

Nachrechnung radiochemischer Analyseproben mit dem Abbrandprogramm MOTIVE

Gesellschaft für Anlagenund Reaktorsicherheit (GRS) gGmbH

Nachrechnung radiochemischer Analyseproben mit dem Abbrandprogramm MOTIVE

Matthias Behler Volker Hannstein Fabian Sommer

September 2018

Anmerkung:

Das diesem Bericht zugrunde liegende F&E-Vorhaben wurde mit Mitteln des Bundesministeriums für Wirtschaft und Energie (BMWi) unter dem Kennzeichen RS1542 durchgeführt.

Die Arbeiten wurden von der Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH ausgeführt. Die Verantwortung für den Inhalt dieser Veröffentlichung liegt beim Auftragnehmer.

Der Bericht gibt die Auffassung und Meinung des Auftragnehmers wieder und muss nicht mit der Meinung des Auftraggebers übereinstimmen.

GRS - 529 ISBN 978-3-947685-14-1

Kurzfassung

Zur Validierung des in der GRS entwickelten Abbrandprogramms MOTIVE hinsichtlich der Nuklidinventarberechnung wurden im Rahmen des Forschungsvorhabens RS1542 umfangreiche Nachrechnungen von radiochemischen Analyseproben bestrahlter Brennelemente aus kommerziellen Druck- und Siedewasserreaktoren durchgeführt. Hierzu wurden öffentlich verfügbare experimentelle Daten aus der Datenbank SFCOMPO 2.0 der OECD/NEA herangezogen. Der vorliegende Bericht dient der Do-kumentation dieser Arbeiten. Dazu werden die verwendeten Probenserien umfassend beschrieben und die für die Rechenmodelle verwendeten Eingangsdaten und Annahmen wiedergegeben. Die berechneten Nuklidinventare werden jeweils mit den gemessenen Inventaren verglichen und die auftretenden Abweichungen untersucht und eingeordnet. Die Gesamtheit der Resultate wird zusammenfassend analysiert und durch Vergleich mit entsprechenden Daten aus eigenen Validierungsrechnungen mit dem Vorgängerprogramm KENOREST sowie aus vom Oak Ridge National Laboratory durchgeführten Analysen mit dem Programmpaket SCALE eingeordnet und bewertet.

Abstract

For the validation of the nuclide inventory determination of the burn-up code MOTIVE, which is currently under development in GRS, extensive calculations of radiochemical assay data from spent nuclear fuel of commercial pressurized water reactors and boiling water reactors have been performed in the framework of the reactor safety research projects RS1542 "Further Development of Modern Methods in the Field of Burn-Up Calculation". A set of publicly available experimental data taken from the SFCOMPO 2.0 data base of OECD/NEA was chosen for this purpose. The present report documents these efforts. The different series of samples chosen for the validation calculations are described in detail and the parameters used for the calculational models as well as the assumptions made in the modelling process are documented. The calculated nuclide inventories are compared to the measured data and the deviations between these are analysed and assessed. The overall results are collected, analysed and compared to corresponding data from own validation calculations with the predecessor code KENOREST and from calculations performed by Oak Ridge National Laboratory with the code package SCALE.

Inhaltsverzeichnis

	Kurzfassung	I
	Abstract	II
1	Einleitung	1
1.1	Struktur und Vorgehensweise	2
2	Nachrechnung von DWR-Proben	5
2.1	Proben der Reaktoren Ohi-1 und Ohi-2	5
2.1.1	Experimentelle Daten	5
2.1.2	Modellierung	
2.1.3	Resultate	18
2.2	Proben des Reaktors Takahama-3	
2.2.1	Experimentelle Daten	
2.2.2	Modellierung	
2.2.3	Resultate	
2.3	Proben des Reaktors Three Mile Island-1	
2.3.1	Experimentelle Daten	
2.3.2	Modellierung	71
2.3.3	Resultate	72
2.4	Proben des Reaktors Gösgen aus dem ARIANE-Programms	
2.4.1	Experimentelle Daten	
2.4.2	Modellierung	103
2.4.3	Resultate	115
2.5	Proben des Reaktors Beznau-I aus dem ARIANE-Programms	120
2.5.1	Experimentelle Daten	121
2.5.2	Modellierung	141
2.5.3	Resultate	154
2.6	Probe des Gemeinschaftskraftwerks Neckarwestheim II (GKN-II) a dem REBUS-Programm	aus 158

2.6.1	Experimentelle Daten	159
2.6.2	Modellierung	173
2.6.3	Resultate	
2.7	Proben des Reaktors Calvert Cliffs-1	
2.7.1	Experimentelle Daten	
2.7.2	Modellierung	
2.7.3	Resultate	
3	Nachrechnungen von SWR-Proben	209
3.1	Proben des Reaktors Fukushima-Daini-2	
3.1.1	Experimentelle Daten	
3.1.2	Modellierung	
3.1.3	Resultate	
4	Zusammenfassung der Nachrechnungen	231
4.1	DWR	
4.1.1	Vergleich mit KENOREST	
4.1.2	Vergleich mit SCALE	
4.2	SWR	242
5	Zusammenfassung und Ausblick	247
	Literaturverzeichnis	249
	Abbildungsverzeichnis	255
	Tabellenverzeichnis	

1 Einleitung

Zur Validierung der Ergebnisse eines Simulationsprogramms sind, soweit möglich, Vergleiche mit experimentellen Daten erforderlich. Für den vorliegenden Fall Abbrandprogramms MOTIVE sind die primären Ergebnisdaten die Nuklidinventare des bestrahlten Brennstoffs. Zur Überprüfung dieser Ergebnisdaten können radiochemischen Analysen von Proben bestrahlter Brennelemente aus kommerziellen Leichtwasserreaktoren herangezogen werden. Mit der Datenbank SFCOMPO 2.0 der OECD/NEA /MIC 17/ steht eine umfangreiche Sammlung frei verfügbarer Proben zur Verfügung. Sie stellt neben den jeweiligen experimentellen Ergebnissen eine aufbereitete Darstellung der für eine Nachrechnung notwendigen Eingabedaten zur Verfügung und bietet über Verknüpfungen Zugang zur zugehörigen Originalliteratur an.

Die SFCOMPO 2.0 diente als Grundlage für umfangreiche Probennachrechnungen, die im vorliegenden Rechenbericht detailliert dargestellt werden. Das Ziel der Nachrechnungen war die Bereitstellung einer Datenbasis für die Validierung des Programms MOTIVE. Die Auswahl der nachgerechneten Proben erfolgte dabei in Hinblick auf die Vollständigkeit der für die Simulation notwendigen Eingangsparameter und die Anzahl der gemessenen Nuklide. In Tab. 1.1 ist die Liste der nachgerechneten Proben dargestellt. Diese umfassen sowohl Druckwasserreaktor-(DWR)-Brennelemente als auch Siedewasserreaktor-(SWR)-Brennelemente. Die Anfangsanreicherung umfass dabei Werte von 1,69 bis 4,66 Gew. % ²³⁵U. Der Abbrand der nachgerechneten Proben reicht von 7,2 bis 55,7 GWd/tSM. Während die Mehrzahl der Proben von UO₂-Brennstoff stammt, sind auch zwei Proben MOX-Brennstoff unter den nachgerechneten Proben. Insgesamt umfasst die Datenbasis 74 Proben aus 21 Brennstäben, die wiederum aus neun Reaktoren stammen.

	Typ	Brennstoff	Anreicherung [wt%]	Anzahl Stäbe	Anzahl Proben	Abbrand [GWd/tHM]
Beznau – 1	PWR	MOX	5,5 (Pu)	1	2	39,6 – 58,9
Calvert Cliffs - 1	PWR	UO ₂	2,45, 2,72, 3,04	3	9	18,7 – 46,5
Fukushima Daini - 2	BWR	UO ₂	3,4, 3,91	2	15	7,2 - 44,0
Gösgen	PWR	UO ₂	3,5, 4,1	2	3	21,8 - 38,9
GKN - 2	PWR	UO ₂	3,8	1	1	54,0
Ohi - 1	PWR	UO ₂	3,2	1	1	52,4
Ohi - 2	PWR	UO ₂	1,69, 3,2	3	5	21,5 – 38,5
Takahama - 3	PWR	UO ₂	2,63, 4,11	3	14	14,3 – 47,3
Three Mile Island - 1	PWR	UO ₂	4,01, 4,66	5	24	22,8 - 55,7
			Summe	21	74	

Tab. 1.1Liste der im Rahmen des Berichts untersuchten Nachbestrahlungs-
analyseproben

Bei den hier vorgestellten Nachrechnungen handelt es sich um eine generische Analyse ohne direkten Bezug auf einen konkreten Anwendungsfall, die der allgemeinen Validierung von MOTIVE dient. Die dargestellten Ergebnisse können in einem zusätzlichen Schritt zum Beispiel für eine Anwendung im Bereich Abbrandkredit auf ein konkretes Problem übertragen werden. Die grundlegende Vorgehensweise für eine solche Analyse ist zum Beispiel in /BEH 14/ dargestellt.

1.1 Struktur und Vorgehensweise

Im Folgenden sind zunächst alle Nachrechnungen sortiert nach Reaktoren dargestellt. Dabei werden jeweils zunächst die experimentellen Daten beschrieben. Im Anschluss daran wird die Modellierung im Rahmen von MOTIVE dargestellt. Schließlich folgt eine Darstellung und Diskussion der Nachrechnungsergebnisse. Nach der Darstellung aller nachgerechneten Proben erfolgt eine zusammenfassende Auswertung aller Nachrechnungsergebnisse getrennt für DWR und SWR Proben. Die Ergebnisse werden mit vergleichbaren Daten anderer Programme verglichen. Eine Darstellung der für alle Nachrechnungen gewählten Modellparameter und Annahmen erfolgt im Rahmen der Darstellungen für die Proben aus den Reaktoren Ohi-1 und Ohi-2.

2 Nachrechnung von DWR-Proben

2.1 Proben der Reaktoren Ohi-1 und Ohi-2

Aus den zwei Druckwasserreaktoren Ohi-1 und Ohi-2, die von der japanischen Kansai Electric Power Co., Inc. betrieben werden, gibt es insgesamt 6 Nachbestrahlungsanalyseproben. Aus dem Reaktorblock Ohi-1 (1100 MWe) stammt eine Probe aus dem Brennelement G13, das über vier Zyklen einen Gesamtabbrand von 45 GWd/tSM erfahren hat. Die restlichen fünf Proben aus dem Reaktorblock Ohi-2 entstammen dem Brennelement 17G, das über zwei Zyklen mit einem Gesamtabbrand von 31,5 GWd/tSM eingesetzt wurde. Die Angaben zu Brennelementgeometrien, Materialdaten und Abbrandhistorien stammen vorwiegend aus der Datenbank SFCOMPO /MIC 17/ und wurden teilweise aus der Veröffentlichung /SUY 11/ ergänzt.

2.1.1 Experimentelle Daten

Bei beiden Brennelementen handelt es sich um 17 x17 DWR Brennelemente mit jeweils einem zentralen Instrumentierungsrohr und 24 Steuerstabführungsrohren. Das Brennelement 17G enthält zusätzlich 16 Brennstäbe mit dem abbrennbaren Neutronenabsorber Gd₂O₃. In Abb. 2.1 ist die schematische Darstellung der zwei Brennelemente mit den unterschiedlichen Brennstäben farblich kodiert dargestellt /MIC 17/.

Abb. 2.1Schematische Darstellung der Brennelemente G13 und 17G aus Ohi-1 und
Ohi-2 (aus SFCOMPO 2.0)

In Tab. 2.1 sind die relevanten gemeinsamen geometrischen Abmessungen der beiden Brennelemente wiedergegeben, in Tab. 2.2 die relevanten gemeinsamen geometrischen Abmessungen der Brennstäbe, Führungs- und Instrumentalrohre /MIC 17/, /SUY 11/, die für beide Brennelemente identisch sind.

Parameter	
Gittertyp	17 x 17
Brennstababstand [cm]	1,26
Brennelementabstand [cm]	21,504
Brennstablänge [cm]	385,2
Aktive Brennstablänge [cm]	381,6
Anzahl Brennelemente	264
Anzahl Führungsrohre	24
Anzahl Instrumentalrohre	1

Tab. 2.1 Geometrische Abmessungen der Brennelemente G13 und 17G

Tab. 2.2	Geometrische Abmessungen der Brennstäbe, Führungs- und Instrumental-
	rohre

Parameter	
Durchmesser Brennstoff [cm]	0,805
Durchmesser Hüllrohr innen [cm]	0,822
Durchmesser Hüllrohr außen [cm]	0,95
Material Hüllrohr	Zircaloy-4
Dichte Hüllrohr [g/cm ³]	6,56
Durchmesser Führungs- und Instrumental- rohre innen [cm]	1,125
Durchmesser Führungs- und Instrumental- rohre außen [cm]	1,205
Material Führungs- und Instrumentalrohre	Zircaloy-4
Dichte Führungs- und Instrumentalrohre [g/cm ³]	6,56

Aus dem Brennelement G13 wurde die Probe 91E07 aus dem Brennstab N13 entnommen, bei dem Brennelement 17G wurden die Proben 89G01 und 89G03 aus dem Brennstab C5, die Probe 89G05 aus dem Brennstab O13 und die Proben 89G08 und 89G10 aus dem Brennstab F4 entnommen. Weitere Details der 6 Proben finden sich in Tab. 2.3. Details zur Brennstoffzusammensetzung wurden aus /MIC 17/ entnommen. Die allgemeinen Werte sind in Tab. 2.4, die nuklidweise Brennstoffzusammensetzung der UO₂ Brennstäben in Tab. 2.5, und die nuklidweise Brennstoffzusammensetzung der UO₂-Gd₂O₃ Brennstäbe in Tab. 2.6 wiedergegeben. Die angegebenen Gew-% wurden für die Rechnung unter Berücksichtigung der Dichte des Brennstoffs in Kernzahldichten umgerechnet. Die Isotopenzusammensetzung von Gadolinium wurde aus Referenz /SUY 11/ übernommen.

Parameter	91E07	89G01	89G03	89G05	89G08	89G10
Reaktorblock	Ohi-1	Ohi-2	Ohi-2	Ohi-2	Ohi-2	Ohi-2
Brennelement	G13	17G	17G	17G	17G	17G
Brennstab	N13	C5	C5	013	F4	F4
Anzahl Bestrahlungszyklen	4	2	2	2	2	2
Probenabbrand [GWd/tSM]	52,434	21,465	28,717	25.137	30.172	38.496
Probenhöhe der aktiven Zone [cm]	112,8	26,7	73,7	73,3	26,5	73,8

Tab. 2.3 Relevante Details der 6 Proben aus Ohi-1 und Ohi-2

 Tab. 2.4
 Daten zur Materialzusammensetzung des Brennstoffs

Parameter	91E07	89G01	89G03	89G05	89G08	89G10
Brennstoff	UO ₂	UO_2 - Gd ₂ O ₃	UO ₂ - Gd ₂ O ₃	UO ₂ - Gd ₂ O ₃	UO ₂	UO ₂
²³⁵ U Anreicherung [Gew%]	3,2	1,6874	1,6874	1,6874	3,2	3,2
Dichte Brennstoff [tD-UO ₂]	95 %	95 %	95 %	95 %	95 %	95 %
Dichte Brennstoff [g/cm ³]	10,412	10,412	10,412	10,412	10,412	10,412
Gd ₂ O ₃ Anteil [Gew%]	-	6,0	6,0	6,0	-	-

 Tab. 2.5
 Nuklidweise Brennstoffzusammensetzung der UO2 Brennstäbe

Isotop	[wt%]	Kernzahldichten
²³⁴ U	0,0281	6,6369E-06
²³⁵ U	3,2	7,5259E-04
²³⁶ U	0,002	4,6838E-07
²³⁸ U	96,7699	2,2472E-02
¹⁶ O		4.6463E-02

Isotop	[wt%]	Kernzahldichten
²³⁴ U	0,0141	3,1305E-06
²³⁵ U	1,6874	3,7305E-04
²³⁶ U	0,0008	1,8735E-07
²³⁸ U	98,2977	2,1458E-02
¹⁵² Gd	0,19	4,0803E-06
¹⁵⁴ Gd	2,13	4,5148E-05
¹⁵⁵ Gd	14,58	3,0705E-04
¹⁵⁶ Gd	20,3	4,2477E-04
¹⁵⁷ Gd	15,62	3,2476E-04
¹⁵⁸ Gd	24,95	5,1546E-04
¹⁶⁰ Gd	22,23	4,5353E-04
¹⁶ O		4,6780E-02

Tab. 2.6Nuklidweise Brennstoffzusammensetzung der UO2-Gd2O3 Brennstäbe

Nach /MIC 17/ bestehen alle Strukturmaterialien aus Zirkaloy-4. Hierfür wurden die Kernzahldichten mit der in der Referenz angegebenen Dichte und der natürlichen Isotopen-Zusammensetzung (aus /MAG 18/) verwendet. Diese Werte sind in Tab. 2.7 wiedergegeben. /MIC 17/ gibt auch die Bestrahlungsgeschichte in Form von spezifischer Leistung der Proben und Bor-Konzentration an. Die verwendeten Werte für die Probe aus Ohi-1 sind in Tab. 2.8 wiedergegeben.

Element	Anteil [wt%]	Isotope	Kern- zahl- dichten [1/barn* cm]	Element	[wt%]	Isotope	Kern- zahl- dichten [1/barn* cm]
Zr	98,23			Fe	0,21		
		⁹⁰ Zr	2,1778E-02			⁵⁴ Fe	8,8154E-06
		⁹¹ Zr	4,6971E-03			⁵⁶ Fe	1,3344E-04
		⁹² Zr	7,1016E-03			⁵⁷ Fe	3,0277E-06
		⁹⁴ Zr	7,0437E-03			⁵⁸ Fe	3,9598E-07
		⁹⁶ Zr	1,1111E-03	Cr	0,1		
Sn	1,45					⁵⁰ Cr	3,3702E-06
		¹¹² Sn	4,8703E-06			⁵² Cr	6,2491E-05
		¹¹⁴ Sn	3,2557E-06			⁵³ Cr	6,9523E-06
		¹¹⁵ Sn	1,6626E-06			⁵⁴ Cr	1,6985E-06
		¹¹⁶ Sn	7,0487E-05	Hf	0,01		
		¹¹⁷ Sn	3,6913E-05			¹⁷⁴ Hf	3,5662E-09
		¹¹⁸ Sn	1,1542E-04			¹⁷⁶ Hf	1,1591E-07
		¹¹⁹ Sn	4,0593E-05			¹⁷⁷ Hf	4,0754E-07
		¹²⁰ Sn	1,5268E-04			¹⁷⁸ Hf	5,9437E-07
		¹²² Sn	2,1341E-05			¹⁷⁹ Hf	2,9509E-07
		¹²⁴ Sn	2,6258E-05			¹⁸⁰ Hf	7,5582E-07

 Tab. 2.7
 Nuklidweise Zusammensetzung des Strukturmaterials Zirkaloy-4

Zyklus	Zeit- schritte	Borkonzen- tration	Leistung	Zyklus	Zeit- schritte	Borkonzen- tration	Leistung
	[d]	[ppm]	[MW/tSM]		[d]	[ppm]	[MW/tSM]
4	3	996,2	10,1335	5	11	1085,9	22,147
	15	973,6	37,0675		14	1054,0	36,5955
	35	910,7	39,7453		35	991,3	34,9268
	35	822,6	36,4924		19	922,3	35,3327
	21	752,2	38,6229		39	848,2	35,4302
	35	681,8	38,9389		24	767,6	35,8369
	30	600,0	47,7806		28	701,1	36,1223
	33	520,8	30,2358		32	624,4	35,5159
	30	441,5	37,1409		31	543,9	35,5534
	28	368,6	39,5653		37	457,0	35,7104
	33	291,8	39,7663		26	376,4	35,2838
	20	225,2	40,0571		28	307,4	35,4828
Revision	165	1085,9	0	Revision	28	235,8	36,146
6	3	1095,7	14,6156	7	2	1097,5	4,2872
	8	1080,0	38,6167		17	1073,6	26,0788
	27	1030,0	43,8392		23	1023,3	37,238
	39	935,7	44,2363		32	954,2	37,8623
	28	840,0	43,8972		28	878,8	38,3605
	28	760,0	45,7526		35	799,6	38,7654
	28	680,0	45,6433		28	720,4	38,3248
	28	600,0	46,282		28	650,0	38,3605
	31	515,7	46,6313		28	579,6	39,3152
	35	421,4	45,9499		35	500,4	39,7938
	27	332,9	45,965]	30	418,7	39,7545
	29	252,9	46,1249		33	339,5	42,9906
	4	205,7	53,9459		28	262,8	36,2934
Revision	171	1097,5	0		11	213,8	39,9546

Tab. 2.8Bestrahlungsgeschichte der Reaktorzyklen 4 bis 7 für die eine Probe aus
Ohi-1

Die zeitliche Entwicklung der Borkonzentration in ppm und der Leistung als Bruchteil der Maximalleistung (53,9459 MW/tSM) sind für die Probe 91E07 des Brennelements

G13 aus Ohi-1 in Abb. 2.2 graphisch dargestellt. Die verwendeten Werte für die fünf Proben aus Ohi-2 sind in Tab. 2.9 wiedergegeben.

Abb. 2.2 Bestrahlungsgeschichte der Probe 91E07 des Brennelements G13 aus Ohi-1

Zyklus	Zeit- schritte [d]	Borkonzen- tration [ppm]	Leistung [MW/tSM]				
			89G01	89G03	89G05	89G08	89G10
5	17	1078,2	5,2713	7,0522	4,9558	22,2135	28,3425
	29	1019,3	5,3752	7,1909	4,8717	20,5815	26,2609
	29	945,1	8,6538	11,5775	7,4757	29,3372	37,4308
	34	864,4	10,5425	14,1044	9,0156	31,314	39,9541
	28	785,0	12,4725	16,6859	10,4147	32,8118	41,8652
	33	706,9	15,3365	20,5177	12,4871	34,9817	44,6315
	30	626,2	18,5945	24,876	14,6983	37,0163	47,2293
	28	552,0	22,1015	29,5683	17,1644	38,7825	49,4832
	29	479,0	26,0241	34,8155	20,2423	40,3185	51,4433
	36	395,7	29,3654	39,2851	23,8536	41,2981	52,6923
	54	280,5	31,7315	42,4508	29,0331	42,5648	54,3095
	35	166,5	31,9805	42,7829	31,9448	42,3346	54,0156
	16	101,2	31,9178	42,7008	31,8608	42,2386	53,8932
	11	66,6	25,8998	34,6494	27,073	33,9834	43,3591
	1	51,3	25,8998	34,6494	27,073	33,9834	43,3591
Revision	104	1071,7	0	0	0		
6	23	1071,7	20,8979	27,9577	27,3535	26,322	33,5851
	29	1007,8	29,386	39,3134	38,5528	36,5559	46,6416
	28	937,7	29,9261	40,0353	39,4762	36,7283	46,862
	32	863,9	30,5073	40,8128	40,6526	36,9977	47,2048
	30	787,7	31,6688	42,3678	42,6116	38,0723	48,5772
	29	715,2	29,635	39,6465	40,2041	35,3657	45,1232
	32	640,2	30,8386	41,2572	41,9961	36,6519	46,764
	31	562,7	32,3539	43,2839	44,1798	38,1497	48,6751
	27	491,4	32,8313	43,9218	44,9078	38,4945	49,1159
	35	415,2	33,0596	44,2275	45,2996	38,4181	49,018
	33	331,6	32,9763	44,1161	45,3562	37,9959	48,4792
	23	262,7	33,0185	44,1718	45,5517	37,8617	48,3078
	37	188,9	32,3333	43,2556	44,684	36,8057	46,9599
	14	126,2	33,0596	44,2275	45,6816	37,6119	47,9894
	12	94,3	25,6506	34,3154	35,4447	28,9336	36,9165
	12	64,8	25,6506	34,3154	35,4447	28,9336	36,9165

Tab. 2.9Bestrahlungsgeschichte der Reaktorzyklen 5 und 6 für die fünf Proben aus
Ohi-2

Die zeitliche Entwicklung der Borkonzentration [‰] und der Leistung als Bruchteil der Maximalleistung sind für die Proben 89G01 (P_{max} = 33,0596 MW/tSM), 89G03 (P_{max} = 44,2275 MW/tSM), 89G05 (P_{max} = 45,6816 MW/tSM), 89G08 (P_{max} = 42,5648 MW/tSM), und 89G10 (P_{max} = 54,3095 MW/tSM) des Brennelements 17G aus Ohi-2 in Abb. 2.3 graphisch dargestellt.

Abb. 2.3 Bestrahlungsgeschichte der Proben 89G01, 89G03, 89G05, 89G08, und 89G10 des Brennelements 17G aus Ohi-2

Da die Proben 89G03 und 89G05, bzw. 89G08 und 89G10 jeweils aus demselben Brennstab stammen, sind ihre relativen Leistungskurven identisch. Aufgrund der unterschiedlichen Axialposition der Proben sind die jeweiligen absoluten Leistungswerte dennoch unterschiedlich. Beim Vergleich der relativen Leistungsgeschichten der Proben zeigt sich der Einfluss der gadoliniumhaltigen Brennstäbe: Der Neutronenabsorber Gadolinium wird innerhalb des ersten Zyklus weitgehend ausgebrannt. Aus diesem Grund komme es zu einer starken Leistungszunahme innerhalb des ersten Zyklus. Auch fällt auf, dass die Leistung in den gadoliniumhaltigen Brennstäben (89G01, 89G03 und 89G05) am Anfang des ersten Zyklus relativ nochmal deutlich geringer als in dem reinen UO₂ Brennstab der Proben 89G08 und 89G10 ist. Für die Abbrandrechnungen wurde die Leistungsgeschichte für jede Probennachrechnung mit einem konstanten Faktor so normiert, dass die Abweichung der berechneten zur gemessenen ¹⁴⁸Nd Konzentration als Abbrandindikator minimiert wird.

Die isotopenaufgelöste Zusammensetzung der Proben wurden mithilfe zerstörender Analysemethoden ermittelt. Die ermittelten Konzentrationen werden in /MIC 17/ in Gramm pro Tonne anfänglichem Schwermetall (g/tSMi) für Aktinoide bei Reaktorabschaltung angegeben. Dabei ist der Wert für ²³⁹Pu die Summe von ²³⁹Pu und ²³⁹Np. Spaltprodukte werden in g/tSMi nach fünf Jahren Abklingzeit angegeben. Die für Ohi-2 zusätzlich ermittelte Gadolinium-Zusammensetzung wurde in Atom-% des kompletten Gadoliniums angegeben [ⁿGd / ^{total}Gd [%]). Für die Probe 91E07 sind die Werte in Tab. 2.10 gezeigt, für die Proben 89G01, 89G03, 89G05, 89G08, und 89G10 in Tab. 2.11 und in Tab. 2.12.

Aktinoide	g/Mg	Spaltprodukte	g/Mg
lsotop	91E07	Isotop	91E07
²³² U	1,06E-03	¹⁴² Nd	4,99E+01
²³⁴ U	1,10E+02	¹⁴³ Nd	8,91E+02
²³⁵ U	2,72E+03	¹⁴⁴ Nd	2,23E+03
²³⁶ U	4,43E+03	¹⁴⁵ Nd	9,33E+02
²³⁸ U	9,25E+05	¹⁴⁶ Nd	1,13E+03
²³⁷ Np	5,98E+02	¹⁴⁸ Nd	5,77E+02
²³⁶ Pu	2,23E-03	¹⁵⁰ Nd	2,91E+02
²³⁸ Pu	3,87E+02	¹⁰⁶ Ru	8,01E+00
²³⁹ Pu	5,26E+03	^{110m1} Ag	8,98E-03
²⁴⁰ Pu	3,04E+03	¹²⁵ Sb	2,60E+00
²⁴¹ Pu	1,74E+03	¹³⁴ Cs	4,61E+01
²⁴² Pu	1,35E+03	¹³⁷ Cs	1,72E+03
²⁴¹ Am	3,68E+01	¹⁴⁴ Ce	3,87E+00
^{242m1} Am	9,56E-01	¹⁵⁴ Eu	2,47E+01
²⁴³ Am	3,50E+02		
²⁴² Cm	3,55E+01		
²⁴³ Cm	1,42E+00		
²⁴⁴ Cm	1,99E+02		
²⁴⁵ Cm	1,25E+01		
²⁴⁶ Cm	2,83E+00		
²⁴⁷ Cm	4,82E-02		

Tab. 2.10Nuklidzusammensetzung (zur Reaktorabschaltung) und Spaltprodukte
(nach 5 Jahren Abklingzeit) der Probe 91E07 des Brennelements G13 aus
Ohi-1

Aktinoide	g/Mg						
Isotop	89G01	89G03	89G05	89G08	89G10		
²³² U	1,26E-03	1,76E-03	1,53E-03	3,26E-04	4,02E-04		
²³⁴ U	8,75E+01	7,47E+01	8,13E+01	1,71E+02	1,48E+02		
²³⁵ U	5,47E+03	3,65E+03	4,42E+03	9,10E+03	6,12E+03		
²³⁶ U	1,97E+03	2,23E+03	2,14E+03	3,84E+03	4,24E+03		
²³⁸ U	9,60E+05	9,53E+05	9,56E+05	9,45E+05	9,38E+05		
²³⁷ Np	2,21E+02	2,86E+02	2,45E+02	3,48E+02	4,44E+02		
²³⁶ Pu	3,78E-04	7,21E-04	5,72E-04	7,22E-04	1,32E-03		
²³⁸ Pu	6,82E+01	1,21E+02	9,35E+01	1,11E+02	1,90E+02		
²³⁹ Pu	5,36E+03	5,51E+03	5,52E+03	5,18E+03	5,32E+03		
²⁴⁰ Pu	2,15E+03	2,61E+03	2,42E+03	2,15E+03	2,61E+03		
²⁴¹ Pu	1,24E+03	1,55E+03	1,43E+03	1,21E+03	1,49E+03		
²⁴² Pu	4,28E+02	7,58E+02	6,05E+02	4,37E+02	7,51E+02		
²⁴¹ Am	2,75E+01	3,65E+01	2,72E+01	2,73E+01	3,80E+01		
^{242m1} Am	4,77E-01	8,07E-01	5,09E-01	5,12E-01	6,29E-01		
²⁴³ Am	6,32E+01	1,47E+02	1,23E+02	6,78E+01	1,50E+02		
²⁴² Cm	1,21E+01	1,99E+01	1,47E+01	1,22E+01	1,88E+01		
²⁴³ Cm	1,91E-01	4,99E-01	3,92E-01	2,76E-01	4,80E-01		
²⁴⁴ Cm	1,62E+01	5,70E+01	3,26E+01	1,85E+01	5,59E+01		
²⁴⁵ Cm	6,56E-01	2,88E+00	1,50E+00	7,67E-01	2,85E+00		
²⁴⁶ Cm	5,74E-02	3,67E-01	1,58E-01	7,19E-02	3,81E-01		
²⁴⁷ Cm	5,50E-04	4,88E-03	-	8,00E-04	4,05E-03		

Tab. 2.11Nuklidzusammensetzung (zur Reaktorabschaltung) für die Proben 89G01,
89G03, 89G05, 89G08, und 89G10 des Brennelements 17G aus Ohi-2
(Aktinoide)

Tab. 2.12Nuklidzusammensetzung (nach 5 Jahren Abklingzeit) für die Proben89G01, 89G03, 89G05, 89G08, und 89G10 des Brennelements 17G ausOhi-2 (Spaltprodukte)

Spaltprodukte	g/Mg								
Isotop	89G01	89G03	89G05	89G08	89G10				
¹⁴² Nd	1,26E-03	1,76E-03	1,53E-03	3,26E-04	4,02E-04				
¹⁴³ Nd	8,75E+01	7,47E+01	8,13E+01	1,71E+02	1,48E+02				
¹⁴⁴ Nd	5,47E+03	3,65E+03	4,42E+03	9,10E+03	6,12E+03				
¹⁴⁵ Nd	1,97E+03	2,23E+03	2,14E+03	3,84E+03	4,24E+03				
¹⁴⁶ Nd	9,60E+05	9,53E+05	9,56E+05	9,45E+05	9,38E+05				
¹⁴⁸ Nd	2,21E+02	2,86E+02	2,45E+02	3,48E+02	4,44E+02				
¹⁵⁰ Nd	3,78E-04	7,21E-04	5,72E-04	7,22E-04	1,32E-03				
¹⁰⁶ Ru	6,82E+01	1,21E+02	9,35E+01	1,11E+02	1,90E+02				
^{110m1} Ag	5,36E+03	5,51E+03	5,52E+03	5,18E+03	5,32E+03				
¹²⁵ Sb	2,15E+03	2,61E+03	2,42E+03	2,15E+03	2,61E+03				
¹³⁴ Cs	1,24E+03	1,55E+03	1,43E+03	1,21E+03	1,49E+03				
¹³⁷ Cs	4,28E+02	7,58E+02	6,05E+02	4,37E+02	7,51E+02				
¹⁴⁴ Ce	2,75E+01	3,65E+01	2,72E+01	2,73E+01	3,80E+01				
¹⁵⁴ Eu	4,77E-01	8,07E-01	5,09E-01	5,12E-01	6,29E-01				
¹⁵² Gd	0,056	0,044	0,034	0,0	0,0				
¹⁵⁴ Gd	1,818	1,748	1,674	0,0	0,0				
¹⁵⁵ Gd	0,018	0,019	0,053	0,0	0,0				
¹⁵⁶ Gd	34,60	34,545	34,260	0,0	0,0				
¹⁵⁷ Gd	0,007	0,009	0,008	0,0	0,0				
¹⁵⁸ Gd	41,520	41,640	41,870	0,0	0,0				
¹⁶⁰ Gd	21,990	21,994	22,100	0,0	0,0				

2.1.2 Modellierung

Bei der Modellierung wurde darauf geachtet die gegebenen experimentellen Bedingungen möglichst originalgetreu nachzubilden, dabei aber vorhandene Symmetrien auszunutzen, um die Rechnung zu vereinfachen, ohne Details zu verlieren. Zwar wurde das Brennelement komplett modelliert, aber aufgrund der Symmetrie entlang der Senkrechten, Horizontalen und der Diagonalen müssen nur für ein Achtel des Brennelements individuelle Brennstäbe modelliert werden. Dies reduziert die Anzahl an individuell zu betrachtenden Brennstäben auf 45. Abb. 2.4 zeigt die Implementierung der beiden Brennelemente in der Geometriedarstellung des von MOTIVE angesteuerten Neutronentransportprogramms KENO-VI. Beim Brennelement 17G wurden die gadoliniumhaltigen Brennstäbe für die Berechnung in zehn Ringzonen mit gleicher Fläche unterteilt, um den aufgrund der Neutronenselbstabschirmung radial variierenden Gadoliniumabbrand genauer berechnen zu können.

Abb. 2.4 Implementierung der Brennelemente in SCALE-Geometrie

Die Brennstäbe wurden wie in den experimentellen Daten angegeben mit einem heliumgefüllten Zwischenraum zwischen Brennstoff und Hüllrohr modelliert (Kernzahldichte = 2.404400E-04). Die geometrischen Abmessungen und Materialdaten wurden wie in Kapitel 2.1.1 beschrieben übernommen. Es wurde eine Axialzone mit 10 cm Höhe und reflektierenden Randbedingungen in alle Richtungen modelliert. Die Parameter der Abbrandrechnungen sind in Tab. 2.13 wiedergegeben Diese wurden auch in allen folgenden Analysen verwendet. In KENO-VI wurden dabei 500 Generationen mit jeweils 40000 Neutronen gerechnet. Die Rechnung wurde bei einer Monte Carlo Unsicherheit von $\sigma = 5*10^{-4}$ abgebrochen. Während MOTIVE in der Abbrandrechnung 3820 Nuklide verfolgt, wurden in die Ergebnisdateien nur diejenigen ausgegeben, für die auch durch Nachbestrahlungsanalysen experimentelle Werte vorliegen. Die betrachteten Nuklide sind in Tab. 2.14 angegeben.

 Tab. 2.13
 Parameter der Abbrandrechnung

Parameter	Wert
Neutronentransportcode	KENO-VI aus SCALE 6.2.2
Inventarcode	Ventina
Wirkungsquerschnittsbibliothek	ENDF/B-VII.1
# Energiegruppen	27.687
Prediktor-Corrector Methode	Standard

 Tab. 2.14
 Liste der betrachteten Nuklide

Betrachtete Nuklide							
²³² U	²³⁴ U	²³⁵ U	²³⁶ U	²³⁸ U			
²³⁷ Np	²³⁹ Np						
²³⁶ Pu	²³⁸ Pu	²³⁹ Pu	²⁴⁰ Pu	²⁴¹ Pu	²⁴² Pu		
²⁴¹ Am	^{242m1} Am	²⁴³ Am					
²⁴² Cm	²⁴³ Cm	²⁴⁴ Cm	²⁴⁵ Cm	²⁴⁶ Cm	²⁴⁷ Cm		
¹⁴² Nd	¹⁴³ Nd	¹⁴⁴ Nd	¹⁴⁵ Nd	¹⁴⁶ Nd	¹⁴⁸ Nd	¹⁵⁰ Nd	
¹⁰⁶ Ru	^{110m1} Ag	¹²⁵ Sb					
¹³⁴ Cs	¹³⁷ Cs						
¹⁴⁴ Ce	¹⁵⁴ Eu						
¹⁵² Gd	¹⁵⁴ Gd	¹⁵⁵ Gd	¹⁵⁶ Gd	¹⁵⁷ Gd	¹⁵⁸ Gd	¹⁶⁰ Gd	

2.1.3 Resultate

Die Präsentation der Ergebnisse zu den einzelnen Probennachrechnungen folgt für alle betrachteten Experimente der gleichen Vorgehensweise. Daher wird am vorliegenden Beispiel dieses Vorgehen ausführlich erläutert. Die Ergebnispräsentation der nachfolgenden Kapitel nimmt dann jeweils auf die hier folgenden Erläuterungen Bezug.

Die Ergebnisse der Probennachrechnungen werden zunächst jeweils in tabellarischer Form und in Form von Balkendiagrammen dargestellt. Als Maß der Übereinstimmung zwischen Rechnung und Experiment wird dabei die Größe C/E-1 verwendet und diese in Form von Prozentwerten dargestellt. Dabei steht C für die berechnete Konzentration des jeweiligen Nuklids und E für die experimentell ermittelte Konzentration. Betrachtet werden also jeweils relative Unterschiede zwischen Rechen- und Messergebnis, wobei positive Werte bedeuten, dass die Rechnung die jeweilige Nuklidkonzentration im Vergleich zum Messergebnis überschätzt, und negative Werte einer Unterschätzung der Nuklidkonzentrationen entsprechen. Die Betrachtung der relativen Abweichungen erlaubt Vergleichbarkeit der unterschiedlichen Daten, da diese unabhängig von absoluten Werten sind. Aus diesem Grund hat sich eine entsprechende Darstellungsweise in der Literatur durchgesetzt, weshalb dadurch auch eine bessere Vergleichbarkeit mit anderen Veröffentlichungen gegeben ist. Allerdings fallen gleiche absolute Abweichungen bei Nukliden, die nur in geringen Mengen vorkommen, bei einer Darstellung relativer Unterschiede stärker ins Gewicht als bei Nukliden, die in größeren Mengen vorkommen. Dies ist nicht direkt aus den Daten ersichtlich und muss bei der Bewertung der Ergebnisse berücksichtigt werden.

In der graphischen Darstellung der C/E-1-Werte wird jeweils die zugehörige Messunsicherheit, wie sie in der Literatur angegeben ist, in Form von Fehlerbalken mit angegeben. Dargestellt sind dabei jeweils die Werte die $\pm 1\sigma$ entsprechen.

Zusätzlich zu den einzelnen C/E-1-Werten wird auch jeweils das Ergebnis einer Mittelung über alle Proben eines Probenbrennstabs angeben. Dabei werden Mittelwert und Standardabweichung für diese Mittelung dargestellt. Aus diesen Daten lässt sich eine Aussage über eine mögliche systematische Abweichung zwischen Rechnung und Experiment treffen, wenn man annimmt, dass sich statistische Unsicherheiten herausmitteln. Allerdings lässt sich damit noch keine Aussage treffen, ob eine mögliche systematische Abweichung vom Rechenprogramm oder vom Experiment herrührt. Die bei der Mittelung bestimmte Standardabweichung stellt ein Maß für die Streuung und somit die Konsistenz der einzelnen Probennachrechnungen dar. Eine große Varianz zwischen den einzelnen C/E-1-Werten deutet im Allgemeinen auf Probleme bei der Messung eines bestimmten Nuklids hin, da man davon ausgehen kann, dass die Berechnung der Nuklidkonzentrationen konsistent erfolgt und hier keine große Streuung (eher eine systematische Abweichung) zu erwarten ist.

In Tab. 2.15 sind die Ergebnisse der Nachrechnungen der insgesamt sechs Proben aus den beiden Reaktoren Ohi-1 und Ohi-2 als Vergleich zwischen Rechnung und Experiment aufgeführt. Diese Daten werden in Abb. 2.5 und Abb. 2.6 graphisch dargestellt. Alle Proben weisen eine relativ starke Überschätzung der ²³⁵U Konzentration im Bereich zwischen 5 und 10 % auf, wohingegen der Gehalt an ²³⁹Pu gut getroffen wird. Dies weist möglicherweise auf eine relativ hohe Unsicherheit in der Abbrandbestimmung hin, obwohl der angegebene Wert für die Messunsicherheit von ¹⁴⁸Nd sehr klein ist. Die übrigen Uran- und Plutoniumnuklide sowie ²³⁷Np weisen eine Übereinstimmung auf, die im Rahmen der Werte vergleichbarer Nachrechnungen liegt. Ausnahmen bilden hier ²³²U und ²³⁶Pu aufgrund der geringen absoluten Konzentrationen. Die übrigen Aktinoiden weisen Abweichungen erwarteter Größe auf, wobei der Wert für ²⁴¹Am der Probe 91E07 durch größere Abweichungen heraussticht. Hier liegt möglicherweise ein Problem bei der Messung vor. Die Abweichungen der Spaltprodukte liegen ebenfalls im von anderen Nachrechnungen bekannten Rahmen. Die großen Abweichungen bei ^{110m}Ag und ¹²⁵Sb lassen sich mit experimentellen Schwierigkeiten begründen. Es ist bekannt, dass metallische Spaltprodukte eine schlechte Löslichkeit bei den üblicherweise verwendeten Spaltproduktlösungen aufweisen und teilweise Ausfällen, so dass die Messwerte die tatsächlichen Konzentrationen im Brennstoff oft stark unterschätzen. Dieses Problem wird erst bei aktuelleren experimentellen Programmen durch zusätzliche Verfahrensschritte behoben.

In Tab. 2.16 und Abb. 2.7 sind jeweils die Ergebnisse der Mittelung über die Proben aus Ohi-2 gezeigt. Hier wird eine leichte Unterschätzung der höheren Aktinoide sowie eine gute Übereinstimmung zwischen Rechnung und Experiment bei den Spaltprodukten sichtbar.

Reaktor	Ohi1	Ohi2				
Probe	91E07	89G01	89G03	89G05	89G08	89G10
²³² U	31.1	-86.2	-85.2	-86.0	-9.2	12.6
²³⁴ U	5.9	1.3	2.2	0.8	3.3	2.8
²³⁵ U	11.0	5.5	6.9	6.8	8.0	8.5
²³⁶ U	-0.4	0.3	-0.6	-1.2	-1.8	-1.6
²³⁸ U	0.2	0.1	0.1	0.2	0.2	0.2
²³⁷ Np	5.1	-3.5	0.2	1.9	-3.0	1.6
²³⁶ Pu	40.0	65.3	51.5	49.1	36.1	29.9
²³⁸ Pu	-0.4	-2.0	-5.0	-7.3	-6.9	-6.5
²³⁹ Pu	0.1	-3.3	-3.9	-4.8	-2.0	-2.4
²⁴⁰ Pu	-2.6	-2.7	-3.9	-4.1	-5.1	-4.8
²⁴¹ Pu	-2.9	-2.8	-5.0	-5.3	-5.6	-5.3
²⁴² Pu	-7.4	-1.4	-4.4	-5.9	-9.6	-9.8
²⁴¹ Am	39.0	-14.1	-29.6	-22.0	4.7	-19.2
^{242m1} Am	-17.3	-29.2	-53.3	-39.7	-19.1	-28.0
²⁴³ Am	-11.1	-1.6	-7.8	-21.5	-12.2	-14.6
²⁴² Cm	0.3	-15.8	-19.3	-20.1	-9.1	-8.4
²⁴³ Cm	-6.6	22.9	-4.8	-21.6	-9.5	3.5
²⁴⁴ Cm	-9.5	3.6	-10.3	-4.9	-12.3	-13.5
²⁴⁵ Cm	2.7	16.5	-0.4	5.3	-2.3	-3.3
²⁴⁶ Cm	-20.7	-3.6	-18.3	-11.8	-25.0	-24.5
²⁴⁷ Cm	-22.2	-17.6	-31.9	-	-44.1	-21.6
¹⁴² Nd	1.0	-10.6	-11.4	-35.7	-0.6	-5.5
¹⁴³ Nd	6.0	1.3	2.8	2.6	1.9	3.4
¹⁴⁴ Nd	-1.5	-1.2	-0.7	0.1	-1.7	-0.8
¹⁴⁵ Nd	1.5	0.0	0.7	0.4	0.3	1.2
¹⁴⁶ Nd	-0.6	-1.2	-1.0	-1.0	-0.8	-0.8
¹⁴⁸ Nd	0.0	-0.2	0.0	0.1	0.0	0.0
¹⁵⁰ Nd	-0.5	-0.9	-0.5	-0.6	-0.6	-0.5
¹⁰⁶ Ru	-0.5	2.5	4.3	5.0	0.3	3.5
^{110m1} Ag	33.6	86.5	113.6	102.1	17.8	-
¹²⁵ Sb	38.4	38.5	41.4	50.2	53.2	67.8
¹³⁴ Cs	-3.2	-2.3	-3.0	-2.5	1.9	2.1
¹³⁷ Cs	-4.3	-0.8	-2.9	-2.0	7.1	4.8
¹⁴⁴ Cs	2.6	5.1	19.4	15.5	-3.2	0.2
¹⁵⁴ Eu	11.7	9.7	9.7	9.7	20.7	21.1

Tab. 2.15Vergleich zwischen gemessenen und berechneten Werten als C/E-1 in %für Ohi-1 und Ohi-2

	#	C/E - 1	C/E - 1
	Proben	Mittelwert	Standardabweichung
²³² U	5	-50.8	43.4
²³⁴ U	5	2.1	0.9
²³⁵ U	5	7.2	1.0
²³⁶ U	5	-1.0	0.7
²³⁸ U	5	0.2	0.0
²³⁷ Np	5	-0.6	2.3
²³⁶ Pu	5	46.4	12.4
²³⁸ Pu	5	-5.5	2.0
²³⁹ Pu	5	-3.3	1.0
²⁴⁰ Pu	5	-4.1	0.8
²⁴¹ Pu	5	-4.8	1.0
²⁴² Pu	5	-6.2	3.2
²⁴¹ Am	5	-16.0	11.5
^{242m1} Am	5	-33.9	11.7
²⁴³ Am	5	-11.5	6.7
²⁴² Cm	5	-14.5	4.9
²⁴³ Cm	5	-1.9	14.8
²⁴⁴ Cm	5	-7.5	6.3
²⁴⁵ Cm	5	3.2	7.3
²⁴⁶ Cm	5	-16.6	8.1
²⁴⁷ Cm	4	-28.8	10.3
¹⁴² Nd	5	-12.8	12.1
¹⁴³ Nd	5	2.4	0.8
¹⁴⁴ Nd	5	-0.9	0.6
¹⁴⁵ Nd	5	0.5	0.4
¹⁴⁶ Nd	5	-0.9	0.2
¹⁴⁸ Nd	5	0.0	0.1
¹⁵⁰ Nd	5	-0.6	0.1
¹⁰⁶ Ru	5	3.1	1.6
^{110m1} Ag	4	80.0	37.2
¹²⁵ Sb	5	50.2	10.3
¹³⁴ Cs	5	-0.8	2.3
¹³⁷ Cs	5	1.2	4.0
¹⁴⁴ Cs	5	7.4	8.7
¹⁵⁴ Eu	5	14.2	5.5

Tab. 2.16Mittelwert und Standardabweichung bei Mittelung der Proben aus Ohi-2

Abb. 2.5 Ohi-1, Probe 91E07: Vergleich zwischen Rechnung und experimentellen Daten dargestellt als C/E-1 in Prozent

Abb. 2.6 Ohi-2 Proben: Vergleich zwischen Rechnung und experimentellen Daten dargestellt als C/E-1 in Prozent

Abb. 2.7 Darstellung der Mittelwerte und Standardabweichungen für die Mittelung über alle Proben von Ohi-2

2.2 Proben des Reaktors Takahama-3

Aus dem Druckwasserreaktor Takahama-3, der von der japanischen Kansai Electric Power Co., Inc. betrieben wird, gibt es insgesamt 16 Nachbestrahlungsanalyseproben aus drei Brennstäben aus zwei Brennelementen, die zwei bzw. drei Zyklen bestrahlt wurden. Takahama-3 hat eine thermische Leistung von 2652 MW und verwendet ein 17 x 17-Brennelement-Design mit gadoliniumhaltigen Brennstäben. Die Angaben zu Brennelementgeometrien, Materialdaten und Abbrandhistorien stammen vorwiegend aus der Datenbank SFCOMPO /MIC 17/ und wurden teilweise aus der Veröffentlichung /SAN 03/ ergänzt.

