1968,34 7239,78 -350,00 1829,13 7248,04 -350,00 
2000,00 7207,97 -421,90 1900,37 7238,94 -425,00 
2000,00 7207,23 -428,90 1800,00 7239,55 -520,41 
1908,37 7270,00 -497,02  

7S 1969,48 7088,66 -550,00 18S 1913,80 7270,00 -350,00 
1929,53 7269,74 -550,00 1915,76 7268,70 -350,00 
1929,55 7270,00 -549,53 1969,83 7224,69 -502,29 
1936,92 7270,00 -503,11 1898,19 7270,00 -540,82 
1973,86 7148,75 -438,96  

8S  1913,12 7070,00 -550,00 20S 1890,40 7070,00 -350,00 
1800,00 7147,47 -550,00 1904,07 7070,00 -366,00 
1800,00 7148,98 -410,96 1884,90 7126,63 -396,50 
1913,75 7070,00 -510,78 1837,86 7135,75 -350,00 

9S  1800,00 7220,75 -350,00 21S 1800,00 7253,47 -550,00 
1802,23 7219,19 -350,00 1800,00 7249,86 -526,09 
1829,53 7220,51 -484,26 1840,89 7206,24 -550,00 
1800,00 7242,03 -490,06  

10S 1878,97 7170,65 -350,00 24S 1800,00 7196,89 -533,05 
1928,15 7070,00 -350,00 1856,41 7070,00 -515,95 
1931,88 7070,00 -367,60 1849,30 7070,00 -550,00 
1901,94 7149,02 -408,54 1800,00 7188,38 -550,00 

11S  1879,46 7270,00 -405,10 25S 1800,00 7257,32 -350,00 
1954,11 7194,85 -550,00 1876,56 7160,15 -350,00 
1889,59 7270,00 -550,00 1800,00 7231,02 -440,42 

12S  1878,81 7070,00 -515,33 First node of 18S lies not in the plane of 
the following nodes and is thus skipped  1876,14 7078,44 -502,67 

1895,09 7070,00 -493,05 
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Tab. C.3 Hydraulic properties of deterministic fractures 

structure transmissivity [m²/s] aperture12 [m] permeability [m²] 
5 4,020E-07 2,917E-04 1,405E-10 
6 1,910E-07 2,010E-04 9,687E-11 
7 9,760E-08 1,437E-04 6,923E-11 
10 2,980E-08 7,941E-05 3,825E-11 
13 1,380E-08 5,404E-05 2,603E-11 
19 1,020E-07 1,469E-04 7,078E-11 
20 1,430E-07 1,740E-04 8,378E-11 
21 6,020E-08 1,129E-04 5,435E-11 
22 2,190E-08 6,807E-05 3,280E-11 
23 1,660E-07 1,874E-04 9,030E-11 
24 8,510E-08 1,342E-04 6,464E-11 
1S 3,140E-07 2,576E-04 1,219E-10 
3S 2,290E-06 6,965E-04 3,288E-10 
4S 1,900E-07 2,007E-04 9,466E-11 
6S 6,930E-07 3,830E-04 1,809E-10 
7S 7,060E-07 3,865E-04 1,827E-10 
8S 1,490E-06 5,611E-04 2,656E-10 
9S 3,080E-07 2,552E-04 1,207E-10 
10S 5,710E-07 3,475E-04 1,643E-10 
11S 2,010E-06 6,528E-04 3,079E-10 
12S 1,240E-06 5,131E-04 2,417E-10 
13S 5,080E-06 1,037E-03 4,899E-10 
14S 6,720E-07 3,772E-04 1,782E-10 
15S 1,600E-06 5,810E-04 2,754E-10 
17S 1,540E-06 5,701E-04 2,701E-10 
18S 1,160E-06 4,946E-04 2,345E-10 
20S 1,350E-06 5,336E-04 2,530E-10 
21S 1,040E-06 4,688E-04 2,218E-10 
24S 9,920E-07 4,581E-04 2,165E-10 
25S 3,960E-06 9,158E-04 4,324E-10 
  

                                                 

12 transport relevant aperture, being 1/8 of hydraulic aperture 
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Tab. C.4 Injection history 

Elapsed 
time [h] 

 C  
[Bq/kg] 

Elapsed 
time [h] 

 C  
[Bq/kg] 

Elapsed 
time [h] 

 C  
[Bq/kg] 