2.2.1 Experimentelle Daten

Bei beiden Brennelementen handelt es sich um 17 x 17 DWR Brennelemente mit 24 Steuerstabführungsrohren, einem zentralen Instrumentierungsrohr und 16 Brennstäben mit dem abbrennbaren Neutronenabsorber Gd_2O_3 . In Abb. 2.8 ist die schematische Darstellung der zwei Brennelemente mit den unterschiedlichen Brennstäben farblich kodiert dargestellt /MIC 17/.

Abb. 2.8Schematische Darstellung der Brennelemente NT3G23 und NT3G24 ausTakahama-3

Aus dem Brennelement NT3G23 (Zyklus 5 und 6) wurden aus dem Brennstab SF95 und dem gadoliniumhaltigen Brennstab SF96 jeweils fünf Proben entnommen. Aus dem Brennelement NT3G24 (Zyklus 5 bis 7) wurden sechs Proben aus dem Brennstab

SF97 entnommen. Die Proben wurden jeweils bei unterschiedlichen axialen Höhen entnommen.

In Tab. 2.17 sind die relevanten gemeinsamen geometrischen Abmessungen der Brennelemente wiedergegeben, in Tab. 2.18 die relevanten gemeinsamen geometrischen Abmessungen der Brennstäbe, Führungs- und Instrumentierungsrohre.

Weitere Details der Brennstäbe SF95, SF96, und SF97 finden sich in Tab. 2.19. Details zu den einzelnen Proben der drei Brennstäbe in Tab. 2.20, Tab. 2.21 und Tab. 2.22.

Parameter	
Gittertyp	17 x 17
Brennstababstand [cm]	1,26
Brennelementabstand [cm]	21,4
Brennstablänge [cm]	385,2
Aktive Brennstablänge [cm]	364,8
Anzahl BEs	264
Anzahl Führungsrohre	25

Tab. 2.17Geometrische Abmessungen der Brennelemente G13 und 17G /MIC 17/,
/SUY 11/

Tab. 2.18Geometrische Abmessungen der Brennstäbe, Führungs- und Instrumental-
rohre /MIC 17/, /SUY 11/

Parameter	
Durchmesser Brennstoff [cm]	0,805
Durchmesser innen Hüllrohr [cm]	0,822
Durchmesser außen Hüllrohr [cm]	0,95
Material Hüllrohr	Zircaloy-4
Dichte Hüllrohr [g/cm ³]	6,44
Dichte Brennstoff [g/cm ³]	10,412
Durchmesser innen Führungsrohr [cm]	1,143
Durchmesser außen Führungsrohr [cm]	1,2242
Material Führungsrohr	Zircaloy-4
Dichte Führungsrohr [g/cm ³]	6,44

 Tab. 2.19
 Relevante Details der Brennstäbe SF95, SF96 und SF97

Parameter	SF95	SF96	SF97
BE	NT3G23	NT3G23	NT3G24
Anzahl Bestrahlungszyklen	2	2	3
Bestrahlungsdauern [Tagen] (Ruhezeiten [Tagen])	385 (88) 402	385 (88) 402	385 (88) 402 (62) 406

 Tab. 2.20
 Relevante Details der Proben des Brennstabs SF95

Parameter	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
Probenabbrand [GWd/tSM]	14,3	24,35	35,42	36,69	30,4
Probenhöhe von der aktiven Höhe [cm]	360,6	344,6	292,6	164,6	24,6

Parameter	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
Probenabbrand [GWd/tSM]	7,79	16,44	28,2	28,91	24,19
Probenhöhe von der aktiven Höhe [cm]	363,1	347,1	295,1	167,1	270,1

 Tab. 2.21
 Relevante Detail der Proben des Brennstabs SF96

Tab. 2.22 Relevante Detail der Proben des Brennstabs SF97

Parameter	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6
Probenabbrand [GWd/tSM]	17,69	30,73	42,16	47,03	47,25	40,79
Probenhöhe von der aktiven Höhe [cm]	366,4	345,7	318,0	196,8	88,1	25,1

In Tab. 2.23 sind die Anreicherungen der Brennstäbe und der gadoliniumhaltigen Absorberstäbe wiedergegeben.

Details zur Brennstoffzusammensetzung wurden /MIC 17/ entnommen. Die Anreicherungen der Brennstäbe und der gadoliniumhaltigen Absorberstäbe sowie die nuklidweisen Werte sind in Tab. 2.23 wiedergegeben. Die angegebenen Gew-% wurden für die Rechnung unter Berücksichtigung der Dichte des Brennstoffs in Kernzahldichten umgerechnet. Für den Gadoliniumvektor wurde in Ermangelung direkter Referenzen diejenige Isotopenverteilung von Gadolinium angenommen, die in /SUY 11/ für den Ohi-2 Reaktor dokumentiert ist, da in diesem Reaktor Brennelemente mit demselben Design verwendet werden.
Isotop	Brennstä	be	Absorbe	rstäbe
	[Gew.%]	Kernzahldichten	[Gew.%]	Kernzahldichten
²³⁴ U	0,04	9,4474E-06	0,02	4,4404E-06
²³⁵ U	4,11	9,6659E-04	2,63	5,8143E-04
²³⁸ U	95,85	2,2258E-02	97,25	2,1250E-02
${}^{\text{nat}}Gd_2O_3$	-	-	6	
¹⁵² Gd			0,19	4,0803E-06
¹⁵⁴ Gd			2,13	4,5148E-05
¹⁵⁵ Gd			14,58	3,0705E-04
¹⁵⁶ Gd			20,3	4,2477E-04
¹⁵⁷ Gd			15,62	3,2476E-04
¹⁵⁸ Gd			24,95	5,1546E-04
¹⁶⁰ Gd			22,23	4,5353E-04
¹⁶ O				4,6784E-02

Tab. 2.23Nuklidweise Brennstoffzusammensetzung der Brennstäbe und der gadoli-
niumhaltigen Absorberbrennstäbe

Nach /MIC 17/ bestehen alle Strukturmaterialien aus Zirkaloy-4. Hierfür wurden die Kernzahldichten mit der angegebenen Dichte und der natürlichen Isotopen-Zusammensetzung (aus /MAG 18/). Die verwendeten Werte sind in Tab. 2.24 wieder-gegeben. /MIC 17/ gibt auch die Bestrahlungsgeschichte in Form von spezifischer Leistung der Proben und Bor-Konzentration an. Die verwendeten Werte für die Proben aus Brennstab SF95 sind in Tab. 2.25 wiedergegeben, die für Brennstab SF96 in Tab. 2.26 und die für Brennstab SF97 in Tab. 2.27.

Element	[wt%]	lsotope	Kernzahl- dichten	Element	[wt%]	Isotope	Kernzahl- dichten
Zr	98,23	⁹⁰ Zr	2,1778E-02	Fe	0,21	⁵⁴ Fe	8,8154E-06
		⁹¹ Zr	4,6971E-03			⁵⁶ Fe	1,3344E-04
		⁹² Zr	7,1016E-03			⁵⁷ Fe	3,0277E-06
	⁹⁴ Zr	7,0437E-03			⁵⁸ Fe	3,9598E-07	
		⁹⁶ Zr	1,1111E-03	Cr	0,1	⁵⁰ Cr	3,3702E-06
Sn 1,45	1,45	¹¹² Sn	4,8703E-06			⁵² Cr	6,2491E-05
		¹¹⁴ Sn	3,2557E-06			⁵³ Cr	6,9523E-06
		¹¹⁵ Sn	1,6626E-06			⁵⁴ Cr	1,6985E-06
		¹¹⁶ Sn	7,0487E-05	Hf	0,01	¹⁷⁴ Hf	3,5662E-09
		¹¹⁷ Sn	3,6913E-05			¹⁷⁶ Hf	1,1591E-07
		¹¹⁸ Sn	1,1542E-04			¹⁷⁷ Hf	4,0754E-07
		¹¹⁹ Sn	4,0593E-05			¹⁷⁸ Hf	5,9437E-07
		¹²⁰ Sn	1,5268E-04			¹⁷⁹ Hf	2,9509E-07
		¹²² Sn	2,1341E-05			¹⁸⁰ Hf	7,5582E-07
		¹²⁴ Sn	2,6258E-05				

 Tab. 2.24
 Nuklidweise Zusammensetzung des Strukturstoffs Zirkaloy-4

Zyklus	Zeit- schritte [d]	Borkonzen- tration [ppm]	Leistung [MW/tSM]					
			Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	
5	12	1139	5,08	8,65	12,59	13,04	10,8	
	8	1115	20,32	34,61	50,34	52,15	43,2	
	27	1072	20,33	34,62	50,36	52,17	43,22	
	35	996	20,42	34,78	50,59	52,4	43,42	
	28	919	20,22	34,44	50,09	51,89	42,99	
	21	859	20,09	34,23	49,78	51,57	42,73	
	35	790	20,02	34,1	49,6	51,37	42,56	
	35	704	19,71	33,57	48,83	50,58	41,9	
	28	627	19,72	33,59	48,85	50,61	41,93	
	27	559	19,6	33,39	48,57	50,31	41,68	
	49	466	19,33	32,92	47,89	49,6	41,1	
	15	388	19,07	32,47	47,23	48,93	40,54	
	37	324	18,8	32,03	46,59	48,26	39,98	
	19	255	18,61	31,71	46,12	47,77	39,58	
	9	221	18,5	31,51	45,84	47,48	39,34	
Revision	88	0	0	0	0	0	0	
6	10	1121	4,36	7,43	10,8	11,19	9,27	
	11	1097	17,52	29,85	43,42	44,97	37,26	
	20	1062	17,69	30,14	43,84	45,41	37,62	
	23	1014	17,78	30,28	44,04	45,62	37,79	
	28	957	17,75	30,23	43,97	45,55	37,74	
	28	894	17,72	30,17	43,89	45,46	37,67	
	28	831	17,68	30,12	43,8	45,37	37,59	
	35	760	17,65	30,06	43,72	45,29	37,52	
	28	689	17,61	30	43,63	45,2	37,45	
	34	619	17,57	29,93	43,53	45,09	37,35	
	43	533	17,5	29,81	43,36	44,91	37,21	
	28	453	17,34	29,53	42,95	44,49	36,86	
	28	390	17,17	29,25	42,54	44,06	36,51	

Tab. 2.25Bestrahlungsgeschichte der Reaktorzyklen 5 und 6 für die Proben aus
Brennstab SF95

Zyklus	Zeit- schritte [d]	Borkonzen- tration [ppm]	Leistung [MW/tSM]				
			Probe 1	Probe 2	Probe 3	Probe 4	Probe 5
	35	319	17,08	29,09	42,31	43,82	36,31
	15	263	17	28,96	42,12	43,63	36,15
	8	237	16,97	28,91	42,05	43,56	36,09

Zyklus	Zeit- schritte [d]	Borkonzen- tration [ppm]		Leistung [MW/tSM]					
			Probe 1	Probe 2	Probe 3	Probe 4	Probe 5		
5	12	1139	0,99	2,09	3,59	3,68	3,08		
	8	1115	3,97	8,37	14,37	14,73	12,32		
	27	1072	4,21	8,88	15,24	15,62	13,07		
	35	996	4,47	9,44	16,19	16,6	13,89		
	28	919	5,04	10,64	18,25	18,7	15,65		
	21	859	5,64	11,9	20,42	20,93	17,52		
	35	790	6,39	13,48	23,13	23,71	19,84		
	35	704	7,97	16,82	28,85	29,57	24,75		
	28	627	8,9	18,78	32,21	33,02	27,63		
	27	559	9,84	20,76	35,61	36,5	30,55		
	49	466	10,71	22,59	38,75	39,72	33,24		
	15	388	11,42	24,1	41,34	42,37	35,46		
	37	324	12,13	25,59	43,9	44,99	37,66		
	19	255	12,34	26,04	44,68	45,79	38,32		
	9	221	12,61	26,59	45,62	46,76	39,14		
Revision	88	0	0	0	0	0	0		
6	10	1121	5,61	11,84	20,32	20,83	17,43		
	11	1097	11,3	23,84	40,9	41,92	35,08		
	20	1062	11,45	24,16	41,45	42,48	35,55		
	23	1014	11,57	24,41	41,88	42,93	35,93		
	28	957	11,64	24,56	42,13	43,18	36,14		
	28	894	11,71	24,7	42,37	43,43	36,35		
	28	831	11,78	24,86	42,64	43,71	36,58		
	35	760	11,86	25,01	42,91	43,99	36,81		
	28	689	11,93	25,16	43,16	44,24	37,02		
	34	619	11,99	25,29	43,38	44,46	37,21		
	43	533	12,06	25,44	43,65	44,74	37,44		
	28	453	12,06	25,44	43,65	44,74	37,44		
	28	390	12,04	25,4	43,57	44,66	37,38		

Tab. 2.26Bestrahlungsgeschichte der Reaktorzyklen 5 und 6 für die Proben aus
Brennstab SF96

Zyklus	Zeit- schritte [d]	Borkonzen- tration [ppm]	Leistung [MW/tSM]				
			Probe 1	Probe 2	Probe 3	Probe 4	Probe 5
	35	319	12,07	25,45	43,67	44,76	37,46
	15	263	12,08	25,48	43,72	44,81	37,5
	8	237	12,09	25,5	43,74	44,83	37,52

Tab. 2.27Bestrahlungsgeschichte der Reaktorzyklen 5 bis 7 für die Proben aus
Brennstab SF97

Zyklus	Zeit- schritte [d]	Borkonzen- tration [ppm]	Leistung [MW/tSM]						
			Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6	
5	12	1139	3,54	6,15	8,44	9,42	9,46	8,17	
	8	1115	14,24	24,74	33,94	37,86	38,04	32,84	
	27	1072	14,37	24,96	34,24	38,2	38,38	33,13	
	35	996	14,57	25,31	34,72	38,73	38,91	33,59	
	28	919	14,73	25,59	35,1	39,16	39,34	33,96	
	21	859	14,81	25,74	35,31	39,39	39,58	34,17	
	35	790	14,93	25,95	35,6	39,71	39,9	34,44	
	35	704	15,02	26,09	35,8	39,93	40,12	34,63	
	28	627	15,12	26,27	36,04	40,21	40,4	34,87	
	27	559	15,43	26,81	36,78	41,03	41,22	35,58	
	49	466	15,66	27,21	37,33	41,64	41,84	36,12	
	15	388	15,65	27,2	37,31	41,62	41,82	36,1	
	37	324	15,64	27,18	37,29	41,6	41,79	36,08	
	19	255	15,62	27,14	37,23	41,53	41,72	36,02	
	9	221	15,59	27,09	37,17	41,46	41,66	35,96	
Revision	88	0	0	0	0	0	0	0	
6	10	1121	8,39	14,58	20	22,31	22,42	19,35	
	11	1097	16,72	29,06	39,87	44,47	44,68	38,57	
	20	1062	16,61	28,85	39,58	44,16	44,37	38,3	
	23	1014	16,49	28,65	39,3	43,84	44,05	38,02	
	28	957	16,29	28,31	38,84	43,32	43,53	37,57	

Zyklus	Zeit- schritte [d]	Borkonzen- tration [ppm]			Leistung	[MW/tSM]]	
			Probe 1	Probe 2	Probe 3	Probe 4	Probe 5	Probe 6
	28	894	16,12	28	38,42	42,86	43,06	37,17
	28	831	16,03	27,85	38,21	42,62	42,82	36,97
	35	760	15,94	27,7	38	42,39	42,59	36,76
	28	689	15,93	27,69	37,98	42,37	42,57	36,75
	34	619	15,91	27,64	37,91	42,3	42,49	36,68
	43	533	15,76	27,39	37,58	41,92	42,12	36,36
	28	453	15,58	27,08	37,14	41,44	41,63	35,94
	28	390	15,53	26,99	37,03	41,31	41,5	35,83
	35	319	15,54	27,01	37,05	41,33	41,53	35,85
	15	263	15,47	26,88	36,87	41,13	41,33	35,67
	8	237	15,44	26,83	36,81	41,06	41,25	35,61
Revision	62	0	0	0	0	0	0	0
7	12	1139	6,97	12,11	16,62	18,54	18,63	16,08
	8	1113	13,96	24,25	33,27	37,11	37,29	32,19
	49	1041	14,03	24,39	33,45	37,32	37,49	32,37
	28	943	14,14	24,57	33,7	37,6	37,77	32,61
	29	871	14,22	24,7	33,89	37,8	37,98	32,79
	34	791	14,21	24,69	33,87	37,79	37,96	32,77
	28	712	14,2	24,68	33,86	37,77	37,95	32,76
	28	641	14,27	24,79	34,01	37,94	38,11	32,9
	35	561	14,25	24,75	33,96	37,88	38,06	32,85
	27	483	14,21	24,69	33,87	37,79	37,96	32,77
	29	412	14,22	24,72	33,91	37,82	38	32,8
	35	330	14,19	24,66	33,82	37,73	37,91	32,73
	28	250	14,21	24,69	33,88	37,79	37,97	32,77
	19	191	14,25	24,75	33,96	37,88	38,06	32,85
	17	145	14,22	24,72	33,91	37,83	38	32,81

Die zeitliche Entwicklung der Borkonzentration [‰] und der Leistung als Bruchteil der jeweiligen Maximalleistung der Proben SF95-1, SF96-1 und SF97-1 sind in Abb. 2.9 graphisch dargestellt.

Abb. 2.9 Bestrahlungsgeschichte der Brennstäbe SF95-1, SF96-1, und SF97-1

Die relativen Leistungsgeschichten aller Proben eines Brennstabes verlaufen nahezu identisch. Aufgrund der unterschiedlichen axialen Höhen der Proben sind ihre jeweiligen absoluten Leistungswerte aber unterschiedlich. Aufgrund des Ausbrands des Neutronenabsorbers Gadolinium kommt es beim Stab SF96-1 zu einer starken Leistungszunahme innerhalb des ersten Zyklus. Für die Abbrandrechnungen wurde die Leistungsgeschichte für jedes Experiment mit einem konstanten Faktor so normiert, dass die Abweichung der berechneten zur gemessenen ¹⁴⁸Nd-Konzentration als Abbrandindikator minimiert wird.

Die isotopenaufgelösten Zusammensetzungen der Proben wurden mithilfe zerstörender Analysemethoden ermittelt. Die gefundenen Konzentrationen werden in /MIC 17/ in Gramm pro Tonne anfänglichem Schwermetall (g/tSMi) für alle Isotope bei Reaktorabschaltung angegeben. Dabei ist der Wert für ²³⁹Pu die Summe aus ²³⁹Pu und ²³⁹Np. Für die Proben des Brennstabs SF95 sind die gemessenen Werte in Tab. 2.28 gezeigt, für die Proben des Brennstabs SF96 in Tab. 2.29 und für die Proben des Brennstabs SF97 in Tab. 2.30.

Isotop					
_	SF95-1	SF95-2	SF95-3	SF95-4	SF95-5
²³⁴ U	2,987E+02	2,850E+02	1,873E+02	1,870E+02	2,829E+02
²³⁵ U	2,674E+04	1,927E+04	1,326E+04	1,230E+04	1,544E+04
²³⁶ U	2,672E+03	4,024E+03	4,911E+03	4,999E+03	4,566E+03
²³⁸ U	9,499E+05	9,424E+05	9,338E+05	9,335E+05	9,388E+05
²³⁸ Pu	1,718E+01	7,102E+01	1,539E+02	1,588E+02	1,020E+02
²³⁹ Pu	4,227E+03	5,655E+03	6,194E+03	6,005E+03	5,635E+03
²⁴⁰ Pu	7,802E+02	1,539E+03	2,186E+03	2,207E+03	1,821E+03
²⁴¹ Pu	3,690E+02	9,578E+02	1,486E+03	1,466E+03	1,153E+03
²⁴² Pu	3,790E+01	1,844E+02	4,516E+02	4,803E+02	2,976E+02
²⁴¹ Am	1,378E+01	2,344E+01	3,310E+01	2,351E+01	2,840E+01
^{242m1} Am	1,840E-01	5,201E-01	7,877E-01	7,282E-01	5,687E-01
²⁴³ Am	2,682E+00	2,289E+01	8,047E+01	8,472E+01	4,400E+01
²⁴² Cm	1,510E+00	7,672E+00	1,964E+01	2,328E+01	1,006E+01
²⁴³ Cm	1,451E-02	1,240E-01	3,720E-01	3,976E-01	2,293E-01
²⁴⁴ Cm	2,712E-01	5,042E+00	2,562E+01	2,837E+01	1,064E+01
²⁴⁵ Cm	5,519E-03	1,962E-01	1,396E+00	1,587E+00	4,839E-01
²⁴⁶ Cm	2,560E-04	1,190E-02	1,049E-01	1,251E-01	1,952E-02
¹⁰⁶ Ru	4,447E+01	8,340E+01	1,360E+02	1,401E+02	1,208E+02
¹²⁵ Sb	1,471E+00	2,900E+00	3,733E+00	3,169E+00	3,262E+00
¹³⁴ Cs	2,343E+01	7,012E+01	1,404E+02	1,471E+02	1,014E+02
¹³⁷ Cs	5,405E+02	9,336E+02	1,347E+03	1,400E+03	1,148E+03
¹⁴⁴ Ce	1,937E+02	3,160E+02	4,560E+02	4,301E+02	3,868E+02
¹⁵⁴ Eu	4,093E+00	1,306E+01	2,525E+01	2,657E+01	1,817E+01
¹⁴² Nd	4,631E+02	7,149E+02	9,299E+02	9,373E+02	8,303E+02
¹⁴³ Nd	3,276E+02	6,046E+02	9,347E+02	1,024E+03	7,928E+02
¹⁴⁴ Nd	3,328E+02	5,384E+02	7,392E+02	7,598E+02	6,518E+02
¹⁴⁵ Nd	2,809E+02	4,925E+02	7,340E+02	7,624E+02	6,185E+02
¹⁴⁶ Nd	1,592E+02	2,736E+02	3,979E+02	4,126E+02	3,401E+02
¹⁴⁸ Nd	7,200E+01	1,258E+02	1,896E+02	1,959E+02	1,572E+02
¹⁵⁰ Nd	4,631E+02	7,149E+02	9,299E+02	9,373E+02	8,303E+02

Tab. 2.28Nuklidzusammensetzung aller gemessener Nuklide zur Reaktorabschal-
tung der Nachbestrahlungsanalyseproben des Brennstabs SF95

Isotop					
	SF96-1	SF96-2	SF96-3	SF96-4	SF96-5
²³⁴ U	1,805E+02	1,522E+02	1,251E+02	1,250E+02	1,354E+02
²³⁵ U	1,944E+04	1,408E+04	8,638E+03	8,064E+03	9,937E+03
²³⁶ U	1,421E+03	2,411E+03	3,244E+03	3,302E+03	3,013E+03
²³⁸ U	9,660E+05	9,580E+05	9,476E+05	9,475E+05	9,522E+05
²³⁸ Pu	8,536E+00	4,172E+01	1,206E+02	1,248E+02	7,978E+01
²³⁹ Pu	6,764E+02	5,459E+03	6,001E+03	5,819E+03	5,519E+03
²⁴⁰ Pu	3,781E+03	1,494E+03	2,303E+03	2,327E+03	1,964E+03
²⁴¹ Pu	2,622E+02	8,684E+02	1,498E+03	1,480E+03	1,203E+03
²⁴² Pu	2,440E+01	1,615E+02	5,103E+02	5,411E+02	3,551E+02
²³⁷ Np	6,125E+01	1,323E+02	2,168E+02	2,252E+02	1,875E+02
²⁴¹ Am	5,985E+00	1,735E+01	2,845E+01	3,094E+01	2,149E+01
^{242m1} Am	1,218E-01	4,579E-01	6,413E-01	6,793E-01	5,647E-01
²⁴³ Am	1,147E+00	1,728E+01	8,872E+01	9,598E+01	5,078E+01
²⁴² Cm	8,502E-01	5,781E+00	1,628E+01	1,679E+01	1,115E+01
²⁴⁴ Cm	9,560E-02	3,092E+00	2,862E+01	3,128E+01	1,280E+01
¹⁰⁶ Ru	2,830E+01	6,053E+01	1,402E+02	1,291E+02	1,344E+02
¹²⁵ Sb	1,433E+00	2,829E+00	3,658E+00	4,645E+00	3,690E+00
¹³⁴ Cs	8,609E+00	3,759E+01	1,002E+02	1,047E+02	7,146E+01
¹³⁷ Cs	2,813E+02	5,983E+02	1,018E+03	1,053E+03	8,572E+02
¹⁴⁴ Ce	1,179E+02	2,250E+02	3,362E+02	3,453E+02	3,145E+02
¹⁵⁴ Eu	2,309E+00	8,538E+00	1,973E+01	1,992E+01	1,423E+01
¹⁴³ Nd	2,521E+02	4,778E+02	7,158E+02	7,184E+02	6,433E+02
¹⁴⁴ Nd	1,536E+02	3,588E+02	7,292E+02	7,513E+02	5,927E+02
¹⁴⁵ Nd	1,800E+02	3,575E+02	5,766E+02	5,880E+02	5,095E+02
¹⁴⁶ Nd	1,536E+02	3,266E+02	5,795E+02	5,948E+02	4,910E+02
¹⁴⁸ Nd	8,770E+01	1,851E+02	3,201E+02	3,280E+02	2,733E+02
¹⁵⁰ Nd	4,130E+01	8,972E+01	1,591E+02	1,628E+02	1,331E+02

Tab. 2.29Nuklidzusammensetzung aller gemessener Nuklide zur Reaktorabschal-
tung der Nachbestrahlungsanalyseproben des Brennstabs SF96

Isotop						
	SF97-1	SF97-2	SF97-3	SF97-4	SF97-5	SF97-6
²³⁴ U	2,939E+02	2,348E+02	2,010E+02	1,872E+02	1,865E+02	2,057E+02
²³⁵ U	2,347E+04	1,571E+04	1,030E+04	8,179E+03	7,932E+03	1,016E+04
²³⁶ U	3,115E+03	4,560E+03	5,312E+03	5,528E+03	5,532E+03	5,272E+03
²³⁸ U	9,493E+05	9,377E+05	9,282E+05	9,246E+05	9,247E+05	9,310E+05
²³⁸ Pu	2,370E+01	1,250E+02	2,581E+02	3,199E+02	3,188E+02	2,175E+02
²³⁹ Pu	3,844E+03	5,928E+03	6,217E+03	6,037E+03	5,976E+03	5,677E+03
²⁴⁰ Pu	9,347E+02	1,871E+03	2,471E+03	2,668E+03	2,648E+03	2,326E+03
²⁴¹ Pu	4,237E+02	1,235E+03	1,689E+03	1,770E+03	1,754E+03	1,494E+03
²⁴² Pu	6,185E+01	3,152E+02	6,517E+02	8,246E+02	8,341E+02	5,977E+02
²³⁷ Np	1,521E+02	4,034E+02	5,845E+02	6,604E+02	6,701E+02	5,570E+02
²⁴¹ Am	1,492E+01	4,017E+01	4,909E+01	5,311E+01	5,327E+01	4,297E+01
^{242m1} Am	2,270E-01	8,838E-01	1,179E+00	1,233E+00	1,200E+00	9,756E-01
²⁴³ Am	4,448E+00	5,132E+01	1,410E+02	1,924E+02	1,935E+02	1,170E+02
²⁴² Cm	2,134E+00	1,049E+01	1,839E+01	2,044E+01	1,903E+01	1,616E+01
²⁴³ Cm	2,483E-02	2,773E-01	6,921E-01	8,721E-01	8,670E-01	5,600E-01
²⁴⁴ Cm	4,981E-01	1,384E+01	5,696E+01	8,810E+01	8,823E+01	4,221E+01
²⁴⁵ Cm	1,087E-02	6,848E-01	3,735E+00	6,042E+00	5,915E+00	2,363E+00
²⁴⁶ Cm	3,866E-04	4,222E-02	3,648E-01	7,440E-01	7,549E-01	2,481E-01
²⁴⁷ Cm	0,000E+00	4,043E-04	4,974E-03	1,098E-02	1,075E-02	3,139E-03
¹⁰⁶ Ru	5,163E+01	1,162E+02	1,829E+02	1,936E+02	1,162E+02	1,959E+02
¹²⁵ Sb	2,462E+00	5,118E+00	4,966E+00	6,090E+00	7,507E+00	4,546E+00
¹³⁴ Cs	2,983E+01	1,030E+02	1,829E+02	2,139E+02	2,144E+02	1,632E+02
¹³⁷ Cs	6,617E+02	1,151E+03	1,582E+03	1,749E+03	1,761E+03	1,531E+03
¹⁴⁴ Ce	2,026E+02	3,061E+02	3,720E+02	3,756E+02	3,750E+02	3,714E+02
¹⁵⁴ Eu	5,253E+00	1,973E+01	3,293E+01	3,739E+01	3,707E+01	2,859E+01
¹⁴³ Nd	5,450E+02	8,307E+02	1,008E+03	1,048E+03	1,049E+03	9,736E+02
¹⁴⁴ Nd	4,661E+02	8,843E+02	1,331E+03	1,567E+03	1,599E+03	1,311E+03
¹⁴⁵ Nd	4,045E+02	6,480E+02	8,387E+02	9,118E+02	9,179E+02	8,247E+02
¹⁴⁶ Nd	3,502E+02	6,304E+02	8,929E+02	1,008E+03	1,014E+03	8,586E+02
¹⁴⁸ Nd	1,945E+02	3,389E+02	4,662E+02	5,204E+02	5,226E+02	4,504E+02
¹⁵⁰ Nd	8,570E+01	1,582E+02	2,234E+02	2,516E+02	2,518E+02	2,130E+02
¹⁴⁷ Sm	1,529E+02	2,050E+02	2,355E+02	2,468E+02	2,479E+02	2,371E+02
¹⁴⁸ Sm	4,092E+01	1,194E+02	1,978E+02	2,338E+02	2,357E+02	1,809E+02
¹⁴⁹ Sm	2,935E+00	3,976E+00	4,259E+00	3,943E+00	3,799E+00	3,843E+00

Tab. 2.30Nuklidzusammensetzung aller gemessener Nuklide zur Reaktorabschal-
tung der Nachbestrahlungsanalyseproben des Brennstabs SF97

Isotop						
	SF97-1	SF97-2	SF97-3	SF97-4	SF97-5	SF97-6
¹⁵⁰ Sm	1,323E+02	2,499E+02	3,599E+02	4,074E+02	4,113E+02	3,409E+02
¹⁵¹ Sm	9,324E+00	1,351E+01	1,503E+01	1,491E+01	1,465E+01	1,294E+01
¹⁵² Sm	6,526E+01	9,546E+01	1,191E+02	1,298E+02	1,319E+02	1,207E+02
¹⁵⁴ Sm	1,425E+01	2,977E+01	4,536E+01	5,252E+01	5,298E+01	4,231E+01

2.2.2 Modellierung

Die Modellierung erfolgte gemäß den in Abschnitt 2.1 erläuterten Grundsätzen. Abb. 2.10 zeigt das Brennelement in KENO-VI-Geometrie. Für beide analysierten Brennelemente sind die Modelle identisch. Die gadoliniumhaltigen Brennstäbe wurden für die Berechnung in 10 Ringzonen mit gleicher Fläche unterteilt, um den aufgrund der Neutronenselbstabschirmung radial variierenden Gadoliniumabbrand genauer berechnen zu können.

Abb. 2.10 Geometrie-Modell der Brennelemente der Takahama-3 Proben

Die Brennstäbe wurden wie in den experimentellen Daten angegeben mit einem heliumgefüllten Zwischenraum zwischen Brennstoff und Hüllrohr modelliert (Kernzahldichte = 2,4044E-04 1/cm³). Die geometrischen Abmessungen und Materialdaten wurden wie in Kapitel 2.2.1 beschrieben übernommen. Die Parameter der Abbrandrechnungen sind in Tab. 2.13 wiedergegeben. Die Liste der ausgegebenen Nuklide ist in Tab. 2.31 dargestellt.

	Betrachtete Nuklide										
²³⁴ U	²³⁵ U ²³⁶ U ²³⁸ U										
²³⁷ Np ¹	²³⁹ Np										
²³⁸ Pu	²³⁹ Pu	²⁴⁰ Pu	²⁴¹ Pu	²⁴² Pu							
²⁴¹ Am	^{242m1} Am	²⁴³ Am									
²⁴² Cm	²⁴³ Cm ²	²⁴⁴ Cm	²⁴⁵ Cm ²	²⁴⁶ Cm ²	²⁴⁷ Cm ³						
¹⁴² Nd ⁴	¹⁴³ Nd	¹⁴⁴ Nd	¹⁴⁵ Nd	¹⁴⁶ Nd	¹⁴⁸ Nd	¹⁵⁰ Nd					
¹⁰⁶ Ru		¹²⁵ Sb									
¹³⁴ Cs	¹³⁷ Cs										
¹⁴⁴ Ce	¹⁵⁴ Eu										
¹⁵⁴ Gd ⁵	¹⁵⁵ Gd ⁵	¹⁵⁶ Gd ⁵	¹⁵⁷ Gd ⁵	¹⁵⁸ Gd ⁵	¹⁶⁰ Gd ⁵						
¹⁴⁷ Sm ³	¹⁴⁸ Sm ³	¹⁴⁹ Sm ³	¹⁵⁰ Sm ³	¹⁵¹ Sm ³	¹⁵² Sm ³	¹⁵⁴ Sm ³					

 Tab. 2.31
 Liste der betrachteten Nuklide

2.2.3 Resultate

Die Ergebnisse der Nachrechnungen sind in Tab. 2.32 und Tab. 2.33 sowie in Abb. 2.11 bis Abb. 2.16 dargestellt. Für die Validierung wurden die Proben SF95-1, SF96-1 und SF97-1 nicht berücksichtigt, da diese dicht am oberen Ende des Brennelements entnommen wurden. Hier ist die quasi-zweidimensionale Näherung reflektierender Randbedingungen in z-Richtung nicht mehr geeignet, so dass die Nachrechnung dieser Proben eine dreidimensionale Modellierung erfordert, um realistische Ergebnisse zu erhalten /KIL 08a/. Die dazu notwendigen Informationen liegen jedoch nicht in einer für eine Validierung erforderlichen Detailtiefe vor. Um die Darstellung der Nuklide mit geringem Unterschied zwischen Rechnung und Experiment zu verbessern wurden die Skalen der Balkendiagramme so gewählt, dass einige Nuklide mit großen Abweichungen nicht mehr im Anzeige Bereich sind. Die C/E-1-Werte zu diesen Nukliden sind in den Tabellen ablesbar. Weiterhin ist zu beachten, dass für die verschiedenen Diagramme unterschiedliche Skalen aufweisen.

¹ Nur für SF-96 und SF-97

² Nur für SF-95 und SF-97

³ Nur für SF-97

⁴ Nur für SF-95

⁵ Nur für SF-96

Insgesamt zeigen sich für die Takahama-Proben gute Übereinstimmungen für die Uran- und Plutonium-Isotope. Insbesondere die Werte für ²³⁵U und ²³⁹Pu liegen im Mittel deutlich unter fünf Prozent. Bei den höheren Aktinoiden fällt zum einen die große Streubreite der Ergebnisse für ²³⁷Np auf, die auf eine mögliche Unterschätzung der Messunsicherheit hindeutet, und zum anderen die guten Übereinstimmungen für einige Am- und Cm-Nuklide bei den Proben der Stäbe SF95 und SF96. Die typische rechnerische Unterschätzung der Am- und Cm-Nuklide, die auch bei den Proben des Stabs SF97 zu erkennen ist, fällt hier deutlich geringer als bei anderen Probennachrechnungen aus.

	SF95-02	SF95-03	SF95-04	SF95-05	SF96-02	SF96-03	SF96-04	SF96-05
²³⁴ U	-0.3	28.0	26.4	-7.0	-4.5	-5.6	-6.4	-5.9
²³⁵ U	1.7	1.0	1.2	0.6	1.2	1.5	2.0	2.2
²³⁶ U	-2.6	-0.6	-0.7	-1.8	-3.3	-1.8	-2.1	-2.0
²³⁸ U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
²³⁷ Np	-	-	-	-	39.0	55.7	48.8	46.6
²³⁸ Pu	-8.8	1.6	2.8	-2.8	-4.0	-2.5	-5.5	2.6
²³⁹ Pu	2.2	1.9	1.7	2.4	0.7	-0.6	-2.0	2.0
²⁴⁰ Pu	0.1	1.8	2.5	1.9	1.2	1.1	-0.1	4.3
²⁴¹ Pu	-3.3	-2.7	-2.2	-1.4	0.3	-0.6	-2.3	3.2
²⁴² Pu	-2.8	-1.3	-0.8	0.3	3.3	2.8	1.3	7.2
²⁴¹ Am	12.8	9.3	49.0	6.2	31.8	20.3	6.0	38.7
^{242m1} Am	-21.3	-24.1	-23.0	-19.7	-27.0	-15.1	-25.6	-20.2
²⁴³ Am	-4.5	-1.9	-1.3	-4.0	2.6	2.5	-1.8	9.3
²⁴² Cm	-20.0	-28.9	-38.3	-7.2	-7.7	-7.9	-10.1	-1.5
²⁴³ Cm	-14.2	-3.1	-7.6	-16.6	-	-	-	-
²⁴⁴ Cm	-11.7	-0.6	-2.9	-0.7	1.5	2.8	-3.5	12.2
²⁴⁵ Cm	-4.1	9.3	-0.9	1.1	-	-	-	-
²⁴⁶ Cm	-39.6	-6.7	-10.2	41.2	-	-	-	-
¹⁰⁶ Ru	17.0	26.3	27.7	9.2	50.0	31.3	45.9	10.6
¹²⁵ Sb	110.2	153.3	208.2	137.1	75.8	144.8	96.1	103.1
¹³⁴ Cs	-10.2	-7.4	-7.1	-9.4	-5.2	-1.8	-3.1	0.8
¹³⁷ Cs	-4.3	-3.7	-3.9	-3.1	1.5	3.2	2.2	4.8
¹⁴⁴ Cs	-2.7	-5.3	4.0	-2.2	4.9	11.8	11.7	5.9
¹⁵⁴ Eu	5.0	4.8	1.9	5.6	23.1	17.9	17.0	25.5
¹⁴² Nd	-10.8	-18.1	-15.7	-9.0				
¹⁴³ Nd	-2.7	-3.3	-2.6	-2.6	-3.7	-3.5	-3.1	-4.1
¹⁴⁴ Nd	-0.9	-0.3	-3.8	-0.7	-6.2	-8.8	-7.5	-7.3
¹⁴⁵ Nd	-0.1	-0.3	0.3	0.3	-0.2	0.0	0.4	-0.6
¹⁴⁶ Nd	0.6	0.2	0.3	0.8	-1.3	-1.4	-1.3	-1.4
¹⁴⁸ Nd	0.0	0.0	0.0	0.2	-0.3	-0.1	0.0	-0.1
¹⁵⁰ Nd	-0.9	-1.8	-1.5	-0.4	-0.9	-0.5	-0.5	0.3

Tab. 2.32Vergleich zwischen gemessenen und berechneten Werten als C/E-1 in %für die Stäbe SF95 und SF96

	SF97-02	SF97-03	SF97-04	SF97-05	SF97-06
23411	10.0	86	76	9 0	0.0
235	0.7	0.0	-0.6	-1.6	9.9 1 0
236	-1.4	-0.6	-0.0	-1.0	-1.4
²³⁸ U	0.0	-0.0	-0.7	-0.7	0.1
²³⁷ Nn	-4.9	-3.5	-5.1	-7.4	-7.6
²³⁸ Pu	-7.5	-6.3	-8.0	-10.4	-7.2
²³⁹ Pu	-1.0	-0.6	-2.2	-4.2	0.1
²⁴⁰ Pu	2.6	3.5	2.9	2.0	3.5
²⁴¹ Pu	-6.4	-5.0	-6.4	-8.2	-5.3
²⁴² Pu	-3.2	-2.4	-3.1	-3.8	-4.2
²⁴¹ Am	16.7	21.8	-1.5	-5.2	14.9
^{242m1} Am	-14.5	-17.1	-32.0	-34.7	-22.6
²⁴³ Am	-10.8	-8.5	-10.8	-12.2	-9.5
²⁴² Cm	12.5	12.6	23.3	30.1	17.6
²⁴³ Cm	-10.0	-8.8	-6.8	-9.3	-8.1
²⁴⁴ Cm	-13.2	-10.2	-13.6	-16.4	-11.0
²⁴⁵ Cm	-13.2	-7.1	-11.8	-17.6	-8.0
²⁴⁶ Cm	-24.9	-19.4	-23.3	-26.4	-21.6
²⁴⁷ Cm	-33.8	-27.4	-31.2	-32.8	-34.3
¹⁰⁶ Ru	-8.6	-8.4	5.8	76.2	-17.9
¹²⁵ Sb	35.1	101.1	87.9	52.2	109.2
¹³⁴ Cs	-16.8	-13.8	-9.6	-9.6	-11.6
¹³⁷ Cs	-4.7	-4.6	-3.6	-3.9	-4.9
¹⁴⁴ Ce	-12.3	-9.0	4.7	5.3	-6.5
¹⁵⁴ Eu	0.5	1.4	-0.1	-1.0	3.2
¹⁴³ Nd	-1.6	-1.7	-1.7	-2.6	-1.9
¹⁴⁴ Nd	0.7	-0.9	-3.7	-4.2	-2.7
¹⁴⁵ Nd	0.5	0.6	0.9	0.8	0.2
¹⁴⁶ Nd	-0.9	-1.2	-1.2	-1.4	-1.4
¹⁴⁸ Nd	0.0	0.1	0.1	0.1	-0.1
¹⁵⁰ Nd	-0.5	-0.2	-0.4	-0.4	-0.2
¹⁴⁷ Sm	3.8	3.7	2.1	2.7	3.3
¹⁴⁸ Sm	-7.0	-7.8	-8.8	-9.9	-6.9
¹⁴⁹ Sm	-13.5	-9.3	-3.6	-2.5	-10.9
¹⁵⁰ Sm	1.2	0.8	0.2	-0.8	1.3
¹⁵¹ Sm	-5.8	-6.7	-8.4	-11.3	-5.8
¹⁵² Sm	3.3	2.2	2.5	2.9	2.4
¹⁵⁴ Sm	-1.0	1.0	0.8	-0.3	0.5

Tab. 2.33Vergleich zwischen gemessenen und berechneten Werten als C/E-1 in %

Abb. 2.11 Takahama-3, SF95: Vergleich zwischen Rechnung und experimentellen Daten dargestellt als C/E-1 in Prozent

Abb. 2.12 Takahama-3, SF96: Vergleich zwischen Rechnung und experimentellen Daten dargestellt als C/E-1 in Prozent

Abb. 2.13 Takahama-3, SF97: Vergleich zwischen Rechnung und experimentellen Daten dargestellt als C/E-1 in Prozent

Abb. 2.14 Darstellung der Mittelwerte und Standardabweichungen für die Mittelung über die Proben SF95-2 bis SF95-5

Abb. 2.15 Darstellung der Mittelwerte und Standardabweichungen für die Mittelung über die Proben SF96-2 bis SF96-5

Abb. 2.16 Darstellung der Mittelwerte und Standardabweichungen für die Mittelung über die Proben SF97-2 bis SF97-6

Für die Spaltprodukte ergibt sich, abgesehen v. a. von den bereits bei den Ohi-Proben beobachteten starken Abweichungen bei ¹²⁵Sb, insgesamt eine gute Übereinstimmung. In den meisten Fällen stimmen Rechnung und Messung im Rahmen der Messunsicherheit überein. Es gibt allerdings einige Ausnahmen die im Folgenden kurz dargestellt werden: Während für die Nd-Nuklide häufig nur sehr geringe Abweichungen zwischen Rechnung und Experiment zu beobachten sind, sind die angegebenen Messfehler von 0,1 % so klein, dass eine Übereinstimmung im Rahmen der Messgenauigkeit nicht festgestellt werden kann. Für einige Proben aus SF95 und SF97 wird die Konzentration von ¹³⁴Cs von der Rechnung deutlich unterschätzt, während bei SF96 eine gute Übereinstimmung vorliegt. Bei ¹⁰⁶Ru ist eine große Streuung der C/E-1-Werte zu beobachten. Schließlich ist bei den Samarium-Nukliden, mit Ausnahme von ¹⁵⁰Sm und ¹⁵⁴Sm, eine signifikante Abweichung zwischen Rechnung und Messung zu beobachten.

2.3 Proben des Reaktors Three Mile Island-1

Aus dem Druckwasserreaktor Three Mile Island (TMI), Unit 1 des Herstellers Babcock & Wilcox, der von der amerikanischen Energieversorgers Exelon betrieben wird, wurden insgesamt 24 Nachbestrahlungsanalyseproben aus fünf Brennstäben aus zwei Brennelemente (NJ05YU und NJ070G) untersucht. Die Brennelemente wurden für zwei Zyklen bzw. einen Zyklus bestrahlt. TMI Unit 1 hat eine thermische Leistung von 2568 MW und verwendet ein Babcock & Wilcox 15 x 15-Brennelement-Design, teilweise mit gadoliniumhaltigen Brennstäben. Die Angaben zu Brennelementgeometrien, Materialdaten und Abbrandhistorien stammen vorwiegend aus der Datenbank SFCOMPO /MIC 17/ und wurden teilweise durch Informationen aus den Veröffentlichungen /BEC 02/, /WIM 01/, und /ILA 10/ ergänzt.

2.3.1 Experimentelle Daten

Bei beiden Brennelementen handelt es sich um 15 x 15 DWR Brennelemente mit 16 Führungsrohren und einem Instrumentierungsrohr. In den Führungsrohren des Brennelements NJ070G und im ersten Zyklus auch des Brennelements NJ05YU sind borcarbidhaltige Absorberstäbe eingefahren. Das Brennelement NJ070G hat zusätzlich vier Brennstäbe mit dem abbrennbaren Neutronenabsorber Gd₂O₃. In Abb. 2.17 ist die schematische Darstellung der zwei Brennelemente mit den unterschiedlichen Brennstäben farblich kodiert dargestellt.

Aus dem Brennelement NJ05YU (Zyklus 9 und 10, Mark-B8V Brennelement-Typ) wurden aus dem Brennstab D5 drei Proben und aus dem Brennstab H6 13 Proben entnommen. Aus dem Brennelement NJ070G (Zyklus 10, Mark-B9 Brennelement Typ) wurden aus den Brennstäben O1 und O12 je drei Proben entnommen und aus dem Brennstab O13 zwei. Die Proben wurden jeweils bei unterschiedlichen axialen Höhen entnommen.

In Tab. 2.34 sind die relevanten gemeinsamen geometrischen Abmessungen der Brennelemente wiedergegeben, in Tab. 2.35 die relevanten geometrischen Abmessungen der Brennstäbe, Führungs- und Instrumentalrohre. Details zu den einzelnen Proben finden sich in Tab. 2.36, Tab. 2.37 und Tab. 2.38. In Tab. 2.39 sind die Anreicherungen der Brennstäbe, der gadoliniumhaltigen Absorberstäbe und der borcarbidhaltigen Absorberstäbe wiedergegeben /MIC 17/.

Parameter	NJ05YU	NJ070G
Gittertyp	15 x 15	15 x 15
Brennstababstand [cm]	1,44272	1,44272
Brennelementabstand [cm]	21,811	21,811
Brennstablänge [cm]	390,804	390,804
Aktive Brennstablänge [cm]	360,17	357,12
Anzahl BEs	208	208
Anzahl Führungsrohre	16	16
Anzahl Instrumentalrohre	1	1
Anzahl Bestrahlungszyklen	2	1
Bestrahlungsdauer [Tage] (Stillstandszeit [Tage])	666 (36) 692 (34)	692 (34)

Tab. 2.34Geometrische Abmessungen der Brennelemente NJ05YU und NJ070G

Tab. 2.35Geometrische Abmessungen der Brennstäbe, Führungs- und Instrumental-
rohre und Absorberstäbe

Parameter	
Durchmesser Brennstoff [cm]	0,936
Durchmesser innen Hüllrohr [cm]	0,958
Durchmesser außen Hüllrohr [cm]	1,092
Material Hüllrohr	Zircaloy-4
Dichte Hüllrohr [g/cm ³]	6,56
Dichte Brennstoff [g/cm ³]	10,196
Durchmesser innen Führungsrohr [cm]	1,265
Durchmesser außen Führungsrohr [cm]	1,346
Material Führungsrohr	Zircaloy-4
Dichte Führungsrohr [g/cm ³]	6,56
Durchmesser innen Instrumentalrohr [cm]	1,12
Durchmesser außen Instrumentalrohr [cm]	1,252
Material Instrumentalrohr	Zircaloy-4
Dichte Instrumentalrohr [g/cm ³]	6,56
Durchmesser Absorber [cm]	0,864
Durchmesser innen Hüllrohr Absorber [cm]	0,914
Durchmesser außen Hüllrohr Absorber [cm]	1,092
Material Hüllrohr Absorber	Zircaloy-4

Tab. 2.36Relevante Details der Proben des Brennstabs D5 des BrennelementsNJ05YU

Sample	A1	A2	B2
Probenabbrand [GWd/tSM]	45,9	55	52,4
Probenhöhe in Bezug auf die aktive Höhe [cm]	342,1	267,0	282,0

Tab. 2.37Relevante Details der Proben des Brennstabs H6 des BrennelementsNJ05YU

Sample	A1B	A2	B1B	B2	B3J	C1
Probenabbrand [GWd/tSM]	44,8	50,6	54,5	50,1	53	50,2
Probenhöhe von der ak- tiven Höhe [cm]	38,735	74,676	155,956	115,062	77,013	235,458
Sample	C2B	C3	D1A2	D1A4	D2	
Probenabbrand [GWd/tSM]	52,6	51,3	55,7	50,5	44,8	
Probenhöhe in Bezug auf die aktive Höhe [cm]	194,615	156,21	261,899	292,379	322,072	

Tab. 2.38Relevante Details der Proben der Brennstäbe O1, O12, und O13 des
Brennelements NJ070G

Brennstab	01	01	01	012	012	012	013	013
Sample	S1	S2	S3	S4	S5	S6	S7	S8
Probenabbrand [GWd/tSM]	25,8	29,9	26,7	23,7	26,5	24	22,8	26,3
Probenhöhe in Bezug auf die aktive Höhe [cm]	39,37	197,104	278,13	39,37	197,104	278,13	39,37	197,104

BE NJ05YU NJ070G Bor-Absorberstäbe Bor-Absorberstäbe Absorberstäbe Brennstäbe Brennstäbe -pg ²³⁴U 0,04 0,045 --²³⁵[] 4,19 4,013 4,657 _ ²³⁸U 95,947 -95,298 95,981 ^{nat}B₄C -1,7 -2,1 -2 $^{nat}Gd_2O_3$ _ _ _ _

Tab. 2.39Nuklidweise Brennstoffzusammensetzung der Brennstäbe und der gadoli-
niumhaltigen Absorberbrennstäbe in [Gew.%]

Die angegebenen Gewichtsprozent wurden für die Rechnung unter Berücksichtigung der Dichte des Brennstoffs in Kernzahldichten umgerechnet. Für den Gadoliniumvektor wurde in Ermangelung direkter Referenzen die Isotopenverteilung von Gadolinium angenommen, die in /SUY 11/ für den Ohi-2 Reaktor dokumentiert ist. Für natürliches Bor wird eine Verteilung auf ¹⁰B und ¹¹B von 19,9 Gew% zu 80,1 Gew% und für ¹²C zu ¹³C von 98,9 Gew% zu 1,1 Gew% angenommen. Die berechneten Werte sind in Tab. 2.40 wiedergegeben. Nach /MIC 17/ bestehen alle Strukturmaterialien aus Zirkaloy-4. In /BEC 02/ ist die Zusammensetzung elementweise angegeben (nur für ¹⁶O ist das Isotop spezifiziert). Mit den in Referenz /MAG 18/ angegebenen natürlichen Isotopenverhältnissen wurden hierfür die Kernzahldichten mit der angegebenen Dichte berechnet. Die verwendeten Werte sind in Tab. 2.41 wiedergegeben.

BE	NJ05YU		NJ070G		
	Brennstäbe	Bor-Absorber- stäbe	Brennstäbe	Bor-Absorber- stäbe	Gd-Absorber- stäbe
²³⁴ U	9,2515E-06		1,0408E-05		0,0000E+00
²³⁵ U	9,2420E-04		1,0725E-03		9,0894E-04
²³⁸ U	2,1818E-02		2,1671E-02		2,1434E-02
¹⁰ B		7,2875E-04		5,8994E-04	
¹¹ B		2,6666E-03		2,1587E-03	
¹² C		8,3828E-04		6,7861E-04	
¹³ C		8,6065E-06		6,9672E-06	
²⁷ AI		4,2789E-02		4,2963E-02	
¹⁶ O	4,5503E-02	6,4156E-02	4,5507E-02	6,4418E-02	4,5703E-02
¹⁷ O		2,2954E-05		2,3048E-05	
¹⁵² Gd					5,7216E-07
¹⁵⁴ Gd					6,4142E-06
¹⁵⁵ Gd					4,3906E-05
¹⁵⁶ Gd					6,1130E-05
¹⁵⁷ Gd					4,7037E-05
¹⁵⁸ Gd					7,5133E-05
¹⁶⁰ Gd					6,6942E-05

Tab. 2.40Nuklidweise Brennstoffzusammensetzung der Brennstäbe und der gadoli-
niumhaltigen Absorberbrennstäbe in Kernzahldichten

Element	Anteil [wt%]	Isotope	Kernzahl- dichte [1/barn*cm]	Element	Anteil [wt%]	Isotope	Kernzahl- dichten [1/barn*cm]
Zr	98,23			Fe	0,21		
		⁹⁰ Zr	2,2584E-02			⁵⁴ Fe	8,9797E-06
		⁹¹ Zr	4,8708E-03			⁵⁶ Fe	1,3593E-04
		⁹² Zr	7,3642E-03			⁵⁷ Fe	3,0841E-06
		⁹⁴ Zr	7,3042E-03			⁵⁸ Fe	4,0336E-07
		⁹⁶ Zr	1,1522E-03	Cr	0,1		
Sn	1,45					⁵⁰ Cr	3,4330E-06
		¹¹² Sn	4,9610E-06			⁵² Cr	6,3655E-05
		¹¹⁴ Sn	3,3163E-06			⁵³ Cr	7,0818E-06
		¹¹⁵ Sn	1,6936E-06			⁵⁴ Cr	1,7302E-06
		¹¹⁶ Sn	7,1800E-05	¹⁶ O	0,125	¹⁶ O	3,0863E-04
		¹¹⁷ Sn	3,7601E-05				
		¹¹⁸ Sn	1,1757E-04				
		¹¹⁹ Sn	4,1349E-05				
		¹²⁰ Sn	1,5552E-04				
		¹²² Sn	2,1739E-05				
		¹²⁴ Sn	2,6747E-05				

Tab. 2.41 Nuklidweise Zusammensetzung des Strukturstoffs Zirkaloy-4

/BEC 02/ gibt die Bestrahlungsgeschichte in Form von Bor-Konzentration und nodaler Leistung der Proben an. Die verwendeten Werte für die Proben aus Brennstab D5 aus dem Brennelement NJ06YU sind in Tab. 2.42 in MW/tSM angegeben. Für die Proben aus dem Brennstab H6 ist die Leistung in MW/Node in Tab. 2.43 und Tab. 2.44 angegeben, für die Proben aus den Stäben O1, O12, und O13 des Brennelements NJ070G in Tab. 2.45. Die Leistung wurde für jedes Experiment mit einem konstanten Faktor so normiert, dass die Abweichung der berechneten zur gemessenen ¹⁴⁸Nd Konzentration als Abbrandindikator minimiert wird.

Zyklus	Zeit- schritte [d]	Borkonzen- tration [ppm]	Leistung [MW/tSM]		
			A1	B1	B2
9	74,2	1577	30,447	45,42	41,996
	66,9	1411,5	33,164	46,134	43,233
	72,9	1258,5	34,660	46,506	43,871
	69,9	1082,5	36,436	46,714	44,423
	65,8	881	38,392	46,39	44,451
	75,3	658,5	39,335	45,68	43,935
	58,9	448,5	40,570	45,02	43,485
	65,3	243	41,158	43,978	42,546
	58,8	73,5	41,519	44,108	42,413
	31,4	7,5	46,538	47,019	45,659
Revision	35,0	1	0,000	0	0
11	68,0	1724,5	29,480	42,064	38,904
	63,8	1585	30,139	41,172	38,437
	77,2	1421,5	31,369	40,225	37,964
	63,1	1230,5	32,425	39,621	37,717
	75,3	1028,5	33,411	39,076	37,435
	69,0	818	34,227	38,566	37,105
	70,0	612	34,817	38,044	36,702
	69,9	402	35,193	37,46	36,202
	69,8	200,5	35,643	36,919	35,715
	34,2	52,4	35,889	36,521	35,374

Tab. 2.42Bestrahlungsgeschichte der Reaktorzyklen 9 und 10 für die Proben aus
Stab D5 aus dem Brennelement NJ05YU in MW/tSM

Tab. 2.43Bestrahlungsgeschichte der Reaktorzyklen 9 und 10 für die erste Hälfte
der Proben aus Brennstab H6 aus dem Brennelement NJ05YU in
MW/Node

Zyklus	Zeit- schritte [d]	Borkon- zentration [ppm]	Leistung [MW/node]					
			A1B	A2	B1B	B2	B3J	C1
9	74,2	1575,50	0,8252	1,0668	1,2846	1,1401	1,1185	1,1847
	66,9	1411,50	0,9179	1,1464	1,3112	1,1873	1,2019	1,2098
	72,9	1258,50	0,8962	1,0834	1,1878	1,0919	1,1359	1,0888
	69,9	1082,50	0,974	1,1431	1,2165	1,1293	1,1984	1,1139
	65,8	881,00	1,0085	1,1448	1,1855	1,1085	1,2002	1,0856
	75,3	658,50	1,0366	1,1387	1,1589	1,088	1,1938	1,0597
	58,9	448,50	1,0443	1,1168	1,132	1,0597	1,1709	1,0388
	65,3	243,00	1,0499	1,0953	1,1082	1,036	1,1484	1,0157
	58,8	73,50	1,0206	1,0511	1,1029	1,0078	1,102	1,0178
	31,4	7,50	0,9066	0,9422	1,0805	0,9385	0,9878	1,062
Revision	35,0	901,00	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
11	68,0	1724,50	0,7638	0,9748	1,1517	1,0302	1,0221	1,0488
	63,8	1585,00	0,7222	0,8842	1,0231	0,9221	0,9271	0,9367
	77,2	1421,50	0,75	0,8896	0,9914	0,905	0,9327	0,9118
	63,1	1231,00	0,7814	0,8996	0,9709	0,8951	0,9432	0,8967
	75,3	1029,00	0,8081	0,9057	0,9574	0,8878	0,9496	0,8847
	69,0	818,00	0,8307	0,9066	0,9432	0,8773	0,9506	0,8737
	70,0	612,00	0,8477	0,9023	0,9301	0,8647	0,946	0,8626
	69,9	402,00	0,8594	0,8939	0,9183	0,8529	0,9372	0,8506
	69,8	200,50	0,8638	0,8815	0,906	0,8393	0,9242	0,8396
	34,2	52,40	0,8638	0,8702	0,8969	0,8287	0,9124	0,8327

Tab. 2.44Bestrahlungsgeschichte der Reaktorzyklen 9 und 10 für die zweite Hälfte
der Proben aus Brennstab H6 aus dem Brennelement NJ05YU in
MW/Node

Zyklus	Zeit- schritte [d]	Borkon- zentration [ppm]	Leistung [MW/Node]				
			C2B	C3	D1A2	D1A4	D2
9	74,2	1575,50	1,2581	1,2111	1,2859	1,1495	0,8924
	66,9	1411,50	1,2749	1,2362	1,3265	1,203	0,9762
	72,9	1258,50	1,146	1,1199	1,1985	1,0942	0,907
	69,9	1082,50	1,1692	1,1469	1,2323	1,1336	0,9627
	65,8	881,00	1,1364	1,1176	1,2064	1,1179	0,9797
	75,3	658,50	1,1102	1,0926	1,1785	1,096	0,9763
	58,9	448,50	1,0862	1,0673	1,1576	1,081	0,9825
	65,3	243,00	1,0634	1,0448	1,1316	1,0578	0,9765
	58,8	73,50	1,0677	1,0398	1,1293	1,0506	0,9691
	31,4	7,50	1,0847	1,0187	1,1933	1,1213	1,0644
Revision	35,0	901,00	0,0000	0,0000	0,0000	0,00	0,0000
11	68,0	1724,50	1,1196	1,0858	1,1363	0,8088	0,7327
	63,8	1585,00	0,9933	0,9645	1,0219	0,8852	0,7529
	77,2	1421,50	0,9589	0,9346	1,0034	0,8928	0,7737
	63,1	1231,00	0,9382	0,9154	0,9933	0,9027	0,7937
	75,3	1029,00	0,9232	0,9026	0,9835	0,9085	0,8094
	69,0	818,00	0,9097	0,8893	0,9738	0,9111	0,8216
	70,0	612,00	0,8975	0,8769	0,963	0,9097	0,828
	69,9	402,00	0,886	0,8658	0,9502	0,9026	0,8296
	69,8	200,50	0,8752	0,8542	0,9372	0,8959	0,8301
	34,2	52,40	0,8678	0,8456	0,9285	0,8895	0,8295

Tab. 2.45Bestrahlungsgeschichte des Reaktorzyklus 10 für die Proben aus den
Brennstäben O1, O12, und O13 aus dem Brennelement NJ070G in
MW/Node

	e [d]	Borkonzentration [ppm]	Nodale Leistung [MW]								
Zyklus	Zeitschritt		01S1	01S2	01S3	012S4	012S5	012S6	013S7	013S8	
10	68,0	1707,41	0,8883	1,3354	1,0692	0,8384	1,2088	0,9756	0,7893	1,1839	
	63,8	1527,94	0,9388	1,3285	1,0918	0,8655	1,1621	0,9663	0,8195	1,1501	
	77,2	1335,95	0,9916	1,2796	1,0928	0,8953	1,1003	0,9489	0,8551	1,0957	
	63,1	1144,91	1,0239	1,2132	1,0677	0,9176	1,0448	0,9255	0,881	1,041	
	75,3	956,46	1,0341	1,1604	1,037	0,9315	1,0051	0,904	0,8944	1,0011	
	69,0	759,97	1,0416	1,1181	1,0095	0,9448	0,9771	0,8869	0,9068	0,9713	
	70,0	570,70	1,0458	1,0887	0,9869	0,9583	0,9588	0,8742	0,9192	0,9534	
	69,9	380,20	1,0528	1,0673	0,9676	0,9727	0,9479	0,8632	0,9328	0,9427	
	69,8	189,98	1,055	1,0504	0,952	0,9826	0,9392	0,8555	0,9427	0,9344	
	34,2	48,37	1,0528	1,0394	0,941	0,9881	0,9343	0,8499	0,9485	0,93	

Die zeitliche Entwicklung der Borkonzentration ppm und der Leistung als Bruchteil der jeweiligen Maximalleistung der Proben aus Brennstab D5 des Brennelements NJ05YU sind in Abb. 2.18, aus Brennstab H5 des Brennelements NJ05YU in Abb. 2.19 und aus den Brennstäben O1, O12 und O13 aus dem Brennelement NJ070G in Abb. 2.20 graphisch dargestellt.

Abb. 2.18 Bestrahlungsgeschichte der Proben aus Brennstab D5 des Brennelements NJ05YU

Abb. 2.19 Bestrahlungsgeschichte der Proben aus Brennstab H5 des Brennelements NJ05YU

Abb. 2.20 Bestrahlungsgeschichte der Proben aus den Brennstäben O1, O12 und O13 des Brennelements NJ070G

Für die Abbrandrechnungen wurde die Leistungsgeschichte für jedes Experiment mit einem konstanten Faktor so normiert, dass die Abweichung der berechneten zur gemessenen ¹⁴⁸Nd Konzentration als Abbrandindikator minimiert wird.

Die isotopenaufgelöste Zusammensetzung der Proben wurden mithilfe zerstörender Analysemethoden ermittelt. Die gefundenen Konzentrationen werden in /MIC 17/ in Milligramm pro Gramm anfänglichem Schwermetall (mg/gSMi) für alle Isotope zum Messzeitpunkt angegeben. Die jeweiligen Abklingzeiten zwischen Reaktorabschaltung und Messzeitpunkt wurden in die Tabellen übernommen. Für die Proben aus Brennstab D5 des Brennelements NJ05YU sind die gemessenen Werte in Tab. 2.46 gezeigt, für die erste Hälfte der Proben des Brennstabs H6 des Brennelements NJ05YU in Tab. 2.47, für die zweite Hälfte Tab. 2.48 und für die Proben des Brennelements NJ070G in Tab. 2.49.

	A1	B1	B2
Abklingzeit [d]	1711	1103	1711
Isotop			
²³⁴ U	0,2057	0,1916	0,1816
²³⁵ U	8,618	6,331	6,178
²³⁶ U	5,119	5,507	5,226
²³⁸ U	930,7	925,5	890,3
²³⁸ Pu	0,4039	0,3545	0,4175
²³⁹ Pu	5,072	5,35	4,941
²⁴⁰ Pu	2,345	2,786	2,546
²⁴¹ Pu	1,21	1,361	1,318
²⁴² Pu	0,6803	0,9246	0,9259
²³⁷ Np	0,605	0,6951	0,6784
²⁴¹ Am	0,3472	0,3027	0,2787
^{242m1} Am	0,0	0,0	0,0009971
²⁴³ Am	0,1247	0,2545	0,1976
¹⁴³ Nd	0,9866	0,9533	1,051
¹⁴⁵ Nd	0,8535	0,8793	0,9526
¹⁴⁸ Nd	0,4877	0,5516	0,5733
¹³⁷ Cs	1,685	1,768	1,7
¹⁴⁷ Sm	0,2262	0,1971	0,2466
¹⁴⁹ Sm	0,003118	0,003822	0,003312
¹⁵⁰ Sm	0,3583	0,3748	0,4523
¹⁵¹ Sm	0,01294	0,01259	0,01451
¹⁵² Sm	0,1219	0,1324	0,1389
¹⁵¹ Eu	0,0007427	0,0008848	0,0005511
¹⁵³ Eu	0,1471	0,1712	0,1798
¹⁵⁴ Eu	0,01005	0,01287	0,01496
¹⁵⁵ Gd	0,008237	0,006072	0,009704
⁹⁵ Mo	1,042	1,12	1,113
⁹⁹ Tc	1,424	1,083	1,273
¹⁰¹ Ru	1,117	1,157	1,148

Tab. 2.46Nuklidzusammensetzung aller gemessenen Nuklide zum jeweiligen Mess-
zeitpunkt für die Proben aus Brennstab D5 des Brennelements NJ05YU
	A1	B1	B2
Abklingzeit [d]	1711	1103	1711
Isotop			
¹⁰³ Rh	0,5966	0,6201	0,6063
¹⁰⁹ Ag	0,05119	0,05979	0,04255

Tab. 2.47Nuklidzusammensetzung aller gemessenen Nuklide zum jeweiligen Mess-
zeitpunkt der Nachbestrahlungsanalyseproben für die erste Hälfte der Pro-
ben aus Brennstab H6 des Brennelements NJ05YU

	A1B	A2	B1B	B2	B3J	C1
Abkling- zeit	1711	1103	1711	1103	1711	1103
Isotop						
²³⁴ U	0,2057	0,1916	0,1816	0,1871	0,1773	0,1981
²³⁵ U	8,618	6,331	6,178	6,216	5,907	6,6
²³⁶ U	5,119	5,507	5,226	5,41	5,274	5,48
²³⁸ U	930,7	925,5	890,3	926,4	890,9	925,7
²³⁸ Pu	0,4039	0,3545	0,4175	0,315	0,3849	0,3305
²³⁹ Pu	5,072	5,35	4,941	5,299	4,918	5,415
²⁴⁰ Pu	2,345	2,786	2,546	2,733	2,566	2,758
²⁴¹ Pu	1,21	1,361	1,318	1,39	1,319	1,426
²⁴² Pu	0,6803	0,9246	0,9259	0,9162	1,069	0,9016
²³⁷ Np	0,605	0,6951	0,6784	0,6929	0,6824	0,7054
²⁴¹ Am	0,3472	0,3027	0,2787	0,3418	0,4891	0,3777
^{242m1} Am	0,0	0,0	0,0009971	0,0	0,001203	0,0
²⁴³ Am	0,1247	0,2545	0,1976	0,2557	0,204	0,2462
¹⁴³ Nd	0,9866	0,9533	1,051	1	1,025	0,9812
¹⁴⁵ Nd	0,8535	0,8793	0,9526	0,9079	0,9444	0,8988
¹⁴⁸ Nd	0,4877	0,5516	0,5733	0,5456	0,5568	0,5461
¹³⁷ Cs	1,685	1,768	1,7	1,751	1,675	1,814
¹⁴⁷ Sm	0,2262	0,1971	0,2466	0,1862	0,2397	0,187
¹⁴⁹ Sm	0,003118	0,003822	0,003312	0,00327	0,003083	0,003194
¹⁵⁰ Sm	0,3583	0,3748	0,4523	0,3761	0,4374	0,3841
¹⁵¹ Sm	0,01294	0,01259	0,01451	0,01343	0,01425	0,0125
¹⁵² Sm	0,1219	0,1324	0,1389	0,1297	0,1372	0,1268
¹⁵¹ Eu	0,0007427	0,0008848	0,0005511	0,0007948	0,0007225	0,0006868

	A1B	A2	B1B	B2	B3J	C1
Abkling- zeit	1711	1103	1711	1103	1711	1103
Isotop						
¹⁵³ Eu	0,1471	0,1712	0,1798	0,1677	0,1773	0,1675
¹⁵⁴ Eu	0,01005	0,01287	0,01496	0,01315	0,009978	0,01435
¹⁵⁵ Gd	0,008237	0,006072	0,009704	0,006559	0,01007	0,006369
⁹⁵ Mo	1,042	1,12	1,113	1,13	1,087	1,102
⁹⁹ Tc	1,424	1,083	1,273	1,093	1,203	1,083
¹⁰¹ Ru	1,117	1,157	1,148	1,204	1,131	1,166
¹⁰³ Rh	0,5966	0,6201	0,6063	0,6299	0,5996	0,6193
¹⁰⁹ Ag	0,05119	0,05979	0,04255	0,0529	0,07528	0,05369

Tab. 2.48Nuklidzusammensetzung aller gemessenen Nuklide zum jeweiligen Mess-
zeitpunkt der Nachbestrahlungsanalyseproben für die zweiten Hälfte der
Proben des Brennstabs H6 des Brennelements NJ05YU

	C2B	C3	D1A2	D1A4	D2
Abklingzeit	1711	1103	1711	1711	1103
Isotop					
²³⁴ U	0,1753	0,185	0,1864	0,1907	0,1927
²³⁵ U	6,037	6,262	6,738	7,227	7,39
²³⁶ U	5,026	5,337	5,273	5,178	5,342
²³⁸ U	894,3	925,0	887,8	891,2	930,7
²³⁸ Pu	0,4445	0,2516	0,3684	0,3618	0,3257
²³⁹ Pu	4,838	5,522	5,273	5,213	5,435
²⁴⁰ Pu	2,468	2,849	2,619	2,531	2,671
²⁴¹ Pu	1,288	1,406	1,42	1,381	1,368
²⁴² Pu	0,9033	0,925	0,9322	0,909	0,7958
²³⁷ Np	0,6654	0,6836	0,6827	0,6612	0,6766
²⁴¹ Am	0,4919	0,3034	0,324	0,508	0,3462
^{242m1} Am	0,001628	0,0	0,0005886	0,0008101	0,0
²⁴³ Am	0,1896	0,247	0,1989	0,1782	0,1927
¹⁴³ Nd	1,002	0,9527	1,074	1,043	0,9149
¹⁴⁵ Nd	0,9122	0,8982	0,9677	0,9268	0,8302
¹⁴⁸ Nd	0,5545	0,5587	0,5859	0,5293	0,4877
¹³⁷ Cs	1,708	1,702	1,483	1,595	1,619

	C2B	C3	D1A2	D1A4	D2
Abklingzeit	1711	1103	1711	1711	1103
Isotop					
¹⁴⁷ Sm	0,2218	0,1822	0,2432	0,2272	0,1824
¹⁴⁹ Sm	0,003255	0,002904	0,003729	0,003476	0,003099
¹⁵⁰ Sm	0,406	0,3626	0,4377	0,3983	0,349
¹⁵¹ Sm	0,01288	0,01258	0,015	0,01363	0,01266
¹⁵² Sm	0,1261	0,1258	0,1376	0,1292	0,121
¹⁵¹ Eu	0,0006815	0,0008491	0,0006401	0,0006443	0,0007045
¹⁵³ Eu	0,1672	0,1609	0,1829	0,1684	0,1564
¹⁵⁴ Eu	0,009659	0,01276	0,009499	0,01221	0,01229
¹⁵⁵ Gd	0,009122	0,006678	0,009854	0,01346	0,005603
⁹⁵ Mo	1,064	1,008	1,074	1,052	0,9214
⁹⁹ Tc	1,315	1,036	1,101	1,15	0,9772
¹⁰¹ Ru	1,136	1,027	1,092	1,06	0,9493
¹⁰³ Rh	0,5956	0,5485	0,5966	0,5819	0,5165
¹⁰⁹ Ag	0,06332	0,0925	0,04457	0,08172	0,04663

Probe	O1S1	O1S2	O1S3	O12S4	O12S5	O12S6	O13S7	O13S8
Abklingzeit [d]	1298	1529	1298	1298	1529	1298	1529	1529
Isotop								
²³⁴ U	3,266E-01	3,040E-01	3,137E-01	3,335E-01	3,129E-01	3,262E-01	3,430E-01	3,187E-01
²³⁵ U	2,206E+01	1,918E+01	2,172E+01	2,358E+01	2,183E+01	2,391E+01	2,378E+01	2,193E+01
²³⁶ U	4,533E+00	4,996E+00	4,672E+00	4,303E+00	4,619E+00	4,387E+00	4,219E+00	4,583E+00
²³⁸ U	9,385E+02	9,355E+02	9,363E+02	9,395E+02	9,370E+02	9,375E+02	9,398E+02	9,372E+02
²³⁸ Pu	7,198E-02	1,085E-01	9,363E-02	6,276E-02	8,808E-02	7,772E-02	6,024E-02	8,707E-02
²³⁹ Pu	5,453E+00	5,594E+00	6,030E+00	5,439E+00	6,006E+00	6,187E+00	5,422E+00	5,886E+00
²⁴⁰ Pu	1,520E+00	1,852E+00	1,713E+00	1,390E+00	1,649E+00	1,509E+00	1,372E+00	1,621E+00
²⁴¹ Pu	7,546E-01	9,159E-01	8,951E-01	6,896E-01	8,405E-01	8,006E-01	6,616E-01	8,238E-01
²⁴² Pu	1,802E-01	2,844E-01	2,210E-01	1,484E-01	2,061E-01	1,650E-01	1,447E-01	2,024E-01
²³⁷ Np	3,041E-01	3,957E-01	3,642E-01	3,034E-01	3,486E-01	3,281E-01	2,829E-01	3,477E-01
²⁴¹ Am	1,145E-01	1,983E-01	1,713E-01	1,522E-01	2,080E-01	1,378E-01	1,626E-01	2,024E-01
^{242m1} Am	2,750E-04	4,238E-04	4,213E-04	3,542E-04	4,854E-04	3,722E-04	3,158E-04	4,677E-04
²⁴³ Am	1,502E-02	3,508E-02	2,565E-02	1,691E-02	2,773E-02	1,650E-02	1,607E-02	2,671E-02
²⁴² Cm	1,774E-05	1,637E-05	2,715E-05	1,851E-05	1,124E-05	1,875E-05	7,001E-06	1,172E-05
²⁴³ Cm	5,162E-05	1,169E-04	9,738E-05	5,975E-05	1,003E-04	6,553E-05	5,610E-05	9,466E-05
²⁴⁴ Cm	2,496E-03	7,185E-03	4,981E-03	2,715E-03	5,163E-03	3,019E-03	2,462E-03	4,902E-03
²⁴⁵ Cm	1,117E-04	3,761E-04	2,631E-04	1,165E-04	2,717E-04	1,566E-04	1,071E-04	2,568E-04

 Tab. 2.49
 Nuklidzusammensetzung aller gemessenen Nuklide zum jeweiligen Messzeitpunkt für die Proben des Brennelements NJ070G

Probe	01S1	O1S2	O1S3	O12S4	O12S5	O12S6	O13S7	O13S8
Abklingzeit [d]	1298	1529	1298	1298	1529	1298	1529	1529
Isotop								
¹⁴³ Nd	7,461E-01	8,345E-01	7,753E-01	7,055E-01	7,646E-01	7,181E-01	6,964E-01	7,601E-01
¹⁴⁵ Nd	5,631E-01	6,427E-01	5,814E-01	5,252E-01	5,725E-01	5,287E-01	5,178E-01	5,698E-01
¹⁴⁶ Nd	5,218E-01	6,156E-01	5,496E-01	4,810E-01	5,397E-01	4,931E-01	4,736E-01	5,361E-01
¹⁴⁸ Nd	2,862E-01	3,349E-01	3,006E-01	2,640E-01	2,942E-01	2,700E-01	2,603E-01	2,924E-01
¹⁵⁰ Nd	1,295E-01	1,534E-01	1,376E-01	1,184E-01	1,340E-01	1,228E-01	1,175E-01	1,331E-01
¹³⁴ Cs	2,356E-02	2,582E-02	2,715E-02	2,086E-02	2,127E-02	2,287E-02	1,654E-02	2,128E-02
¹³⁷ Cs	9,113E-01	1,095E+00	9,644E-01	8,502E-01	9,370E-01	8,606E-01	8,383E-01	9,466E-01
¹⁴⁷ Sm	1,793E-01	2,058E-01	1,816E-01	1,700E-01	1,883E-01	1,678E-01	1,748E-01	1,865E-01
¹⁴⁹ Sm	4,054E-03	4,079E-03	4,419E-03	4,058E-03	4,160E-03	4,434E-03	3,975E-03	4,143E-03
¹⁵⁰ Sm	2,159E-01	2,601E-01	2,313E-01	1,982E-01	2,258E-01	2,034E-01	1,936E-01	2,231E-01
¹⁵¹ Sm	1,276E-02	1,375E-02	1,433E-02	1,296E-02	1,415E-02	1,481E-02	1,269E-02	1,415E-02
¹⁵² Sm	8,662E-02	1,001E-01	8,932E-02	8,098E-02	8,686E-02	7,884E-02	7,960E-02	8,613E-02
¹⁵¹ Eu	3,895E-04	4,434E-04	4,316E-04	4,030E-04	4,704E-04	4,584E-04	4,210E-04	4,677E-04
¹⁵³ Eu	7,555E-02	9,449E-02	8,240E-02	6,924E-02	8,105E-02	7,209E-02	6,700E-02	8,070E-02
¹⁵⁵ Gd	2,309E-03	2,891E-03	2,640E-03	1,907E-03	2,511E-03	2,184E-03	1,973E-03	2,531E-03

2.3.2 Modellierung

Abb. 2.21 zeigt die Brennelemente in KENO VI-Geometrie, die für alle Analyseproben gleich sind. Die Brennstäbe wurden wie in den experimentellen Daten angegeben mit einem heliumgefüllten Zwischenraum zwischen Brennstoff und Hüllrohr modelliert (Kernzahldichte = 2.404400E-04). Die geometrischen Abmessungen und Materialdaten wurden wie in Kapitel 2.3.1 beschrieben übernommen.

Es wurde eine Axialzone mit 10 cm Höhe und reflektierenden Randbedingungen modelliert, um die Bedingungen im Druckwasserreaktor nachzubilden. Die Parameter der Abbrandrechnungen sind in Tab. 2.13 wiedergegeben. Die für den Vergleich mit den Nachbestrahlungsanalyseproben betrachteten Nuklide sind in Tab. 2.50 angegeben.

Aus physikalischer Sicht sind auch die Absorberstäbe, die in Zyklus 9 (NJ05YU) beziehungsweise Zyklus 10 (NJ070G) an der Position der Steuerstäbe eingesetzt waren, einem Ausbrand unterzogen. Dies führt zu einer Änderung im Neutronenspektrum und sollte deswegen auch in der Nachrechnung so berücksichtigt werden. Da die Kombination aus Stabwechsel und Definition eines Materials als abbrennbar noch nicht vollständig in MOTIVE implementiert ist, wurde für das Brennelement NJ070G darauf verzichtet, das Absorbermaterial als abbrennbar zu definieren.

Abb. 2.21 Implementierung der Brennelemente NJ05YU und NJ070G in SCALE-Geometrie

	Betrachtete Nuklide									
²³⁴ U	²³⁵ U	²³⁶ U	²³⁸ U							
²³⁷ Np										
²³⁸ Pu	²³⁹ Pu	²⁴⁰ Pu	²⁴¹ Pu	²⁴² Pu						
²⁴¹ Am	^{242m1} Am	²⁴³ Am								
²⁴² Cm ⁶	²⁴³ Cm ⁶	²⁴⁴ Cm ⁶	²⁴⁵ Cm ⁶							
¹⁴³ Nd	¹⁴⁵ Nd	¹⁴⁶ Nd ⁶	¹⁴⁸ Nd	¹⁵⁰ Nd ⁶						
¹⁴⁷ Sm	¹⁴⁹ Sm	¹⁵⁰ Sm	¹⁵¹ Sm	¹⁵² Sm						
¹³⁴ Cs ⁶	¹³⁷ Cs									
¹⁵¹ Eu	¹⁵³ Eu	¹⁵⁵ Eu ⁷								
¹⁵⁵ Gd										
⁹⁵ Mo ⁷	⁹⁹ Tc ⁷	¹⁰¹ Ru ⁷	¹⁰³ Rh ⁷	¹⁰⁹ Ag ⁷						

Tab. 2.50 Liste der betrachteten Nuklide

2.3.3 Resultate

Der Vergleich der für die Proben aus TMI-1 erzielten Ergebnisse mit den gemessenen Daten sind in Tab. 2.51 – Tab. 2.53 in tabellarischer Form und in Abb. 2.22 – Abb. 2.27 in graphischer Form dargestellt.

Die Nachrechnungen der Proben des Brennelements NJ07OG weisen eine gute Übereinstimmung für ²³⁵U und ²³⁹Pu auf. Während die übrigen Uran-Isotope gut getroffen werden, weisen die übrigen Plutonium-Isotope ein deutlich negatives Bias auf. ²³⁷Np wird ebenfalls durch die Rechnung unterschätzt, die Abweichung zum Experiment ist allerdings im Vergleich zu Ergebnissen anderer Experiment-Nachrechnungen relativ gering. Auch die Americium- und Curium-Nuklide werden unterschätzt, wobei die Ergebnisse hier im Bereich anderer Experimente liegen. Auffällig ist dabei das abweichende Verhalten der Probe O1S1. Die Nachrechnung der Spaltprodukte liegt weitgehend im von anderen Nachrechnungen erwarteten Rahmen. Lediglich die deutliche Unterschätzung der Caesium-Nuklide ist auffällig.

⁶ Nur für Brennelement NJ070G

⁷ Nur für Brennelement NJ05YU

	1 51)1S2)1S 3	012S4)12S5)12S6	013S7	113S8
23411	0	0	0	0	0	0	0	0
23511	0,3	2,0	3,0	0,7	3,5	2,0	-1,7	1,9
236U	3,0	3,1	0,5	3,0	2,3	-0,1	3,2	2,4
238LL	-4,8	-3,8	-4,4	-5,1	-4,4	-5,3	-4,2	-4,1
237Nm	-0,1	0,0	0,1	-0,1	0,0	0,1	-0,1	0,0
238 Dec	-5,1	-8,8	-14,6	-13,1	-11,4	-16,8	-8,9	-12,7
200PU	-16,9	-17,6	-26,9	-18,7	-23,2	-29,9	-19,0	-24,1
200 PU	-1,4	-1,1	-9,8	-1,8	-8,9	-13,1	-2,2	-7,4
240PU	-7,8	-10,1	-13,7	-7,2	-11,4	-12,4	-1,1	-10,7
²⁴ 'Pu	-9,0	-10,7	-18,1	-9,9	-16,6	-20,0	-11,0	-15,7
²⁴² Pu	-14,9	-18,2	-21,2	-16,5	-19,3	-20,3	-17,9	-19,1
²⁴¹ Am	27,7	4,3	-8,0	-13,0	-14,6	0,0	-9,3	-13,0
²⁴² ¹¹¹ Am	-12,0	-21,7	-33,9	-38,3	-41,0	-34,4	-33,2	-39,5
²⁴³ Am	13,4	-13,1	-20,3	-23,4	-29,1	-14,1	-23,7	-28,6
²⁴² Cm	-3,8	-37,6	-28,1	-22,9	-31,2	-17,9	-22,2	-35,1
²⁴³ Cm	7,9	-16,7	-31,4	-26,9	-35,3	-27,2	-27,9	-33,1
²⁴⁴ Cm	10,7	-18,0	-29,8	-28,0	-35,9	-27,3	-28,1	-35,0
²⁴⁵ Cm	5,2	-19,6	-40,7	-31,6	-43,2	-41,2	-32,5	-42,9
¹³⁴ Cs	-16,7	-18,1	-21,8	-18,4	-21,3	-23,3	-19,4	-22,5
¹³⁷ Cs	-5,0	-9,1	-5,9	-6,1	-6,6	-5,2	-7,5	-8,1
¹⁴³ Nd	1,8	2,0	1,5	1,2	1,4	1,1	1,3	1,5
¹⁴⁵ Nd	1,4	1,6	2,4	1,0	1,9	2,3	1,1	1,8
¹⁴⁶ Nd	-0,7	-0,8	-0,8	-0,9	-1,1	-1,0	-0,9	-1,1
¹⁴⁸ Nd	0,0	0,0	-0,1	0,0	0,0	0,0	-0,1	0,0
¹⁵⁰ Nd	-1,4	-1,7	-2,4	-0,8	-1,7	-2,1	-1,6	-1,7
¹⁴⁷ Sm	-2,4	0,2	-0,3	-2,7	1,2	0,5	0,4	2,0
¹⁴⁹ Sm	1,5	0,6	-9,5	1,3	-3,2	-10,7	2,9	-3,1
¹⁵⁰ Sm	-1,4	-2,2	-2,8	-1,8	-2,6	-1,9	-1,1	-2,2
¹⁵¹ Sm	-5,6	-10,4	-15,6	-6,7	-13,3	-18,1	-5,7	-13,6
¹⁵² Sm	1,8	-0,4	2,3	1,2	2,8	5,7	1,7	3,2
¹⁵¹ Eu	-10,1	-5,4	-18,3	-12,4	-10,7	-22,5	-2,6	-10,5
¹⁵³ Eu	-4,0	-5,5	-5,8	-5,8	-6,5	-6,5	-4,6	-6,9
¹⁵⁵ Gd	-21,9	-8,8	-25,9	-16,5	-14,4	-24,2	-11,1	-16,2

Tab. 2.51Vergleich zwischen gemessenen und berechneten Werten als C/E-1 in %für das Brennelement NJ07OG

	A2	B2	ç	C3	D2	A1B	B1B	B3J	C2B	D1A2	D1A4
²³⁴ U	2,4	5,8	-0,4	5,0	11,4	6,1	7,4	12,4	14,3	3,3	8,7
²³⁵ U	-1,2	6,0	-0,2	-0,6	13,1	-3,0	-5,2	6,1	4,9	-17,7	-2,3
²³⁶ U	1,1	2,7	1,4	4,8	0,3	4,6	7,7	5,9	11,1	7,2	6,4
²³⁷ Np	-6,9	-7,1	-8,7	-4,0	-15,7	-5,6	-0,6	-3,7	-1,9	0,7	-5,8
²³⁸ Pu	-2,4	8,8	3,8	42,9	-17,0	-34,1	-10,8	-8,6	-21,5	5,1	-12,3
²³⁹ Pu	-5,4	-3,4	-5,3	-7,7	-5,3	1,9	3,1	3,6	5,6	-3,7	-1,8
²⁴⁰ Pu	0,9	2,7	1,9	-0,2	-2,9	10,6	13,7	10,9	14,8	12,4	9,0
²⁴¹ Pu	-4,4	-5,8	-7,5	-5,3	-10,3	-6,3	-5,9	-7,4	-5,3	-11,9	-13,9
²⁴² Pu	-0,7	-1,8	0,2	2,2	-10,6	4,3	7,3	-12,2	2,9	11,1	-7,1
²⁴¹ Am	-15,6	-24,1	-30,9	-13,4	-29,5	-2,5	31,9	-26,0	-26,2	14,0	-30,3
^{242m1} Am	-	-	-	-	-	-	-25,0	-38,5	-53,4	25,3	-7,2
²⁴³ Am	-20,0	-23,1	-20,3	-15,0	-26,7	14,0	12,9	1,3	7,7	19,8	1,2
⁹⁵ Mo	-1,9	-3,8	-1,3	9,9	7,7	-4,7	1,4	1,6	3,5	7,0	0,8
⁹⁹ Tc	5,2	3,2	4,3	11,0	5,4	-27,7	-7,9	-4,7	-13,1	8,4	-4,2
¹⁰¹ Ru	-0,9	-5,8	-2,7	13,0	7,4	-8,8	3,4	2,2	1,3	11,0	3,9
¹⁰³ Rh	5,9	3,7	5,6	21,1	16,7	1,1	11,3	10,4	10,8	14,9	10,0
¹⁰⁹ Ag	93,7	116,5	113,0	27,7	110,0	91,1	187,2	56,3	84,6	182,6	34,6
¹³⁷ Cs	-5,7	-6,0	-9,2	-0,9	-9,0	-15,8	-2,2	-3,5	-5,8	14,6	-3,6
¹⁴³ Nd	8,8	4,0	6,1	9,9	9,1	1,2	0,3	2,0	4,2	-1,2	-1,3
¹⁴⁵ Nd	9,1	4,7	5,8	7,7	5,4	2,5	3,3	2,1	5,4	3,3	0,4
¹⁴⁸ Nd	0,2	0,1	0,1	0,1	0,1	0,0	-0,1	0,0	0,0	0,0	0,0
¹⁴⁷ Sm	18,1	25,2	24,6	28,4	24,6	15,5	9,5	12,1	21,1	11,3	17,6
¹⁴⁹ Sm	-17,0	-4,4	-1,9	8,2	2,4	3,3	-4,2	4,1	-4,1	-13,5	-8,5
¹⁵⁰ Sm	15,8	13,9	11,8	21,3	8,6	5,9	-0,2	0,1	7,3	5,6	4,0
¹⁵¹ Sm	-5,7	-11,0	-4,2	-4,4	-8,6	-11,4	-17,7	-17,0	-8,1	-19,7	-14,5
¹⁵² Sm	6,8	8,1	10,6	13,0	8,5	7,7	4,2	4,2	12,5	6,9	6,6
¹⁵¹ Eu	-67,1	-63,1	-57,2	-65,3	-59,5	-41,6	-18,3	-38,2	-34,4	-29,1	-31,7
¹⁵³ Eu	-1,9	-0,8	-0,6	5,9	-5,4	0,5	-3,1	-4,6	0,9	-2,9	-4,3
¹⁵⁵ Eu	-33,9	-36,5	-41,4	-32,3	-41,5	-43,8	-53,3	-32,6	-30,7	-24,4	-48,3
¹⁵⁵ Gd	-21,1	-28,2	-25,6	-27,1	-27,6	-31,8	-28,5	-33,8	-27,1	-27,7	-53,5

Tab. 2.52Vergleich zwischen gemessenen und berechneten Werten als C/E-1 in %für die vom ANL gemessenen Proben des Brennelements NJ05YU

	A1	B1	B2	C2D1	C2D2		A1	B1	B2	C2D1	C2D2
²³⁴ U	5,8	5,3	5,6	6,7	3,9	¹⁴² Nd	0,4	3,1	2,4	2,1	2,2
²³⁵ U	-3,5	-5,7	-9,4	-8,0	-4,9	¹⁴³ Nd	-3,3	-3,4	-4,6	-3,7	-2,8
²³⁶ U	0,6	0,9	0,3	-0,4	0,2	¹⁴⁴ Nd	-3,7	-3,4	-2,9	-3,5	-4,1
²³⁸ U	-0,7	-1,0	-1,0	-1,4	-1,2	¹⁴⁵ Nd	-2,6	-2,4	-2,3	-2,6	-2,6
²³⁷ Np	-17,3	-22,7	-22,1	-24,9	-23,0	¹⁴⁶ Nd	-2,1	-2,0	-2,0	-2,1	-1,8
²³⁸ Pu	5,0	9,1	9,1	-0,4	10,0	¹⁴⁸ Nd	0,0	0,1	0,0	-0,1	0,1
²³⁹ Pu	-5,7	-7,2	-12,9	-9,0	-4,1	¹⁵⁰ Nd	2,4	2,3	2,4	2,8	1,9
²⁴⁰ Pu	3,6	2,1	-1,5	-1,1	2,5	¹⁴⁷ Sm	-1,4	-1,3	-1,6	-2,0	-2,7
²⁴¹ Pu	-0,3	-2,5	-6,8	-6,0	0,0	¹⁴⁸ Sm	-5,8	-4,9	-7,3	-6,0	-4,7
²⁴² Pu	6,6	6,1	6,1	2,7	5,3	¹⁴⁹ Sm	-10,8	0,7	-2,2	-9,3	-4,7
²⁴¹ Am	1,7	1,0	-0,4	7,9	9,4	¹⁵⁰ Sm	3,3	3,8	2,4	2,5	2,8
²⁴³ Am	-11,6	-18,2	-17,2	-20,4	-18,7	¹⁵¹ Sm	-23,5	-10,1	-16,0	-11,3	-7,0
²⁴⁴ Cm	-6,5	-14,4	-15,5	-17,9	-12,7	¹⁵² Sm	1,7	2,4	3,7	2,1	1,0
¹⁰⁹ Ag	-3,4	6,2	22,8	4,7	6,2	¹⁵⁴ Sm	4,5	8,5	6,2	5,8	7,2
⁹⁵ Mo	-18,8	-16,5	-10,8	-16,1	-20,1	¹⁵¹ Eu	-10,1	-12,0	-13,8	-10,6	-9,2
¹⁰³ Rh	-19,3	-9,5	1,4	-4,7	-13,0	¹⁵³ Eu	3,3	3,0	1,7	2,1	1,5
¹⁹⁹ Tc	-6,4	-10,4	5,5	-1,8	-12,5	¹⁵⁴ Eu	10,5	9,8	3,3	6,9	9,0
¹³³ Cs	4,7	3,9	4,6	2,5	3,5	¹⁵⁵ Eu	6,2	7,2	5,4	4,4	1,2
¹³⁴ Cs	-5,1	-2,2	4,4	1,2	-7,1	¹⁵⁴ Gd	5,8	7,1	1,3	7,2	10,0
¹³⁵ Cs	4,0	2,4	-0,4	-2,4	0,7	¹⁵⁵ Gd	4,1	4,7	4,3	3,9	4,2
¹³⁷ Cs	5,2	4,6	4,1	3,0	4,1	¹⁵⁶ Gd	0,4	1,9	0,1	0,3	1,4
¹⁴⁰ Ce	2,7	4,2	1,7	1,9	4,2	¹⁵⁷ Gd	-31,5	-5,4	-33,6	-21,1	-20,0
¹⁴² Ce	5,5	6,7	4,5	5,1	6,7	¹⁵⁸ Gd	17,9	23,5	19,1	19,7	22,4
						¹⁶⁰ Gd	-0,5	5,3	2,8	3,3	4,2

Tab. 2.53Vergleich zwischen gemessenen und berechneten Werten als C/E-1 in %für die vom ORNL gemessenen Proben des Brennelements NJ05YU

Abb. 2.22 TMI-1, NJ07OG: Vergleich zwischen Rechnung und experimentellen Daten dargestellt als C/E-1 in Prozent

Abb. 2.23 TMI-1, NJ05YU: Vergleich zwischen Rechnung und experimentellen Daten dargestellt als C/E-1 in Prozent für die von ANL gemessenen Proben

77

Abb. 2.24 TMI-1, NJ05YU: Vergleich zwischen Rechnung und experimentellen Daten dargestellt als C/E-1 in Prozent für die von ORNL gemessenen Proben

C/E-1 for rod 23, TMI-1_NJ05YU_new_noBurnablePoisonDepl

Abb. 2.25 Darstellung der Mittelwerte und Standardabweichungen für die Mittelung über die Proben des Brennelements NJ07OG

Abb. 2.26 Darstellung der Mittelwerte und Standardabweichungen für die Mittelung über die von ANL gemessenen Proben des Brennelements NJ05YU

C/E-1 mean and std for rod 106, TMI-1 NJ05YU noBurnablePoisonDepl

Abb. 2.27 Darstellung der Mittelwerte und Standardabweichungen für die Mittelung über die von ORNL gemessenen Proben des Brennelements NJ05YU

Der Vergleich zwischen Rechnung und Experiment für die von ANL gemessenen Proben des Brennelements NJ05YU weist für viele Nuklide eine große Streubreite auf. Aufgrund der im Vergleich zu anderen Experimenten großen Messunsicherheiten kann dennoch festgestellt werden, dass für viele Nuklide die berechneten Werte mit den gemessenen im Rahmen der Messunsicherheiten kompatibel sind. Insbesondere gilt dies auch für die Uran- und Plutonium-Isotope. Größere Abweichungen sind vor allem bei den Spaltprodukten ¹⁰⁹Ag (metallisch) sowie ¹⁵¹Eu, ¹⁵⁵Eu und ¹⁵⁵Gd zu beobachten.