0,44 9,54E+05 13,83 8,89E+06 80,72 2,26E+05 
0,48 2,45E+06 14,34 8,48E+06 82,72 1,99E+05 
0,51 5,42E+06 14,84 8,00E+06 84,72 1,64E+05 
0,55 9,50E+06 15,34 7,56E+06 86,73 1,56E+05 
0,59 1,41E+07 15,84 7,23E+06 88,73 1,72E+05 
0,62 1,85E+07 16,35 6,91E+06 90,73 1,13E+05 
0,66 2,22E+07 16,85 6,56E+06 92,74 1,43E+05 
0,69 2,45E+07 17,35 6,18E+06 94,74 1,38E+05 
0,73 2,76E+07 17,85 5,94E+06 96,75 1,06E+05 
0,76 2,94E+07 18,36 5,64E+06 98,75 1,44E+05 
0,80 3,15E+07 18,86 5,41E+06 100,75 9,83E+04 
0,83 3,35E+07 19,36 5,08E+06 102,75 1,08E+05 
0,87 3,44E+07 20,61 4,47E+06 104,76 1,11E+05 
0,90 3,64E+07 22,61 3,63E+06 106,76 1,22E+05 
0,94 3,79E+07 24,62 2,91E+06 108,76 1,39E+05 
0,98 3,80E+07 26,63 2,35E+06 110,76 1,69E+05 
1,01 3,63E+07 28,63 1,97E+06 112,76 1,81E+05 
1,24 3,30E+07 30,64 1,59E+06 114,77 2,05E+05 
1,75 3,12E+07 32,64 1,35E+06 116,77 2,34E+05 
2,26 2,92E+07 34,65 1,15E+06 118,77 2,85E+05 
2,76 2,77E+07 36,65 1,06E+06 120,78 2,92E+05 
3,27 2,62E+07 38,65 9,78E+05 122,78 2,83E+05 
3,77 2,47E+07 40,66 8,99E+05 124,60 2,78E+05 
4,28 2,34E+07 42,66 8,69E+05 127,40 2,08E+05 
4,78 2,24E+07 44,66 8,07E+05 131,41 1,47E+05 
5,28 2,14E+07 46,67 7,32E+05 135,41 1,19E+05 
5,79 2,01E+07 48,67 7,06E+05 139,42 1,00E+05 
6,29 1,92E+07 50,67 6,98E+05 143,42 9,06E+04 
6,79 1,81E+07 52,68 7,09E+05 147,42 7,89E+04 
7,30 1,71E+07 54,68 7,31E+05 151,42 6,86E+04 
7,80 1,65E+07 56,68 7,03E+05 159,43 6,07E+04 
8,30 1,55E+07 58,68 6,82E+05 171,44 6,18E+04 
8,81 1,48E+07 60,69 6,71E+05 179,45 7,25E+04 
9,31 1,39E+07 62,69 6,57E+05   
9,81 1,32E+07 64,69 6,36E+05   
10,31 1,26E+07 66,69 6,15E+05   
10,82 1,19E+07 68,70 5,98E+05   
11,32 1,14E+07 70,70 5,22E+05   
11,82 1,07E+07 72,70 4,36E+05   
12,33 1,02E+07 74,71 3,64E+05   
12,83 9,75E+06 76,71 2,90E+05   
13,33 9,24E+06 78,71 2,95E+05   
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Tab. C.5 Extraction concentrations 

Elapsed time 
[h] 

 C  
[Bq/kg] 

Elapsed time 
[h] 

 C  
[Bq/kg] 

Elapsed time 
[h] 

 C  
[Bq/kg] 

37,88 70,02 121,88 3655,75 297,17 2526,12 
39,88 91,15 123,88 3430,74 301,17 2483,65 
41,88 129,41 125,02 3833,57 305,17 2360,97 
43,88 181,85 129,03 3562,69 309,17 2401,65 
45,88 258,72 133,02 3847,86 321,55 2082,17 
47,88 307,04 137,03 3792,36 333,55 1945,74 
49,88 363,91 141,03 3294,10 345,55 1908,74 
51,88 461,23 145,03 3246,17 357,54 1773,43 
53,88 587,23 149,03 3717,57 369,54 1779,78 
55,88 614,55 153,02 3150,95 381,54 1674,82 
57,88 725,80 157,00 3404,15 393,53 1564,90 
59,88 909,40 173,19 4960,98 405,53 1546,99 
61,88 984,42 177,19 5157,41 417,53 1488,56 
63,88 1095,03 181,19 5148,77 429,53 1405,23 
65,88 1182,88 185,19 5169,04 441,52 1270,19 
67,88 1348,96 189,19 5219,89 453,52 1270,16 
69,88 1527,51 193,19 5014,16 465,52 1644,08 
71,88 1508,80 197,19 4873,89 477,51 1308,08 
73,88 1677,21 201,19 4787,48 489,51 1137,64 
75,88 1728,36 205,18 4690,09 501,51 1258,13 
77,88 1891,79 209,18 4580,08   
79,88 2017,03 213,18 4462,09   
81,88 2229,05 217,18 4339,77   
83,88 2259,00 221,18 4089,17   
85,88 2279,17 225,18 4100,47   
87,88 2415,71 229,18 4108,44   
89,88 2493,42 233,18 4049,61   
91,88 2644,78 237,18 3814,63   
93,88 2579,00 241,18 3609,55   
95,88 2766,19 245,18 3765,10   
97,88 2875,98 249,18 3514,16   
99,88 3029,70 253,18 3395,17   
101,88 3305,83 257,18 3280,61   
103,88 3351,97 261,18 3110,13   
105,88 3388,53 265,17 3097,54   
107,88 3529,45 269,17 3046,72   
109,88 3544,41 273,17 2967,31   
111,88 3621,85 277,17 2737,81   
113,88 2715,41 281,17 2760,15   
115,88 3678,35 285,17 2514,42   
117,88 3734,53 289,17 2623,87   
119,88 2044,85 293,17 2441,04   
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