Die Varianz der von ORNL gemessenen Daten für die Proben des Brennelements NJ05YU ist im Vergleich deutlich kleiner. Allerdings weisen ²³⁵U und ²³⁹Pu ein negatives Bias auf, was darauf schließen lässt, dass in der Rechnung das tatsächlich während der Bestrahlung herrschende Neutronenflussspektrum nicht exakt reproduziert werden konnte. Für die Probe B2, die insgesamt den größten Bias aufweist, ist anzumerken, dass diese von der Position eines Abstandshalters stammt. Eine explizite Modellierung würde hier eventuell zu einer Verbesserung der Ergebnisse führen. Die übrigen Uran- und Plutonium-Isotope werden weitgehend gut getroffen. Die höheren Aktinoiden liegen im Bereich vergleichbarer Nachrechnungen. Dies gilt ebenso für die Spaltprodukte. Auffällig ist die gute Reproduktion vieler Nukliddichten der Europiumund Gadolinium-Nuklide. Lediglich ¹⁵⁷Gd und ¹⁵⁸Gd weisen Abweichungen größer 10% auf. Ebenso fällt auf, dass die berechneten Nukliddichten für ¹⁰⁹Ag im Rahmen der Messgenauigkeit mit den gemessenen übereinstimmen. Hier schlagen sich möglicherweise Verbesserungen im experimentellen Vorgehen für metallische Spaltprodukte nieder.

Bei Betrachtung der gemittelten Nuklidinventare (Abb. 2.25 – Abb. 2.27) fallen bei den Daten zum Brennelement NJ07OG und insbesondere bei den von ANL gemessenen Proben des Brennelements NJ05YU die großen Streubreiten der C/E-1-Werte auf. Diese sind bei den von ORNL gemessenen Proben deutlich kleiner. Dies deutet auf eine gesteigerte Qualität der experimentellen Daten dieser Proben hin.

2.4 Proben des Reaktors Gösgen aus dem ARIANE-Programms

Das ARIANE-Programm hatte zum Ziel, detaillierte Nuklidinventare von bestrahlten UO₂- und MOX-Brennstoffen aus Druck- bzw. Siedewasserreaktoren hauptsächlich für Validierungszwecke bereitzustellen. Besonderes Augenmerk wurde dabei vor allem auf Proben mit hohen Abbränden gelegt. Im Einzelnen sind im ARIANE-Programm Proben

von Brennelementen aus den Reaktoren Beznau-I (Kap. 2.5), Gösgen und Dodewaard radiochemisch analysiert worden. Im Fall des Reaktors Gösgen wurden die Proben "GU1" und "GU2" aus dem UO2-Brennelement 12-40 untersucht (Abb. 2.28). Aufgrund von Problemen während des Programmablaufs und der radiochemischen Analysen wurde das experimentelle Programm nachträglich erweitert und zusätzliche Proben in das Programm aufgenommen. Im Fall des Reaktors Gösgen waren dies die Proben "GU3" bzw. "GU3" und "GU4" aus dem Brennelement 1601 bzw. 1701, in welches der betreffende Brennstab nach zwei Zyklen im Brennelement 1601 für einen weiteren Zyklus umgesetzt wurde (Abb. 2.29). Eine Folge der aufgetretenen Probleme ist allerdings, dass daher nicht alle vermessenen radiochemischen Proben in gleicher Qualität vorliegen. Die Resultate einzelner Proben erwiesen sich im Nachhinein als nur bedingt oder nicht weiter verwendbar /PRI 03/. Daher wurden für diesen Bericht nur eine Auswahl der insgesamt 15 analysierten Proben nachgerechnet.

Im Folgenden werden die Nachrechnungen der Proben GU1, GU3/GU3' und GU4 aus dem Reaktor Gösgen beschrieben. Die zunächst im experimentellen Programm enthaltene Probe GU2 wurde nachträglich aufgrund unvorhergesehener experimenteller Schwierigkeiten verworfen und steht damit nicht zur Nachrechnung zur Verfügung. Die Probe GU1 wurde dem Brennstab 14H13 auf Brennstabposition M13 in einer Höhe zwischen 96,05 cm und 99,35 cm (von unteren Brennstabende gemessen) entnommen (Abb. 2.28). Bei den Proben GU3 und GU3' handelt sich es um einen geteilten 10 cm langen Brennelementabschnitt, so dass sie praktisch identischen Bestrahlungsbedingungen ausgesetzt waren und damit aus Sicht der Nachrechnungen als defacto identisch betrachtet werden können. Sie wurden aber in zwei verschiedenen Laboren unabhängig voneinander analysiert, so dass zwei unabhängige Sätze an gemessenen Nuklidkonzentrationen zum Vergleich mit den errechneten Werten vorliegen. Entnommen wurden die Proben GU3/GU3' und GU4 aus dem Brennstab 16B05 auf der Brennstabposition P7 des Brennelements 1601 in einer Höhe von 122,42 cm und 132,42 cm bzw. 4,92 cm und 9,92 cm, bezogen auf das untere Ende des Brennstabs. Die Probe GU4 ist somit eine Probe relativ nahe zum unteren Ende des Brennstabs.

Abb. 2.29 Schematische Darstellung der Brennelemente 1601 (links) und 1701 (rechts) aus dem Reaktor Gösgen /PRI 03/

2.4.1 Experimentelle Daten

Die für Nachrechnung der radiochemischen Proben notwendigen Informationen, Daten und experimentellen Resultate des ARIANE-Programms sind im Bericht /PRI 03/ zusammengefasst. Dieser Bericht ist seinerseits eine Zusammenstellung einer Reihe von internen Vorträgen und Berichten des ARIANE-Programms, die neben den notwenigen Daten auch den Programmablauf und die aufgetretenen Probleme beschreiben.

Reaktordaten

Der Reaktor Gösgen ist ein Druckwasserreaktor mit einer nominellen thermischen Leistung von 3002 MW. Die weiteren für die Probennachrechnungen relevanten Reaktordaten sind in Tab. 2.54 zusammengefasst. Zu beachten ist dabei, dass die Angabe des Moderator- bzw. Kühlmitteldrucks in /PRI 03/ in der Einheit kg/cm² vorliegt. Hier ist zu vermuten, dass diese Angabe mit der Einheit "bar" gleichzusetzen ist. So gibt z. B. der Betreiber in seiner Broschüre zum Kraftwerk Gösgen einen zahlenwertmäßig ähnlichen Kühlmitteldruck von 154 bar an /KER 15/.

Tab. 2.54	Relevante Reaktorda	aten des Reaktors	Gösgen /PRI 03/
-----------	----------------------------	-------------------	-----------------

Parameter	
Nomineller Kühlmitteldruck ¹ [kg/cm ²]	153
Kühlmitteleinlasstemperatur [°C]	292,0
Kühlmittelauslasstemperatur [°C]	326,0

¹ Der Wert wird in /PRI 03/ als Druck beschrieben, auch wenn die angegebene physikalische Einheit mit kg/cm² formal kein Druck ist.

Brennelement

Die hier betrachteten Proben stammen bzw. befanden sich in drei verschiedenen, mit Ausnahme des Pelletradius und der aktiven Brennstoffhöhe baugleichen Brennelementen. Diese Brennelemente waren 15×15 -DWR-Brennelemente aus UO₂-Brennstoff mit einer einheitlichen ²³⁵U-Anreicherung und 20 Steuerstabführungsrohren, (Abb. 2.28 und Abb. 2.29). Angaben zu den geometrischen Abmessungen der Brennelemente und Brennstäbe aus /PRI 03/ sind in Tab. 2.53 zusammengestellt.

Tab. 2.55Geometrische Abmessungen der Brennelemente 12-40, 1601 und 1701sowie dessen Brennstäbe nach /PRI 03/

Parameter	12-40	1601 / 1701		
Pelletdurchmesser [cm]	0,913	0,911		
Hüllrohrinnendurchmesser [cm]	(0,930		
Hüllrohraußendurchmesser [cm]	1,75			
Dish-Volumen [Vol%]	1,5	_1		
Aktive Brennstoffhöhe [cm]	340	355		
Steuerstabführungsrohrinnendurchmesser [cm]		1,24		
Steuerstabführungsrohraußendurchmesser [cm]	1,38			
Brennstabmittenabstand [cm] 1,43				
Brennelementmittenabstand [cm]		21,56		

¹ Für die Brennelemente 1601 und 1701 ist in /PRI 03/ kein Wert für ein eventuell vorliegendes Dish-Volumen enthalten.

Materialzusammensetzung

Bezüglich der Brennstoffzusammensetzung des Brennelements 12-40 bzw. der Probe GU1 enthält /PRI 03/ lediglich explizite Angaben zum ²³⁴U- und ²³⁵U-Anteil im Brennstoff der Probe sowie zu dessen Dichte. Im Fall der Brennelemente 1601 und 1701 bzw. der Proben GU3/GU3' und GU4 beinhaltet /PRI 03/ eine Tabelle mit entsprechenden Angaben, die lediglich mit "Rod Data" überschrieben ist. Auch hier ist zu vermuten, dass sich die dort aufgeführten Angaben in der Linie auf den Probenstab beziehen. Da es sich, soweit aus den Unterlagen ersichtlich, bei allen hier zur Analyse genutzten Brennelementen um Brennelemente mit einer einheitlichen Anreichung handelt, ist anzunehmen, dass die Brennstoffzusammensetzungen aller Brennstäbe hinreichend ähnlich sind, dass die Angaben zum Probenstab entsprechend auch für alle anderen Brennstäbe der Brennelemente unterstellt werden können. Die angegebenen Zahlenwerte sind in Tab. 2.56 und Tab. 2.57 zusammengefasst.

Die verschiedenen Angaben zur Brennstoffdichte in Tab. 2.57 sind für die Probe GU1 unter Berücksichtigung des unterstellten Dish-Volumens von 1,5 % miteinander konsistent. Entsprechend gilt dieses auch für die Angaben zu den Proben GU3/GU3' und GU4, wenn dort ebenfalls das gleiche Dish-Volumen unterstellt wird. Allerdings macht /PRI 03/ keine Angaben zu einem möglichen Dish-Volumen bei den Proben GU3/GU3' und GU4. Ohne solche Aussparungen wären dagegen zur Konsistenz der Dichteangaben eine Brennstoffdichte von 10,24 g/cm³ oder eine lineare Massenbelegung von 6,81 g/cm erforderlich.

Tab. 2.56Nuklidweise Brennstoffzusammensetzung der Proben GU1, GU3/GU3' und
GU4 nach /PRI 03/

	wt%				
lsotopenverhältnis	GU1	GU3/GU3', GU4			
²³⁴ U / U	0,036	0,042			
²³⁵ U / U	3,5	4,1			
²³⁸ U / U	96,464 ¹	95,858			

¹ Der Wert wird in /PRI 03/ nicht explizit angegeben.

Tab. 2.57Brennstoffdichteangaben für die Proben GU1, GU3/GU3' und GU4 nach
/PRI 03/

Parameter	GU1	GU3/GU3', GU4
Brennstoffdichte [g/cm ³]	10,4	10,4
Lineare Massenbelegung [g/cm]	6,7	6,7

Als Material für die Hüllrohre sowie für die Steuerstabführungsrohre wird in /PRI 03/ einheitlich Zircaloy-4 ("Zr-4") angegeben. Daten zur Dichte oder Zusammensetzung sind dagegen nicht enthalten.

Bestrahlungsgeschichte

Das Brennelement 12-40 (Probe GU1) wurde von Juli 1990 bis Juni 1994 während der Zyklen 12 bis 15 im Reaktor Gösgen bestrahlt (Tab. 2.58). Die Bestrahlungsschichte dieser Zyklen ist in /PRI 03/ in wenigen Zeitschritten und damit vergleichsweise grob angeben, und enthält sowohl kern- und brennelementgemittelte Daten wie auch probenspezifische Informationen, also Probenleistung und -abbrand sowie Brennstofftemperatur. Zusammengestellt sind die hier relevanten Informationen in Tab. 2.59.

Die Brennelemente 1601 und 1701 (Proben GU3/GU3⁴ und GU4) wurden von Juni 1994 bis Juni 1997 während der Zyklen 16 bis 18 im Reaktor Gösgen bestrahlt (Tab. 2.58). Die Bestrahlungsgeschichte ist in gleicher Form wie für das Brennelement 12-40 angegeben und die hier relevanten Informationen sind in Tab. 2.60 zusammengefasst. Zu beachten ist hierbei, dass sich der Probenstab für die Zyklen 16 und 17 zunächst im Brennelement 1601 befand und anschließend zusammen mit drei weiteren Stäben aus dem Brennelement 1601 in das Brennelement 1701 umgesetzt (s. u.) und in diesem während des Zyklus 18 weiter bestrahlt wurde (Abb. 2.29). Laut den Abbrandangaben in der Bestrahlungsgeschichte war das Brennelement 1701 vor dem Zyklus 18 aber bereits für einen Zyklus im Reaktor. Hierzu sind in /PRI 03/ allerdings keine genauen Angaben enthalten.

Es ist zu beachten, dass in Tab. 2.59 und Tab. 2.60 die Summe der angegebenen Zeitschrittlängen geringfügig von der Anzahl der Tage zwischen gegebenem Zyklusbeginn und -ende abweicht. Dieses ist dadurch begründet, dass die Zeitschrittlängen in Form von sog. "effective (full) power days" angegeben wurden (Tab. 2.58).

Zyklus	Zyklusbeginn	Zyklusende	Zyklusdauer Datum ¹ [d]	Zyklusdauer Tab. 2.76 ² [d]	Revision Datum ³ [d]
12	06.07.1990	01.06.1991	330	317,0	32
13	03.07.1991	30.05.1992	332	321,3	16
14	15.06.1992	05.06.1993	355	331,3	26
15	01.07.1993	04.06.1994	338	326,7	25
16	29.06.1994	10.06.1995	346	336,8	25
17	05.07.1995	08.06.1996	339	328,7	22
18	30.06.1996	07.06.1997	342	331,6	

Tab. 2.58Bestrahlungszeitraum der Brennelemente 12-40 (Zyklus 12 – 15) sowie1601 und 1701 (Zyklus 16 – 18) nach /PRI 03/

¹ Zykluslänge entsprechend des Beginn- und Enddatums, die Tage von Zyklusbeginn und -ende werden jeweils zur Hälfte der Zyklusdauer und der Revision zugeordnet. Diese Werte sind nachträglich berechnet und so nicht in /PRI 03/ enthalten.

² Aus den Bestrahlungsdaten nach Tab. 2.59 bzw. Tab. 2.60 errechnete Zyklusdauer.

³ Länge der Revisionen entsprechend des Zyklusende und -beginns.

Laut /PRI 03/ sind die für den Reaktor Gösgen angegebene Werte der Bestrahlungsgeschichte keine zeitschrittgemittelten Werte, sondern die Werte zum jeweiligen Zeitpunkt. Dies zeigt sich vor allem beim Vergleich der angegebenen Probenleistung zum Probenabbrand, welche diesem Fall nicht mehr ohne weiteres ineinander ungerechnet werden können. Dementsprechend ergeben sich hier je nach Zeitpunkt teils deutliche Diskrepanzen zwischen dem angegebenen Abbrand und dem nach gegebener Leistung zu erwartenden Abbrand. So weichen z. B. die angegebenen Abbrandzuwächse für die Probe GU4 von den laut Probenleistung zu erwartenden Zuwächsen in einzelnen Fällen um mehr als 20 % voneinander ab.

Bei den angegebenen Moderatortemperaturen sowie den ebenfalls aufgeführten korrespondieren Moderatordichten handelt es sich allerdings nur um Werte, die über den Reaktorkern gemittelt wurden. Der Vergleich der gegebenen Dichten mit den Werten der International Association for the Properties of Water and Steam (IAPWS) /INT 07/ unter Verwendung des angegebenen Kühlmitteldrucks von 153 bar und den gegebenen Moderatortemperaturen zeigt Abweichungen zwischen etwa 0,002 g/cm³ und 0,004 g/cm³ für die Moderatortemperaturen über 300 °C und Abweichungen von weniger als 0,001 g/cm³ für die Moderatortemperaturen unterhalb 300 °C. Dabei liegen die in /PRI 03/ aufgelisteten Dichten immer unter den Werten der IAPWS. Zwar wird ein Teil dieser Abweichungen durch Rundungseffekte bedingt sind, aufgrund der deutlichen Diskrepanz zwischen den Dichtewerten der höheren Moderatortemperaturen ist aber zu vermuten, dass die in /PRI 03/ aufgeführten Dichtewerte aus den ermittelten Moderatortemperaturen abgeleitet und dafür eine andere bzw. ältere Parametrisierung der Wasserzustandsgrößen als die hier berücksichtigte Parametrisierung der IAPWS verwendet wurde. Damit wären hier die Temperaturen die eigentlich für die Nachrechnung zu berücksichtigenden Größen. Nähere Angaben zur Bestimmung der Dichten werden in /PRI 03/ aber nicht gemacht.

Bezüglich der angegebenen Brennstofftemperaturen wird in /PRI 03/ explizit angegeben, dass es sich hierbei um effektive Brennstofftemperaturen für die jeweiligen Proben handelt.

Zyklus	Akku- mulierte Zeit [d]	Borkon- zentration [ppm]	Probenstab- leistung [W/cm]	Probenstab- abbrand [MWd/tHM]	Modera- tortempe- ratur [°C]	Brenn- stofftem- peratur [K]
12	0,0	1511	346,3	0	307,6	1151,3
	6,0	1179	357,4	364	308,1	1171,5
	150,0	565	334,9	9195	308,0	1136,0
	294,9	8	321,0	17454	308,3	1078,3
	317,0	8	311,7	18649	298,6	1046,7
Revision	45,0					
13	0,0	1477	227,4	18649	306,9	919,3
	6,0	1145	258,8	18899	307,3	967,7
	150,0	542	269,4	25572	307,1	957,9
	292,3	7	272,3	32262	307,5	943,1
	321,3	7	213,9	33594	294,4	842,0
Revision	26,7					
14	0,0	1517	237,6	33594	308,2	888,9
	6,0	1178	241,6	33789	308,7	894,4
	150,0	549	221,1	39879	308,6	854,8
	290,1	5	216,3	45757	308,9	841,4
	331,3	5	139,4	47911	289,5	709,8
Revision	49,7					
15	0,0	1594	191,7	47911	309,4	806,6
	6,0	1243	209,5	48121	309,8	829,8
	150,0	605	200,9	53506	309,6	810,6
	301,9	5	200,8	58842	309,9	804,0
	326,7	5	157,9	59656	297,6	738,9

Tab. 2.59Bestrahlungsdaten der Reaktorzyklen 12 bis 15 des Reaktors Gösgen für
die Probe GU1 /PRI 03/

	Akku-	Brennele-	Brennele- Borkon-	Probe GU3/GU3'			Probe GU4				
Zyklus	mulierte Zeit [d]	ment- abbrand [MWd/tHM]	zentration [ppm]	Proben- leistung [W/cm]	Probenstab- abbrand [MWd/tHM]	Modera- tortempe- ratur [°C]	Brennstoff- temperatur [K]	Proben- leistung [W/cm]	Probenstab- abbrand [MWd/tHM]	Modera- tortempe- ratur [°C]	Brennstoff- temperatur [K]
	0,0	0	1705	376,3	0	308,7	1203,1	92,5	0	308,7	731,1
16 (Dropp	6,0		1347	398,5	403	308,7	1244,1	124,2	111	308,7	782,0
element	150,0		690	369,2	10171	308,7	1194,6	191,8	4001	308,7	901,1
1601)	320,0		5	346,4	20796	308,7	1154,1	261,1	10530	308,7	1008,5
	336,8	19400	5	298,1	21771	300,2	1065,2	212,8	11248	300,2	919,9
Revision	34,2										
17	0,0	19400	1601	300,2	21771	308,7	1052,5	98,0	11248	308,7	744,8
(Brenn-	6,0		1247	314,3	22096	308,7	1068,5	125,7	11372	308,7	786,9
1601)	150,0		602	295,5	29872	308,7	1005,0	183,2	15250	308,7	865,5
	299,5		9	287,4	37461	308,4	978,7	242,3	20608	308,4	949,8
	328,7	35000	9	234,5	38866	297,1	865,4	185,5	21762	297,1	851,2
Revision	32,3										
18	0,0	17700	1675	280,8	38866	308,7	944,7	75,0	21762	308,7	687,0
(Brenn-	6,0		1300	273,6	39149	308,7	933,6	90,5	21858	308,7	709,1
1701)	150,0		631	236,7	45417	308,7	866,6	125,4	24504	308,7	756,8
	301,2		17	230,8	51400	308,4	858,0	167,2	28298	308,4	805,6
	331,6	33100	17	193,2	52504	297,2	794,9	130,6	29067	297,2	744,6

Tab. 2.60Bestrahlungsdaten der Reaktorzyklen 16 bis 18 des Reaktors Gösgen für die Proben GU3/GU3' und GU4 /PRI 03/

Neben den genannten Bestrahlungsdaten der betreffenden Brennelemente ist ferner zu beachten, dass in den hier relevanten Zeiträumen verschiedene Stabwechsel an den Brennelementen vorgenommen wurden. So wurden im Brennelement 12-40 zum Zyklus 14 drei Brennstäbe und zum Zyklus 15 weitere drei Brennstäbe in direkter Nachbarschaft zum Probenstab ausgetauscht. Die Positionen der ausgetauschten Brennstäbe und deren stabweise Abbrände gibt Abb. 2.30 wieder. Informationen zur Herkunft dieser Stäbe sind in /PRI 03/ nicht wiedergegeben. Die Angaben der stabweisen Abbrände lassen aber vermuten, dass in der Mehrzahl der Fälle die ausgetauschten Brennstäbe durch Stäbe mit einer ähnlichen Abbrandhistorie ersetzt wurden. So wurden zum Zyklus 14 die Brennstäbe auf den Positionen L12 und M12 durch Brennstäbe mit jeweils einem mittleren Abbrand von etwa 30 GWd/tHM ersetzt⁸, also einem Abbrand, wie er auch für die ursprünglich auf diesen Positionen vorhandenen Stäben zu diesem Zeitpunkt zu erwarten war, wie sich durch Vergleich mit den Abbränden der nicht ausgetauschten benachbarten Brennstäben ergibt (Abb. 2.30). Lediglich der ursprüngliche Brennstab auf der Position N12 wurde demnach durch einen Brennstab ersetzt, welcher mit knapp 43 GWd/tHM einen offensichtlich deutlich höheren Abbrand als der ursprüngliche Stab aufwies. Ein ähnliches Bild zeigt sich für den Zyklus 15. Hier gibt Abb. 2.30 direkt Aufschluss über die stabweisen Abbrände zum Ende des 14. und Beginn des 15. Zyklus. So werden wieder die Brennstäbe auf den Positionen M14 und L12 durch Stäbe mit ähnlichen Abbränden ersetzt, wohingegen der Stab auf Position L14 durch einen Stab mit einem deutlich höheren Abbrand ersetzt wird. Inwiefern die nachträglich eingesetzten Brennstäbe vor ihrem Einsatz im Brennelement 12-40 ggf. längere Zeit gelagert wurden und damit einer entsprechenden Abklingzeit ausgesetzt waren, geht aus den Angaben in /PRI 03/ nicht hervor.

Wie bereits erwähnt, wurden auch beim Brennelement 1701 mit dem Einsetzen des Probenstabs zusätzlich drei weitere Brennstäbe ausgetauscht (Abb. 2.29). Die dadurch betroffenen Stabpositionen befinden sich zwar nicht direkt auf benachbarten Positionen, aber doch jeweils in "zweiter Reihe" zum Probenstab. Zudem entstammen die eingesetzten Brennstäbe wie der Probenstab dem Brennelement 1601, womit sie etwa den doppelten Abbrand gegenüber den entfernten ursprünglichen Stäben des Brenn-

⁸ In Abb. 2.30 wird zwar keine Einheit für die angegebenen Abbrandwerte genannt, aber der Vergleich zur Abbrandgeschichte des Brennelements 12-40 (Tab. 2.59) zeigt, dass es sich bei den in Abb. 2.30 gegebenen Werte um mittlere Stababrände in GWd/tHM handeln dürfte.

elements 1701 aufweisen dürften. Welchen Positionen im Brennelement 1601 diese Stäbe entnommen wurden, geht aus den Informationen in /PRI 03/ nicht hervor.

Fuel Rod Scheme of the Gösgen 15x15 - 20 Fuel Assembly Burn-up Distribution :

Experimentelle Messergebnisse

Die Messungen der Nuklidkonzentrationen im bestrahlten Brennstoff und die dabei erzielten Resultate sind in /PRI 03/ in verschiedener Form zusammengefasst. Experimentell untersucht wurden insgesamt 18 bzw. 20 Nuklide der Aktinoiden Uran, Plutonium, Americium, Neptunium und Curium, zudem insgesamt zwölf Nuklide der Abbrandindikatoren Neodym, Cäsium und Cer, sowie 22 bzw. 21 Nuklide der stark neutronenabsorbierenden Spaltprodukte. Für die Proben GU3 und GU4 wurden die entsprechenden Messungen am Institut für Transurane (ITU) und für die Proben GU1 und GU3' am SCK•CEN durchgeführt. Neben den chemischen Verfahren zur Auflösung des Brennstoffs und der Trennung der verschiedenen Elemente erfolgten die Messungen der Nuklidkonzentrationen am ITU hauptsächlich mittels Massenspektrometrie mit induktiv gekoppeltem Plasma (ICP-MS), zumeist mit vorgeschalteter Ionenchromatographie zur Trennung der Elemente. Dagegen wurde am SCK•CEN für die Mehrzahl der vermessenen Nuklidkonzentrationen die Thermische Ionisations-Massenspektrometrie (TIMS) verwendet, in einzelnen Fällen kamen aber auch α -, β - bzw. γ -Spektrometrie sowie ICP-MS zum Einsatz. Im Detail sind die verwendeten Messmethoden in Tab. 2.61 nuklidweise aufgeschlüsselt.

Letztlich gemessen wurden die Nuklidkonzentrationen in Form der jeweiligen Massenanteile der einzelnen Nuklide im bestrahlten Brennstoff, woraus zusätzlich die Massenverhältnisse der einzelnen Nuklide relativ zur Uranmasse im bestrahlten Brennstoff erwurden. Neben Messzeitpunkt zur eigenständigen rechnet dem Zerfallsberücksichtigung wurden zudem die Massenverhältnisse auch auf das Bestrahlungsende des Brennelements zurückgerechnet und angegeben /PRI 03/. Zusätzlich sind für die Massenanteile der jeweiligen Nuklide im bestrahlten Brennstoff absolute bzw. relative Unsicherheiten abgeschätzt worden, die als 95%-Konfidenzintervall angeben sind. Zusammengestellt sind diese Resultate in Tab. 2.62 und Tab. 2.63 zusammen mit dem jeweiligen Datum der Messung.

Die ARIANE-interne Konsistenzprüfung der Messungen der Proben GU3 am ITU und GU3⁴ am SCK•CEN zeigte allerdings für verschiedene Nuklide deutliche Inkonsistenzen in den Resultaten auf. Hiervon waren insbesondere ²⁴³Am, ²⁴⁴Cm, ²⁴⁵Cm die Neodym-Isotope sowie einige weitere Spaltprodukte betroffen. Im Fall von ²⁴³Am, der Neodym-Isotope und ¹⁰⁶Ru führten weitere Untersuchungen dazu, dass die betreffenden Messungen des ITU an der Probe GU3 als fehlerhaft verworfen wurden. Diese Messwerte sind in Tab. 2.63 in Rot angegeben.

Nuklid	Messmethode							
NUKIIO	GU1 (SCK•CEN)	GU3 (ITU)	GU3' (SCK•CEN)	GU4 (ITU)				
²³² U	ICP-MS ¹	TIMS ¹	ICP-MS ¹	TIMS ¹				
²³⁴ U	TIMS	TIMS	TIMS	TIMS				
²³⁵ U	TIMS	TIMS	TIMS	TIMS				
²³⁶ U	TIMS	TIMS	TIMS	TIMS				
²³⁸ U	TIMS	TIMS	TIMS	TIMS				
²³⁷ Np	γ-Spec¹	IC-ICP-MS	ICP-MS	IC-ICP-MS				
²³⁸ Pu	TIMS	TIMS	TIMS	TIMS				
²³⁹ Pu	TIMS	TIMS	TIMS	TIMS				
²⁴⁰ Pu	TIMS	TIMS	TIMS	TIMS				
²⁴¹ Pu	TIMS	TIMS	TIMS	TIMS				
²⁴² Pu	TIMS	TIMS	TIMS	TIMS				
²⁴⁴ Pu	TIMS	_2	TIMS	_2				
²⁴¹ Am	TIMS	IC-ICP-MS	TIMS	IC-ICP-MS				
^{242(m)} Am	TIMS	IC-ICP-MS ¹	TIMS	IC-ICP-MS ¹				
²⁴³ Am	TIMS	IC-ICP-MS	TIMS	IC-ICP-MS				
²⁴² Cm	α-Spec	IC-ICP-MS ¹	α-Spec	IC-ICP-MS ¹				
²⁴³ Cm	γ-Spec	IC-ICP-MS1	γ-Spec	IC-ICP-MS ¹				
²⁴⁴ Cm	α-Spec	IC-ICP-MS	α-Spec	IC-ICP-MS				
²⁴⁵ Cm	TIMS	IC-ICP-MS	TIMS	IC-ICP-MS				
²⁴⁶ Cm	TIMS	_2	TIMS	_2				
¹⁴² Nd	TIMS	IC-ICP-MS	TIMS	IC-ICP-MS				
¹⁴³ Nd	TIMS	IC-ICP-MS	TIMS	IC-ICP-MS				
¹⁴⁴ Nd	TIMS	IC-ICP-MS	TIMS	IC-ICP-MS				
¹⁴⁵ Nd	TIMS	IC-ICP-MS	TIMS	IC-ICP-MS				
¹⁴⁶ Nd	TIMS	IC-ICP-MS	TIMS	IC-ICP-MS				
¹⁴⁸ Nd	TIMS	IC-ICP-MS	TIMS	IC-ICP-MS				
¹⁵⁰ Nd	TIMS	IC-ICP-MS	TIMS	IC-ICP-MS				
¹⁴⁷ Pm	β-Spec	IC-ICP-MS	β-Spec	IC-ICP-MS				
¹⁴⁷ Sm	TIMS	IC-ICP-MS	TIMS	IC-ICP-MS				
¹⁴⁸ Sm	TIMS	IC-ICP-MS	TIMS	IC-ICP-MS				
¹⁴⁹ Sm	TIMS	IC-ICP-MS	TIMS	IC-ICP-MS				
¹⁵⁰ Sm	TIMS	IC-ICP-MS	TIMS	IC-ICP-MS				

Tab. 2.61Nuklidweise Zusammenstellung der verwendeten Messmethoden für die
Proben GU1, GU3/GU3' und GU4 /PRI 03/

Nuklid	Messmethode							
Nuklid	GU1 (SCK•CEN)	GU3 (ITU)	GU3' (SCK•CEN)	GU4 (ITU)				
¹⁵¹ Sm	TIMS	IC-ICP-MS	TIMS	IC-ICP-MS				
¹⁵² Sm	TIMS	IC-ICP-MS	TIMS	IC-ICP-MS				
¹⁵⁴ Sm	TIMS	IC-ICP-MS	TIMS	IC-ICP-MS				
¹⁵¹ Eu	TIMS	_2	TIMS	_2				
¹⁵³ Eu	TIMS	IC-ICP-MS	TIMS	IC-ICP-MS				
¹⁵⁴ Eu	γ-Spec	IC-ICP-MS	γ-Spec	IC-ICP-MS				
¹⁵⁵ Eu	γ-Spec	IC-ICP-MS	γ-Spec	IC-ICP-MS				
¹⁵⁵ Gd	TIMS	IC-ICP-MS	TIMS	IC-ICP-MS				
¹³³ Cs	TIMS	IC-ICP-MS	TIMS	IC-ICP-MS				
¹³⁴ Cs	TIMS	IC-ICP-MS	TIMS	IC-ICP-MS				
¹³⁵ Cs	TIMS	IC-ICP-MS	TIMS	IC-ICP-MS				
¹³⁷ Cs	γ-Spec	IC-ICP-MS	γ-Spec	IC-ICP-MS				
⁹⁰ Sr	β-Spec	IC-ICP-MS	β-Spec	IC-ICP-MS				
⁹⁵ Mo	ICP-MS	IC-ICP-MS	ICP-MS	IC-ICP-MS				
⁹⁹ Tc	ICP-MS	IC-ICP-MS	ICP-MS	IC-ICP-MS				
¹⁰¹ Ru	ICP-MS	IC-ICP-MS	ICP-MS	IC-ICP-MS				
¹⁰⁶ Ru	γ-Spec	IC-ICP-MS	γ-Spec	IC-ICP-MS				
¹⁰³ Rh	ICP-MS	IC-ICP-MS	ICP-MS	IC-ICP-MS				
¹⁰⁹ Ag	ICP-MS	IC-ICP-MS ³	ICP-MS	IC-ICP-MS				
¹²⁵ Sb	γ-Spec	IC-ICP-MS ¹	γ-Spec	IC-ICP-MS ¹				
¹²⁹	2	ICP-MS	ICP-MS	ICP-MS				
¹⁴⁴ Ce	γ-Spec	IC-ICP-MS	γ-Spec	IC-ICP-MS				

¹ Kein Resultat, da Nuklidkonzentration unterhalb der Nachweisschwelle.

² Nicht gemessen.
³ Nicht messbar.

 Tab. 2.62
 Gemessene Massenverhältnisse im bestrahlten Brennstoff zum Messzeitpunkt für die Proben GU1 (SCK•CEN) und GU4 (ITU)

 /PRI 03/

Die Angaben beziehen sich auf die Gesamtmasse des bestrahlten Brennstoffs bzw. den Massenanteil von ²³⁸U im bestrahlten Brennstoff. Die angegebenen Unsicherheiten entsprechen einem 95%-Konfidenzintervall (2σ).

Nublid		Probe GU1	Probe GU4			
Nuklid	Messdatum	mg/g _{fuel}	mg/g∪¹	Messdatum	mg/g _{fuel}	mg/g∪¹
²³⁴ U	09.04.1997	$0,106 \pm 0,005_{2\sigma}$	0,130	20.05.1999	0,172 ± 0,001 _{2σ}	0,202
²³⁵ U	09.04.1997	$1,86 \pm 0,04_{2\sigma}$	2,27	20.05.1999	$12,8 \pm 0,1_{2\sigma}$	15,1
²³⁶ U	09.04.1997	$4,26 \pm 0,03_{2\sigma}$	5,22	20.05.1999	$4,05 \pm 0,04_{2\sigma}$	4,77
²³⁸ U	09.04.1997	811 ± 3 _{2σ}	992	20.05.1999	832 ± 1 _{2σ}	980,0
²³⁷ Np	-	-	-	16.06.1999	$0,463 \pm 0,022_{2\sigma}$	0,545
²³⁸ Pu	22.04.1997	$0,400 \pm 0,012_{2\sigma}$	0,490	17.08.1999	$0,098 \pm 0,002_{2\sigma}$	0,115
²³⁹ Pu	22.04.1997	4,31 ± 0,02 _{2σ}	5,27	17.08.1999	$4,55 \pm 0,02_{2\sigma}$	5,36
²⁴⁰ Pu	22.04.1997	$2,80 \pm 0,02_{2\sigma}$	3,43	17.08.1999	1,62 ± 0,01 _{2σ}	1,91
²⁴¹ Pu	22.04.1997	1,27 ± 0,01 _{2σ}	1,56	17.08.1999	$0,87 \pm 0,03_{2\sigma}$	1,03
²⁴² Pu	22.04.1997	1,37 ± 0,01 _{2σ}	1,67	17.08.1999	0,273 ± 0,002 _{2σ}	0,322
²⁴⁴ Pu	22.04.1997	2,58E+04 ± 1,29E+04 _{2σ}	3,16E+04	-	_	-
²⁴¹ Am	09.04.1997	0,219 ± 0,008 _{2σ}	0,268	16.06.1999	0,130 ± 0,015 _{2σ}	0,153
^{242(m)} Am	09.04.1997	6,04E+04 ± 0,64E+04 _{2σ}	7,40E+04	-	_	-
²⁴³ Am	09.04.1997	0,355 ± 0,013 _{2σ}	0,435	16.06.1999	0,0386 ± 0,0051 _{2σ}	0,0455
²⁴² Cm	04.06.1997	2,72E+04 ± 0,20E+04 _{2σ}	3,33E+04	-	_	
²⁴³ Cm	04.06.1997	2,98E+04 ± 2,19E+04 _{2σ}	3,65E+04	_	_	_

Needelied		Probe GU1		Probe GU4			
Νυκιία	Messdatum	mg/g _{fuel}	mg/g∪¹	Messdatum	mg/g _{fuel}	mg/g∪¹	
²⁴⁴ Cm	04.06.1997	0,215 ± 0,006 _{2σ}	0,263	16.06.1999	0,0109 ± 0,0003 _{2σ}	0,0129	
²⁴⁵ Cm	04.06.1997	0,0154 ± 0,0009 _{2σ}	0,0188	16.06.1999	5,06E+04 ± 1,03E+04	5,96E+04	
²⁴⁶ Cm	04.06.1997	$0,00466 \pm 0,00094_{2\sigma}$	0,00571	_	-	_	
¹⁴² Nd	09.04.1997	0,0597 ± 0,0060 _{2σ}	0,0730	30.09.1999	0,0106 ± 0,0011 _{2σ}	0,0125	
¹⁴³ Nd	09.04.1997	0,822 ± 0,005 _{2σ}	1,01	30.09.1999	$0,760 \pm 0,094_{2\sigma}$	0,896	
¹⁴⁴ Nd	09.04.1997	2,32 ± 0,01 _{2σ}	2,85	30.09.1999	1,08 ± 0,13 _{2σ}	1,27	
¹⁴⁵ Nd	09.04.1997	0,918 ± 0,005 _{2σ}	1,12	30.09.1999	0,596 ± 0,070 _{2σ}	0,702	
¹⁴⁶ Nd	09.04.1997	1,17 ± 0,01 _{2σ}	1,43	30.09.1999	0,573 ± 0,084 _{2σ}	0,675	
¹⁴⁸ Nd	09.04.1997	0,587 ± 0,003 _{2σ}	0,719	30.09.1999	0,306 ± 0,041 _{2σ}	0,360	
¹⁵⁰ Nd	09.04.1997	$0,299 \pm 0,002_{2\sigma}$	0,366	30.09.1999	0,139 ± 0,019 _{2σ}	0,163	
¹⁴⁷ Pm	29.04.1997	0,0561 ± 0,0058 _{2σ}	0,0687	01.10.1999	0,0963 ± 0,0130 _{2σ}	0,113	
¹⁴⁷ Sm	23.04.1997	0,196 ± 0,001 _{2σ}	0,240	01.10.1999	0,142 ± 0,030 _{2σ}	0,167	
¹⁴⁸ Sm	23.04.1997	$0,286 \pm 0,002_{2\sigma}$	0,350	01.10.1999	0,0974 ± 0,0078 _{2σ}	0,115	
¹⁴⁹ Sm	23.04.1997	$0,00289 \pm 0,00006_{2\sigma}$	0,00354	01.10.1999	$0,00266 \pm 0,00031_{2\sigma}$	0,00314	
¹⁵⁰ Sm	23.04.1997	$0,448 \pm 0,003_{2\sigma}$	0,548	01.10.1999	$0,214 \pm 0,015_{2\sigma}$	0,252	
¹⁵¹ Sm	23.04.1997	0,0115 ± 0,0001 _{2σ}	0,0141	01.10.1999	$0,00994 \pm 0,00044_{2\sigma}$	0,0117	
¹⁵² Sm	23.04.1997	$0,146 \pm 0,001_{2\sigma}$	0,179	01.10.1999	$0,0834 \pm 0,0053_{2\sigma}$	0,0982	
¹⁵⁴ Sm	23.04.1997	$0,0709 \pm 0,0005_{2\sigma}$	0,0868	01.10.1999	$0,0233 \pm 0,0026_{2\sigma}$	0,0275	
¹⁵¹ Eu	23.04.1997	6,33E+04 ± 0,13E+04 _{2σ}	7,75E+04	_	-	_	
¹⁵³ Eu	23.04.1997	0,185 ± 0,001 _{2σ}	0,226	04.10.1999	$0,0828 \pm 0,0091_{2\sigma}$	0,0976	
¹⁵⁴ Eu	23.04.1997	0,0284 ± 0,0011 _{2σ}	0,0348	04.10.1999	$0,0122 \pm 0,0029_{2\sigma}$	0,0144	

Nudelial		Probe GU1		Probe GU4			
NUKIIO	Messdatum	mg/g _{fuel}	mg/g∪¹	Messdatum	mg/g _{fuel}	mg/g∪¹	
¹⁵⁵ Eu	23.04.1997	0,00995 ± 0,00053 _{2σ}	0,0122	04.10.1999	0,00388 ± 0,00028 _{2σ}	0,00457	
¹⁵⁵ Gd	20.04.1997	0,00496 ± 0,00025 _{2σ}	0,00607	04.10.1999	$0,00233 \pm 0,00032_{2\sigma}$	0,00274	
¹³³ Cs	30.05.1997	1,52 ± 0,07 _{2σ}	1,86	06.10.1999	0,954 ± 0,031 _{2σ}	1,12	
¹³⁴ Cs	30.05.1997	0,0956 ± 0,0047 _{2σ}	0,117	06.10.1999	0,0365 ± 0,0009 _{2σ}	0,0430	
¹³⁵ Cs	30.05.1997	$0,455 \pm 0,022_{2\sigma}$	0,557	06.10.1999	0,329 ± 0,008 _{2σ}	0,388	
¹³⁷ Cs	30.05.1997	1,79 ± 0,09 _{2σ}	2,19	06.10.1999	0,877 ± 0,026 _{2σ}	1,03	
⁹⁰ Sr	24.06.1997	0,857 ± 0,129 _{2σ}	1,05	15.11.1999	$0,445 \pm 0,003_{2\sigma}$	0,525	
⁹⁵ Mo	10.04.2000	1,08 ± 0,08 _{2σ}	1,32	15.11.1999	0,680 ± 0,021 _{2σ}	0,801	
⁹⁹ Tc	10.04.2000	1,10 ± 0,14 _{2σ}	1,35	15.11.1999	0,528 ± 0,012 _{2σ}	0,623	
¹⁰¹ Ru	10.04.2000	1,14 ± 0,10 _{2σ}	1,40	15.11.1999	0,660 ± 0,026 _{2σ}	0,778	
¹⁰⁶ Ru	28.02.1997	$0,0351 \pm 0,0020_{2\sigma^2}$	0,0431	15.11.1999	$0,0218 \pm 0,0012_{2\sigma^2}$	0,0256	
¹⁰³ Rh	10.04.2000	0,54 ± 0,05 _{2σ}	0,662	15.11.1999	0,400 ± 0,019 _{2σ}	0,470	
¹⁰⁹ Ag	10.04.2000	$0,0662 \pm 0,0069_{2\sigma}$	0,0812	-	-	-	
¹²⁵ Sb	28.02.1997	$0,00411 \pm 0,00042_{2\sigma^2}$	0,00504	-	-	-	
¹²⁹	-	_	_	09.12.1999	$0,146 \pm 0,034_{2\sigma}$	0,173	
¹⁴⁴ Ce	28.02.1997	0,0297 ± 0,0023 _{2σ}	0,0363	30.09.1999	$0,0320 \pm 0,0024_{2\sigma}$	0,0377	

¹ Dieses Massenverhältnis zum Messzeitpunkt ist in /PRI 03/ nur für die "main solution" und ohne Unsicherheit gegeben. Hier aufgeführte Werte wurden aus den Verhältnissen der Massenteile im Brennstoff zum Messzeitpunkt in der "main solution" und in der Summe aus "main solution" und "residue solution" er-rechnet

² Massenanteil ist in /PRI 03/ nur zum Zeitpunkt des Bestrahlungsendes angegeben. Hier aufgeführter Wert zum Messzeitpunkt wurde mit dem Verhältnis der gegebenen Massenanteile in der "main solution" zum Messzeitpunkt und zum Bestrahlungsende zurückgerechnet.

Tab. 2.63 Gemessene Massenverhältnisse im bestrahlten Brennstoff zum Messzeitpunkt für die Proben GU3 (ITU) und GU3' (SCK•CEN) /PRI 03/

Die Angaben beziehen sich auf die Gesamtmasse des bestrahlten Brennstoffs bzw. den Massenanteil von ²³⁸U im bestrahlten Brennstoff. Die angegebenen Unsicherheiten entsprechen einem 95%-Konfidenzintervall (2σ).

Nuklid	Probe GU3			Probe GU3'		
	Messdatum	mg/g _{fuel}	mg/g∪ ¹	Messdatum	mg/g _{fuel}	mg/g∪¹
²³⁴ U	28.01.1999	0,124 ± 0,001 _{2σ}	0,150	12.10.1999	0,124 ± 0,006 _{2σ}	0,150
²³⁵ U	28.01.1999	5,31 ± 0,13 _{2σ}	6,42	12.10.1999	5,33 ± 0,03 _{2σ}	6,45
²³⁶ U	28.01.1999	4,99 ± 0,08 _{2σ}	6,03	12.10.1999	4,97 ± 0,03 _{2σ}	6,02
²³⁸ U	28.01.1999	817 ± 1 _{2σ}	987	12.10.1999	816 ± 32σ	987
²³⁷ Np	16.06.1999	0,727 ± 0,070 _{2σ}	0,878	22.12.1999	$0,709 \pm 0,054_{2\sigma}$	0,858
²³⁸ Pu	28.01.1999	$0,328 \pm 0,002_{2\sigma}$	0,396	11.10.1999	0,332 ± 0,010 _{2σ}	0,402
²³⁹ Pu	28.01.1999	5,11 ± 0,03 _{2σ}	6,18	11.10.1999	5,13 ± 0,03 _{2σ}	6,20
²⁴⁰ Pu	28.01.1999	2,50 ± 0,01 _{2σ}	3,02	11.10.1999	2,50 ± 0,01 _{2σ}	3,02
²⁴¹ Pu	28.01.1999	$1,48 \pm 0,04_{2\sigma}$	1,79	11.10.1999	1,43 ± 0,01 _{2σ}	1,74
²⁴² Pu	28.01.1999	0,895 ± 0,001 _{2σ}	1,08	11.10.1999	0,893 ± 0,005 _{2σ}	1,08
²⁴⁴ Pu	_	-	-	11.10.1999	1,63E-04 ± 0,81E-04 _{2σ}	1,97E-04
²⁴¹ Am	16.06.1999	0,167 ± 0,003 _{2σ}	0,202	21.12.1999	0,197 ± 0,007 _{2σ}	0,238
^{242(m)} Am	_	-	-	21.12.1999	8,10E-04 ± 0,86E-04 _{2σ}	9,80E-04
²⁴³ Am	16.06.1999	$0,236 \pm 0,009_{2\sigma^2}$	0,286	21.12.1999	0,210 ± 0,007 _{2σ}	0,254
²⁴² Cm	_	-	-	01.07.1999	9,82E-04 ± 0,40E-04 _{2σ}	0,00119
²⁴³ Cm	_	_	-	01.07.1999	5,23E-04 ± 1,01E-04 _{2σ}	6,33E-04
²⁴⁴ Cm	16.06.1999	0,136 ± 0,017 _{2σ}	0,164	01.07.1999	0,114 ± 0,004 _{2σ}	0,138

Nuklid	Probe GU3			Probe GU3'			
	Messdatum	mg/g _{fuel}	mg/g∪¹	Messdatum	mg/g _{fuel}	mg/g∪¹	
²⁴⁵ Cm	16.06.1999	$0,0102 \pm 0,0003_{2\sigma}$	0,0123	01.07.1999	$0,00854 \pm 0,00044_{2\sigma}$	0,0103	
²⁴⁶ Cm	-	_	-	01.07.1999	0,00127 ± 0,00013 _{2σ}	0,00153	
¹⁴² Nd	26.03.1999	$0,0319 \pm 0,0005_{2\sigma^2}$	0,0386	24.11.1999	$0,0373 \pm 0,0037_{2\sigma}$	0,0452	
¹⁴³ Nd	26.03.1999	$0,876 \pm 0,035_{2\sigma^2}$	1,06	24.11.1999	$0,945 \pm 0,005_{2\sigma}$	1,140	
¹⁴⁴ Nd	26.03.1999	$1,75 \pm 0,07_{2\sigma^2}$	2,11	24.11.1999	1,89 ± 0,01 _{2σ}	2,29	
¹⁴⁵ Nd	26.03.1999	$0,822 \pm 0,035_{2\sigma^2}$	0,993	24.11.1999	0,872 ± 0,005 _{2σ}	1,06	
¹⁴⁶ Nd	26.03.1999	$0,958 \pm 0,035_{2\sigma^2}$	1,16	24.11.1999	1,01 ± 0,01 _{2σ}	1,22	
¹⁴⁸ Nd	26.03.1999	$0,494 \pm 0,012_{2\sigma^2}$	0,596	24.11.1999	0,517 ± 0,003 _{2σ}	0,626	
¹⁵⁰ Nd	26.03.1999	$0,254 \pm 0,007_{2\sigma^2}$	0,307	24.11.1999	0,252 ± 0,001 _{2σ}	0,305	
¹⁴⁷ Pm	04.05.1999	$0,141 \pm 0,003_{2\sigma^2}$	0,170	03.03.2000	0,0825 ± 0,0148 _{2σ}	0,0998	
¹⁴⁷ Sm	04.05.1999	0,163 ± 0,018 _{2σ}	0,197	13.12.1999	0,173 ± 0,001 _{2σ}	0,209	
¹⁴⁸ Sm	04.05.1999	0,231 ± 0,018 _{2σ}	0,279	13.12.1999	0,224 ± 0,001 _{2σ}	0,271	
¹⁴⁹ Sm	04.05.1999	$0,00407 \pm 0,00175_{2\sigma}$	0,00492	13.12.1999	0,00296 ± 0,000062σ	0,00359	
¹⁵⁰ Sm	04.05.1999	0,394 ± 0,018 _{2σ}	0,476	13.12.1999	0,393 ± 0,003 _{2σ}	0,476	
¹⁵¹ Sm	04.05.1999	$0,0129 \pm 0,0087_{2\sigma}$	0,0156	13.12.1999	0,0127 ± 0,0001 _{2σ}	0,0154	
¹⁵² Sm	04.05.1999	0,115 ± 0,005 _{2σ}	0,139	13.12.1999	0,118 ± 0,001 _{2σ}	0,143	
¹⁵⁴ Sm	04.05.1999	0,0469 ± 0,0035 _{2σ}	0,0566	13.12.1999	0,0506 ± 0,0003 _{2σ}	0,0612	
¹⁵¹ Eu	_	_	_	01.07.1999	3,70E-04 ± 0,08E+04 _{2σ}	4,48E-04	
¹⁵³ Eu	04.05.1999	0,165 ± 0,007 _{2σ}	0,199	01.07.1999	0,162 ± 0,001 _{2σ}	0,197	
¹⁵⁴ Eu	04.05.1999	0,0327 ± 0,0005 _{2σ}	0,0395	01.07.1999	0,0306 ± 0,0016 _{2σ}	0,037	
¹⁵⁵ Eu	04.05.1999	0,0109 ± 0,0035 _{2σ}	0,0131	01.07.1999	0,00997 ± 0,00098 _{2σ}	0,0121	
Nuclei		Probe GU3		Probe GU3'			
-------------------	------------	-------------------------------------	---------	------------	-----------------------------------	---------	--
NUKIIO	Messdatum	mg/g _{fuel}	mg/g∪¹	Messdatum	mg/g _{fuel}	mg/g∪¹	
¹⁵⁵ Gd	06.10.1999	$0,00367 \pm 0,00023_{2\sigma}$	0,00443	01.12.1999	$0,00341 \pm 0,00007_{2\sigma}$	0,00413	
¹³³ Cs	04.05.1999	1,47 ± 0,03 _{2σ}	1,78	01.07.1999	$1,39 \pm 0,04_{2\sigma}$	1,68	
¹³⁴ Cs	04.05.1999	0,128 ± 0,011 _{2σ}	0,154	01.07.1999	$0,109 \pm 0,003_{2\sigma}$	0,132	
¹³⁵ Cs	04.05.1999	$0,424 \pm 0,014_{2\sigma}$	0,512	01.07.1999	$0,405 \pm 0,012_{2\sigma}$	0,490	
¹³⁷ Cs	04.05.1999	1,58 ± 0,02 _{2σ}	1,91	01.07.1999	$1,59 \pm 0,05_{2\sigma}$	1,92	
⁹⁰ Sr	07.10.1999	$0,645 \pm 0,004_{2\sigma}$	0,780	16.05.2000	0,630 ± 0,101 _{2σ}	0,763	
⁹⁵ Mo	07.10.1999	1,03 ± 0,03 _{2σ}	1,24	10.04.2000	$1,15 \pm 0,11_{2\sigma}$	1,39	
⁹⁹ Tc	07.10.1999	0,977 ± 0,039 _{2σ}	1,18	10.04.2000	$0,114 \pm 0,020_{2\sigma}$	1,38	
¹⁰¹ Ru	07.10.1999	1,07 ± 0,04 _{2σ}	1,29	10.04.2000	1,21 ± 0,03 _{2σ}	1,47	
¹⁰⁶ Ru	07.10.1999	$0,0903 \pm 0,0065_{2\sigma^{2,3}}$	0,109	01.07.1999	$0,0627 \pm 0,0178_{2\sigma^3}$	0,0760	
¹⁰³ Rh	07.10.1999	0,471 ± 0,027 _{2σ}	0,569	10.04.2000	$0,494 \pm 0,048_{2\sigma}$	0,599	
¹⁰⁹ Ag	_	_	-	10.04.2000	0,105 ± 0,019 _{2σ}	0,127	
¹²⁵ Sb	_	_	-	01.07.1999	$0,00394 \pm 0,00074_{2\sigma^3}$	0,00476	
129	11.03.1999	0,231 ± 0,035 _{2σ}	0,279	24.12.1999	$0,239 \pm 0,027_{2\sigma}$	0,290	
¹⁴⁴ Ce	03.05.1999	0,0713 ± 0,0018 _{2σ}	0,0861	01.07.1999	0,0632 ± 0,0022 _{2σ}	0,0765	

¹ Dieses Massenverhältnis zum Messzeitpunkt ist in /PRI 03/ nur für die "main solution" und ohne Unsicherheit gegeben. Hier aufgeführte Werte wurden aus den Verhältnissen der Massenteile im Brennstoff zum Messzeitpunkt in der "main solution" und in der Summe aus "main solution" und "residue solution" errechnet.

² Wert nachträglich als fehlerhaft verworfen.

³ Massenanteil ist in /PRI 03/ nur zum Zeitpunkt des Bestrahlungsendes angegeben. Hier aufgeführter Wert zum Messzeitpunkt wurde mit dem Verhältnis der gegebenen Massenanteile in der "main solution" zum Messzeitpunkt und zum Bestrahlungsende zurückgerechnet.

2.4.2 Modellierung

Aus den in Kap. 2.4.1 beschriebenen Daten wurden geeignete Rechenmodelle für die verschiedenen Proben erstellt, welche im Folgenden beschrieben werden. Aufgrund der nachtäglich identifizierten Fehler in einzelnen Nuklidkonzentrationsmessungen des ITU an der Probe GU3 wurde hier auf einen Vergleich mit den Messdaten des ITU verzichtet und zunächst nur die Daten des SCK•CEN, d. h. der Probe GU3' genutzt.

Eine Besonderheit besteht hier bei der Nachrechnung der Proben GU3' und GU4 durch den Wechsel des Probenstabs nach zwei Zyklen (Zyklus 16 und 17) aus dem Brennelement 1601 in das Brennelement 1701 und dessen dortiger Bestrahlung für die Dauer eines weiteren Zyklus (Zyklus 18). Dabei ist zu beachten, dass das Brennelement 1701 bereits vor dem Zyklus 18 für einen Zyklus bestrahlt wurde. Um einen Stabwechsel in dieser Form zu modellieren, sind die Nachrechnung der Proben GU3' und GU4 in jeweils zwei Rechnung mit eigenständigen Eingabedatensätzen zu untergliedern. In der jeweils ersten Rechnung beider Proben werden die Zyklen 16 und 17 mit dem Brennelement 1601 simuliert. Das dabei für den Probenstab errechnete Nuklidinventar wird ausgelesen und in den jeweils zweiten Eingabedatensatz als eigenständiges Material übertragen. Die zweiten Rechnungen simulieren dann die Zyklen des Brennelements 1701. Während dieser Rechnungen werden die zuvor errechneten Nuklidinventare des Probenstabs zu Beginn des zweiten Zyklus per Materialtauschoption mit dem Material des entsprechenden Brennstabs ausgetauscht, an dessen Position der Probenstab eingebracht wurde, und die Rechnung entsprechend mit dem Material des Probenstabs vorgesetzt.

Allgemeine Parameter

Für alle durchgeführten Nachrechnungen mit MOTIVE sind einheitliche allgemeine Parameter, wie Neutronentransport- und Inventarcode, Wirkungsquerschnittsbibliothek, Predictor-Corrector-Methode, etc. gewählt worden. Diese Werte sind in Tab. 2.13 zusammengestellt. Zudem ist eine Liste mit Nukliden anzugeben, für welche die errechneten Konzentrationen auszugeben werden sollen. Hier wurden die Nuklide gewählt, für welche Messdaten vorliegen (Tab. 2.62 und Tab. 2.63).

Modellgeometrie

Die hier betrachteten Proben stammen aus nahezu baugleichen Brennelementen (Tab. 2.55), zudem sind die Proben GU3' und GU4 demselben Probenstab entnommen worden, so dass für die Probennachrechnungen mit Ausnahme der Unterschiede in den Pelletradien und in der Identifikation des jeweiligen Probenstabs identische Modellgeometrien verwendet wurden. Die Rechenmodelle besteht dabei in erster Linie aus einem unendlichen Gitter identischer Brennelemente, welches mithilfe eines einzelnen Brennelements mit reflektierenden Randbedingungen gebildet wurde. Das Modell ist dabei auf zwei Dimensionen beschränkt, d. h. in axialer Brennstabrichtung wurde das Modell nicht weiter unterteilt und ebenfalls durch reflektierende Randbedingungen abgeschlossen. Das jeweils verwendete Brennelement wurde gemäß Abb. 2.28 bzw. Abb. 2.29 modelliert und weist demzufolge eine 1/8-Spiegelsymmetrie auf. Die einzelnen Stäbe im Brennelement wurden separat modelliert, also durch eigene abzubrennende Materialien im Rechenmodell beschrieben, wobei Stäbe auf homologen Positionen zusammengefasst wurden. Auf diese Weise wurde unter Berücksichtigung der Spiegelsymmetrie jeweils 32 Brennstäbe in den Modellen separat betrachtet. Am Beispiel des Brennelements 12-40 (Probe GU1) zeigt Abb. 2.31 die sich daraus ergebende Brennstabbelegung. Dabei gibt die Zahl 1 den Probenstab, die Zahlen 11 bis 41 die übrigen Brennstäbe bzw. die abzubrennenden Materialien und die Zahlen 100 die Steuerstabführungsrohre wieder. Die Umsetzung dieses Rechenmodells in ein KENO-VI-Geometriemodell zeigt Abb. 2.32. Für die Brennelemente 1601 und 1701 ergeben sich analoge Brennstabbelegungen, die sich von Abb. 2.31 lediglich durch die Position des Probenstabs und einer demzufolge veränderten Nummerierung der Brennstäbe unterscheiden.

11	12	13	14	15	16	17	18	17	16	15	14	13	12	11
12	19	20	21	22	23	24	25	24	23	22	21	20	19	12
13	20	100	26	1	100	27	28	27	100	1	26	100	20	13
14	21	26	29	30	31	32	33	32	31	30	29	26	21	14
15	22	1	30	100	34	35	100	35	34	100	30	1	22	15
16	23	100	31	34	36	37	38	37	36	34	31	100	23	16
17	24	27	32	35	37	39	40	39	37	35	32	27	24	17
18	25	28	33	100	38	40	41	40	38	100	33	28	25	18
17	24	27	32	35	37	39	40	39	37	35	32	27	24	17
16	23	100	31	34	36	37	38	37	36	34	31	100	23	16
15	22	1	30	100	34	35	100	35	34	100	30	1	22	15
14	21	26	29	30	31	32	33	32	31	30	29	26	21	14
13	20	100	26	1	100	27	28	27	100	1	26	100	20	13
12	19	20	21	22	23	24	25	24	23	22	21	20	19	12
11	12	13	1 /	15	16	17	1 8	17	16	15	1 /	13	12	11

Abb. 2.31Brennstabbelegung im Rechenmodell für das Brennelement 12-40 aus
dem Reaktor Gösgen

Abb. 2.32 Schematische Darstellung des KENO-VI-Geometriemodells für das Brennelement 12-40 aus dem Reaktor Gösgen

Die geometrischen Abmessungen bzw. Abstände der Brennstäbe, Steuerstabführungsrohre und des Brennelements selbst sind entsprechend Tab. 2.55 modelliert worden. Der Zwischenraum ("Gap") zwischen Pellet und Hüllrohr wurde hier mit modelliert, d. h. auf eine Berücksichtigung des Anschwellens der Pellets während des Abbrands ("Swelling") wurde verzichtet.

Materialzusammensetzung

Die Brennstoffzusammensetzungen wurden entsprechend den Angaben in Tab. 2.56 und Tab. 2.57 modelliert. Dabei wurde unterstellt, dass die Angaben der Brennstoffzusammensetzungen für alle Brennstäbe der Brennelemente gelten. Für die Brennstoffdichte wurde hier eine Dichte von 10,244 g/cm³ angenommen, welche der angegebenen linearen Massenbelegung von 6,7 g/cm entspricht, wodurch hier somit das angegebene Dish-Volumen von 1,5 % berücksichtigt wird. Aus den angegebenen gewichtsanteiligen Zusammensetzungen wurden die Kernzahldichten errechnet, wobei dazu für Sauerstoff das mittlere Atomgewicht entsprechend der natürlichen Isotopenzusammensetzung genutzt wurde. Im Rechenmodell wurde aber zur Vereinfachung der Sauerstoff als 100 % ¹⁶O modelliert. Die verwendeten Zusammensetzungen sind im Einzelnen in Tab. 2.64 aufgeführt.

Tab. 2.64	Verwendete nuklidweise Zusammensetzung der Brennstoffe der Brenn-
	elemente 12-40, 1601 und 1701 aus dem Reaktor Gösgen nach /PRI 03/

Element ¹ /	Mittlere	E	Brenneleme	nt 12-40		
Isotop	Atom- masse [u]	Anteil im Element		Kernzahldichte ²		
		[wt%]	[at%]	[1/(barn*cm)]		
U	237,9428 ³			2,2853E-024		
²³⁴ U	234,0409	0,036	0,0366	8,3642E-06		
²³⁵ U	235,0439	3,500	3,5432	8,0971E-04		
²³⁸ U	238,0508	96,464	96,4202	2,2035E-02		
0	15,9994 ³			4,5706E-02 ⁴		
		Brennelemente				
Element ¹ /	Mittlere	Bre	nnelemente	e 1601, 1701		
Element ¹ / Isotop	Mittlere Atom- masse [u]	Bre Anteil im	nnelemente Element	e 1601, 1701 Kernzahldichte ²		
Element ¹ / Isotop	Mittlere Atom- masse [u]	Brei Anteil im [wt%]	nnelemente Element [at%]	e 1601, 1701 Kernzahldichte ² [1/(barn*cm)]		
Element ¹ / Isotop	Mittlere Atom- masse [u] 237,9243 ³	Brei Anteil im [wt%]	nnelemente Element [at%]	2,2854E-02 ⁴		
Element ¹ / Isotop U ²³⁴ U	Mittlere Atom- masse [u] 237,9243 ³ 234,0409	Brei Anteil im [wt%] 0,042	Element [at%]	* 1601, 1701 Kernzahldichte ² [1/(barn*cm)] 2,2854E-02 ⁴ 9,7581E-06		
Element ¹ / Isotop U ²³⁴ U ²³⁵ U	Mittlere Atom- masse [u] 237,9243 ³ 234,0409 235,0439	Brei Anteil im [wt%] 0,042 4,100	Element [at%] 0,0427 4,1502	* 1601, 1701 Kernzahldichte ² [1/(barn*cm)] 2,2854E-02 ⁴ 9,7581E-06 9,4851E-04		
Element ¹ / Isotop U ²³⁴ U ²³⁵ U ²³⁸ U	Mittlere Atom- masse [u] 237,9243 ³ 234,0409 235,0439 238,0508	Brei Anteil im [wt%] 0,042 4,100 95,858	Element [at%] 0,0427 4,1502 95,8071	• 1601, 1701 Kernzahldichte ² [1/(barn*cm)] 2,2854E-02 ⁴ 9,7581E-06 9,4851E-04 2,1896E-02		

¹ Sauerstoff wurde bei der Berechnung der Kernzahldichten als Element behandelt und nicht nuklidweise unterschieden; im Rechenmodell wurde es zu 100 % ¹⁶O mit der gegebenen Kernzahldichte modelliert.

² Die berücksichtigten nuklidweisen Brennstoffzusammensetzungen sind durch die hellblau unterlegten Einträge gegeben.

³ Mittleres Atomgewicht des jeweiligen Elements.

⁴ Kernzahldichte des jeweiligen Elements (= Summe der Kernzahldichten der Isotope).

Das Hüllrohrmaterial ist laut /PRI 03/ Zircaloy-4, ohne dass dort aber eine Zusammensetzung angegeben wurde. Daher wird hier die Zusammensetzung des Zircaloy-4 aus der SCALE Standard Composition Library /PET 16/ mit der dort angegebenen Dichte von 6,56 g/cm³ übernommen. Die konkrete verwendetet Zusammensetzung ist in Tab. 2.65 angegeben.

In Ermangelung entsprechender Informationen wurde angenommen, dass das Hüllrohr mit 30 bar Helium beaufschlagt wurde. Dementsprechend wurde im Rechenmodell Helium mit einer Kernzahldichte von 7,4122E-04 als Material im Zwischenraum zwischen Pellet und Hüllrohr ("Gap") eingesetzt. Für die Berechnung der Kernzahldichte wurde die natürliche Isotopenzusammensetzung des Heliums mit dem daraus resultierenden mittleren Atomgewicht genutzt, im Rechenmodell wurde aber zur Vereinfachung das Helium als reines ⁴He mit der genannten Kernzahldichte angenommen.

Zusammensetzung Zircaloy-4		Natürlic Elemen	he tzusammensetzi	Nuklidweise Zusammensetzung		
Element	Anteil [wt%]	Isotop	Isotop Anteil im Ele- ment [at%] [u]		Zircaloy-4 ¹ [1/(barn*cm)]	
Zirconium 98,2				91,2236 ²	4,254E-02 ³	
		⁹⁰ Zr	51,45	89,9047	2,189E-02	
		⁹¹ Zr	11,22	90,9056	4,773E-03	
		⁹² Zr	17,15	91,9050	7,296E-03	
		⁹⁴ Zr	17,38	93,9063	7,393E-03	
		⁹⁶ Zr	2,80	95,9083	1,191E-03	
Zinn	1,45			118,7101 ²	4,825E-04 ³	
		¹¹² Sn	0,97	111,9048	4,681E-06	
		¹¹⁴ Sn	0,66	113,9028	3,185E-06	
		¹¹⁵ Sn	0,34	114,9033	1,641E-06	
		¹¹⁶ Sn	14,54	115,9017	7,016E-05	
		¹¹⁷ Sn	7,68	116,903	3,706E-05	
		¹¹⁸ Sn	24,22	117,9016	1,169E-04	
		¹¹⁹ Sn	8,59	118,9033	4,145E-05	
		¹²⁰ Sn	32,58	119,9022	1,572E-04	
		¹²² Sn	4,63	121,9034	2,234E-05	
		¹²⁴ Sn	5,79	123,9053	2,794E-05	
Eisen	0,21			55,8451 ²	1,486E-04 ³	
		⁵⁴ Fe	5,845	53,9396	8,683E-06	
		⁵⁶ Fe	91,754	55,9349	1,363E-04	
		⁵⁷ Fe	2,119	56,9354	3,148E-06	
		⁵⁸ Fe	0,282	57,9333	4,189E-07	
Chrom	0,10			51,9961 ²	7,598E-05 ³	
		⁵⁰ Cr	4,345	49,9461	3,301E-06	
		⁵² Cr	83,789	51,9405	6,366E-05	
		⁵³ Cr	9,501	52,9407	7,219E-06	
		⁵⁴ Cr	2,365	53,9389	1,797E-06	
Hafnium	0,01			178,4849 ²	2,213E-06 ³	
		¹⁷⁴ Hf	0,16	173,9400	3,541E-09	
		¹⁷⁶ Hf	5,26	175,9414	1,164E-07	
		¹⁷⁷ Hf	18,60	176,9432	4,117E-07	
		¹⁷⁸ Hf	27,28	177,9437	6,038E-07	
		¹⁷⁹ Hf	13,62	178,9458	3,015E-07	
		¹⁸⁰ Hf	35,08	179,9465	7,764E-07	

Tab. 2.65 Im Rechenmodell verwendete nuklidweise Zusammensetzung von Zirkaloy-4 nach /PET 16/

¹ Die nuklidweise Zusammensetzung von Zircaloy-4 ist durch die hellblau unterlegten Einträge gegeben.
 ² Mittleres Atomgewicht des jeweiligen Elements.
 ³ Kernzahldichte des jeweiligen Elements (= Summe der Kernzahldichten der Isotope).

Bestrahlungsgeschichte

Zur Modellierung der Bestrahlungsgeschichte, also des zeitlichen Verlaufs von Leistung, Brennstofftemperatur, Hüllrohrtemperatur, Moderatortemperatur und Borkonzentration, wurden in erster Linie die Werte aus Tab. 2.59 bzw. Tab. 2.60 herangezogen. Die dort vorgegebene zeitliche Unterteilung der Daten wurde für die Nachrechnung übernommen. Es wurde lediglich der erste Zeitschritt nochmals geteilt, so dass ein zusätzlicher kurzer Zeitschritt von 0,1 Tag zu Beginn jedes Zyklus entstand. Bei Verwendung der gegebenen Bestrahlungsdaten ist aber zu beachten, dass es sich hierbei nicht um zeitintervallgemittelte Werte, sondern und Werte zu einem gegebenen Zeitpunkt handelt (vgl. Kap. 2.4.1, Abschnitt "Bestrahlungsgeschichte"), wohingegen für Probennachrechnungen in der Regel zeitintervallgemittelte Werte erforderlich bzw. zu empfehlen sind. Daher wurden für die Leistungsverläufe und Borkonzentrationen nicht direkt die angegebenen Daten verwendet, sondern aus ihnen zeitintervallgemittelte Werte errechnet und diese für die Nachrechnungen herangezogen. Ferner ist zu beachten, dass keine Angaben zum ersten Zyklus des Brennelements 1701 vorliegen, lediglich der mittlere Brennelementabbrand zu Beginn des Zyklus 18 ist bekannt (Tab. 2.60). Um dennoch für die Nachrechnung die notwendigen Eingabedaten zur Simulation dieses ersten Zyklus von Brennelement 1701 zu erhalten, wurden hier der Einfachheit halber die Bestrahlungsdaten des Zyklus 17 mit einem an den zu erzielenden Abbrand angepassten Leistungsverlauf herangezogen. Es wird so also unterstellt, dass das Brennelement 1701 im Zyklus 17 im Reaktor eingesetzt wurden.

Im Einzelnen wurden für die Simulation der Leistungsverläufe aus den gegebenen zeitabhängigen Probenabbränden mittlere Probenstableistungen in den Intervallen zwischen den aufgeführten Zeitpunkten errechnet und diese für die Nachrechnung genutzt. Die so erzielten Leistungswerte des Zyklus 17 wurden für das Brennelement 1701 zusätzlich mit dem Verhältnis des mittleren Abbrands nach dem ersten Zyklus vom Brennelement 1701 und dem Zuwachs im mittleren Abbrand des Brennelements 1601 im Zyklus 17 skaliert, d. h. mit etwa einem Faktor 1,135 (Tab. 2.60). Um den messtechnisch ermittelten Endabbrand der Proben in den Abbrandrechnungen zu erzielen, wurden die so abgeleiteten Leistungswerte probenweise mit einem über die gesamte Leistungsgeschichte konstanten Faktor skaliert, so dass jeweils die für den Abbrandindikator ¹⁴⁸Nd rechnerisch erzielte Nuklidkonzentration mit dem jeweiligen für die Probe gemessenen Wert innerhalb von 0,2 % übereinstimmt. Im Fall der Proben GU3⁴ und GU4 wurde dieser Skalierungsfaktor insbesondere auf die Leistungsverläufe beider Brennelemente (1601 und 1701) angewandt, d. h. auch auf den ersten Zyklus des Brennelements 1701, um einen konsistente Abbranddefinition zu erhalten.

Ebenso wurden aus den gegebenen zeitabhängigen Borkonzentrationen mittlere Konzentrationen errechnet. Dazu wurde unterstellt, dass sich die Borkonzentrationen zwischen den gegebenen Zeitpunkten linear ändern und daraus jeweils die mittleren Konzentrationen für die in den Nachrechnungen berücksichtigten Zeitintervalle errechnet und in den Nachrechnungen genutzt.

Dagegen wurden die Brennstoff- und Moderatortemperaturen wie in /PRI 03/ angegeben für die Nachrechnungen verwendet. Dazu wurden diese Temperaturen ab dem gegebenen Zeitpunkt bis zum nächsten aufgeführten Zeitpunkt als konstant unterstellt. In diesem Fall ist nicht zu erwarten, dass eine Mittelung bzw. Interpolation zwingend zu realistischeren Werten führt, da insbesondere die Brennstofftemperaturen wesentlich von den lokalen Stableistungen abhängen, letztere aber unabhängig von den gegebenen Probenleistungen für die Nachrechnungen neu bestimmt wurden. Dementsprechend wäre hier eine Neubestimmung der Brennstofftemperaturen notwendig, auf die zur Vereinfachung zunächst verzichtet wurde. Im Fall der Moderatortemperaturen sind nur geringfügige Änderungen zu beobachten, so dass hier eine Mittelung oder Interpolation zu keinen wesentlich anderen Werten führen würde. Für den ersten Zyklus des Brennelements 1701 wurde ebenfalls zur Vermeidung einer Bestimmung der Brennstofftemperaturen die Temperaturwerte des Brennelements 1601 für den Zyklus 17 übernommen, auch wenn hier die gleiche Argumentation bzgl. der Gültigkeit der Brennstofftemperaturen gilt.

Die so resultierenden Bestrahlungsgeschichten sind in Tab. 2.66 und Tab. 2.67 zusammengefasst. Die dort angegebenen relativen Leistungen je Zeitschritt beziehen sich auf das Maximum der jeweiligen Leistungsgeschichte der Proben, welches für die Probe GU1 mit einem Wert von 59,457 MW/tHM in der Mitte des Zyklus 12, für die Probe GU3' mit einem Wert von 67,707 MW/tHM in der Mitte des Zyklus 16 sowie für die Probe GU4 mit einen Wert von etwa 45,020 MW/tHM am Ende des Zyklus 16 auftritt.

Neben den Probenabbränden werden in /PRI 03/ auch brennelementgemittelte Abbrände aufgeführt, aus welchen sich entsprechend brennelementgemittelte Leistungen errechnet werden können. Bisher bezieht MOTIVE die vom Anwender angegebene Leistung grundsätzlich auf das gesamte Rechenmodell, was hier für die Verwendung dieser brennelementgemittelten Leistungsverläufe sprechen würde. Dennoch wurde trotz der in MOTIVE fehlenden Möglichkeit, den für die Rechnung gegebenen Leistungsverlauf einem speziellen Stab zuzuordnen, die errechneten Probenleistungen für die Nachrechnungen genutzt. Zum einen erweist sich das Verhältnis der in /PRI 03/ gegebenen brennelementgemittelten Abbrände und jeweiligen Probenabbrände für die Probe GU1 innerhalb der einzelnen Zyklen als nahezu konstant und steigt von Zyklus 12 zu Zyklus 15 nur um lediglich 5 % an, so dass sich die jeweils abzuleitenden Leistungsverläufe nach Normierung auf die gemessene ¹⁴⁸Nd-Konzentration nicht wesentlich unterscheiden. Zum anderen werden für die Proben GU3' und GU4 die brennelementgemittelten Abbrände nur für Zyklusbeginn und -ende aufgeführt, so dass sich daraus für diese Proben kein vergleichbarer zeitlich aufgelöster Verlauf der brennelementgemittelten Leistungen ableiten lässt. Folglich stehen für die Nachrechnungen dieser Proben nur die Probenleistungen zur Verfügung.

Bislang ist es in MOTIVE nur möglich, eine einheitliche Brennstofftemperatur für alle Brennstoffmaterialien anzugeben, wodurch in den Nachrechnungen allen Brennstäben dieselbe Brennstofftemperatur zugeordnet wurde. Es ist aber zu erwarten, dass die Brennstäbe entsprechend ihrer Leistung bei der Bestrahlung unterschiedliche Temperaturen aufwiesen. So wird durch dieses Vorgehen ein gewisser Fehler in die Nachrechnungen eingebracht. Die Maßgabe, die Abbrandrechnung möglichst mit den gegebenen Daten durchzuführen, lässt sich mit der derzeitigen MOTIVE-Version aber nur in dieser Weise erfüllen.

Zusätzlich zur Moderatortemperatur wurde der nominelle Moderatordruck von 153 bar zur Berechnung der Moderatordichte verwendet. Dementsprechend wurde die zusätzlich in /PRI 03/ angegebene Moderatordichte nicht weiter berücksichtigt, bzw. durch eine aktuelle Parametrisierung der Wasserzustandsgleichung neu berechnet (vgl. Kap. 2.4.1, Abschnitt "Bestrahlungsgeschichte").

Auf die Modellierung des Brennstabtauschs im Brennelement 12-40 (Probe GU1) in den Zyklen 14 und 15 wurde bei der hier vorliegenden Probennachrechnung verzichtet. Zwar liegen die ausgetauschten Brennstäbe in direkter Nachbarschaft zum Probenstab, in der Mehrzahl der Fälle weisen die neu eingebrachten Brennstäbe aber ähnliche Abbrände wie die ursprünglichen Brennstäbe auf, so dass anzunehmen ist, dass die neu eingebrachten Brennstäbe eine ähnliche Abbrandhistorie wie die ursprünglichen Stäbe unterlegen haben (vgl. Kap. 2.4.1, Abschnitt "Bestrahlungsgeschichte"). Daher wird hier unterstellt, dass diese Stabswechsel keinen wesentlichen Einfluss auf den Probenstab haben. Lediglich zwei Brennstäbe auf diagonalen Nachbarpositionen zum Probenstab wurden durch Stäbe ersetzt, die einen deutlich höheren Abbrand als die ursprünglichen Stäbe aufweisen. Für diese Stabwechsel kann ein gewisser Einfluss auf den Probenstab nicht ausgeschlossen werden. Aufgrund der fehlenden Informationen zur Herkunft der neu eingebrachten Stäbe, wodurch insbesondere deren Nuklidinventar unbekannt bzw. nicht belastbar zu bestimmen ist, wurde hier auf die Modellierung aller Stabwechsel für die Probe GU1 verzichtet.

Auch auf die Modellierung der weiteren Stabwechsel, welche beim Wechsel des Probenstabs der Proben GU3' und GU4 aus dem Brennelement 1601 in das Brennelement 1701 vorgenommen wurden, wurde an dieser Stelle verzichtet. Die drei weiteren ausgetauschten Brennstäbe dürften zwar deutlich höhere Abbrände aufweisen als die ursprünglich vorhandenen Stäbe, wurden aber in Positionen mit jeweils einer Reihe Abstand zum Probenstab eingesetzt. Damit kann zwar auch hier ein gewisser Einfluss auf den Probenstab nicht ausgeschlossen werden, dieser Einfluss sollte aber durch den zusätzlichen Abstand zum Probenstand reduziert werden. Aufgrund der fehlenden Informationen, welchen Stabpositionen im Brennelement 1601 diese weiteren Stäbe entnommen wurden, lässt sich aber auch in diesem Fall das Nuklidinventar dieser Stäbe nicht im Einzelnen bestimmen, weshalb zunächst auf die Modellierung dieser weiteren Stabwechsel für die Proben GU3' und GU4 verzichtet wurden.

Als Zerfallszeit nach Ende der Bestrahlung wird für jedes Nuklid dessen individueller Zeitraum zwischen Ende der Bestrahlung und Zeitpunkt der Messung berücksichtigt. Die im Einzelnen in der Nachrechnung herangezogenen Abklingzeiten sind in Tab. 2.68 zusammengestellt.

Zyklus	Akku-	Akkumu-	Mittl Bor-	Probe GU1				
	mulierte Zeit [d]	lierte Zeit im Reak- tor [d]	konzen- tration [ppm]	Moderator- temperatur [K]	Brennstoff- temperatur [K]	Rel. Leistung bez. Maximum		
12	0,1	0,1	1508,2	580,8	1151,3	98,924		
	6,0	6,0	1342,2	580,8	1151,3	98,924		
	150,0	150,0	872,0	581,3	1171,5	100,000		
	294,9	294,9	286,5	581,2	1136,0	92,942		
	317,0	317,0	8,0	581,5	1078,3	88,172		
Revision	45,0	362,0						
13	0,1	362,1	1474,2	580,1	919,3	67,942		
	6,0	368,0	1308,2	580,1	919,3	67,942		
	150,0	512,0	843,5	580,5	967,7	75,563		
	292,3	654,3	274,5	580,3	957,9	76,661		
	321,3	683,3	7,0	580,7	943,1	74,896		
Revision	26,7	710,0						
14	0,1	710,1	1514,2	581,4	888,9	52,995		
	6,0	716,0	1344,7	581,4	888,9	52,995		
	150,0	860,0	863,5	581,9	894,4	68,962		
	290,1	1000,1	277,0	581,8	854,8	68,414		
	331,3	1041,3	5,0	582,1	841,4	85,251		
Revision	49,7	1091,0						
15	0,1	1091,1	1421,2	582,6	806,6	57,072		
	6,0	1097,0	1245,7	582,6	806,6	57,072		
	150,0	1241,0	924,0	583,0	829,8	60,978		
	301,9	1392,9	305,0	582,8	810,6	57,281		
	326,7	1417,7	5,0	583,1	804,0	53,521		

Tab. 2.66Verwendete Bestrahlungsdaten der Zyklen 12 bis 15 für das Brennelement12-40 des Reaktors Gösgen nach /PRI 03/

Zyklus		Akkumuliarta Zait Bork		Borkon-	Probe GU3'				Probe GU4			
	Akku- mulierte Zeit [d]	im Reakto	r [d]	zen- tration	Moderator- temperatur	Brennstoff- temperatur	Rel. Leis Maxii	tung bez. mum¹	Moderator- temperatur	- Brennstoff- r temperatur	Rel. Leis Maxii	tung bez. num¹
		BE 1601	BE 1701	[ppm]	[K]	[K]	BE 1601	BE 1601 BE 1701	[K]	[K]	BE 1601	BE 1701
16	0,1	0,1		1702,0	581,9	1203,1	99,017		581,9	731,1	43,287	
	6,0	6,0		1523,0	581,9	1203,1	99,017		581,9	731,1	43,287	
	150,0	150,0		1018,5	581,9	1244,1	100,000		581,9	782,0	63,208	
	320,0	320,0		347,5	581,9	1194,6	92,138		581,9	901,1	89,863	
	336,8	336,8		5,0	581,9	1154,1	85,556		581,9	1008,5	100,000	
Revision	34,2	371,0										
17	0,1	371,1	0,1	1598,1	581,9	1052,5	79,853	90,602	581,9	744,8	48,357	54,866
	6,0	377,0	6,0	1421,1	581,9	1052,5	79,853	90,602	581,9	744,8	48,357	54,866
	150,0	521,0	150,0	924,5	581,9	1068,5	79,607	90,323	581,9	786,9	63,013	71,496
	299,5	670,5	299,5	305,5	581,9	1005,0	74,834	84,908	581,9	865,5	83,858	95,147
	328,7	699,7	328,7	9,0	581,6	978,7	70,933	80,482	581,6	949,8	92,471	104,920
Revision	32,3		361,0									
18	0,1		361,1	1671,9	581,9	944,7		69,533	581,9	687,0		37,437
	6,0		367,0	1484,4	581,9	944,7		69,533	581,9	687,0		37,437
	150,0		511,0	965,5	581,9	933,6		64,169	581,9	709,1		42,994
	301,2		662,2	324,0	581,9	866,6		58,334	581,9	756,8		58,712
	331,6		692,6	17,0	581,6	858,0		53,537	581,6	805,6		59,189

Tab. 2.67 Verwendete Bestrahlungsdaten der Zyklen 16 bis 18 für die Brennelemente 1601 und 1701 des Reaktors Gösgen nach /PRI 03/

¹ Akkumulierte Zeit im Reaktor und Leistungsverläufe sind sowohl für das Brennelement (BE) 1601 also auch 1701 gegeben

Tab. 2.68Berücksichtigte individuelle Zerfallszeiten der errechneten Nuklidkonzent-
rationen der Proben des Reaktors Gösgen nach /PRI 03/

Es handelt sich dabei um die Proben GU1, GU3['] und GU4 aus den Brennelementen 12-40 und 1601 bzw. 1701

Nudelia	Abl	klingzeit	[d]	Nulsia	Abklingzeit [d]				
NUKIIO	GU1	GU3'	GU4	NUKIIA	GU1	GU3'	GU4		
²³⁴ U	1040	857	712	¹⁴⁷ Sm	1054	919	846		
²³⁵ U	1040	857	712	¹⁴⁸ Sm	1054	919	846		
²³⁶ U	1040	857	712	¹⁴⁹ Sm	1054	919	846		
²³⁸ U	1040	857	712	¹⁵⁰ Sm	1054	919	846		
²³⁷ Np	1040	928	739	¹⁵¹ Sm	1054	919	846		
²³⁸ Pu	1053	856	801	¹⁵² Sm	1054	919	846		
²³⁹ Pu	1053	856	801	¹⁵⁴ Sm	1054	919	846		
²⁴⁰ Pu	1053	856	801	¹⁵¹ Eu	1054	754			
²⁴¹ Pu	1053	856	801	¹⁵³ Eu	1054	754	849		
²⁴² Pu	1053	856	801	¹⁵⁴ Eu	1054	754	849		
²⁴⁴ Pu	1053	_		¹⁵⁵ Eu	1054	754	849		
²⁴¹ Am	1040	927	739	¹⁵⁵ Gd	1051	907	849		
^{242(m)} Am	1040	927		¹³³ Cs	1091	754	851		
²⁴³ Am	1040	927	739	¹³⁴ Cs	1091	754	851		
²⁴² Cm	1096	754		¹³⁵ Cs	1091	754	851		
²⁴³ Cm	1096	754		¹³⁷ Cs	1091	754	851		
²⁴⁴ Cm	1096	754	739	⁹⁰ Sr	1116	1074	891		
²⁴⁵ Cm	1096	754	739	⁹⁵ Mo	2137	1038	891		
²⁴⁶ Cm	1096	754		⁹⁹ Tc	2137	1038	891		
¹⁴² Nd	1040	900	845	¹⁰¹ Ru	2137	1038	891		
¹⁴³ Nd	1040	900	845	¹⁰⁶ Ru	1000	754	891		
¹⁴⁴ Nd	1040	900	845	¹⁰³ Rh	2137	1038	891		
¹⁴⁵ Nd	1040	900	845	¹⁰⁹ Ag	2137	1038			
¹⁴⁶ Nd	1040	900	845	¹²⁵ Sb	1000	754			
¹⁴⁸ Nd	1040	900	845	¹²⁹	_	930	915		
¹⁵⁰ Nd	1040	900	845	¹⁴⁴ Ce	1000	754	845		
¹⁴⁷ Pm	1060	1000	846						

2.4.3 Resultate

Der Vergleich zwischen den experimentellen Daten und den Nachrechnungen für die drei ARIANE-Proben aus Gösgen ist in tabellarischer Form in Tab. 2.69 und in Form von Balkendiagrammen in Abb. 2.33 – Abb. 2.35 dargestellt. Einzelne Datenpunkte mit sehr großen Abweichungen sind zur besseren Übersicht in der graphischen Darstellung weggelassen. Insgesamt fällt eine sehr gute Übereinstimmung zwischen rechnerischen und experimentellen Werten auf. Nur für wenige Nuklide ergeben sich Abweichungen größer als 10 %. Für die Proben GU1 und GU4 sind die Abweichungen für ²³⁵U und ²³⁹Pu sehr gering, wobei aufgrund der sehr kleinen angegebenen experimentellen Fehler nicht immer von einer Überstimmung im Rahmen der Messunsicherheiten gesprochen werden kann. Für GU3' sind die Abweichungen etwas größer, allerdings immer noch im Bereich aus anderen Nachrechnungen bekannter Werte. Auffällig sind die geringen Abweichungen für die höheren Aktinoiden. Insbesondere für die Curium-Nuklide liegen die Abweichungen häufig unter 10 % und damit signifikant geringer als bei anderen Experimenten. Die Qualität der Übereinstimmung bei den Spaltprodukten kann ebenfalls als gut bezeichnet werden. Bis auf einige Ausreißer (99Tc, 129I, 155Gd) sind die C/E-1-Werte vergleichbar mit anderen experimentellen Serien oder sogar besser. Insbesondere sind die geringen Abweichungen bei einigen metallischen Spaltprodukten hervorzuheben. Für ¹²⁵Sb ergeben sich auch für die Gösgen-Proben große Abweichungen zwischen Rechnung und Experiment.

Probe	GU1	GU3'	GU4	Probe	GU1	GU3'	GU4
²³⁴ U	17,4	41,0	43,3	¹²⁵ Sb	60,1	67,1	-
²³⁵ U	-1,2	-3,5	0,2	129	-	-13,4	-21,3
²³⁶ U	0,7	0,3	-0,1	¹³³ Cs	3,8	6,2	2,1
²³⁸ U	0,0	0,1	0,0	¹³⁴ Cs	1,4	3,3	-3,2
²³⁷ Np	-	-13,8	-30,2	¹³⁵ Cs	-4,2	-1,9	5,5
²³⁸ Pu	5,6	-1,6	0,1	¹³⁷ Cs	-1,8	0,7	7,6
²³⁹ Pu	-4,2	-7,4	-2,3	¹⁴⁴ Ce	0,4	15,6	7,3
²⁴⁰ Pu	-4,5	-2,1	-3,3	¹⁴² Nd	2,8	3,1	14,4
²⁴¹ Pu	-5,6	-4,9	-4,6	¹⁴³ Nd	1,6	0,5	-3,0
²⁴² Pu	-5,0	-0,8	-2,1	¹⁴⁴ Nd	-0,7	-1,5	-4,0
²⁴⁴ Pu	-27,1	-45,1	-	¹⁴⁵ Nd	1,4	0,5	-1,1
²⁴¹ Am	-1,0	-7,9	-7,5	¹⁴⁶ Nd	0,0	-0,9	-1,7
^{242m1} Am	-7,8	-17,1	-	¹⁴⁸ Nd	-0,3	-0,2	0,0
²⁴³ Am	-3,8	1,7	1,1	¹⁵⁰ Nd	-2,0	-1,4	1,1
²⁴² Cm	-7,1	-4,8	-	¹⁴⁷ Pm	45,7	47,7	-3,1
²⁴³ Cm	236,4	33,6	-	¹⁴⁷ Sm	-2,8	-2,7	9,2
²⁴⁴ Cm	-4,0	-9,5	-17,0	¹⁴⁸ Sm	-3,7	-4,2	-3,2
²⁴⁵ Cm	8,7	-3,9	-11,2	¹⁴⁹ Sm	-9,4	5,9	4,5
²⁴⁶ Cm	-17,5	-15,1	-	¹⁵⁰ Sm	2,3	5,1	7,6
⁹⁰ Sr	-29,1	-4,1	-8,5	¹⁵¹ Sm	-5,3	-3,6	2,3
⁹⁵ Mo	0,8	-11,6	-3,2	¹⁵² Sm	-6,1	5,6	8,1
⁹⁹ Tc	2,9	-8,0	27,4	¹⁵⁴ Sm	-1,5	8,7	10,8
¹⁰¹ Ru	4,9	-12,7	-2,8	¹⁵¹ Eu	-60,0	-47,9	-
¹⁰⁶ Ru	7,7	-30,1	-15,4	¹⁵³ Eu	-4,3	-3,0	3,8
¹⁰³ Rh	16,8	21,5	-0,6	¹⁵⁴ Eu	10,7	4,6	12,8
¹⁰⁹ Ag	106,9	3,3	-	¹⁵⁵ Eu	-5,3	-8,2	-0,2
				¹⁵⁵ Gd	1,0	4,8	-30,4

Tab. 2.69Vergleich zwischen gemessenen und berechneten Werten als C/E-1 in %

Abb. 2.33 ARIANE, GU1: Vergleich zwischen Rechnung und experimentellen Daten dargestellt als C/E-1 in Prozent

Abb. 2.34 ARIANE, GU3': Vergleich zwischen Rechnung und experimentellen Daten dargestellt als C/E-1 in Prozent

118

Abb. 2.35 ARIANE, GU4: Vergleich zwischen Rechnung und experimentellen Daten dargestellt als C/E-1 in Prozent

2.5 Proben des Reaktors Beznau-I aus dem ARIANE-Programms

Im ARIANE-Programm sind Proben von Brennelementen aus den Reaktoren Beznau-I, Gösgen (Kap. 2.4) und Dodewaard radiochemisch analysiert worden. Im Fall des Reaktors Beznau-I stammen die analysierten Proben "BM1", "BM2", "BM3" und "BM4" aus dem MOX-Brennelement M109. Aufgrund von Problemen während des Programmablaufs und der radiochemischen Analysen wurde das experimentelle Programm nachträglich erweitert und zusätzliche Proben in das Programm aufgenommen. Im Fall des Reaktors Beznau-I waren dies die Proben "BM5", "BM5" und "BM6" aus dem Brennelement M308 (Abb. 2.36). Eine Folge der aufgetretenen Probleme ist allerdings, dass daher nicht alle vermessenen radiochemischen Proben in gleicher Qualität vorliegen. Die Resultate einzelner Proben erwiesen sich im Nachhinein als nur bedingt oder nicht weiter verwendbar. Daher wurden für diesen Bericht nur eine Auswahl der insgesamt 15 analysierten Proben nachgerechnet.

Im Folgenden werden die Nachrechnungen der Proben BM5/BM5⁴ und BM6 aus dem Reaktor Beznau beschrieben. Diese Proben stammen aus dem Brennstab K7 des Brennelements M308 (Abb. 2.36). Die Proben BM5 und BM5⁴ können dabei aus Sicht der Nachrechnungen als praktisch identisch betrachtet werden, da sie einem geteilten ca. 7 cm langen Abschnitt des Brennstabs entstammen und somit praktisch identischen Bestrahlungsbedingungen ausgesetzt waren. Sie wurden aber unabhängig voneinander radiochemisch analysiert, so dass zwei unabhängige Sätze experimenteller Daten zum Vergleich mit den errechneten Werten zur Verfügung stehen. Gemessen vom unteren Ende des Brennstabs sind die Proben BM5 bzw. BM5⁴ zwischen 84,1 cm und 91,3 cm und die Probe BM6 zwischen 14,5 cm und 18,3 cm entnommen worden, d. h. BM6 ist eine Probe relativ nahe vom unteren Ende des Brennstabs. Die weiteren im experimentellen Programm enthaltenen Proben BM1 bis BM4 wurden hier nicht betrachtet.

Abb. 2.36 Schematische Darstellung des Brennelements M308 aus dem Beznau-I /PRI 03/

2.5.1 Experimentelle Daten

Die für Nachrechnung der radiochemischen Proben notwendigen Informationen, Daten und experimentellen Resultate des ARIANE-Programms sind im Bericht /PRI 03/ zusammengefasst. Dieser Bericht ist seinerseits eine Zusammenstellung einer Reihe von internen Vorträgen und Berichten des ARIANE-Programms, die neben den notwenigen Daten auch den Programmablauf und die aufgetretenen Probleme beschreiben.

Reaktordaten

Der Reaktor Beznau-I ist ein Druckwasserreaktor mit einer nominellen thermischen Leistung von 1130 MW. Die weiteren für die Probennachrechnungen relevanten Reaktordaten aus /PRI 03/ sind in Tab. 2.54 zusammengefasst. Zu beachten ist dabei, dass die Angabe des Moderator- bzw. Kühlmitteldrucks in /PRI 03/ in der Einheit kg/cm² vorliegt. Hier ist zu vermuten, dass diese Angabe mit der Einheit "bar" gleichzusetzen ist, vgl. Kap. 2.4.1, Abschnitt "Reaktordaten".

Parameter	
Nomineller Kühlmitteldruck ¹ [kg/cm ²]	158,2
Kühlmitteleinlasstemperatur [°C]	283,8
Kühlmittelauslasstemperatur [°C]	316,9

 Tab. 2.70
 Relevante Reaktordaten des Reaktors Beznau-I /PRI 03/

¹ Der Werte wird in /PRI 03/ als Druck beschrieben, auch wenn die angegebene physikalische Einheit mit kg/cm² formal kein Druck ist.

Brennelement

Das Brennelement M308 aus dem Reaktor Beznau-I ist ein 14 × 14-DWR-Brennelement aus MOX-Brennstoff mit drei Gruppen von Brennstäben, die sich jeweils durch ihren Plutoniumanteil unterscheiden, sowie mit 16 Steuerstabführungsrohren und einem Instrumentierungsrohr (Abb. 2.36). Angaben zu den geometrischen Abmessungen des Brennelements und der Brennstäbe aus /PRI 03/ sind in Tab. 2.71 zusammengestellt. Zur exakten Lage des einen Instrumentierungsrohrs, welches sich in seinen geometrischen Abmessungen von den 16 Steuerstabführungsrohren unterscheidet, sind in /PRI 03/ keine Angaben enthalten. Es kann aber aufgrund der Brennelementsymmetrie unterstellt werden, dass das Instrumentierungsrohr im Zentrum des Brennelements positioniert ist.

Tab. 2.71	Geometrische Abmessungen des Brennelements M308 und dessen
	Brennstäbe nach /PRI 03/

Parameter	
Pelletdurchmesser [cm]	0,929
Hüllrohrinnendurchmesser [cm]	0,948
Hüllrohraußendurchmesser [cm]	1,072
Aktive Brennstoffhöhe [cm]	302,3
Steuerstabführungsrohrinnendurchmesser [cm]	1,250
Steuerstabführungsrohraußendurchmesser [cm]	1,336
Instrumentierungsrohrinnendurchmesser [cm]	0,948
Instrumentierungsrohraußendurchmesser [cm]	1,072
Brennstabmittenabstand [cm]	1,412
Brennelementmittenabstand [cm]	19,82

Materialzusammensetzung

Wie in Abb. 2.36 dargestellt, enthält das Brennelement M308 drei Gruppen von Brennstäben mit unterschiedlichem Plutoniumanteil. Hierzu sind in /PRI 03/ lediglich quantitative Angaben zum Plutoniumvektor und der Brennstoffdichte des Probenstabs aufgeführt, nicht jedoch zu den übrigen Stäben des Brennelements (s. u.). Zusätzlich zum Plutoniumvektor ist auch eine Angabe zu Verunreinigungen enthalten, allerdings nur in Form eines Bor-Äquivalents. Alle diese in /PRI 03/ enthaltenen Angaben sind in Tab. 2.72 und Tab. 2.73 zusammengefasst.

Die Umrechnung der verschiedenen Angaben zur Brennstoffdichte in Tab. 2.73 zeigt, dass aus der angegebenen Brennstoffdichte von 10,3 g/cm³ bei unterstellter idealer Zylindergeometrie eine lineare Massenbelegung von 6,982 g/cm bzw. umgekehrt aus der gegebenen Massenbelegung eine Dichte von 10,244 g/cm³ folgt. Eine mögliche Erklärung für diese vermeintliche Diskrepanz wäre die Annahme von Aussparungen an den Pelletstirnseiten ("Dishing") wie im Fall der Probe GU1 (Kap. 2.4.1); hierzu liegen in /PRI 03/ aber keine Angaben vor. Unterstellt man dennoch solche Aussparungen, wären sie für das Erzielen von Konsistenz zwischen angegebener Massenbelegung und Dichte in der Größe von 3,7 mm³ notwendig, was im Vergleich zu anderen Angaben (z. B. Tab. 2.86) ein kleines Volumen darstellt. Möglich wäre auch, dass an dieser Stelle im Bericht die Angaben Rundungseffekten unterliegen.

lsotop- bzw. Elementverhältnis	wt%
(U + Pu + ²⁴¹ Am) / MOX	88,164
Pu / (Pu + U) ¹	5,5
²³⁴ U / U	0,002
²³⁵ U / U	0,231
²³⁶ U / U	0,000
²³⁸ U / U	99,767
²³⁸ Pu / (Pu + ²⁴¹ Am)	0,603
²³⁹ Pu / (Pu + ²⁴¹ Am)	66,086
²⁴⁰ Pu / (Pu + ²⁴¹ Am)	23,198
²⁴¹ Pu / (Pu + ²⁴¹ Am)	6,554
²⁴² Pu / (Pu + ²⁴¹ Am)	2,643
²⁴¹ Am / (Pu + ²⁴¹ Am) ²	0,916
Bor-Äquivalent / (U + Pu + ²⁴¹ Am) [ppm]	1,153

Tab. 2.72Nuklidweise Brennstoffzusammensetzung der Proben BM5/BM5' und BM6,
gemessen März 1990, nach /PRI 03/

¹ Die Klammerung ist so in /PRI 03/ nicht enthalten, es ist aber anzunehmen, dass die Angabe dort so gemeint ist.

² In /PRI 03/ ist an dieser Stelle ²⁴¹Pu / (Pu + ²⁴¹Am) angegeben, es ist aber zu vermuten, dass es sich hierbei um einen Tippfehler handelt und tatsächlich ²⁴¹Am / (Pu + ²⁴¹Am) gemeint ist, wie hier angegeben.

Tab. 2.73 Brennstoffdichteangaben für die Proben BM5/BM5' und BM6 nach /PRI 03/

Parameter	
Brennstoffdichte [%TD]	94,665
Brennstoffdichte [g/cm ³]	10,3
Lineare Massenbelegung [g/cm]	6,944

Für die Plutoniumanteile im Brennstoff findet sich in /PRI 03/ lediglich die bereits in Tab. 2.72 enthaltene Angabe für den Probenstab von "Pu / (Pu + U) = 5,5 wt.-%". Da der Probenstab zur Gruppe der "high Pu content"-Brennstäbe gehört, ist somit offensichtlich dieser Wert der Plutoniumanteil dieser Brennstabgruppe. Bezüglich des Plutoniumvektors ist zu erwarten, dass dieser zumindest innerhalb einer Brennstabgruppe-

weitgehend identisch ist⁹. Damit können folglich die Angaben für den Probenstab für die gesamte Gruppe der "high Pu content"-Brennstäbe übernommen werden.

Als weitere Informationsquellen für die Brennstoffzusammensetzungen können u. a. frühere Nachrechnungen dieser Proben dienen. So enthalten z. B. die Probennachrechnungen, /LEB 03/ und /MAC 04/ Werte für Brennstoffzusammensetzungen, welche allerdings nicht miteinander konsistent sind. Diskutiert wird dieser Aspekt auch in /KIL 08b/, wo der Schluss gezogen wird, dass die Plutoniumgehalte vermutlich 2,75 Gew.-%, 3,50 Gew.-% und 4,96 Gew.-% für "low Pu", "intermediate Pu" und "high Pu" betrugen. Diese Werte sind dabei entsprechend der Diskussion in /KIL 08b/ offensichtlich als Plutoniumanteil im Gesamtbrennstoff zu interpretieren, bei dem das Americium vermutlich mit zum Plutonium zu zählen ist. Daraus ergeben sich dann die in Tab. 2.74 zusammengestellten Verhältnisse, die sich für die "high Pu content"-Brennstäbe weitgehend mit der entsprechenden Angaben in /PRI 03/ decken.

Als Material für die Hüllrohre sowie für die Steuerstabführungs- bzw. Instrumentierungsrohre wird in /PRI 03/ einheitlich Zircaloy-4 ("Zr-4") angegeben. Daten zur Dichte oder Zusammensetzung sind dagegen nicht enthalten.

	(Pu + ²⁴¹ Am) / MOX [wt%]	Pu / (Pu + U) [wt%]	(Pu + ²⁴¹ Am) / (U + Pu + ²⁴¹ Am) [wt%]
low Pu	2,75	3,092	3,120
intermediate Pu	3,50	3,935	3,970
high Pu	4,96	5,578	5,627

Tab. 2.74Wahrscheinliche Brennstoffzusammensetzung für das Brennelement M308
des Reaktors Beznau-I nach /KIL 08b/

Bestrahlungsgeschichte

Das Brennelement M308 wurde von Juli 1990 bis Juni 1996 während der Zyklen 20 bis 25 im Reaktor Beznau-I bestrahlt (Tab. 2.75). Die Bestrahlungsschichte dieser Zyklen ist in /PRI 03/ vergleichsweise detailliert angeben und enthält sowohl kern- und brennelementgemittelte Daten, Brennelement-gemittelte Daten auf Höhe der Proben wie

⁹ Diese Annahme dadurch unterstützt, dass in /PRI 03/ für das Brennelement M109 für verschiedene Brennstäbe Plutoniumvektoren angegeben werden, die tatsächlich teils identisch sind, teils nur geringfügig voneinander abweichen.

auch probenspezifische Informationen, also Probenleistung und -abbrand sowie Moderator- und Brennstofftemperatur. Zusammengestellt sind die hier relevanten Informationen in Tab. 2.76 und Tab. 2.77.

Es ist zu beachten, dass in Tab. 2.76 bzw. Tab. 2.77 die Summe der angegebenen Zeitschrittlängen geringfügig von der Anzahl der Tage zwischen gegebenem Zyklusbeginn und -ende abweicht. Die Zeitschrittlängen sind also offensichtlich in Form von sog. "effective (full) power days" zu interpretieren (Tab. 2.75).

Zyklus	Zyklusbeginn	Zyklusende	Zyklusdauer Datum ¹ [d]	Zyklusdauer Tab. 2.76 ² [d]	Revision Datum ³ [d]
20	02.07.1990	09.05.1991	311	307,8	51
21	29.06.1991	02.07.1992	369	362,2	62
22	02.09.1992	01.04.1993	211	209,7	99
23	09.07.1993	17.06.1994	343	340,0	45
24	01.08.1994	30.06.1995	333	334,3	30
25	30.07.1995	28.06.1996	334	328,2	

Tab. 2.75 Bestrahlungszeitraum des Brennelements M308 nach /PRI 03/

¹ Zykluslänge entsprechend des Beginn- und Enddatums, die Tage von Zyklusbeginn und -ende werden jeweils zur Hälfte der Zyklusdauer und der Revision zugeordnet. Diese Werte sind nachträglich berechnet und so nicht in /PRI 03/ enthalten.

² Aus den Bestrahlungsdaten nach Tab. 2.76 bzw. Tab. 2.77 errechnete Zyklusdauer.

³ Länge der Revisionen entsprechend des Zyklusende und -beginns.

Für die Proben sind sowohl Probenleistung als auch Probenabbrand angegeben. Abgesehen von Rundungseffekten, die allerdings für einzelne Zeitschritte bei der Umrechnung beide Werte ineinander zu Abweichungen von bis zu einigen Prozent führen, sind die jeweiligen Datensätze miteinander kompatibel. Dies bedeutet auch, dass die angegebenen Leistungswerte jeweils über den Zeitschritt gemittelte Werte sein müssen. Für die angegebenen Borkonzentrationen und lokalen Moderatortemperaturen wird in /PRI 03/ explizit angegeben, dass es sich jeweils um über den betreffenden Zeitschritt gemittelte Werte handelt. Dagegen fehlt eine entsprechende explizite Angabe für die Brennstofftemperaturen. Es ist aber zu vermuten, dass es sich auch dabei um dementsprechende Mittelwerte handelt.

Zusätzlich zur Probenleistung und -abbrand sind auch brennelementgemittelte Leistungen und Abbrandwerte für die axialen Abschnitte der Proben in /PRI 03/ gegeben (Tab. 2.76 bzw. Tab. 2.77). Der Vergleich dieser Brennelement-gemittelten Leistungen mit den jeweiligen Probenleistungen zeigt, dass sich beide Leistungen innerhalb eines Zyklus nur um einen nahezu konstanten Faktor unterscheiden. Dieser Faktor variiert allerdings deutlich von Zyklus zu Zyklus. So beträgt z. B. für die Probe BM5/BM5' das Verhältnis von Brennelement-gemittelter Leistung zur Probenleistung für die Zyklen 20 bis 25 etwa 1,10, 0,97, 0,83, 0,98, 1,03 und 0,96. Ebenso zeigt die Probe BM6 ähnliche Werte. Diese deutliche Variation im Verhältnis der beiden Leistungen in den ersten drei Zyklen ist vermutlich eine Folge der Brennelementpositionierung im Reaktorkern. So befand sich das Brennelement M308 laut /PRI 03/ in den ersten drei Zyklen am Rand des Reaktorkerns und dürfte daher einen gewissen horizontalen Leistungsgradienten aufgewiesen haben, der dann unter Annahme einer entsprechenden Ausrichtung des Probenstabs zum Rand des Reaktorkerns zu der vorliegenden Variation in den genannten Leistungsverhältnissen geführt haben könnte.

Neben der Moderatortemperatur wird auch die Moderatordichte je Zeitschritt angegeben. Der Vergleich der gegebenen Dichten mit den Werten der International Association for the Properties of Water and Steam (IAPWS) /INT 07/ unter Verwendung des angegebenen Kühlmitteldrucks von 158,2 bar und der gegebenen Moderatortemperaturen zeigt Abweichungen von bis zu 0,0015 g/cm³. Dabei ist die Tendenz zu beobachten, dass die in /PRI 03/ aufgelisteten Dichten im Mittel geringfügig unter den Werten der IAPWS liegen. Ein wesentlicher Teil dieser Abweichungen von bis zu 0,0010 g/cm³ ist vermutlich durch Rundungseffekte bedingt, da die Moderatortemperaturen hier nur auf drei signifikante Stellen genau angegeben sind. Nähere Angaben zur Bestimmung der Dichten werden in /PRI 03/ nicht gemacht, vermutlich wurden sie aber aus den ermittelten Moderatortemperaturen abgeleitet und für diese Ableitung eine andere bzw. ältere Parametrisierung der Wasserzustandsgrößen als die hier berücksichtigte Parametrisierung der IAPWS verwendet.

			Auf Höhe der Probe BM5 / BM5'						
Zyklus	Zeitschritt [d]	Borkonzentration [ppm]	Mittlere Brenn- elementleistung [W/cm]	Mittlerer Brenn- elementabbrand [GWd/tHM]	Probenstableis- tung [W/cm]	Probenstab- abbrand [MVtd/tHM]	Moderatortem- peratur [°C]	Brennstofftem- peratur Pellet- zentrum [°C]	Brennstofftem- peratur Pel- letrand [°C]
20	1,0	1099	48,8	0,01	44	7	286	429	336
	1,5	944	101,5	0,03	92	30	288	525	379
	2,0	822	159,9	0,09	145	77	291	722	437
	1,0	712	224,6	0,12	203	110	294	848	490
	1,0	933	105,2	0,14	96	126	288	533	373
	110,0	560	218,1	4,06	198	3685	294	845	487
	0,5	492	157,9	4,07	144	3697	291	717	432
	76,0	286	215,8	6,76	197	6143	294	843	480
	0,5	415	97,3	6,76	89	6150	288	519	369
	23,0	147	209,3	7,55	191	6869	294	830	473
	0,2	356	97,1	7,56	89	6872	288	519	369
	3,5	111	209,0	7,67	191	6981	294	830	472
	0,5	225	150,7	7,69	138	6993	291	691	413
	69,5	24	210,8	10,08	193	9184	295	832	468
	17,6	90	201,7	10,66	186	9719	294	811	457
Revision	54,2								
21	0,5	1400	36,6	10,67	38	9722	285	399	327
	2,0	1244	75,4	10,69	78	9748	287	506	365
	1,5	1114	120,3	10,72	125	9778	289	628	383
	1,0	1044	150,1	10,75	156	9804	290	741	435
	1,0	1020	160,7	10,77	167	9831	290	758	442
	2,5	1015	161,0	10,84	167	9899	291	758	442
	0,5	1111	117,7	10,85	122	9909	289	616	370
	12,0	986	162,1	11,17	168	10239	291	760	441
	0,5	1072	117,3	11,18	122	10249	289	615	379
	51,5	889	161,8	12,54	168	11665	291	762	434
	1,0	915	115,7	12,56	121	11685	289	609	375
	138,0	617	159,6	16,16	167	15448	291	766	413
	0,2	506	119,7	16,16	126	15452	289	627	377
	83,0	306	157,8	18,30	166	17699	291	768	400
	1,0	435	72,4	18,32	76	17712	287	499	359
	66,0	102	159,3	20,04	167	19515	291	770	395
Revision	68,8	0							

Tab. 2.76Bestrahlungsdaten der Reaktorzyklen 20 bis 25 des Reaktors Beznau-I für
die Proben BM5/BM5' /PRI 03/

				Au	ıf Höhe	der Prob	e BM5 /	BM5'	
Zyklus	Zeitschritt [d]	Borkonzentration [ppm]	Mittlere Brenn- elementleistung [W/cm]	Mittlerer Brenn- elementabbrand [GWd/tHM]	Probenstableis- tung [W/cm]	Probenstab- abbrand [MWd/tHM]	Moderatortem- peratur [°C]	Brennstofftem- peratur Pellet- zentrum [°C]	Brennstofftem- peratur Pel- letrand [°C]
22	0,5	1071	35,3	20,04	42	19519	285	430	334
	2,0	916	72,6	20,06	87	19547	288	524	360
	2,0	784	117,2	20,10	140	19593	290	689	390
	2,0	711	147,7	20,15	176	19650	292	783	404
	35,0	622	162,2	21,08	193	20756	293	826	421
	38,0	508	161,2	22,08	191	21945	293	824	414
	1,0	677	73,9	22,09	88	21960	288	531	357
	129,2	258	155,2	25,37	183	25834	293	814	389
Revision	100,3	0							
23	8,0	1211	120,8	25,53	118	25988	289	597	357
	68,9	850	248,3	28,32	245	28747	295	906	405
	2,5	947	126,1	28,38	125	28798	289	630	364
	4,0	718	243,8	28,54	241	28956	295	920	393
	5,0	702	248,3	28,74	246	29157	296	905	406
	2,0	914	125,3	28,78	124	29196	289	627	363
	59,9	594	240,8	31,14	239	31537	296	930	383
	59,9	402	240,3	33,49	240	33886	296	929	387
	59,9	224	234,2	35,79	234	36179	296	961	376
	49,9	66	228,8	37,66	229	38051	296	1004	364
	20,0	50	185,7	38,26	186	38658	293	886	344
Revision	48,0	0							
24	6,0	1203	93,8	38,35	91	38747	288	563	321
	2,0	1063	148,5	38,40	145	38794	290	746	340
	1,0	1044	158,3	38,43	154	38819	291	757	342
	86,7	784	214,8	41,47	210	41793	294	940	354
	86,6	495	215,5	44,52	211	44779	295	911	363
	86,7	229	211,5	47,52	207	47713	295	892	364
	1,0	366	91,9	47,54	90	47728	288	565	332
	44,8	38	201,8	49,02	197	49175	294	880	358
	1,1	3	207,8	49,05	203	49211	295	886	362
	16,8	3	196,6	49,59	192	49740	294	875	356
	1,6	3	87,2	49,62	85	49762	288	559	335
Revision	28,7	0							

			Auf Höhe der Probe BM5 / BM5'						
Zyklus	Zeitschritt [d]	Borkonzentration [ppm]	Mittlere Brenn- elementleistung [W/cm]	Mittlerer Brenn- elementabbrand [GWd/tHM]	Probenstableis- tung [W/cm]	Probenstab- abbrand [MWd/tHM]	Moderatortem- peratur [°C]	Brennstofftem- peratur Pellet- zentrum [°C]	Brennstofftem- peratur Pel- letrand [°C]
25	7,8	1160	74,4	49,71	77	49861	287	541	334
	60,6	827	158,5	51,28	165	51491	292	799	359
	1,0	951	78,0	51,29	81	51504	288	553	336
	57,6	627	164,0	52,84	170	53110	293	815	360
	57,6	442	172,0	54,46	179	54796	294	840	361
	1,0	462	126,6	54,48	132	54817	291	700	356
	53,7	272	169,7	55,97	176	56367	294	828	362
	1,0	434	80,9	55,98	84	56380	288	570	339
	65,4	102	168,8	57,79	175	58257	294	821	363
	1,0	8	174,9	57,82	182	58286	294	845	363
	20,5	30	159,6	58,35	166	58842	293	794	360
	1,0	246	68,1	58,36	71	58854	287	542	340

Tab. 2.77	Bestrahlungsdaten der Reaktorzyklen 20 bis 25 des Reaktors Beznau-I für
	die Probe BM6 /PRI 03/

		L	Auf Höhe der Probe BM6						
Zyklus	Zeitschritt [d]	Borkonzentratic [ppm]	Mittlere Brenn- elementleistung [W/cm]	Mittlerer Brenn- elementabbrand [GWd/tHM]	Leistung [W/cm]	Abbrand [MWd/tHM]	Moderator- temperatur [°C]	Brennstoff- temperatur Pelletzentrum [°C]	Brennstoff- temperatur Pelletrand [°C]
20	1,0	1099	23,3	0,00	21	3	284	350	311
	1,5	944	50,8	0,02	46	15	284	434	337
	2,0	822	84,8	0,04	77	40	285	500	363
	1,0	712	125,8	0,06	114	59	285	588	377
	1,0	933	54,3	0,07	49	67	284	443	340
	110,0	560	128,8	2,39	117	2169	285	598	379
	0,5	492	98,5	2,40	90	2177	285	518	373
	76,0	286	143,3	4,18	130	3797	286	654	397
	0,5	415	60,6	4,18	56	3802	284	458	347
	23,0	147	141,8	4,72	129	4287	286	649	394
	0,2	356	61,3	4,72	56	4289	284	458	347
	3,5	111	143,0	4,80	130	4364	286	654	396
	0,5	225	100,2	4,81	92	4371	285	520	367
	69,5	24	148,5	6,50	135	5910	286	674	404
	17,6	90	142,1	6,91	130	6285	285	651	393

		u	Auf Höhe der Probe BM6						
Zyklus	Zeitschritt [d]	Borkonzentratic [ppm]	Mittlere Brenn- elementleistung [W/cm]	Mittlerer Brenn- elementabbrand [GWd/tHM]	Leistung [W/cm]	Abbrand [MWd/tHM]	Moderator- temperatur [°C]	Brennstoff- temperatur Pelletzentrum [°C]	Brennstoff- temperatur Pelletrand [°C]
Revision	54,2								
21	0,5	1400	17,1	6,91	18	6287	284	338	304
	2,0	1244	36,7	6,92	38	6299	284	403	328
	1,5	1114	61,9	6,93	64	6314	285	465	351
	1,0	1044	80,1	6,95	82	6328	285	509	364
	1,0	1020	87,1	6,96	89	6343	285	516	365
	2,5	1015	87,5	7,00	90	6379	285	517	365
	0,5	1111	61,8	7,00	63	6384	285	464	350
	12,0	986	88,5	7,18	91	6563	285	518	365
	0,5	1072	62,4	7,18	64	6568	285	465	350
	51,5	889	91,4	7,95	94	7359	285	523	365
	1,0	915	65,5	7,96	57	7370	285	470	352
	138,0	617	98,7	10,19	102	9668	285	543	363
	0,2	506	77,4	10,19	80	9670	285	512	365
	83,0	306	107,5	11,65	111	11178	285	571	363
	1,0	435	46,2	11,66	48	11186	284	443	341
	66,0	102	111,1	12,86	115	12426	285	583	364
Revision	68,8	0							
22	0,5	1071	18,2	12,86	22	12427	284	353	311
	2,0	916	38,9	12,87	47	12443	284	440	340
	2,0	784	66,3	12,89	80	12469	285	512	365
	2,0	711	87,0	12,92	105	12503	285	555	359
	35,0	622	98,6	13,49	118	13181	285	594	366
	38,0	508	101,2	14,12	121	13934	285	604	368
	1,0	677	43,2	14,12	52	13943	284	453	345
	129,2	258	101,2	16,26	121	16487	285	602	364
Revision	100,3	0							

		u	Auf Höhe der Probe BM6						
Zyklus	Zeitschritt [d]	Borkonzentratic [ppm]	Mittlere Brenn- elementleistung [W/cm]	Mittlerer Brenn- elementabbrand [GWd/tHM]	Leistung [W/cm]	Abbrand [MWd/tHM]	Moderator- temperatur [°C]	Brennstoff- temperatur Pelletzentrum [°C]	Brennstoff- temperatur Pelletrand [°C]
23	8,0	1211	64,1	16,34	65	16582	284	468	350
	68,9	850	147,1	18,00	149	18256	286	718	397
	2,5	947	73,9	18,03	75	18287	284	494	355
	4,0	718	153,5	18,13	155	18388	286	737	400
	5,0	702	159,5	18,26	162	18520	286	755	397
	2,0	914	74,1	18,29	75	18544	284	495	355
	59,9	594	156,1	19,82	158	20095	286	746	395
	59,9	402	166,4	21,45	169	21753	286	767	384
	59,9	224	167,6	23,09	171	23426	286	772	381
	49,9	66	168,0	24,46	171	24825	286	771	372
	20,0	50	133,9	24,90	137	25271	285	675	372
Revision	48,0	0							
24	6,0	1203	49,5	24,95	48	25318	284	450	336
	2,0	1063	81,4	24,97	78	25343	285	510	350
	1,0	1044	88,4	24,99	85	25357	285	526	351
	86,7	784	130,8	26,84	126	27147	285	627	361
	86,6	495	146,4	28,92	142	29158	286	702	368
	86,7	229	153,9	31,10	150	31277	286	735	362
	1,0	366	62,0	31,11	60	31287	284	482	339
	44,8	38	149,3	32,20	145	32352	286	721	359
	1,1	3	159,6	32,23	155	32380	286	750	360
	16,8	3	150,5	32,64	146	32783	286	725	358
	1,6	3	61,7	32,66	60	32798	284	484	338
Revision	28,7	0							
25	7,8	1160	44,9	32,72	47	32858	284	451	331
	60,6	827	103,9	33,75	108	33932	285	582	347
	1,0	951	51,1	33,75	53	33940	284	468	334
	57,6	627	115,7	34,84	121	35077	285	624	355
	57,6	442	129,8	36,07	135	36352	286	692	355
	1,0	462	94,2	36,08	98	36368	285	565	331
	53,7	272	132,0	37,24	138	37577	286	709	350
	1,0	434	59,4	37,25	62	37587	284	495	333
	65,4	102	133,6	38,68	139	39076	286	718	347
	1,0	8	144,6	38,71	150	39100	286	748	329
	20,5	30	131,0	39,15	136	39557	286	704	350
	1,0	246	51,5	39,15	54	39566	284	476	332

Experimentelle Messergebnisse

Die Messungen der Nuklidkonzentrationen im bestrahlten Brennstoff und die dabei erzielten Resultate sind in /PRI 03/ in verschiedener Form zusammengefasst. Experimentell untersucht wurden insgesamt 20 Nuklide der Aktinoiden Uran, Plutonium, Americium, Neptunium und Curium, zudem insgesamt zwölf Nuklide der Abbrandindikatoren Neodym, Cäsium und Cer sowie 22 bzw. 27 Nuklide der stark neutronenabsorbierenden Spaltprodukte. Für die Proben BM5 und BM6 wurden die entsprechenden Messungen am Paul-Scherrer-Institut (PSI) und für die Probe BM5 am SCK•CEN durchgeführt. Neben den chemischen Verfahren zur Auflösung des Brennstoffs und der Trennung der verschiedenen Elemente erfolgten die Messungen der Nuklidkonzentrationen am PSI hauptsächlich mittels Massenspektrometrie mit induktiv gekoppeltem Plasma (ICP-MS), zumeist mit vorgeschalteter Hochdruckflüssigchromatographie zur Trennung der Elemente, sowie mittels y-Spektrometrie. Dagegen wurde am SCK•CEN für die Mehrzahl der vermessenen Nuklidkonzentrationen Thermische Ionisations-Massenspektrometrie (TIMS) verwendet, in einzelnen Fällen kamen aber auch α-, β- bzw. γ-Spektrometrie sowie ICP-MS zum Einsatz. Im Detail sind die verwendeten Messmethoden in Tab. 2.78 nuklidweise aufgeschlüsselt.

Letztlich gemessen wurden die Nuklidkonzentrationen in Form der jeweiligen Massenanteile der einzelnen Nuklide im bestrahlten Brennstoff, woraus zusätzlich die Massenverhältnisse der einzelnen Nuklide zum Uran im bestrahlten Brennstoff errechnet wurden. Neben dem Messzeitpunkt wurden zudem auch die Massenverhältnisse auf das Bestrahlungsende des Brennelements zurückgerechnet und angegeben /PRI 03/. Zusätzlich sind für die Massenanteile der jeweiligen Nuklide im bestrahlten Brennstoff absolute bzw. relative Unsicherheiten abgeschätzt worden, die als 95%-Konfidenzintervall angeben sind. Zusammengestellt sind diese Resultate in Tab. 2.79 und Tab. 2.80 zusammen mit dem jeweiligen Datum der Messung.

Die ARIANE-interne Konsistenzprüfung der Messungen der Proben BM5 am PSI und BM5' am SCK•CEN zeigte allerdings für verschiedene Nuklide deutliche Inkonsistenzen in den Resultaten auf. Hiervon waren insbesondere ²³⁵U, die Plutonium- und Samarium-Isotope sowie einige weitere Spaltprodukte betroffen. Im Fall von ²³⁵U, der Plutonium-Isotope und ¹²⁹I führten weitere Untersuchungen dazu, dass die betreffenden Messungen des PSI an der Probe BM5 als fehlerhaft verworfen wurden. Diese Messwerte sind in Tab. 2.79 in Rot angegeben.

	Messmethode						
Nuklid	BM5 (PSI)	BM5' (SCK•CEN)	BM6 (PSI)				
²³² U	_2	ICP-MS ¹	_2				
²³⁴ U	HPLC-ICP-MS	TIMS	HPLC-ICP-MS				
²³⁵ U	HPLC-ICP-MS	TIMS	HPLC-ICP-MS				
²³⁶ U	HPLC-ICP-MS	TIMS	HPLC-ICP-MS				
²³⁸ U	HPLC-ICP-MS	TIMS	HPLC-ICP-MS				
²³⁷ Np	ICP-MS	ICP-MS	ICP-MS				
²³⁸ Pu	HPLC-ICP-MS	TIMS	HPLC-ICP-MS				
²³⁹ Pu	HPLC-ICP-MS	TIMS	HPLC-ICP-MS				
²⁴⁰ Pu	HPLC-ICP-MS	TIMS	HPLC-ICP-MS				
²⁴¹ Pu	HPLC-ICP-MS	TIMS	HPLC-ICP-MS				
²⁴² Pu	HPLC-ICP-MS	TIMS	HPLC-ICP-MS				
²⁴⁴ Pu	HPLC-ICP-MS ¹	TIMS	HPLC-ICP-MS ¹				
²⁴¹ Am	HPLC-ICP-MS	TIMS	HPLC-ICP-MS				
^{242(m)} Am	HPLC-ICP-MS	TIMS	HPLC-ICP-MS				
²⁴³ Am	HPLC-ICP-MS	TIMS	HPLC-ICP-MS				
²⁴² Cm	HPLC-ICP-MS1	α-Spec	HPLC-ICP-MS ¹				
²⁴³ Cm	HPLC-ICP-MS1	γ-Spec	HPLC-ICP-MS ¹				
²⁴⁴ Cm	HPLC-ICP-MS	α-Spec	HPLC-ICP-MS				
²⁴⁵ Cm	HPLC-ICP-MS	TIMS	HPLC-ICP-MS				
²⁴⁶ Cm	HPLC-ICP-MS	TIMS	HPLC-ICP-MS				
¹⁴² Nd	HPLC-ICP-MS	TIMS	HPLC-ICP-MS				
¹⁴³ Nd	HPLC-ICP-MS	TIMS	HPLC-ICP-MS				
¹⁴⁴ Nd	HPLC-ICP-MS	TIMS	HPLC-ICP-MS				
¹⁴⁵ Nd	HPLC-ICP-MS	TIMS	HPLC-ICP-MS				
¹⁴⁶ Nd	HPLC-ICP-MS	TIMS	HPLC-ICP-MS				
¹⁴⁸ Nd	HPLC-ICP-MS	TIMS	HPLC-ICP-MS				
¹⁵⁰ Nd	HPLC-ICP-MS	TIMS	HPLC-ICP-MS				
¹⁴⁷ Pm	HPLC-ICP-MS	β-Spec	HPLC-ICP-MS				
¹⁴⁷ Sm	HPLC-ICP-MS	TIMS	HPLC-ICP-MS				
¹⁴⁸ Sm	HPLC-ICP-MS	TIMS	HPLC-ICP-MS				
¹⁴⁹ Sm	HPLC-ICP-MS	TIMS	HPLC-ICP-MS				
¹⁵⁰ Sm	HPLC-ICP-MS	TIMS	HPLC-ICP-MS				

Tab. 2.78Nuklidweise Zusammenstellung der verwendeten Messmethoden für die
Proben BM5/BM5' und BM6 /PRI 03/

Nucleital	Messmethode						
NUKIIO	BM5 (PSI)	BM5' (SCK•CEN)	BM6 (PSI)				
¹⁵¹ Sm	HPLC-ICP-MS	TIMS	HPLC-ICP-MS				
¹⁵² Sm	HPLC-ICP-MS	TIMS	HPLC-ICP-MS				
¹⁵⁴ Sm	HPLC-ICP-MS	TIMS	HPLC-ICP-MS				
¹⁵¹ Eu	HPLC-ICP-MS	TIMS	HPLC-ICP-MS				
¹⁵³ Eu	HPLC-ICP-MS	TIMS	HPLC-ICP-MS				
¹⁵⁴ Eu	HPLC-ICP-MS	γ-Spec	HPLC-ICP-MS				
¹⁵⁵ Eu	HPLC-ICP-MS	γ-Spec	HPLC-ICP-MS				
¹⁵⁴ Gd	HPLC-ICP-MS	_ ²	HPLC-ICP-MS				
¹⁵⁵ Gd	HPLC-ICP-MS	TIMS	HPLC-ICP-MS				
¹⁵⁶ Gd	HPLC-ICP-MS	_2	HPLC-ICP-MS				
¹⁵⁷ Gd	HPLC-ICP-MS ¹	_2	HPLC-ICP-MS ¹				
¹⁵⁸ Gd	HPLC-ICP-MS	_2	HPLC-ICP-MS				
¹⁶⁰ Gd	HPLC-ICP-MS	_2	HPLC-ICP-MS				
¹³³ Cs	HPLC-ICP-MS	TIMS	HPLC-ICP-MS				
¹³⁴ Cs	HPLC-ICP-MS	TIMS	HPLC-ICP-MS				
¹³⁵ Cs	HPLC-ICP-MS	TIMS	HPLC-ICP-MS				
¹³⁷ Cs	HPLC-ICP-MS	γ-Spec	HPLC-ICP-MS				
⁹⁰ Sr	HPLC-ICP-MS	β-Spec	HPLC-ICP-MS				
⁹⁵ Mo	ICP-MS	ICP-MS	ICP-MS				
⁹⁹ Tc	ICP-MS	ICP-MS	ICP-MS				
¹⁰¹ Ru	ICP-MS	ICP-MS	ICP-MS				
¹⁰⁶ Ru	γ-Spec	γ-Spec	γ-Spec				
¹⁰³ Rh	ICP-MS	ICP-MS	ICP-MS				
¹⁰⁹ Ag	ICP-MS	ICP-MS	ICP-MS				
¹²⁵ Sb	γ-Spec	γ-Spec	γ-Spec				
129	γ-Spec	ICP-MS	γ-Spec				
¹⁴⁴ Ce	γ-Spec	γ-Spec	γ-Spec				

Kein Resultat, da Nuklidkonzentration unterhalb der Nachweisschwelle.
 Nicht gemessen.

Nuklid	Probe BM5			Probe BM5'		
	Messdatum	mg/g _{fuel}	mg/g∪¹	Messdatum	mg/g _{fuel}	mg/g∪¹
²³⁴ U	20.04.1999	$0,0448 \pm 0,0111_{2\sigma}$	0,0561	12.10.1999	$0,0497 \pm 0,0050_{2\sigma}$	0,0622
²³⁵ U	20.04.1999	$0,739 \pm 0,131_{2\sigma}$	0,925	12.10.1999	$0,586 \pm 0,012_{2\sigma}$	0,734
²³⁶ U	20.04.1999	$0,268 \pm 0,027_{2\sigma}$	0,336	12.10.1999	$0,269 \pm 0,014_{2\sigma}$	0,337
²³⁸ U	20.04.1999	798 ± 33 _{2σ}	999	12.10.1999	798 ± 36 _{2σ}	999
²³⁷ Np	15.09.1999	$0,175 \pm 0,001_{2\sigma}$	0,219	22.12.1999	0,184 ± 0,020 _{2σ}	0,230
²³⁸ Pu	04.05.1999	$0,865 \pm 0,103_{2\sigma}$	1,08	11.10.1999	$0,995 \pm 0,030_{2\sigma}$	1,25
²³⁹ Pu	04.05.1999	$9,25 \pm 0,08_{2\sigma}$	11,6	11.10.1999	9,80 ± 0,06 _{2σ}	12,3
²⁴⁰ Pu	04.05.1999	$9,59 \pm 0,09_{2\sigma}$	12,0	11.10.1999	10,1 ± 0,1 _{2σ}	12,6
²⁴¹ Pu	04.05.1999	$4,47 \pm 0,05_{2\sigma}$	5,59	11.10.1999	$4,60 \pm 0,03_{2\sigma}$	5,76
²⁴² Pu	04.05.1999	3,52 ± 0,04 _{2σ}	4,40	11.10.1999	3,67 ± 0,02 _{2σ}	4,59
²⁴⁴ Pu	_	-	_	11.10.1999	0,00100 ± 0,00050 _{2σ}	0,00125
²⁴¹ Am	26.11.1999	1,08 ± 0,05 _{2σ}	1,35	20.12.1999	1,13 ± 0,04 _{2σ}	1,42
^{242(m)} Am	26.11.1999	0,0104 ± 0,0006 _{2σ}	0,0131	20.12.1999	0,0106 ± 0,0011 _{2σ}	0,0133
²⁴³ Am	26.11.1999	$0,864 \pm 0,042_{2\sigma}$	1,08	20.12.1999	0,937 ± 0,033 _{2σ}	1,17
²⁴² Cm	-	-	_	01.07.1999	0,00149 ± 0,00005 _{2σ}	0,00186
²⁴³ Cm	_	-	_	01.07.1999	0,00690 ± 0,00073 _{2σ}	0,00965
²⁴⁴ Cm	26.11.1999	0,749 ± 0,031 _{2σ}	0,937	01.07.1999	0,707 ± 0,022 _{2σ}	0,885
²⁴⁵ Cm	26.11.1999	$0,0913 \pm 0,0042_{2\sigma}$	0,114	01.07.1999	0,0876 ± 0,0045 _{2σ}	0,110

Tab. 2.79 Gemessene Massenverhältnisse im bestrahlten Brennstoff für die Proben BM5 (PSI) und BM5' (SCK•CEN) /PRI 03/

Die Angaben beziehen sich auf die Gesamtmasse des bestrahlten Brennstoffs bzw. den Massenanteil von ²³⁸U im bestrahlten Brennstoff.

Nuklid	Probe BM5			Probe BM5'		
	Messdatum	mg/g _{fuel}	mg/g _Ս 1	Messdatum	mg/g _{fuel}	mg/g∪¹
²⁴⁶ Cm	26.11.1999	0,0149 ± 0,0007 _{2σ}	0,0187	01.07.1999	0,0140 ± 0,0015 _{2σ}	0,0175
¹⁴² Nd	31.05.1999	$0,0285 \pm 0,0028_{2\sigma}$	0,0356	23.11.1999	0,0297 ± 0,0030 _{2σ}	0,0372
¹⁴³ Nd	31.05.1999	$0,960 \pm 0,064_{2\sigma}$	1,20	23.11.1999	1,04 ± 0,01 _{2σ}	1,30
¹⁴⁴ Nd	31.05.1999	1,46 ± 0,10 _{2σ}	1,82	23.11.1999	1,55 ± 0,01 _{2σ}	1,94
¹⁴⁵ Nd	31.05.1999	0,808 ± 0,056 _{2σ}	1,01	23.11.1999	0,841 ± 0,005 _{2σ}	1,05
¹⁴⁶ Nd	31.05.1999	0,941 ± 0,064 _{2σ}	1,18	23.11.1999	0,958 ± 0,005 _{2σ}	1,20
¹⁴⁸ Nd	31.05.1999	0,543 ± 0,036 _{2σ}	0,680	23.11.1999	0,549 ± 0,003 _{2σ}	0,688
¹⁵⁰ Nd	31.05.1999	0,320 ± 0,022 _{2σ}	0,400	23.11.1999	0,328 ± 0,002 _{2σ}	0,411
¹⁴⁷ Pm	23.12.1999	0,0667 ± 0,0092 _{2σ}	0,0834	03.03.2000	0,0732 ± 0,0117 _{2σ}	0,0917
¹⁴⁷ Sm	09.08.1999	0,245 ± 0,005 _{2σ}	0,307	13.12.1999	0,234 ± 0,002 _{2σ}	0,293
¹⁴⁸ Sm	09.08.1999	0,290 ± 0,004 _{2σ}	0,364	13.12.1999	0,271 ± 0,002 _{2σ}	0,340
¹⁴⁹ Sm	09.08.1999	0,00515 ± 0,00053 _{2σ}	0,00645	13.12.1999	0,00408 ± 0,00009 _{2σ}	0,00511
¹⁵⁰ Sm	09.08.1999	0,471 ± 0,008 _{2σ}	0,589	13.12.1999	0,433 ± 0,003 _{2σ}	0,542
¹⁵¹ Sm	09.08.1999	0,0244 ± 0,0006 _{2σ}	0,0306	13.12.1999	0,0219 ± 0,0002 _{2σ}	0,0274
¹⁵² Sm	09.08.1999	0,176 ± 0,003 _{2σ}	0,221	13.12.1999	0,158 ± 0,001 _{2σ}	0,198
¹⁵⁴ Sm	09.08.1999	0,106 ± 0,002 _{2σ}	0,133	13.12.1999	0,0887 ± 0,0006 _{2σ}	0,111
¹⁵¹ Eu	09.08.1999	7,55E-04 ± 3,61E-04 _{2σ}	9,45E-04	01.07.1999	7,76E-04 ± 0,16E-04 _{2σ}	9,72E-04
¹⁵³ Eu	09.08.1999	0,232 ± 0,005 _{2σ}	0,290	01.07.1999	0,233 ± 0,002 _{2σ}	0,291
¹⁵⁴ Eu	09.08.1999	0,0529 ± 0,0013 _{2σ}	0,0662	01.07.1999	0,0506 ± 0,0015 _{2σ}	0,0633
¹⁵⁵ Eu	09.08.1999	0,0122 ± 0,0005 _{2σ}	0,0152	01.07.1999	0,0135 ± 0,0012 _{2σ}	0,0169
¹⁵⁴ Gd	09.08.1999	0,0276 ± 0,0010 _{2σ}	0,0345	_	-	_
Nuddia		Probe BM5			Probe BM5 ⁴	
-------------------	------------	-----------------------------------	---------	------------	---------------------------------	---------
Νυκιία	Messdatum	mg/g _{fuel}	mg/g∪¹	Messdatum	mg/g _{fuel}	mg/g∪¹
¹⁵⁵ Gd	09.08.1999	0,00817 ± 0,00056 _{2σ}	0,0102	02.12.1999	0,00734 ± 0,00015 _{2σ}	0,00919
¹⁵⁶ Gd	09.08.1999	0,260 ± 0,008 _{2σ}	0,325	_	-	-
¹⁵⁸ Gd	09.08.1999	0,0575 ± 0,0021 _{2σ}	0,0720	_	-	-
¹⁶⁰ Gd	09.08.1999	$0,00431 \pm 0,00021_{2\sigma}$	0,00540	-	_	-
¹³³ Cs	02.09.1999	1,58 ± 0,05 _{2σ}	1,98	01.07.1999	1,52 ± 0,05 _{2σ}	1,91
¹³⁴ Cs	02.09.1999	0,0726 ± 0,0025 _{2σ}	0,0908	01.07.1999	0,0740 ± 0,0023 _{2σ}	0,0927
¹³⁵ Cs	02.09.1999	1,07 ± 0,03 _{2σ}	1,34	01.07.1999	1,04 ± 0,032σ	1,30
¹³⁷ Cs	02.09.1999	1,73 ± 0,05 _{2σ}	2,17	01.07.1999	1,67 ± 0,05 _{2σ}	2,09
⁹⁰ Sr	06.10.1999	0,402 ± 0,045 _{2σ}	0,503	16.05.2000	0,314 ± 0,050 _{2σ}	0,393
⁹⁵ Mo	11.01.2000	0,937 ± 0,037 _{2σ}	1,17	10.04.2000	0,900 ± 0,087 _{2σ}	1,13
⁹⁹ Tc	20.01.2000	1,07 ± 0,05 _{2σ}	1,34	10.04.2000	0,969 ± 0,189 _{2σ}	1,22
¹⁰¹ Ru	11.01.2000	1,28 ± 0,05 _{2σ}	1,60	10.04.2000	0,894 ± 0,144 _{2σ}	1,12
¹⁰⁶ Ru	28.09.1999	$0,0277 \pm 0,0024_{2\sigma^2}$	0,0346	01.07.1999	0,0245 ± 0,0037 _{2σ}	0,0308
¹⁰³ Rh	08.12.1999	1,07 ± 0,03 _{2σ}	1,34	10.04.2000	0,616 ± 0,061 _{2σ}	0,772
¹⁰⁹ Ag	11.01.2000	0,109 ± 0,005 _{2σ}	0,136	10.04.2000	0,165 ± 0,031 _{2σ}	0,207
¹²⁵ Sb	28.09.1999	$0,00389 \pm 0,00017_{2\sigma^2}$	0,00488	01.07.1999	0,00338 ± 0,00023 _{2σ}	0,00423
129	06.01.2000	0,0882 ± 0,0161 _{2σ}	0,110	24.12.1999	0,224 ± 0,025 _{2σ}	0,281
¹⁴⁴ Ce	28.09.1999	0,0124 ± 0,0013 _{2σ}	0,0156	01.07.1999	0,0168 ± 0,0010 _{2σ}	0,0211

¹ Dieses Massenverhältnis zum Messzeitpunkt ist in /PRI 03/ nur für die "main solution" und ohne Unsicherheit gegeben. Hier aufgeführte Werte wurden aus den Verhältnissen der Massenteile im Brennstoff zum Messzeitpunkt in der "main solution" und in der Summe aus "main solution" und "residue solution" errechnet.

² Massenanteil ist in /PRI 03/ nur zum Zeitpunkt des Bestrahlungsendes angegeben. Hier aufgeführter Wert zum Messzeitpunkt wurde mit dem Verhältnis der gegebenen Massenanteile in der "main solution" zum Messzeitpunkt und zum Bestrahlungsende zurückgerechnet.

Tab. 2.80Gemessene Massenverhältnisse zum jeweiligen Zeitpunkt der Messung für
die Probe BM6 /PRI 03/

Die Angaben beziehen sich auf die Gesamtmasse des bestrahlten Brennstoffs bzw. den Massenanteil von 238 U im bestrahlten Brennstoff. Die angegebenen Unsicherheiten entsprechen einem 95%-Konfidenzintervall (2 σ).

Nuklid	Messdatum	mg/g _{fuel}	mg/g∪¹
²³⁴ U	08.02.2000	0,0495 ± 0,0066 _{2σ}	0,0619
²³⁵ U	08.02.2000	$0,956 \pm 0,042_{2\sigma}$	1,20
²³⁶ U	08.02.2000	$0,209 \pm 0,033_{2\sigma}$	0,261
²³⁸ U	08.02.2000	798 ± 12 _{2σ}	998
²³⁷ Np	15.09.1999	$0,125 \pm 0,002_{2\sigma}$	0,156
²³⁸ Pu	05.05.1999	$0,782 \pm 0,058_{2\sigma}$	0,978
²³⁹ Pu	05.05.1999	$13,3 \pm 0,1_{2\sigma}$	16,6
²⁴⁰ Pu	05.05.1999	$10,9 \pm 0,1_{2\sigma}$	13,6
²⁴¹ Pu	05.05.1999	$4,56 \pm 0,04_{2\sigma}$	5,70
²⁴² Pu	05.05.1999	$2,38 \pm 0,02_{2\sigma}$	2,98
²⁴¹ Am	29.11.1999	$1,68 \pm 0,58_{2\sigma}$	2,11
^{242(m)} Am	29.11.1999	$0,0220 \pm 0,0078_{2\sigma}$	0,0275
²⁴³ Am	29.11.1999	$0,727 \pm 0,026_{2\sigma}$	0,910
²⁴⁴ Cm	29.11.1999	$0,278 \pm 0,007_{2\sigma}$	0,348
²⁴⁵ Cm	29.11.1999	$0,0297 \pm 0,0013_{2\sigma}$	0,0372
²⁴⁶ Cm	29.11.1999	$0,00241 \pm 0,00021_{2\sigma}$	0,00301
¹⁴² Nd	29.11.1999	$0,00934 \pm 0,00047_{2\sigma}$	0,0117
¹⁴³ Nd	29.11.1999	$0,683 \pm 0,036_{2\sigma}$	0,854
¹⁴⁴ Nd	27.05.1999	$0,829 \pm 0,039_{2\sigma}$	1,04
¹⁴⁵ Nd	27.05.1999	$0,535 \pm 0,025_{2\sigma}$	0,670
¹⁴⁶ Nd	27.05.1999	$0,552 \pm 0,028_{2\sigma}$	0,690
¹⁴⁸ Nd	27.05.1999	$0,341 \pm 0,017_{2\sigma}$	0,426
¹⁵⁰ Nd	27.05.1999	$0,198 \pm 0,011_{2\sigma}$	0,247
¹⁴⁷ Pm	27.05.1999	$0,0532 \pm 0,0075_{2\sigma}$	0,0666
¹⁴⁷ Sm	27.05.1999	$0,202 \pm 0,003_{2\sigma}$	0,253
¹⁴⁸ Sm	23.12.1999	$0,146 \pm 0,002_{2\sigma}$	0,182
¹⁴⁹ Sm	11.08.1999	$0,00466 \pm 0,00025_{2\sigma}$	0,00583
¹⁵⁰ Sm	11.08.1999	$0,282 \pm 0,003_{2\sigma}$	0,352
¹⁵¹ Sm	11.08.1999	$0,0243 \pm 0,0004_{2\sigma}$	0,0304

Nuklid	Messdatum	mg/g _{fuel}	mg/g∪¹
¹⁵² Sm	11.08.1999	0,139 ± 0,003 _{2σ}	0,173
¹⁵⁴ Sm	11.08.1999	$0,0626 \pm 0,0012_{2\sigma}$	0,0783
¹⁵¹ Eu	11.08.1999	$8,30E-04 \pm 0,47E-04_{2\sigma}$	0,00104
¹⁵³ Eu	11.08.1999	$0,152 \pm 0,002_{2\sigma}$	0,190
¹⁵⁴ Eu	11.08.1999	$0,0321 \pm 0,0006_{2\sigma}$	0,0401
¹⁵⁵ Eu	11.08.1999	$0,00754 \pm 0,00039_{2\sigma}$	0,00943
¹⁵⁴ Gd	11.08.1999	$0,0143 \pm 0,0002_{2\sigma}$	0,0179
¹⁵⁵ Gd	11.08.1999	$0,00439 \pm 0,00014_{2\sigma}$	0,00549
¹⁵⁶ Gd	11.08.1999	0,0982 ± 0,0006 _{2σ}	0,123
¹⁵⁸ Gd	11.08.1999	$0,0303 \pm 0,0004_{2\sigma}$	0,0379
¹⁶⁰ Gd	11.08.1999	$0,00256 \pm 0,00009_{2\sigma}$	0,00320
¹³³ Cs	11.08.1999	1,08 ± 0,05 _{2σ}	1,35
¹³⁴ Cs	11.08.1999	$0,0323 \pm 0,0013_{2\sigma}$	0,0404
¹³⁵ Cs	03.09.1999	0,858 ± 0,036 _{2σ}	1,07
¹³⁷ Cs	03.09.1999	1,10 ± 0,05 _{2σ}	1,38
⁹⁰ Sr	03.09.1999	0,233 ± 0,007 _{2σ}	0,292
⁹⁵ Mo	03.09.1999	0,627 ± 0,024 _{2σ}	0,784
⁹⁹ Tc	07.10.1999	0,676 ± 0,031 _{2σ}	0,846
¹⁰¹ Ru	11.01.2000	0,784 ± 0,037 _{2σ}	0,982
¹⁰⁶ Ru	20.01.2000	$0,0176 \pm 0,0015_{2\sigma^2}$	0,0221
¹⁰³ Rh	11.01.2000	0,728 ± 0,028 _{2σ}	0,910
¹⁰⁹ Ag	26.09.1999	0,141 ± 0,011 _{2σ}	0,176
¹²⁵ Sb	08.12.1999	$0,00285 \pm 0,00011_{2\sigma^2}$	0,00357
129	11.01.2000	0,0834 ± 0,0186 _{2σ}	0,104
¹⁴⁴ Ce	26.09.1999	$0,00863 \pm 0,00086_{2\sigma}$	0,0108

¹ Dieses Massenverhältnis zum Messzeitpunkt ist in /PRI 03/ nur für die "main solution" und ohne Unsicherheit gegeben. Hier aufgeführte Werte wurden aus den Verhältnissen der Massenteile im Brennstoff zum Messzeitpunkt in der "main solution" und in der Summe aus "main solution" und "residue solution" errechnet.

² Massenanteil ist in /PRI 03/ nur zum Zeitpunkt des Bestrahlungsendes angegeben. Hier aufgeführter Wert zum Messzeitpunkt wurde mit dem Verhältnis der gegebenen Massenanteile in der "main solution" zum Messzeitpunkt und zum Bestrahlungsende zurückgerechnet.

2.5.2 Modellierung

Aus den in Kap. 2.5.1 beschriebenen Daten wurden geeignete Rechenmodelle für die verschiedenen Proben erstellt, welche im Folgenden beschrieben werden. Aufgrund der nachtäglich identifizierten Fehler in einzelnen Nuklidkonzentrationsmessungen des PSI an der Probe BM5 wurde hier auf einen Vergleich mit den Messdaten des PSI verzichtet und zunächst nur die Daten des SCK•CEN, d. h. der Probe BM5⁶ genutzt.

Allgemeine Parameter

Für alle durchgeführten Nachrechnungen mit MOTIVE sind einheitliche allgemeine Parameter, wie Neutronentransport- und Inventarcode, Wirkungsquerschnittsbibliothek, Predictor-Corrector-Methode, etc. gewählt worden. Diese Werte sind in Tab. 2.13 zusammengestellt. Zudem ist eine Liste mit Nukliden anzugeben, für welche die errechneten Konzentrationen auszugeben werden sollen. Hier wurden die Nuklide gewählt, für welche Messdaten vorliegen (Tab. 2.79 und Tab. 2.80).

Modellgeometrie

Da beide hier betrachteten Proben aus demselben Brennstab stammen, wurde für beide Probennachrechnungen eine identische Modellgeometrie verwendet. Diese besteht in erster Linie aus einem unendlichen Gitter nahezu identischer Brennelemente, welches mithilfe eines einzelnen Brennelements mit reflektierenden Randbedingungen gebildet wurde. Das Modell ist dabei auf zwei Dimensionen beschränkt, d. h. in axialer Brennstabrichtung wurde das Modell nicht weiter unterteilt und ebenfalls durch reflektierende Randbedingungen abgeschlossen. Das Brennelement wurde gemäß Abb. 2.36 modelliert, wobei dieses Brennelement aufgrund des Instrumentierungsrohrs auf der Position G7 nur eine 1/2-Spiegelsymmetrie entlang der Brennstabgitterdiagonalen aufweist. Zwar würde diese Brennelementsymmetrie periodische Randbedingungen erfordern um tatsächlich identische Brennelemente zu modellieren, diese Möglichkeit besteht in MOTIVE allerdings noch nicht, so dass hier auf reflektierende Randbedingungen zurückgegriffen wurde, wodurch das modellierte Brennelementgitter genau genommen aus abwechselnd gespiegelten Brennelementen besteht. Ferner wird auf diese Weise ein Brennelementgitter aus ausschließlich MOX-Brennelementen aufgebaut, was allerdings der typischen Kernbeladung des Reaktors Beznau-I wiederspricht, welche nach /PRI 03/ nur zu etwa einem Drittel MOX-Brennelemente enthält. Genaue Daten zur Kernbeladungen liegen aber nicht vor, um hier eine realistischere

Modellierung vorzunehmen, so dass hier auf die beschriebene Modellierung zurückgegriffen wurde.

Die einzelnen Stäbe im Brennelement wurden separat modelliert, also durch eigene abzubrennende Materialien im Rechenmodell beschrieben, wobei Stäbe auf homologen Positionen zusammengefasst wurden. Auf diese Weise wurde ein detailliertes Rechenmodell unter Berücksichtigung der Spiegelsymmetrie mit 94 separat betrachteten Brennstäben erstellt. Aufgrund der großen Anzahl an unterschiedenen Stäben wurde zusätzlich ein zweites Rechenmodell mit einer vereinfachten Modellgeometrie entwickelt. In dieser vereinfachten Variante wurden die Stäbe mehrheitlich entsprechend der näherungsweisen vorhandenen 1/8-Spiegelsymmetrie und lediglich die Stäbe auf und um der Position G7 entsprechend der eigentlichen 1/2-Spiegelsymmetrie modelliert, wodurch nur 32 Stäbe separate zu betrachten sind. Die sich für beide Varianten ergebenden Brennstabbelegungen in den jeweiligen Rechenmodellen sind in Abb. 2.37 für die detaillierte Variante und in Abb. 2.38 für die vereinfachte Variante dargestellt. Dabei gibt jeweils die Zahl 1 den Probenstab, die Zahlen 11 bis 103 bzw. 41 die übrigen Brennstäbe bzw. die abzubrennenden Materialien und die Zahlen 200 und 201 die Steuerstabführungsrohre bzw. das Instrumentierungsrohr wieder. Die Umsetzung dieser Rechenmodelle in KENO-VI-Geometriemodelle zeigt Abb. 2.39.

24	23	22	21	20	19	18	17	16	15	14	13	12	11
37	36	35	34	33	32	31	30	29	28	27	26	25	12
45	44	200	43	42	200	41	40	200	39	38	200	26	13
55	54	53	52	51	50	1	49	48	47	46	38	27	14
63	62	61	60	200	59	58	57	56	200	47	39	28	15
71	70	200	69	68	67	66	65	64	56	48	200	29	16
79	78	77	76	75	74	73	72	65	57	49	40	30	17
85	84	83	82	81	80	201	73	66	58	1	41	31	18
90	89	200	88	87	86	80	74	67	59	50	200	32	19
94	93	92	91	200	87	81	75	68	200	51	42	33	20
98	97	96	95	91	88	82	76	69	60	52	43	34	21
100	99	200	96	92	200	83	77	200	61	53	200	35	22
102	101	99	97	93	89	84	78	70	62	54	44	36	23
103	102	100	98	94	90	85	79	71	63	55	45	37	24

Abb. 2.37 Brennstabbelegung im detaillierten Rechenmodell für das Brennelement M308 aus dem Reaktor Beznau-I

11	12	13	14	15	16	17	17	16	15	14	13	12	11
12	18	19	20	21	22	23	23	22	21	20	19	18	12
13	19	200	24	25	200	26	26	200	25	24	200	19	13
14	20	24	27	28	29	1	30	29	28	27	24	20	14
15	21	25	28	200	31	32	32	31	200	28	25	21	15
16	22	200	29	31	33	34	38	39	31	29	200	22	16
17	23	26	30	32	35	36	37	38	32	30	26	23	17
17	23	26	30	32	41	201	36	34	32	1	26	23	17
16	22	200	29	31	40	41	35	33	31	29	200	22	16
15	21	25	28	200	31	32	32	31	200	28	25	21	15
14	20	24	27	28	29	30	30	29	28	27	24	20	14
13	19	200	24	25	200	26	26	200	25	24	200	19	13
12	18	19	20	21	22	23	23	22	21	20	19	18	12
11	12	13	14	15	16	17	17	16	15	14	13	12	11

Abb. 2.38Brennstabbelegung im vereinfachten Rechenmodell für das BrennelementM308 aus dem Reaktor Beznau-I

Abb. 2.39 Schematische Darstellung der KENO-VI-Geometriemodelle für das detaillierte (links) und vereinfachte (rechts) Rechenmodell für das Brennelement M308 aus dem Reaktor Beznau-I

Die geometrischen Abmessungen bzw. Abstände der Brennstäbe, Steuerstabführungsrohre bzw. des Instrumentierungsrohrs und des Brennelements selbst sind entsprechend Tab. 2.71 modelliert worden. Der Zwischenraum ("Gap") zwischen Pellet und Hüllrohr wurde mitmodelliert, d. h. auf eine Berücksichtigung des Anschwellens der Pellets während des Abbrands ("Swelling") wurde verzichtet.

Materialzusammensetzung

Die Brennstoffzusammensetzungen wurden weitgehend entsprechend den Angaben in /PRI 03/ modelliert. Das bedeutet, dass für den Plutoniumvektor die Angaben in

Tab. 2.72 für alle drei Brennstabgruppen ("low Pu content", "intermediate Pu content" und "high Pu content") herangezogen wurde, also wurde unterstellt, dass dieser sich für die verschiedenen Brennstäbe nicht wesentlich unterscheidet. Verunreinigungen, welche nur in Form eines Bor-Äquivalents angegeben wurden, wurden hier allerdings für alle Brennstabgruppen vernachlässigt. Da Angaben für die Plutoniumanteile für die "low Pu content"- und "intermediate Pu content"-Brennstäbe in /PRI 03/ fehlen, wurde hier der Argumentation in /KIL 08b/ gefolgt (vgl. Kap. 2.5.1, Abschnitt "Materialzusammensetzung") und die entsprechenden Werte aus Tab. 2.74 übernommen. Dieses gilt auch für die "high Pu content"-Brennstäbe. Zwar gibt es für diese eine Angabe zum Plutoniumanteil in /PRI 03/, der dortige Wert deckt sich aber weitgehend mit dem Wert in Tab. 2.75, so dass hier letzterer genutzt wurde. Als Kompromiss aus den verschiedenen Angaben zur Brennstoffdichte (Tab. 2.73) wurde hier eine Dichte von 10,25 g/cm³ angenommen, was einer linearen Massenbelegung von 6,948 g/cm entspricht. Damit wird in guter Näherung die angegebene Massenbelegung reproduziert und gleichzeitig kann die angegebene Dichte als aufgerundeter Wert interpretiert und so auch diese Angabe berücksichtigt werden. Aus den angegebenen gewichtsanteiligen Zusammensetzungen wurden die Kernzahldichten errechnet, wobei dazu für Sauerstoff das mittlere Atomgewicht entsprechend der natürlichen Isotopenzusammensetzung genutzt wurde. Im Rechenmodell wurde aber zur Vereinfachung der Sauerstoff als 100 % ¹⁶O modelliert. Die verwendeten Zusammensetzungen sind im Einzelnen in Tab. 2.81 aufgeführt.

Das Hüllrohrmaterial ist laut /PRI 03/ Zirkalloy-4, ohne dass dort aber eine Zusammensetzung angegeben wurde. Daher wird hier die Zusammensetzung des Zircaloy-4 aus der SCALE Standard Composition Library /PET 16/ mit der dort angegebenen Dichte von 6,56 g/cm³ übernommen. Die konkrete verwendetet Zusammensetzung ist in Tab. 2.65 (Kap. 2.4.2, Abschnitt "Materialzusammensetzung") angegeben.

In Ermangelung entsprechender Informationen wurde angenommen, dass das Hüllrohr mit 30 bar Helium beaufschlagt wurde. Dementsprechend wurde im Rechenmodell Helium mit einer Kernzahldichte von 7,4122E-04 als Material im Zwischenraum zwischen Pellet und Hüllrohr ("Gap") eingesetzt. Für die Berechnung der Kernzahldichte wurde die natürliche Isotopenzusammensetzung des Heliums mit dem daraus resultierenden mittleren Atomgewicht genutzt, im Rechenmodell wurde aber zur Vereinfachung das Helium als reines ⁴He mit der genannten Kernzahldichte angenommen.

Tab. 2.81	Verwendete nuklidweise Zusammensetzung des Brennstoffs für das
	Brennelement M308 aus dem Reaktor Beznau-I nach /PRI 03/

				Low Pu	intermediate Pu	High Pu
				Pu / (Pu + U) [\	wt%]	
				3,092	3,935	5,578
Element1	Mittlere	Anteil im I	Element	Kernzahl-	Kernzahl-	Kernzahl-
/ Isotop	Atom- masse [u]	[wt%]	[at%]	dichte2 [1/(barn*cm)]	dichte2 [1/(barn*cm)]	dichte2 [1/(barn*cm)]
U	238,0437 ³			2,1565E-024	2,1946E-024	2,2141E-024
234U	234,0409	0,002	0,002	4,3868E-07	4,4642E-07	4,5039E-07
235U	235,0439	0,231	0,234	5,0451E-05	5,1341E-05	5,1798E-05
238U	238,0508	99,767	99,764	2,1514E-02	2,1894E-02	2,2089E-02
Pu + Am	157,2521 ³			1,2784E-03 ⁴	8,9373E-04 ⁴	7,0237E-04 ⁴
238Pu	151,9198	0,603	0,607	7,7559E-06	5,4719E-06	4,3003E-06
239Pu	153,9209	66,086	66,211	8,4645E-04	5,9719E-04	4,6932E-04
240Pu	154,9226	23,198	23,145	2,9589E-04	2,0875E-04	1,6406E-04
241Pu	155,9221	6,554	6,512	8,3247E-05	5,8733E-05	4,6157E-05
242Pu	156,9240	2,643	2,615	3,3432E-05	2,3587E-05	1,8537E-05
241Am	157,9241	0,916	0,910	1,1635E-05	8,2086E-06	6,4511E-06
0	15,9994 ³			4,5702E-02 ⁴	4,5706E-024	4,5708E-024

¹ Sauerstoff wurde bei der Berechnung der Kernzahldichten als Element behandelt und nicht nuklidweise unterschieden; im Rechenmodell wurde es zu 100 % ¹⁶O mit der gegebenen Kernzahldichte modelliert.

² Die berücksichtigten nuklidweisen Brennstoffzusammensetzungen sind durch die hellblau unterlegten Einträge gegeben.

³ Mittleres Atomgewicht des jeweiligen Elements.

⁴ Kernzahldichte des jeweiligen Elements (= Summe der Kernzahldichten der Isotope).

Bestrahlungsgeschichte

Zur Modellierung der Bestrahlungsgeschichte, also des zeitlichen Verlaufs von Leistung, Brennstofftemperatur, Hüllrohrtemperatur, Moderatortemperatur und Borkonzentration, wurden die Werte aus Tab. 2.76 und Tab. 2.77 genutzt. Dazu wurde angenommen, dass diese Angaben jeweils über das jeweilige Zeitintervall gemittelte Werte sind (vgl. Kap. 2.5.1, Abschnitt "Bestrahlungsgeschichte"). Die Unterteilung der Zeitschritte in Tab. 2.76 bzw. Tab. 2.77 wurde ebenfalls übernommen. Es wurde lediglich der erste Zeitschritt nochmals geteilt, so dass ein zusätzlicher kurzer Zeitschritt von 0,1 Tag zu Beginn jedes Zyklus entstand. Als Leistungsverlauf wurde die gegebene mittlere Probenstableistung herangezogen und als Brennstofftemperatur der Mittelwert der beiden gegebenen Brennstofftemperaturen genutzt. Um den messtechnisch ermittelten Endabbrand der Proben in den Abbrandrechnungen zu erzielen, wurden die Leistungswerte jeder Probe mit einem über die gesamte Leistungsgeschichte konstanten Faktor skaliert, so dass die für den Abbrandindikator ¹⁴⁸Nd rechnerisch erzielte Nuklidkonzentration mit dem jeweiligen für die Probe gemessenen Wert innerhalb von 0,2 % übereinstimmt. Weitere Änderungen an den angegebenen Werten wurden nicht vorgenommen. Die so resultierenden Bestrahlungsgeschichten sind in Tab. 2.82 zusammengefasst. Die dort angegebenen relativen Leistungen je Zeitschritt beziehen sich auf das Maximum der jeweiligen Leistungsgeschichte, welches weitgehend unabhängig vom verwendeten Rechenmodell (detailliertes oder vereinfachtes Rechenmodell, Abb. 2.39) für die Probe BM5' mit einem Wert von etwa 37,26 MW/tHM in der Mitte von Zyklus 23 und für die Probe BM6 mit einen Wert von etwa 24,45 MW/tHM am Ende des Zyklus 23 auftritt¹⁰.

Die Wahl, die gegebenen Probenstableistungen anstelle der Brennelement-gemittelten Leistungen für die Nachrechnungen heranzuziehen, erfolgte hier trotz der in MOTIVE bislang fehlenden Möglichkeit, den für die Rechnung gegebenen Leistungsverlauf einem speziellen Stab zuzuordnen. So bezieht MOTIVE bisher die vom Anwender angegebene Leistung grundsätzlich auf das gesamte Rechenmodell, was hier für die Verwendung der brennelementgemittelten Leistungsverläufe sprechen würde. Der Vergleich der in /PRI 03/ gegebenen Brennelement-gemittelten Leistungen mit den jeweiligen Probenstableistungen lässt aber vermuten, dass während der ersten drei Zyklen, in welchen das Brennelement M308 am Rand des Reaktorkerns positioniert war, ein merklicher horizontaler Leistungsgradient im Brennelement vorlag (vgl. Kap. 2.5.1, Abschnitt "Bestrahlungsgeschichte"). Ein solcher Leistungsgradient ist aber mit dem hier gewählten Rechenmodell eines infiniten Gitters aus identischen Brennelementen nicht zu reproduzieren. Um in der Nachrechnung dennoch den tatsächlichen Leistungsverlauf des Probenstabs zumindest näherungsweise nachbilden zu können, wurden hier die gegebenen Probenstableistungen für die Nachrechnungen herangezogen, auch wenn diese für die ersten drei Zyklen aufgrund des zu vermutenden Leistungsgradienten nicht für das gesamte Brennelement repräsentativ sind und so ggf. ein gewisser Fehler in die Nachrechnungen eingebracht wird. Für die letzten drei Zyklen gleichen sich Brennelement-gemittelte Leistung und Probenstableistung allerdings an, so dass für diese Zyklen die Verwendung der Probenstableistungen in den Nachrechnun-

¹⁰ Die jeweils angepassten Leistungen unterscheiden sich für beide Rechenmodelle (detailliertes oder vereinfachtes Rechenmodell, Abb. 2.39) um weniger als 0,05 MW/tHM. Die im Text gegebenen Werte sind die jeweiligen Mittelwerte für die einzelnen Proben.

gen weniger problematisch sein sollte. Um den Effekt des Leistungsgradienten realistischer nachbilden zu können, wären zumindest für die ersten drei Zyklen zusätzlich zur Modellierung des Brennelements M308 auch die Modellierung dessen Umgebung nötig, d. h. die Modellierung der benachbarten Brennelemente bzw. der Kernumfassung und eines Wasserreflektors an den Stellen, an denen sich keine Brennelemente mehr befinden. Hierzu enthält /PRI 03/ aber keine weiteren Informationen, so dass auch für dieses Vorgehen Annahmen getroffen werden müssten.

Bislang ist es in MOTIVE nur möglich, eine einheitliche Brennstofftemperatur für alle Brennstoffmaterialien anzugeben, wodurch in den Nachrechnungen allen Brennstäben dieselbe Brennstofftemperatur zugeordnet wird. Insbesondere aufgrund des hier vermuteten Leistungsgradienten in den ersten drei Zyklen ist aber zu erwarten, dass die Brennstäbe entsprechend ihrer Leistung bei der Bestrahlung unterschiedliche Temperaturen aufwiesen. So wird durch dieses Vorgehen ebenfalls ein gewisser Fehler in die Nachrechnungen eingebracht. Die Maßgabe, die Abbrandrechnung möglichst mit den gegebenen Daten durchzuführen, lässt sich mit der derzeitigen MOTIVE-Version aber nur in dieser Weise erfüllen.

Zusätzlich zur Moderatortemperatur wurde der nominelle Moderatordruck von 158,2 bar zur Berechnung der Moderatordichte verwendet. Dementsprechend wurde die zusätzlich in /PRI 03/ angegebene Moderatordichte nicht weiter berücksichtigt, bzw. durch eine aktuelle Parametrisierung der Wasserzustandsgleichung neu berechnet (vgl. Kap. 2.5.1, Abschnitt "Bestrahlungsgeschichte").

Als Zerfallszeit nach Ende der Bestrahlung wird für jedes Nuklid dessen individueller Zeitraum zwischen Ende der Bestrahlung und Zeitpunkt der Messung berücksichtigt. Die im Einzelnen in der Nachrechnung herangezogenen Abklingzeiten sind in Tab. 2.83 zusammengestellt.

Zyklus	Zeit-	Akkumulierte	Borkonzen-		Probe BM5'			Probe BM6	
	schritt [d]	Zeit im Reaktor [d]	tration [ppm]	Moderator- temperatur [K]	Mittl. Brennstoff- temperatur [K]	Rel. Leistung bez. Maximum	Moderator- temperatur [K]	Mittl. Brennstoff- temperatur [K]	Rel. Leistung bez. Maximum
20	1,0	1,0	1099	559	655,5	17,886	557	603,5	12,281
	1,5	2,5	944	561	725,0	37,398	557	658,5	26,901
	2,0	4,5	822	564	852,5	58,943	558	704,5	45,029
	1,0	5,5	712	567	942,0	82,520	558	755,5	66,667
	1,0	6,5	933	561	726,0	39,024	557	664,5	28,655
	110,0	116,5	560	567	939,0	80,488	558	761,5	68,421
	0,5	117,0	492	564	847,5	58,537	558	718,5	52,632
	76,0	193,0	286	567	934,5	80,081	559	798,5	76,023
	0,5	193,5	415	561	717,0	36,179	557	675,5	32,749
	23,0	216,5	147	567	924,5	77,642	559	794,5	75,439
	0,2	216,7	356	561	717,0	36,179	557	675,5	32,749
	3,5	220,2	111	567	924,0	77,642	559	798,0	76,023
	0,5	220,7	225	564	825,0	56,098	558	716,5	53,801
	69,5	290,2	24	568	923,0	78,455	559	812,0	78,947
	17,6	307,8	90	567	907,0	75,610	558	795,0	76,023
Revision	54,2	362,0				0,000			0,000

Tab. 2.82Verwendete Bestrahlungsdaten der Zyklen 20 bis 25 für das Brennelement M308 des Reaktors Beznau-I nach /PRI 03/

Zyklus	Zeit-	Akkumulierte	Borkonzen-		Probe BM5'			Probe BM6	
	schritt [d]	Zeit im Reaktor [d]	tration [ppm]	Moderator- temperatur [K]	Mittl. Brennstoff- temperatur [K]	Rel. Leistung bez. Maximum	Moderator- temperatur [K]	Mittl. Brennstoff- temperatur [K]	Rel. Leistung bez. Maximum
21	0,5	362,5	1400	558	636,0	15,447	557	594,0	10,526
	2,0	364,5	1244	560	708,5	31,707	557	638,5	22,222
	1,5	366,0	1114	562	778,5	50,813	558	681,0	37,427
	1,0	367,0	1044	563	861,0	63,415	558	709,5	47,953
	1,0	368,0	1020	563	873,0	67,886	558	713,5	52,047
	2,5	370,5	1015	564	873,0	67,886	558	714,0	52,632
	0,5	371,0	1111	562	766,0	49,593	558	680,0	36,842
	12,0	383,0	986	564	873,5	68,293	558	714,5	53,216
	0,5	383,5	1072	562	770,0	49,593	558	680,5	37,427
	51,5	435,0	889	564	871,0	68,293	558	717,0	54,971
	1,0	436,0	915	562	765,0	49,187	558	684,0	39,181
	138,0	574,0	617	564	862,5	67,886	558	726,0	59,649
	0,2	574,2	506	562	775,0	51,220	558	711,5	46,784
	83,0	657,2	306	564	857,0	67,480	558	740,0	64,912
	1,0	658,2	435	560	702,0	30,894	557	665,0	28,070
	66,0	724,2	102	564	855,5	67,886	558	746,5	67,251
Revision	68,8	793				0,000			0,000

Zyklus	Zeit-	Akkumulierte	Borkonzen-		Probe BM5' Probe B				3M6	
	schritt [d]	Zeit im Reaktor [d]	tration [ppm]	Moderator- temperatur [K]	Mittl. Brennstoff- temperatur [K]	Rel. Leistung bez. Maximum	Moderator- temperatur [K]	Mittl. Brennstoff- temperatur [K]	Rel. Leistung bez. Maximum	
22	0,5	793,5	1071	558	655,0	17,073	557	605,0	12,865	
	2,0	795,5	916	561	715,0	35,366	557	663,0	27,485	
	2,0	797,5	784	563	812,5	56,911	558	711,5	46,784	
	2,0	799,5	711	565	866,5	71,545	558	730,0	61,404	
	35,0	834,5	622	566	896,5	78,455	558	753,0	69,006	
	38,0	872,5	508	566	892,0	77,642	558	759,0	70,760	
	1,0	1873,5	677	561	717,0	35,772	557	672,0	30,409	
	129,2	1002,7	258	566	874,5	74,390	558	756,0	70,760	
Revision	100,3	1103,0				0,000			0,000	
	8,0	1111,0	1211	562	750,0	47,967	557	682,0	38,012	
23	68,9	1179,9	850	568	928,5	99,593	559	830,5	87,135	
	2,5	1182,4	947	562	770,0	50,813	557	697,5	43,860	
	4,0	1186,4	718	568	929,5	97,967	559	841,5	90,643	
	5,0	1191,4	702	569	928,5	100,000	559	849,0	94,737	
	2,0	1193,4	914	562	768,0	50,407	557	698,0	43,860	
	59,9	1253,3	594	569	929,5	97,154	559	843,5	92,398	
	59,9	1313,2	402	569	931,0	97,561	559	848,5	98,830	
	59,9	1373,1	224	569	941,5	95,122	559	849,5	100,000	
	49,9	1423,0	66	569	957,0	93,089	559	844,5	100,000	
	20,0	1443,0	50	566	888,0	75,610	558	796,5	80,117	
Revision	48,0	1491,0				0,000			0,000	

Zyklus	Zeit-	Akkumulierte	Borkonzen-		Probe BM5'			Probe BM6	
	schritt [d]	Zeit im Reaktor [d]	tration [ppm]	Moderator- temperatur [K]	Mittl. Brennstoff- temperatur [K]	Rel. Leistung bez. Maximum	Moderator- temperatur [K]	Mittl. Brennstoff- temperatur [K]	Rel. Leistung bez. Maximum
24	6,0	1497,0	1203	561	715,0	36,992	557	666,0	28,070
	2,0	1499,0	1063	563	816,0	58,943	558	703,0	45,614
	1,0	1500,0	1044	564	822,5	62,602	558	711,5	49,708
	86,7	1586,7	784	567	920,0	85,366	558	767,0	73,684
	86,6	1673,3	495	568	910,0	85,772	559	808,0	83,041
	86,7	1760,0	229	568	901,0	84,146	559	821,5	87,719
	1,0	1761,0	366	561	721,5	36,585	557	683,5	35,088
	44,8	1805,8	38	567	892,0	80,081	559	813,0	84,795
	1,1	1806,9	3	568	897,0	82,520	559	828,0	90,643
	16,8	1823,7	3	567	888,5	78,049	559	814,5	85,380
	1,6	1825,3	3	561	720,0	34,553	557	684,0	35,088
Revision	28,7	1854,0				0,000			0,000

Zyklus	Zeit-	Akkumulierte	Borkonzen-		Probe BM5'			Probe BM6	
	schritt [d]	Zeit im Reaktor [d]	tration [ppm]	Moderator- temperatur [K]	Mittl. Brennstoff- temperatur [K]	Rel. Leistung bez. Maximum	Moderator- temperatur [K]	Mittl. Brennstoff- temperatur [K]	Rel. Leistung bez. Maximum
25	7,8	1861,8	1160	560	710,5	31,301	557	664,0	27,485
	60,6	1922,4	827	565	852,0	67,073	558	737,5	63,158
	1,0	1923,4	951	561	717,5	32,927	557	674,0	30,994
	57,6	1981,0	627	566	860,5	69,106	558	762,5	70,760
	57,6	2038,6	442	567	873,5	72,764	559	796,5	78,947
	1,0	2039,6	462	564	801,0	53,659	558	721,0	57,310
	53,7	2093,3	272	567	868,0	71,545	559	802,5	80,702
	1,0	2094,3	434	561	727,5	34,146	557	687,0	36,257
	65,4	2159,7	102	567	865,0	71,138	559	805,5	81,287
	1,0	2160,7	8	567	877,0	73,984	559	811,5	87,719
	20,5	2181,2	30	566	850,0	67,480	559	800,0	79,532
	1,0	2182,2	246	560	714,0	28,862	557	677,0	31,579

Tab. 2.83Berücksichtigte dividuelle Zerfallszeiten der errechneten Nuklidkonzentra-
tionen der Proben BM5' und BM6 aus dem Brennelement M308 des Reak-
tors Beznau-I nach /PRI 03/

Nuklid	Abkling	gzeit [d]	Abklingzeit [d]			
NUKIIO	BM5'	BM6	NUKIIO	BM5'	BM6	
²³⁴ U	1026	1320	¹⁴⁹ Sm	1137	1139	
²³⁵ U	1026	1320	¹⁵⁰ Sm	1137	1139	
²³⁶ U	1026	1320	¹⁵¹ Sm	1137	1139	
²³⁸ U	1026	1320	¹⁵² Sm	1137	1139	
²³⁷ Np	1174	1174	¹⁵⁴ Sm	1137	1139	
²³⁸ Pu	1040	1041	¹⁵¹ Eu	1137	1139	
²³⁹ Pu	1040	1041	¹⁵³ Eu	1137	1139	
²⁴⁰ Pu	1040	1041	¹⁵⁴ Eu	1137	1139	
²⁴¹ Pu	1040	1041	¹⁵⁵ Eu	1137	1139	
²⁴² Pu	1040	1041	¹⁵⁴ Gd	1137	1139	
²⁴⁴ Pu	_	-	¹⁵⁵ Gd	1137	1139	
²⁴¹ Am	1246	1249	¹⁵⁶ Gd	1137	1139	
^{242(m)} Am	1246	1249	¹⁵⁸ Gd	1137	1139	
²⁴³ Am	1246	1249	¹⁶⁰ Gd	1137	1139	
²⁴² Cm	1246	1249	¹³³ Cs	1161	1162	
²⁴³ Cm	1246	1249	¹³⁴ Cs	1161	1162	
²⁴⁴ Cm	1246	1249	¹³⁵ Cs	1161	1162	
²⁴⁵ Cm	1246	1249	¹³⁷ Cs	1161	1162	
²⁴⁶ Cm	1246	1249	⁹⁰ Sr	1195	1196	
¹⁴² Nd	1067	1063	⁹⁵ Mo	1292	1292	
¹⁴³ Nd	1067	1063	⁹⁹ Tc	1301	1301	
¹⁴⁴ Nd	1067	1063	¹⁰¹ Ru	1292	1292	
¹⁴⁵ Nd	1067	1063	¹⁰⁶ Ru	1187	1185	
¹⁴⁶ Nd	1067	1063	¹⁰³ Rh	1258	1258	
¹⁴⁸ Nd	1067	1063	¹⁰⁹ Ag	1292	1292	
¹⁵⁰ Nd	1067	1063	¹²⁵ Sb	1187	1185	
¹⁴⁷ Pm	1273	1273	¹²⁹	1287	1287	
¹⁴⁷ Sm	1137	1139	¹⁴⁴ Ce	1187	1185	
¹⁴⁸ Sm	1137	1139				

2.5.3 Resultate

Die aufgrund der nicht exakten 1/8-Brennelementsymmetrie betrachteten zwei Rechenmodelle (detailliertes und vereinfachtes Rechenmodell, Abb. 2.39) zeigen in ihren Resultaten nur geringe Unterschiede. So weichen die errechneten Nuklidkonzentrationen für alle Nuklide deutlich weniger als 1,0 % voneinander ab, in den meisten Fällen liegt diese Abweichung sogar nur bei etwa 0,1 %. Im Vergleich mit den Messwerten können diese Abweichungen zwischen den Rechenmodellen vernachlässigt werden, so dass hier jeweils nur die Resultate des vereinfachten Rechenmodells mit den Messergebnissen verglichen wurden.

Die Ergebnisse der Nachrechnungen sind in Tab. 2.84 und in graphischer Form in Abb. 2.40 und Abb. 2.41 gezeigt. Die beiden Proben zeigen ein verschiedenes Bild. Bei der Probe BM5' werden ²³⁵U und ²³⁹Pu gut getroffen, wobei ²³⁵U in dem MOX-Brennstoff eine eher untergeordnete Rolle spielt. Auch die übrigen Aktinoide weisen mit Ausnahme von ²⁴⁴Pu eine überdurchschnittlich gute Übereinstimmung zwischen Rechnung und Experiment auf. Gleiches gilt für viele Spaltprodukte, so zum Beispiel die Samarium-Nuklide. Bei einigen metallischen Spaltprodukten wie z. B. Rhodium und Ruthenium kommt es hingegen zu größeren Abweichungen.

	BM5'	BM6		BM5'	BM6
²³⁴ U	8,2	6,7	¹³³ Cs	4,5	-0,2
²³⁵ U	1,5	0,9	¹³⁴ Cs	-4,3	-12,0
²³⁶ U	-3,1	-3,4	¹³⁵ Cs	1,7	-2,3
²³⁸ U	0,0	0,0	¹³⁷ Cs	-0,6	-6,4
²³⁷ Np	0,1	5,4	¹⁴² Nd	-0,8	13,6
²³⁸ Pu	5,7	12,8	¹⁴³ Nd	0,7	7,3
²³⁹ Pu	2,3	7,6	¹⁴⁴ Nd	-2,6	2,5
²⁴⁰ Pu	0,5	7,7	¹⁴⁵ Nd	-0,4	2,5
²⁴¹ Pu	0,5	5,7	¹⁴⁶ Nd	-1,7	0,1
²⁴² Pu	0,4	6,4	¹⁴⁸ Nd	-0,5	-0,6
²⁴⁴ Pu	-54,9	-	¹⁵⁰ Nd	-0,2	2,6
²⁴¹ Am	17,9	-6,1	¹⁴⁷ Pm	-7,3	6,7
^{242m1} Am	-10,1	-33,3	¹⁴⁷ Sm	3,0	-5,4
²⁴³ Am	3,6	-17,7	¹⁴⁸ Sm	-2,9	-12,1
²⁴² Cm	-7,6	-	¹⁴⁹ Sm	10,1	-0,4
²⁴³ Cm	13,2	-	¹⁵⁰ Sm	2,1	-6,8
²⁴⁴ Cm	-7,0	-3,4	¹⁵¹ Sm	1,5	-8,1
²⁴⁵ Cm	1,2	-2,0	¹⁵² Sm	2,1	-5,6
²⁴⁶ Cm	-15,4	-18,9	¹⁵⁴ Sm	5,5	-9,9
⁹⁰ Sr	0,3	-13,1	¹⁵¹ Eu	-25,9	-23,5
⁹⁵ Mo	-2,8	-9,4	¹⁵³ Eu	-3,0	-5,6
⁹⁹ Tc	12,9	8,0	¹⁵⁴ Eu	9,0	-9,8
¹⁰¹ Ru	35,3	-1,3	¹⁵⁵ Eu	-7,8	-14,1
¹⁰⁶ Ru	36,9	5,2	¹⁵⁴ Gd	-	-4,2
¹⁰³ Rh	62,2	0,0	¹⁵⁵ Gd	8,6	-8,3
¹⁰⁹ Ag	-	20,6	¹⁵⁶ Gd	-	-10,6
¹²⁵ Sb	-	38,3	¹⁵⁸ Gd	-	0,7
¹²⁹	-	145,4	¹⁶⁰ Gd	-	-5,9

Tab. 2.84Vergleich zwischen gemessenen und berechneten Werten als C/E-1 in %

Abb. 2.40 ARIANE, BM5': Vergleich zwischen Rechnung und experimentellen Daten dargestellt als C/E-1 in Prozent

Abb. 2.41 ARIANE, BM6: Vergleich zwischen Rechnung und experimentellen Daten dargestellt als C/E-1 in Prozent

Bei der Probe BM6 ist dagegen eine deutliche Überschätzung der ²³⁹Pu-Konzentration durch die Rechnung zu beobachten. Auch die übrigen Plutonium-Nuklide werden überschätzt. Da gleichzeitig viele der Spaltprodukte unterschätzt werden, liegt die Vermutung nahe, dass durch die Kalibrierung auf ¹⁴⁸Nd ein zu geringer Abbrand in der Rechnung erzielt wurde. Die große Messunsicherheit für dieses Nuklid würde einen gewissen Spielraum bei der Festlegung des Zielabbrands bieten. Zur Wahrung der Konsistenz mit den anderen Nachrechnungen wurde hierauf allerdings verzichtet.

Erwähnenswert bei der Probe BM6 ist außerdem die gute Übereinstimmung zwischen Rechnung und Experiment bei den Nukliden ⁹⁹Tc, ¹⁰¹Ru, ¹⁰⁶Ru und ¹⁰³Rh. Große Abweichungen treten hingegen bei ¹²⁵Sb und ¹²⁹I zu Tage.

2.6 Probe des Gemeinschaftskraftwerks Neckarwestheim II (GKN-II) aus dem REBUS-Programm

Im REBUS-Programm wurden Reaktivitätsmessungen an bestrahlten UO₂- und MOX-Brennstäben im VENUS-Nullleistungsreaktor der SCK-CEN in Mol, Belgien vorgenommen, um die Daten zur Validierung, z. B. von Kritikalitätscodes für Abbrandkreditanwendungen, bereitzustellen. U. a. wurden hierzu die zentralen 16 Stäbe des Brennelements 419 des Gemeinschaftskraftwerks Neckarwestheim II (GKN-II) verwendet. Diese Stäbe wurden dazu dem Brennelement entnommen und aus deren zentralen Abschnitten von zwei Metern Länge jeweils zwei einen Meter lange verkürzte Brennstäbe für den VENUS-Reaktor hergestellt. Da für die Nachrechnungen der Reaktivitätsmessungen eine gute Charakterisierung der Brennstäbe bzw. des bestrahlten Brennstoffs notwendig ist, wurden die Stäbe zusätzlich gammaspektroskopisch sowie der Stab an der Position M11 auch radiochemisch untersucht (Abb. 2.42). Dazu wurde vom letzteren Brennstab eine einzelne Probe von drei Pellets zwischen 105,5 cm und 108,5 cm vom oberen Brennstabende entfernt entnommen¹¹ /SCK 04/, /SCK 06/, /SCK 05a/.

¹¹ Im Bericht /SCK 04/ wird die Entnahme von zwei im Brennstab nebeneinanderliegenden Proben erwähnt, ein "primary sample" zwischen ca. 105,5 cm und 108,5 cm und ein "spare sample" zwischen ca. 101,0 cm und 105,5 cm. Der Bericht zur radiochemischen Analyse verweist aber nur auf das sog. primary sample, so dass vermutlich das zweite Sample nicht analysiert wurde.

2.6.1 Experimentelle Daten

In /SCK 05b/, Tabelle 1.3 und 1.4, sind die Reaktor- und Brennelementdaten für eine Abbrandrechnung mit WIMPS zusammengestellt worden, so dass /SCK 05b/ eine wesentliche Quelle für die hier durchgeführten Nachrechnungen darstellt. Ferner sind weitere Angaben in /SCK 04/ und /SCK 05a/ enthalten. Die radiochemischen Messdaten sind dagegen in /SCK 06/ zusammengefasst.

Reaktordaten

Das Gemeinschaftskraftwerk Neckarwestheim II (GKN-II) ist ein Druckwasserreaktor der Konvoi-Baureihe mit einer nominellen thermischen Leistung von 3850 MW bzw. einer nominellen elektrischen Leistung von 1400 MW. Die weiteren für die Probennachrechnung relevanten Reaktordaten sind /SCK 05b/ entnommen und in Tab. 2.85 zusammengefasst.

Parameter	
Nomineller Kühlmitteldruck [bar]	158
Kühlmitteleinlasstemperatur [°C]	291,7
Kühlmittelauslasstemperatur [°C]	327,5

Tab. 2.85 Relevante Reaktordaten des GKN-II /SCK 05b/

Brennelement

Das Brennelement 419 aus GKN-II ist ein 18 × 18-DWR-Brennelement aus UO₂-Brennstoff mit 288 Brennstäben mit einheitlicher ²³⁵U-Anreicherung und zwölf Gdhaltigen Brennstäben mit einer verringerten ²³⁵U-Anreichung sowie 24 Steuerstabführungs- bzw. Instrumentierungsrohren (Abb. 2.42) /SCK 05b/. Angaben zu den geometrischen Abmessungen des Brennelements bzw. der Brennstäbe und Steuerstabführungs- bzw. Instrumentierungsrohre sind ebenfalls in /SCK 05b/ enthalten und in Tab. 2.86 wiedergegeben. Der Bericht /SCK 05b/ verweist als Quelle für die enthaltenen Angaben auf einen zu derzeit noch zu veröffentlichenden Bericht, ohne dafür aber eine explizite Referenz anzugeben. Die Referenzenliste enthält allerdings eine frühere Version von 2002 des Berichts /SCK 05a/, ohne diese Referenz im Text zu verwenden. Es ist daher zu vermuten, dass mit dem zu veröffentlichenden Bericht /SCK 05a/ gemeint ist.

So enthält auch /SCK 05a/ entsprechende Angaben zu Pellet- und Hüllrohrgeometrie. Die frei verfügbare Version dieses Berichtes besteht aber lediglich aus einem Kapitel 6 mit der Bezeichnung "U 3.8 w% GKN fresh fuel pins" sowie aus einem Kapitel 7 mit der Bezeichnung "U 3.8 w% GKN refabricated irradiated fuel pins" und ist offensichtlich nur ein Auszug eines größeren Berichts, der Brennstoffe für die Messungen im VENUS-Reaktor beschreibt. Beide genannten Kapitel bestehen hauptsächlich aus Tabellen, zu welchen nur sporadisch knappe weitere Erklärungen gegeben werden, so dass keine direkte Zuordnung der enthaltenen Angaben zum jeweiligen Kontext gegeben ist. Dem Augenschein nach beschreibt Kapitel 6 aber ca. 1 m lange Brennstäbe mit frischem Brennstoff, die vermutlich für Messungen im VENUS-Reaktor hergestellt und genutzt wurden. Zwar spricht Kapitel 6 hauptsächlich von "fresh fuel pins", an zwei Stellen wird aber dennoch auch von "refrabricated irradiated fuel pins" gesprochen. Hierbei könnte es sich allerdings um "copy and paste"-Fehler handeln. So bezieht sich eine Erwähnung der "refrabricated irradiated fuel pins" auf eine Tabelle zur Hüllrohrzusammensetzung, die ebenfalls im Kapitel 7 "U 3,8 w% GKN refrabricated irradiated fuel pins" aufgeführt wird. Die zweite Erwähnung verweist in einer Textpassage in Kapitel 6 auf

eine Abbildung 3 dieses Kapitels, welche der Textpassage nach einem Querschnitt durch "refrabricated irradiated fuel pins" zeigen soll, wohingegen die zugehörige Abbildungsunterschrift aber von einem Querschnitt durch "fresh fuel pins" spricht. Dagegen spricht Kapitel 7 durchweg von "refabricated irradiated fuel pins" und verweist dabei u. a. auf die Bestrahlungshistorie des Brennstoffs im Bericht /SCK 05b/ (s. u.). Zusätzlich ist im Kapitel 7.1.3 "U 3.8 w% irradiated fuel (fresh state)" eine Zuordnung von zwei aufgeführten unbestrahlten Brennstoffzusammensetzungen mit Brennstabpositionen H8 bis H11, K8 bis K11, L8 bis L11 und M8 bis M11 angegeben. So sind die Brennstabpositionen H8 bis M11 gerade die 16 Positionen des Brennelements 419, deren Brennstäbe für die Messungen am VENUS-Reaktor verwendet wurden. Somit scheint Kapitel 7 augenscheinlich die Brennstäbe des Brennelements 419 zu beschreiben. Geometrieangaben zu Pellet und Hüllrohr sind in /SCK 05a/ aber nur im Kapitel 6 enthalten und sind somit nicht zwingend auf die Brennstäbe des Brennelements 419 zu beziehen. Allerdings liegt hier die Vermutung nahe, dass die in Kapitel 6 beschriebenen Stäbe zum Reaktivitätsvergleich mit den bestrahlten Stäben des Brennelements 419 im VENUS-Reaktor herangezogen wurden, und somit vermutlich möglichst identisch zu den Brennstäben des Brennelements 419 gewählt wurden. Ferner ist davon auszugehen, dass den Autoren des Berichts /SCK 05b/ die vollständige Version von /SCK 05a/ zur Verfügung stand und somit ggf. auch konkrete Angaben zu den Stäben aus Brennelement 419, so dass anzunehmen ist, dass dann diese Werte in /SCK 05b/ übertragen wurden. Sieht man von den angesprochenen offenen Fragen zur Zuordnung der angegebenen Daten ab, so sind die enthaltenden Angaben bzgl. Pellet- und Hüllrohrgeometrie in /SCK 05b/ und /SCK 05a/ konsistent. Zusätzlich zu den Daten in /SCK 05b/ sind in /SCK 05a/ noch die Dicke des Hüllrohr-Liners und das Dish-Volumen angegeben. Alle genannten Werte sind in Tab. 2.86 zusammengestellt.

Auch /SCK 04/ enthält einzelne Angaben zur Geometrie von Pellet und Hüllrohr, die der Referenz nach allerdings aus /SCK 05b/ stammen, womit die Daten aus beiden Berichten miteinander konsistent sind. Auf einen separaten Eintrag in Tab. 2.86 wurde daher verzichtet.

Parameter	/SCK 05b/, /SCK 04/	/SCK 05a/
Pelletdurchmesser [cm]	0,805 ± 0,013	0,805 ± 0,013
Hüllrohrinnendurchmesser [cm]	0,822 ± 0,040	0,822 ± 0,040
Hüllrohraußendurchmesser [cm]	0,950 ± 0,050	0,950 ± 0,050
Dicke Hüllrohr-Liner [mm]	—	0,15 ± 0,05
Dish-Volumen [mm ³]	—	10 ± 3
Aktive Brennstoffhöhe [cm]	390	
Steuerstabführungsrohrinnendurchmesser [cm]	1,110	
Steuerstabführungsrohraußendurchmesser [cm]	1,232	
Brennstabmittenabstand [cm]	1,27	
Brennelementmittenabstand [cm]	23,116	

Tab. 2.86Geometrische Abmessungen des Brennelements 419 und dessen Brenn-
stäbe nach /SCK 04/, /SCK 05b/, /SCK 05a/

Materialzusammensetzung

Brennstoffzusammensetzungen werden im Detail im Bericht /SCK 05a/ wiedergegeben, allerdings sind dort mehrere leicht unterschiedliche Zusammensetzungen enthalten und somit keine eindeutige Identifikation der hier relevanten Zusammensetzung gegeben. So wird im Kapitel 6 eine unbestrahlte Brennstoffzusammensetzung mit zwei Sätzen an Verunreinigungen wiedergegeben, d. h. es lagen hier vermutlich zwei Chargen von Brennstoffen mit kompatiblen Uranvektoren, aber unterschiedlichen Verunreinigungen vor. Im Kapitel 7 sind zwei unbestrahlte Brennstoffzusammensetzungen mit Verunreinigungen unter den Bezeichnungen "Lot 1" und "Lot 12" enthalten, welchen Brennstabpositionen H8 bis H11, K8 bis K11, L8 bis L11 und M8 bis M11 zugeordnet werden. Der Brennstabposition M11 wird dabei die Zusammensetzung "Lot 12" zugeordnet, so dass hier entsprechend der obigen Diskussion zum Bericht /SCK 05a/ vermutlich die Zusammensetzung "Lot 12" die Brennstabzusammensetzung des betrachteten Probenstabs M11 beschreibt. Alle drei Zusammensetzungen mit ihren Verunreinigungen sind nachfolgend in Tab. 2.87 und Tab. 2.88 wiedergegeben. Angaben zu den Gd-haltigen Brennstäben sind in /SCK 05a/ nicht enthalten.

Im Bericht /SCK 05b/ sind ebenfalls Angaben zur Brennstoffzusammensetzung zusammengestellt, welche hier in Tab. 2.89 wiedergegeben sind. Die Daten für die UO₂-

Brennstäbe sind dabei vermutlich /SCK 05a/ entnommen¹². Die ²³⁵U-Anreicherung ist mit 3,8 wt.-% angegeben, sie wurde also offensichtlich gegenüber /SCK 05a/ gerundet. Anteile für ²³⁴U und ²³⁶U werden dagegen nicht genannt bzw. mit 0,00 wt-% angegeben, was allerdings den Angaben in /SCK 05a/ widerspricht. Die Brennstoffdichte ist mit 10,40 g/cm³ angegeben¹³. Wenn dieser Wert nicht auch als gerundet angenommen wird, würde er dafür sprechen, dass hier die Daten aus /SCK 05a/, Kap. 6 "U 3.8 w% GKN fresh fuel pins" übernommen wurden. Dies würde dann allerdings der obigen Einschätzung widersprechen, dass vermutlich die Angaben in /SCK 05a/, Kap. 7 "U 3.8 w% GKN refabricated irradiated fuel pins" die ursprüngliche Zusammensetzung der bestrahlten Brennstäbe des Brennelements 419 beschreiben. Im Gegensatz zu /SCK 05a/ enthält /SCK 05b/ aber auch Angaben zu den Gd-haltigen Brennstäben, allerdings ohne Werte für die Anteile von ²³⁴U oder ²³⁶U im Brennstoff anzugeben. Die Zusammensetzung des Gd-haltigen Brennstoffs aus /SCK 05b/ sind ebenfalls in Tab. 2.89 wiedergeben.

Ferner enthält auch /SCK 04/ Angaben zur Zusammensetzung des frischen Brennstoffs der regulären UO₂-Brennstäbe und gibt als Quelle eine frühe Version des Berichts /SCK 05b/ an. Diese Daten sind ebenfalls in Tab. 2.89 zusammengestellt. Die Angaben der ²³⁵U-Anreicherung von 3,80 wt.-% und der Brennstoffdichte von 10,4 g/cm³ sowie die Vernachlässigung von ²³⁴U und ²³⁶U im frischen Brennstoff stimmen zwar mit den Angaben in /SCK 05b/ überein, widersprechen damit aber auch den Daten in /SCK 05a/ (s. o.). Angaben zu den Gd-haltigen Stäben macht /SCK 04/ nicht, wobei diese aber auch nicht gammaspektroskopisch untersucht wurden. Als einzige zusätzliche Information gegenüber den beiden zuvor genannten Berichten enthält /SCK 04/ noch die Angabe des "linearen spezifischen Gewicht" des Pellets von 0,522 kg/m. Wird eine ideale Zylinderform mit den nominellen Pellet-Abmessungen unterstellt (Tab. 2.86), so folgt daraus eine Brennstoffdichte von 10,26 g/cm³, welche gegenüber dem oben genannten Wert geringer ausfällt. Berücksichtigt man dagegen evtl. Aussparungen an den Pellet-Stirnseiten mit einem Gesamtvolumen von etwa 10 mm³,

¹² Vergleiche hierzu die Diskussion im Abschnitt "Brennelement" bzgl. der Referenzierung von /SCK 05a/ in /SCK 05b/.

¹³ Die Einheit der Dichte wird zwar für die UO₂-Brennstäbe mit "% TD", also Prozent der theoretischen Dichte, angegeben, aus dem Zahlenwert von 10,40 ist aber zu vermuten, dass es sich dabei um einen Schreibfehler handelt und die korrekte Einheit "g/cm³" ist, so wie bei den Gd-haltigen Stäbe auch.

wie in /SCK 05a/ bzw. Tab. 2.86 angegeben¹⁴ und welche üblicherweise in die Berechnung eines linearen Gewichts eingehen, so ergibt sich stattdessen eine Brennstoffdichte von 10,46 g/cm³. Dieser Wert kommt der angegebenen Dichte sowie auch den Angaben in /SCK 05a/ deutlich näher, weshalb zu vermuten ist, dass die Pellets entsprechende Aussparungen aufweisen, womit die angegebenen Werte konsistent wären. Konkrete Angaben dazu sind in /SCK 04/ aber nicht enthalten.

lsotop / Element	Ka	p. 6	Kap. 7 "Lot 1"	Kap. 7 "Lot 12"	
Brennstoffzusammensetzung [wt%]					
²³⁴ U	0,0)36	0,0286	0,0306	
²³⁵ U	3,798	± 0,001	3,8042	3,808	
²³⁶ U	0,0	000	0,0028	0,002	
²³⁸ U	96,166	± 0,001	96,1644	96,1594	
	Verunreinigungen [µg/g₀]				
AI	91,6	82,0	< 10	< 10	
Са	< 2	< 2	< 10	< 10	
Fe	7,5	16,3	< 10	< 10	
Ni	1,9	2,5	< 5	< 5	
Si	< 10	< 10	< 10	< 10	
Zn	1,5	1,2	< 10	< 10	
Gd	< 0,3	< 0,3	< 0,05	< 0,05	
N	9,0	8,7	< 10	< 10	
С	6,0	6,3	< 5	< 5	
CI	_	_	< 3	< 3	
Fluoride	2,6	2,4	_	_	
Chloride	< 5	< 5	_	_	
Н	< 0,1 µg/g _{UO2}	< 0,1 µg/g _{UO2}	3,1 mm ³ /g _U	2,6 mm ³ /g _U	

Tab. 2.87 Nuklidweise Brennstoffzusammensetzung nach /SCK 05a/

¹⁴ Vorbehaltlich der Tatsache, dass sich die Angaben in /SCK 05a/ nicht zwingend auf die Brennstäbe des Brennelements 419 beziehen, vergl. Abschnitt "Brennelement".

Tab. 2.88 Brennstoffdichte nach /SCK 05a/

Brennstoffdichte [g/cm ³]					
Kap. 6 Kap. 7 "Lot 1" Kap. 7 "Lot 12"					
10,40 ± 0,15	10,42	10,435			

Tab. 2.89 Brennstoffzusammensetzung nach /SCK 05b/

	Brennstab		
	UO ₂ , /SCK 05b/, /SCK 04/	UO ₂ - Gd ₂ O ₃ , /SCK 05b/	
²³⁵ U [wt%]	3,8	2,6	
U/O	2,00	—	
Gd ₂ O ₃ [wt%]	—	7,0	
Dichte [g/cm ³]	10,40	10,13 ± 0,15	
Lin. spez. Gewicht [g/cm]	5,22	_	

Das Hüllrohrmaterial wird in /SCK 05a/ und /SCK 05b/ als "Duplex Zry-4/Zr0.8Sn" angegeben. In /SCK 05a/ ist zusätzlich dessen Dichte mit 6,6 g/cm³ und dessen Zusammensetzung aufgeführt, wobei diese Angaben dort sowohl in Kapitel 6 als auch Kapitel 7 in identischer Form enthalten sind, d. h. im Gegensatz zur Brennstoffzusammensetzung liegen in diesem Fall keine unterschiedlichen Angaben vor. Die Zusammensetzung ist nachfolgend in Tab. 2.90 wiedergegeben. In /SCK 05b/ wird anstelle der Dichte für das Hüllrohrmaterial ein lineares spezifisches Gewicht von 1,176 g/cm aufgeführt, was mit den gegebenen Radien einer Dichte von 6,602 g/cm³ entspricht und damit konsistent mit /SCK 05a/ ist.

Dagegen wird in /SCK 04/ das Hüllrohrmaterial als Zircaloy-2 mit einer Dichte von 0,641 g/cm³ angegeben, wobei aber gleichzeitig für diese Angaben eine frühere Version des Berichts /SCK 05b/ von 2002 als Quelle angegeben wird. An dieser Stelle ist allerdings nicht eindeutig zu entscheiden, ob eine der Angaben in /SCK 04/ bzw. /SCK 05b/ und /SCK 05a/ fehlerhaft ist. Allerdings ist der gängigen Praxis nach, Zircaloy-2 kein übliches Hüllrohrmaterial in DWR-Reaktoren. Ebenso erscheint es unrealistisch, dass sich die Hüllrohrmaterialien der originalen Brennstäbe des Brennelements 419 und der verkürzten Stäbe für die Messungen im VENUS-Reaktor unterscheiden, also dass neue Hüllrohre für die Herstellung der verkürzten Stäbe verwendet und die Pellets aus den ursprünglichen Hüllrohren in diese neuen Hüllrohre verbracht wur-

den¹⁵. Daher ist zu vermuten, dass es sich bei der Angabe in /SCK 04/ um einen Schreibfehler handeln dürfte.

Element	Zry-4 Grundmaterial [wt%]	Liner-Material [wt%]
Sn	1,4 – 1,6	0,7 - 0,9
Fe	0.18 – 0,24	0,24 – 0,32
Cr	0,07 – 0,13	0,13 – 0,21
Fe + Cr	0,28 – 0,37	Keine Angabe
0	0,12 - 0,16	0,12 - 0,16
Zr (+ Verunreinigungen)	Rest	Rest

Tab. 2.90 Zusammensetzung des Hüllrohrs nach /SCK 05a/

Bestrahlungsgeschichte

Die Bestrahlungsgeschichte ist im Bericht /SCK 05b/ dokumentiert. Bestrahlt wurde das Brennelement 419 in den vier Zyklen 5 bis 8 zwischen 1994 und 1997 (Tab. 2.91). Generell sind laut /SCK 05b/ detaillierte zeit- und ortsaufgelöste Daten zur Bestrahlungsgeschichte, insbesondere zur Leistung und Abbrand, des Brennelements 419 vorhanden, allerdings liegen diese in separaten Dateien vor, die augenscheinlich bislang nicht frei verfügbar sind. In /SCK 05b/ sind von diesen detaillierten Daten lediglich Auszüge enthalten. Stattdessen gibt /SCK 05b/ die über die mittleren zwei Meter Länge der zentralen 16 Brennstäbe gemittelten Leistungs- und Abbrandwerte in 54 Zeitschritten an. In den gleichen Zeitschritten werden Brennstoff- und Moderatortemperaturen sowie Borgehalt angegeben. Inwiefern insbesondere die angegebenen Temperatur ebenfalls über die mittleren zwei Meter Länge der zentralen 16 Brennstäbe gemittelten Leistung der zentralen 16 Brennstäbe gemittelter insbesondere die angegebenen Temperatur ebenfalls über die mittleren zwei Meter Länge der zentralen 16 Brennstäbe gemittelter Leister die angegebenen Temperatur ebenfalls über die mittleren zwei Meter Länge der zentralen 16 Brennstäbe gemittelt wurde geht aus /SCK 05b/ nicht eindeutig hervor, es ist aber zu vermuten, dass dies der Fall ist. Die gegebenen Werte sind in Tab. 2.92 wiedergeben

Neben der Mittelung der Bestrahlungsgeschichte über die zentralen 16 Brennstäbe wurden Leistung und Abbrand zudem ausgehend von einer nicht weiter spezifizierten feineren zeitlichen Darstellung in die bereits erwähnten 54 Zeitschritte kondensiert, in welchen die Daten für Temperaturen und Borkonzentration vorlagen /SCK 05b/. Es erscheint daher plausible, dass Leistung und Abbrand dann in Form des zeitlichen Mit-

¹⁵ Private Kommunikation mit H.-G. Sonnenburg, F. Boldt, GRS.

telwerts je Zeitschritt angegeben wurden. Ob dies tatsächlich zutrifft und in welcher Form Temperaturen und Borkonzentration angegeben sind (Mittelwert über Zeitschritt oder Werte zum Zeitpunkt), wird in /SCK 05b/ allerdings nicht explizit erwähnt.

Es ist zu beachten, dass in Tab. 2.91 die Summe der angegebenen Zeitschrittlängen geringfügig von der Anzahl der Tage zwischen gegebenem Zyklusbeginn und -ende abweicht. Die Zeitschrittlängen sind also offensichtlich in Form von sog. "effective (full) power days" zu interpretieren (Tab. 2.91).

Zyklus	Zyklusbeginn	Zyklusende	Zyklusdauer Datum ¹ [d]	Zyklusdauer Tab. 2.92 ² [d]	Revision Datum ³ [d]
5	24.08.1993	01.07.1994	311	310,0	22
6	23.07.1994	18.08.1995	391	386,7	17
7	04.09.1995	17.08.1996	348	347,9	15
8	01.09.1996	16.08.1997	349	346,8	

Tab. 2.91 Bestrahlungszeitraum des Brennelements 419 nach /SCK 05b/

¹ Zykluslänge entsprechend des Beginn- und Enddatums, die Tage von Zyklusbeginn und -ende werden jeweils zur Hälfte der Zyklusdauer und der Revision zugeordnet. Diese Werte sind nachträglich berechnet und so nicht in /SCK 05b/ enthalten.

² Aus den Bestrahlungsdaten nach Tab. 2.92 errechnete Zyklusdauer.

³ Länge der Revisionen entsprechend des Zyklusendes und -beginns.

Neben der Moderatortemperatur wird auch die Moderatordichte je Zeitschritt angegeben. Der Vergleich der gegebenen Dichten mit den Werten der International Association for the Properties of Water and Steam (IAPWS) /INT 07/ unter Verwendung des nominellen Kühlmitteldrucks von 158 bar und der gegebenen Moderatortemperaturen zeigt, dass die in /SCK 05b/ gegebenen Dichten geringfügig, aber doch systematisch unter den Werten der IAPWS liegen. Im Zyklus 5 mit den dort höheren Kühlmitteltemperaturen liegt die Differenz zu den IAPWS-Werten um 0,0014 g/cm³, im Zyklus 8 mit den geringeren Kühlmitteltemperaturen liegt die Differenz lediglich um 0,0003 g/cm³. Nähere Angaben zur Bestimmung der Dichten werden in /SCK 05b/ nicht gemacht, vermutlich wurden sie aber aus den ermittelten Moderatortemperaturen abgeleitet und für diese Ableitung eine andere bzw. ältere Parametrisierung der Wasserzustandsgrößen als die hier berücksichtigte Parametrisierung der IAPWS verwendet. Damit wären die Temperaturen die eigentlich für die Nachrechnung zu berücksichtigend Größe. Ebenso werden keine weiteren Informationen zu den angegebenen Brennstofftemperaturen gegeben. Es ist aber zu vermuten, dass es sich hierbei um effektive Brennstofftemperaturen handelt.

Zudem wird in /SCK 05b/ die im Brennstoff erzeugte Leistung sowohl in W/cm als auch in W/g_{HM} angegeben. Das Umrechnen der in W/cm gegebenen Leistungswerte in W/g_{HM} unter Annahme einer zylindrischen Pelletgeometrie und der in /SCK 05a/ gegebenen Brennstoffdichte von 10,435 g/cm³ (entspricht einer Uranpartialdichte von 9,20 g/cm³) führt allerdings zu Werten, die systematisch um etwa 2 % unter den in W/g_{HM} angegebenen Leistungswerten liegen. Werden dagegen zusätzlich evtl. Aussparungen an den Pelletstirnseiten mit einem Gesamtvolumen von etwa 10 mm³, wie in /SCK 05a/ bzw. Tab. 2.86 angegeben¹⁶, berücksichtigt, so ergeben sich damit Leistungswerte in W/g_{HM}, die nur noch 0,3 % unter den entsprechenden angegebenen Werten liegen. Die Annahme entsprechender Aussparungen können also die vermeintliche Diskrepanz zwischen den beiden angegebenen Leistungswerten erklären, wie dies auch bereits schon bei der Angabe des "linearen spezifischen Gewicht" in /SCK 04/ zu beobachten war, vgl. Abschnitt "Materialzusammensetzung". Angaben zu einer solchen Aussparung sind in /SCK 05b/ aber nicht enthalten. Zudem sind die in W/g angegebenen Leistungswerte sehr gut mit den gegebenen Abbrandwerten konsistent, d. h. die aus diesen Leistungswerten errechneten Abbrandwerte sind bis auf Rundungseffekte mit den gegebenen Abbrandwerten identisch. Dies lässt den Schluss zu, dass hier offensichtlich die mittleren Leistungen je Zeitschritt angegeben sind.

Zusätzlich gibt auch /SCK 04/ eine grafische Darstellung des Leistungsverlaufs des Stabs M11 im Brennelement 419 wieder. Als Quelle für diese Daten wird eine ältere Version des Berichts /SCK 05b/ angegeben. Die aus dieser Darstellung zu entnehmenden Leistungswerte in W/cm sind um rund 10 % geringer als die entsprechenden in /SCK 05b/ bzw. Tab. 2.92 angegebenen Werte. Allerdings scheinen sich die Leistungsverläufe in beiden Berichten dem optischen Vergleich nicht nur um einen konstanten Faktor zu unterscheiden, sondern zeigen in ihrem zeitlichen Verlauf einen zusätzlichen Unterschied in der Größenordnung von einigen Prozent, ggf. bis zu etwa 10 %. Eine genauere Auswertung ist aufgrund der begrenzten Skala der Abbildung in /SCK 04/ nicht möglich. Ein konstanter Faktor wäre durch die Leistungsnormierung in der Nachrechnung unproblematisch, zusätzliche Unterschiede im zeitlichen Verlauf werden so aber nicht korrigiert. Da die Werte in /SCK 05b/ bzw. Tab. 2.92 die Mittelung über die zentralen 16 Stäbe wiedergeben, spricht der Unterschied zu den Werten in /SCK 04/ dafür, dass sich die Leistung der zentralen 16 Stäbe in ihrem zeitlichen Ver-

¹⁶ Vorbehaltlich der Tatsache, dass sich die Angaben in /SCK 05a/ nicht zwingend auf die Brennstäbe des Brennelements 419 beziehen, vgl. Abschnitt "Brennelement".

lauf nicht nur um einen konstanten Faktor sondern zusätzlich auch in der Form des Verlaufs um einige Prozent, ggf. bis zu mehr als 10 % voneinander unterscheiden. Die Darstellung in /SCK 04/ ist allerdings zu klein, als dass aus ihr hinreichend genaue Werte für eine Probennachrechnung abgelesen werden könnten.

Zyklus	Zeit- schritt [d]	Borkonzen- tration [ppm]	Moderator- temperatur [K]	Brennstoff- temperatur [K]	Leistung [W/gHM]	Akkumulierter Abbrand [GWd/tHM]
5	6,0	965,6	592,7	1030,4	61,92	0,37
	24,0	876,6	592,6	1029,4	60,87	1,83
	30,0	783,2	592,5	1028,5	59,76	3,63
	30,0	681,8	593,0	1030,9	58,61	5,38
	30,0	583,2	593,4	1030,2	58,21	7,13
	30,0	489,4	593,7	1028,6	57,90	8,87
	30,0	400,9	594,2	1027,4	57,75	10,60
	30,0	308,3	594,3	1021,4	57,36	12,32
	30,0	206,9	593,9	1008,1	56,15	14,00
	30,0	99,4	593,7	993,7	54,89	15,65
	25,4	10,0	593,4	981,8	53,93	17,02
	14,6	10,0	587,5	957,8	51,41	17,77
Revision	22,0				0,00	17,77
6	6,0	1175,9	590,0	964,0	51,58	18,08
	24,0	1088,9	589,9	952,7	51,02	19,31
	30,0	998,8	589,6	937,7	49,98	20,80
	30,0	898,8	589,8	926,1	48,93	22,27
	30,0	800,2	589,9	917,1	48,58	23,73
	30,0	706,1	590,0	909,5	48,33	25,18
	30,0	617,3	590,1	902,7	48,17	26,63
	30,0	529,3	590,1	894,6	47,87	28,06
	30,0	432,0	589,7	883,5	46,89	29,47
	30,0	323,7	589,2	872,7	45,76	30,84
	30,0	212,4	589,0	863,5	44,73	32,18
	30,0	101,8	588,8	855,4	44,11	33,51
	25,0	10,0	588,9	849,4	43,75	34,60
	31,7	10,0	575,2	802,0	40,41	35,88
Revision	17,0				0,00	35,88

Tab. 2.92Gemittelte Bestrahlungsdaten der Reaktorzyklen 5 bis 8 des Brennele-
ments 419 aus GKN-II /SCK 05b/

Zyklus	Zeit- schritt [d]	Borkonzen- tration [ppm]	Moderator- temperatur [K]	Brennstoff- temperatur [K]	Leistung [W/gHM]	Akkumulierter Abbrand [GWd/tHM]
7	6,0	1016,0	585,9	832,5	41,17	36,13
	24,0	926,5	585,8	828,5	40,96	37,11
	30,0	833,8	585,7	823,4	40,52	38,33
	30,0	732,3	585,9	820,2	40,31	39,54
	30,0	632,7	586,2	818,6	40,44	40,75
	30,0	537,4	586,4	817,4	40,66	41,97
	30,0	447,5	586,8	816,7	40,93	43,20
	30,0	355,7	586,6	812,6	40,71	44,42
	30,0	255,0	586,2	805,4	39,87	45,61
	30,0	148,6	585,8	799,2	38,90	46,78
	38,9	7,8	585,9	793,3	38,47	48,28
	39,0	7,8	568,8	738,1	34,55	49,63
Revision	15,0				0,00	49,63
8	6,0	1228,9	570,8	634,6	11,32	49,69
	24,0	1119,9	571,0	635,7	11,47	49,97
	30,0	1001,3	571,2	636,4	11,58	50,32
	30,0	874,3	571,4	637,4	11,79	50,67
	30,0	749,2	571,7	638,6	12,02	51,03
	30,0	627,3	571,9	640,0	12,31	51,40
	30,0	509,1	572,1	641,6	12,64	51,78
	30,0	395,4	572,4	643,4	13,00	52,17
	30,0	282,6	572,6	644,9	13,24	52,57
	30,0	169,4	572,7	646,2	13,52	52,97
	42,4	11,9	573,2	648,0	13,82	53,56
	34,4	11,9	560,2	626,7	12,86	54,00

Experimentelle Messergebnisse

Die Messungen der Nuklidkonzentrationen im bestrahlten Brennstoff und die dabei erzielten Resultate sind in /SCK 06/ zusammengefasst. Experimentell untersucht wurden insgesamt 17 Nuklide der Actiniden Uran, Plutonium, Americium, Neptunium und Curium, zudem insgesamt 8 Nuklide der Abbrandindikatoren Neodym, Cäsium und Cer sowie die sog. TOP 19 der stark neutronenabsorbierenden Spaltprodukte. Neben den chemischen Verfahren zur Auflösung des Brennstoffs und der Trennung der verschiedenen Elemente erfolgte die Messung der Nuklidkonzentrationen mittels α-Spektrometrie (²³⁸Pu, ²⁴²Cm, ²⁴⁴Cm), γ-Spektrometrie (¹³⁷Cs, ¹⁴⁴Ce, ¹⁵⁴Eu, ²⁴³Cm), Thermische Ionisations-Massenspektrometrie (TIMS) (²³⁴U, ²³⁵U, ²³⁶U, ²³⁸U, ²³⁸Pu, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu, ²⁴²Pu, ²⁴¹Am, ^{242(m)}Am, ²⁴³Am, ²⁴⁵Cm, ¹⁴³Nd, ¹⁴⁴Nd, ¹⁴⁵Nd, ¹⁴⁶Nd, ¹⁴⁸Nd, ¹⁵⁰Nd, ¹⁴⁷Sm, ¹⁴⁹Sm, ¹⁵⁰Sm, ¹⁵¹Sm, ¹⁵²Sm, ¹⁵³Eu, ¹⁵⁵Gd, ¹³³Cs, ¹³⁵Cs)¹⁷ und Massenspektrometrie mit induktiv gekoppeltem Plasma (ICP-MS) (²³⁷Np, ¹⁰⁹Ag, ¹⁰⁵Pd, ¹⁰⁸Pd, ¹⁰³Rh, ¹⁰¹Ru, ⁹⁹Tc). Für die Nuklide ¹⁴²Nd, ¹⁴⁸Sm und ¹⁵⁵Eu enthält /SCK 06/ keine expliziten Angaben zur verwendeten Messmethode, vermutlich ist das Fehlen dieser Nuklide in den Auslistungen übersehen worden. Aus dem jeweils angegebenen Messdatum lässt sich allerdings mutmaßen, dass ¹⁴²Nd zusammen mit den übrigen Neodym-Nukliden, ¹⁴⁸Sm zusammen mit übrigen Samarium-Nukliden und ¹⁵⁵Eu zusammen mit ¹⁵⁴Eu gemessen wurden. Damit ist anzunehmen, dass ¹⁴²Nd und ¹⁴⁸Sm mittels ICP-MS sowie ¹⁵⁵Eu mittels γ-Spektrometrie gemessen worden sind.

Die gemessenen Nuklidkonzentrationen sind als Massenverhältnisse von Nuklid zu bestrahltem Brennstoff oder Nuklid zu ²³⁸U im bestrahlten Brennstoff zum Messzeitpunkt sowie zu einem einheitlichen Bezugsdatum angegeben /SCK 06/. Zusätzlich sind dazu absolute bzw. relative Unsicherheiten abgeschätzt worden, die als 95%-Konfidenzintervall angeben sind. Zusammengestellt sind die Resultate zum Messzeitpunkt in Tab. 2.93 zusammen mit dem jeweiligen Datum der Messung. Für einzelne Nuklide wird die gemessene Konzentration nicht nur durch das Datum der Messung, sondern auch durch das Datum ihrer chemischen Separation beeinflusst, weil sie z. B. ab diesem Datum in der abseparierten Probe nicht mehr durch Zerfall ihrer Mutternuklide nachgebildet werden. Aus diesem Grund sind in /SCK 06/ auch die Daten für einige Separationsschritte angegeben, welche in Tab. 2.94 zusammengefasst sind.

¹⁷ In der Massenspektrometrie kann grundsätzlich nicht zwischen Grundzustand und metastabilem Zustand eines Nuklids unterschieden werden, d. h. hier ist durch die Massenspektrometrie selbst keine Unterscheidung zwischen ²⁴²Am und ^{242m}Am möglich. Aufgrund der deutlich kürzeren Halbwertszeit von ²⁴²Am ist hier aber davon auszugehen, dass praktisch nur noch ^{242m}Am gemessen wurde.

Tab. 2.93 Gemessene Nuklid-Massenverhältnisse zum jeweiligen Zeitpunkt der Messung /SCK 06/

Die Angaben beziehen sich auf die Gesamtmasse des bestrahlten Brennstoffs bzw. den Massenanteil von 238 U im bestrahlten Brennstoff. Die angegebenen Unsicherheiten entsprechen einem 95%-Konfidenzintervall (2 σ).

Nuklid	Datum Messung	mg/g _{fuel}	mg/g ₂₃₈₀
²³⁴ U	09.12.2004	0,129 ± 0,006 _{2σ}	0,162 ± 0,008 _{2σ}
²³⁵ U	09.12.2004	$4,43 \pm 0,03_{2\sigma}$	$5,56 \pm 0,04_{2\sigma}$
²³⁶ U	09.12.2004	$4,63 \pm 0,03_{2\sigma}$	5,81 ± 0,04 _{2σ}
²³⁸ U	09.12.2004	797 ± 4 _{2σ}	1000 ± 6 _{2σ}
²³⁷ Np	29.04.2005	0,52 ± 0,10 _{2σ}	0,66 ± 0,13 _{2σ}
²³⁸ Pu	02.11.2004	0,371 ± 0,011 _{2σ}	$0,465 \pm 0,014_{2\sigma}$
²³⁹ Pu	02.11.2004	4,988 ± 0,030 _{2σ}	6,26 ± 0,04 _{2σ}
²⁴⁰ Pu	02.11.2004	2,777 ± 0,014 _{2σ}	$3,49 \pm 0,02_{2\sigma}$
²⁴¹ Pu	02.11.2004	1,121 ± 0,006 _{2σ}	1,407 ± 0,008 _{2σ}
²⁴² Pu	02.11.2004	1,013 ± 0,005 _{2σ}	1,271 ± 0,008 _{2σ}
²⁴¹ Am	07.03.2005	0,457 ± 0,016 _{2σ}	$0,57 \pm 0,02_{2\sigma}$
^{242(m)} Am	07.03.2005	$0,00135 \pm 0,00014_{2\sigma}$	$0,00170 \pm 0,00018_{2\sigma}$
²⁴³ Am	07.03.2005	$0,215 \pm 0,007_{2\sigma}$	$0,270 \pm 0,009_{2\sigma}$
²⁴² Cm	29.09.2004	3,7E-06 ± 1,2E-06 _{2σ}	4,7E-06 ± 1,5E-06 _{2σ}
²⁴³ Cm	07.03.2005	6,7E-04 ± 1,4E-04 _{2σ}	$8,4E-04 \pm 1,7E-04_{2\sigma}$
²⁴⁴ Cm	29.09.2004	$0,115 \pm 0,003_{2\sigma}$	$0,144 \pm 0,004_{2\sigma}$
²⁴⁵ Cm	01.06.2005	0,0115 ± 0,0006 _{2σ}	$0,0144 \pm 0,0008_{2\sigma}$
¹⁴⁴ Ce	28.09.2004	$4,2E-04 \pm 0,4E-04_{2\sigma}$	$5,3E-04 \pm 0,5E-04_{2\sigma}$
¹⁴² Nd	28.02.2005	0,0451 ± 0,0003 _{2σ}	$0,0566 \pm 0,0004_{2\sigma}$
¹⁴³ Nd	28.02.2005	$0,926 \pm 0,005_{2\sigma}$	1,162 ± 0,007 _{2σ}
¹⁴⁴ Nd	28.02.2005	1,951 ± 0,011 _{2σ}	2,449 ± 0,016 _{2σ}
¹⁴⁵ Nd	28.02.2005	$0,861 \pm 0,005_{2\sigma}$	$1,081 \pm 0,007_{2\sigma}$
¹⁴⁶ Nd	28.02.2005	1,016 ± 0,006 _{2σ}	1,276 ± 0,008 _{2σ}
¹⁴⁸ Nd	28.02.2005	$0,515 \pm 0,003_{2\sigma}$	$0,647 \pm 0,004_{2\sigma}$
¹⁵⁰ Nd	28.02.2005	0,2551 ± 0,0015 _{2σ}	$0,320 \pm 0,002_{2\sigma}$
¹⁴⁷ Sm	10.02.2005	0,2578 ± 0,0018 _{2σ}	$0,324 \pm 0,002_{2\sigma}$
¹⁴⁸ Sm	10.02.2005	$0,2492 \pm 0,0018_{2\sigma}$	$0,313 \pm 0,002_{2\sigma}$
¹⁴⁹ Sm	10.02.2005	$0,00206 \pm 0,00004_{2\sigma}$	$0,00259 \pm 0,00006_{2\sigma}$
¹⁵⁰ Sm	10.02.2005	$0,413 \pm 0,003_{2\sigma}$	$0,518 \pm 0,004_{2\sigma}$
¹⁵¹ Sm	10.02.2005	$0,01236 \pm 0,00010_{2\sigma}$	$0,01551 \pm 0,00014_{2\sigma}$

Nuklid	Datum Messung	mg/g _{fuel}	mg/g₂₃ଃ∪	
¹⁵² Sm	10.02.2005	$0,1273 \pm 0,0009_{2\sigma}$	$0,1598 \pm 0,0012_{2\sigma}$	
¹⁵⁴ Sm	10.02.2005	$0,0579 \pm 0,0004_{2\sigma}$	$0,0727 \pm 0,0006_{2\sigma}$	
¹⁵³ Eu	10.02.2005	$0,1661 \pm 0,0014_{2\sigma}$	$0,2086 \pm 0,0019_{2\sigma}$	
¹⁵⁴ Eu	28.09.2004	$0,0199 \pm 0,0007_{2\sigma}$	$0,0250 \pm 0,0009_{2\sigma}$	
¹⁵⁵ Eu	28.09.2004	$0,0053 \pm 0,0003_{2\sigma}$	$0,0067 \pm 0,0004_{2\sigma}$	
¹⁵⁵ Gd	10.02.2005	$0,0088 \pm 0,0004_{2\sigma}$	$0,0110 \pm 0,0006_{2\sigma}$	
¹³³ Cs	15.11.2004	$1,39 \pm 0,04_{2\sigma}$	1,74 ± 0,05 _{2σ}	
¹³⁵ Cs	15.11.2004	0,498 ± 0,013 _{2σ}	0,625 ± 0,016 _{2σ}	
¹³⁷ Cs	28.09.2004	$1,45 \pm 0,04_{2\sigma}$	1,82 ± 0,05 _{2σ}	
⁹⁵ Mo	29.04.2005	$0,90 \pm 0,09_{2\sigma}$	1,13 ± 0,11 _{2σ}	
⁹⁹ Tc	29.04.2005	1,08 ± 0,11 _{2σ}	1,36 ± 0,14 _{2σ}	
¹⁰¹ Ru	29.04.2005	$0,84 \pm 0,08_{2\sigma}$	$1,05 \pm 0,10_{2\sigma}$	
¹⁰³ Rh	29.04.2005	0,51 ± 0,05 _{2σ}	$0,63 \pm 0,06_{2\sigma}$	
¹⁰⁵ Pd	29.04.2005	$0,39 \pm 0,04_{2\sigma}$	$0,49 \pm 0,05_{2\sigma}$	
¹⁰⁸ Pd	29.04.2005	$0,153 \pm 0,015_{2\sigma}$	$0,192 \pm 0,019_{2\sigma}$	
¹⁰⁹ Ag	29.04.2005	$0,092 \pm 0,009_{2\sigma}$	$0,116 \pm 0,012_{2\sigma}$	

Tab. 2.94	Daten der	chemischen	Separation	verschiedener	Elemente /	SCK 06/
-----------	-----------	------------	------------	---------------	------------	---------

Separierte Elemente	Datum der chemischen Separation		
Am / Pu	21.10.2004		
Nd / Ce	21.10.2004		
Sm / Pm	28.10.2004		
Gd / Eu	28.10.2004		

2.6.2 Modellierung

Aus den in Kap. 2.6.1 beschriebenen Daten wurde ein geeignetes Rechenmodell erstellt, welches im Folgenden beschrieben wird.

Allgemeine Parameter

Für alle durchgeführten Nachrechnungen mit MOTIVE sind einheitliche allgemeine Parameter, wie Neutronentransport- und Inventarcode, Wirkungsquerschnittsbibliothek, Predictor-Corrector-Methode, etc. gewählt worden. Diese Werte sind in Tab. 2.13 zusammengestellt. Zudem ist eine Liste mit Nukliden anzugeben, für welche die errech-
neten Konzentrationen auszugeben sind. Hier wurden die Nuklide gewählt, für welche Messdaten vorliegen (vgl. Tab. 2.93).

Modellgeometrie

Die verwendete Modellgeometrie besteht in erster Linie aus einem unendlichen Gitter annähernd identischer Brennelemente, welches mithilfe eines einzelnen Brennelements mit reflektierenden Randbedingungen gebildet wurde. Dieses Modell ist dabei auf zwei Dimensionen beschränkt, d. h. in axialer Brennstabrichtung wurde das Modell nicht weiter unterteilt und ebenfalls durch reflektierende Randbedingungen abgeschlossen. Das Brennelement wurde gemäß Abb. 2.42 modelliert, wobei dieses Brennelement keine 1/8-Spiegelsymmetrie, sondern aufgrund der Gd-haltigen Stäbe auf den Positionen L4, D9, S10 und K15 eine 90°-Rotationssymmetrie aufweist. Zwar würde die Brennelementsymmetrie periodische Randbedingungen erfordern, um tatsächlich identische Brennelemente zu modellieren, diese Möglichkeit besteht in MOTIVE allerdings noch nicht, so dass hier auf reflektierende Randbedingungen zurückgegriffen wurde, wodurch das modellierte Brennelementgitter genaugenommen aus abwechselnd gespiegelten Brennelementen besteht.

Die einzelnen Stäbe im Brennelement wurden separat modelliert, also durch eigene abzubrennende Materialien im Rechenmodell beschrieben, wobei Stäbe auf homologen Positionen zusammengefasst wurden. Auf diese Weise wurde ein detailliertes Rechenmodell unter Berücksichtigung der Rotationssymmetrie mit 75 separat betrachteten Brennstäben erstellt. Aufgrund der großen Anzahl an unterschiedenen Stäben wurde zusätzlich ein zweites Rechenmodell mit einer vereinfachten Modellgeometrie entwickelt. In dieser vereinfachten Variante wurden die Stäbe mehrheitlich entsprechend der näherungsweisen vorhandenen 1/8-Spiegelsymmetrie und lediglich die Stäbe auf und um den Positionen L4, D9, S10 und K15 entsprechend der eigentlichen Rotationssymmetrie modelliert, wodurch nur 36 Stäbe separate zu betrachten sind. Die sich für beide Varianten ergebenden Brennstabbelegungen in den jeweiligen Rechenmodellen sind in Abb. 2.43 für die detaillierte Variante und in Abb. 2.44 für die vereinfachte Variante dargestellt. Dabei gibt jeweils die Zahl 1 den Probenstab, die Zahlen 11 bis 45 bzw. 84 die übrigen Brennstäbe bzw. die abzubrennenden Materialien und die Zahl 100 die Steuerstabführungsrohre wieder. Die Umsetzung dieser Rechenmodelle in KENO-VI-Geometriemodelle zeigt Abb. 2.45.

11	12	13	14	15	16	17	18	19	76	69	61	53	45	37	29	20	11
20	21	22	23	24	25	26	27	28	77	70	62	54	46	38	30	21	12
29	30	31	32	33	34	100	35	36	78	71	100	55	47	39	31	22	13
37	38	39	100	40	41	42	43	44	79	72	63	56	48	100	32	23	14
45	46	47	48	49	50	51	100	52	80	100	64	57	49	40	33	24	15
53	54	55	56	57	100	58	59	60	81	73	65	100	50	41	34	25	16
61	62	100	63	64	65	66	67	68	82	74	66	58	51	42	100	26	17
69	70	71	72	100	73	74	1	75	83	1	67	59	100	43	35	27	18
76	77	78	79	80	81	82	83	84	84	75	68	60	52	44	36	28	19
19	28	36	44	52	60	68	75	84	84	83	82	81	80	79	78	77	76
18	27	35	43	100	59	67	1	83	75	1	74	73	100	72	71	70	69
17	26	100	42	51	58	66	74	82	68	67	66	65	64	63	100	62	61
16	25	34	41	50	100	65	73	81	60	59	58	100	57	56	55	54	53
15	24	33	40	49	57	64	100	80	52	100	51	50	49	48	47	46	45
14	23	32	100	48	56	63	72	79	44	43	42	41	40	100	39	38	37
13	22	31	39	47	55	100	71	78	36	35	100	34	33	32	31	30	19
12	21	30	38	46	54	62	70	77	28	27	26	25	24	23	22	21	20
11	20	29	37	45	53	61	69	76	19	18	17	16	15	14	13	12	11

Abb. 2.43 Brennstabbelegung im detaillierten Rechenmodell für das Brennelement 419 aus GKN-II

11	12	13	14	15	16	17	18	19	19	18	17	16	15	14	13	12	11
12	20	21	22	23	24	25	26	27	27	26	25	24	23	22	21	20	12
13	21	28	29	30	31	100	58	54	53	52	100	31	30	29	28	2	13
14	22	29	100	32	33	34	59	55	50	51	34	33	32	100	29	22	14
15	23	30	32	35	36	37	100	56	57	100	37	36	35	32	30	23	15
16	24	31	33	36	100	38	39	40	40	39	38	100	36	33	31	24	16
17	25	100	34	37	38	41	42	43	43	42	41	38	37	34	100	25	17
18	26	52	51	100	39	42	1	44	44	1	42	39	100	59	58	26	18
19	27	53	50	57	40	43	44	45	45	44	43	40	56	55	54	27	19
19	27	54	55	56	40	43	44	45	45	44	43	40	57	50	53	27	19
18	26	58	59	100	39	42	1	44	44	1	42	39	100	51	52	26	18
17	25	100	34	37	38	41	42	43	43	42	41	38	37	34	100	25	17
16	24	31	33	36	100	38	39	40	40	39	38	100	36	33	31	24	16
15	23	30	32	35	36	37	100	57	56	100	37	36	35	32	30	23	15
14	22	29	100	32	33	34	51	50	55	59	34	33	32	100	29	22	14
13	21	28	29	30	31	100	52	53	54	58	100	31	30	29	28	21	13
12	20	21	22	23	24	25	26	27	27	26	25	24	23	22	21	20	12
11	12	13	14	15	16	17	18	19	19	18	17	16	15	14	13	12	11

Abb. 2.44	Brennstabbelegur	ig in	n vereinfachten	Rechenmodel	l für	das	Brenne	lement
-----------	------------------	-------	-----------------	-------------	-------	-----	--------	--------

419 aus GKN-II

Abb. 2.45 Schematische Darstellung der KENO-VI-Geometriemodelle für das detaillierte (links) und vereinfachte (rechts) Rechenmodell für das Brennelement 419 aus GKN-II

Die geometrischen Abmessungen bzw. Abstände der Brennstäbe, Steuerstabführungsrohre und des Brennelements selbst sind entsprechend Tab. 2.86 modelliert worden. Diese Angaben sind in allen Berichten konsistent und es ist letztlich davon auszugehen, dass sie das Brennelement korrekt beschreiben (vgl. Kap. 2.6.1, Abschnitt "Brennelement"). Der Zwischenraum ("Gap") zwischen Pellet und Hüllrohr wurde hier mit modelliert, d. h. auf eine Berücksichtigung des Anschwellens der Pellets während des Abbrands ("Swelling") wurde verzichtet.

Materialzusammensetzung

Die Brennstoffzusammensetzungen wurden entsprechend den Angaben in /SCK 05a/ und /SCK 05b/ modelliert. Dabei wurde für die UO₂-Brennstäbe die Beschreibung "LOT 12" in /SCK 05a/, Kap. 7 herangezogen, welche hier als die augenscheinlich zutreffende Zusammensetzung angesehen wird, d. h. es wurden die entsprechende Zusammensetzung und Dichte aus Tab. 2.87 bzw. Tab. 2.88 übernommen (Kap. 2.6.1, Abschnitt "Materialzusammensetzung"). Für die Gd-haltigen Brennstäbe wurde die einzige verfügbare Beschreibung aus /SCK 05b/ genutzt, s. Tab. 2.89. Da letztere keine Angaben zu den Anteilen von ²³⁴U bzw. ²³⁶U macht, wurde für den ²³⁴U-Anteil das 0,0089-fachen der ²³⁵U-Anreicherung und kein ²³⁶U angenommen. Eventuelle Aussparungen an den Pelletstirnseiten (dishing) wurden hier vernachlässigt, d. h. die angegebenen Dichten wurden ohne Korrektur übernommen. Aus den angegebenen gewichtsanteiligen Zusammensetzungen wurden die Kernzahldichten errechnet, wobei dazu für Sauerstoff das mittlere Atomgewicht entsprechend der natürlichen Isotopenzusammensetzung genutzt wurde. Im Rechenmodell wurde zur Vereinfachung der Sauerstoff als 100 % ¹⁶O modelliert. Die verwendeten Zusammensetzungen sind im Einzelnen in Tab. 2.95 aufgeführt.

Für das Hüllrohrmaterial wurde vereinfachend Zircaloy-4 angenommen, womit im Wesentlichen den Angaben in /SCK 05a/ und /SCK 05b/ gefolgt wurde, welche als die augenscheinlich korrekten Angaben angesehen werden. Die konkrete Zusammensetzung des Zircaloy-4 wurde der SCALE Standard Composition Library /PET 16/ entnommen, welche für die Dichte einen Wert von 6,56 g/cm³ angibt. Diese Dichte wurde hier übernommen und ist damit gerundet mit der Dichteangabe in /SCK 05a/ konform. Die konkrete verwendetet Zusammensetzung ist in Tab. 2.65 (Kap. 2.4.2, Abschnitt "Materialzusammensetzung") zusammengefasst, und entspricht im Wesentlichen den in Tab. 2.90 angegebenen Bandbreiten. Im Unterschied zu Tab. 2.90 berücksichtigt die SCALE Standard Composition Library für Zircaloy-4 allerdings zusätzlich eine Verunreinigung von 0,01 wt.-% Hafnium, vernachlässigt aber einen möglichen Anteil an Sauerstoff. Zusätzlich wird hier der in /SCK 05a/ und /SCK 05b/ angegebene Liner des Hüllrohrs vernachlässigt.

In Ermangelung entsprechender Informationen wurde angenommen, dass das Hüllrohr mit 30 bar Helium beaufschlagt wurde. Dementsprechend wurde im Rechenmodell Helium mit einer Kernzahldichte von 7,4122E-04 als Material im Zwischenraum zwischen Pellet und Hüllrohr ("Gap") eingesetzt. Für die Berechnung der Kernzahldichte wurde die natürliche Isotopenzusammensetzung des Heliums mit dem daraus resultierenden mittleren Atomgewicht genutzt, im Rechenmodell wurde aber zur Vereinfachung das Helium als reines ⁴He mit der genannten Kernzahldichte angenommen.

UO ₂ -Brennstab									
Bestandteil	Zusammen-	Element ¹ /	Mittlere	Anteil im	Element	Kernzahl-			
	setzung [wt%]	Isotop	Atommasse [u]	[wt%]	[at%]	dichte ² [1/(barn*cm)]			
UO ₂	100,0	U	237,9336 ³			2,3280E-024			
		²³⁴ U	234,0409	0,0306	0,0311	7,2421E-06			
		²³⁵ U	235,0439	3,8080	3,8548	8,9739E-04			
		²³⁶ U	236,0456	0,0020	0,0020	4,6932E-07			
		²³⁸ U	238,0508	96,1594	96,1121	2,2375E-02			
		0	15,9994 ³			4,6559E-02			
UO ₂ -Gd ₂ O ₃ -Brennstab									
Bestandteil	Zusammen-	Element ¹ /	Mittlere	Anteil im	Element	Kernzahl-			
	setzung [wt%]	Isotop	Atommasse [u]	[wt%]	[at%]	dichte ² [1/(barn*cm)]			
UO ₂	93,0	U	237,9707 ³			2,1014E-02 ⁴			
		²³⁴ U	234,0409	0,023	0,024	4,9444E-06			
		²³⁵ U	235,0439	2,600	2,632	5,5318E-04			
		²³⁶ U	236,0456	0,000	0,000	0,0000E+00			
		²³⁸ U	238,0508	97,377	97,344	2,0456E-02			
		0	15,9994 ³			4,2029E-02			
Gd ₂ O ₃	7,0	Gd	157,2521 ³			2,3560E-034			
		¹⁵² Gd	151,9198	0,193	0,20	4,7119E-06			
		¹⁵⁴ Gd	153,9209	2,134	2,18	5,1360E-05			
		¹⁵⁵ Gd	154,9226	14,581	14,80	3,4868E-04			
		¹⁵⁶ Gd	155,9221	20,297	20,47	4,8226E-04			
		¹⁵⁷ Gd	156,9240	15,617	15,65	3,6871E-04			
		¹⁵⁸ Gd	157,9241	24,946	24,84	5,8522E-04			
		¹⁶⁰ Gd	159,9271	22,232	21,86	5,1501E-04			
		0	15,9994 ³			3,5339E-03 ⁴			

Tab. 2.95Verwendete nuklidweise Zusammensetzung des Brennstoffs für das
Brennelement 419 aus GKN-II nach /SCK 05a/ und /SCK 05b/

¹ Sauerstoff wurde bei der Berechnung der Kernzahldichten als Element behandelt und nicht nuklidweise unterschieden; im Rechenmodell wurde es zu 100 % ¹⁶O mit der gegebenen Kernzahldichte modelliert.

² Die berücksichtigten nuklidweise Brennstoffzusammensetzungen sind durch die hellblau unterlegten Einträge gegeben. Im Fall des UO₂-Gd₂O₃-Brennstabs sind die beiden Sauerstoffbeiträge zu addieren.

³ Mittleres Atomgewicht des jeweiligen Elements.

⁴ Kernzahldichte des jeweiligen Elements (= Summe der Kernzahldichten der Isotope).

Bestrahlungsgeschichte

Zur Modellierung der Bestrahlungsgeschichte, also des zeitlichen Verlaufs von Leistung, Brennstofftemperatur, Hüllrohrtemperatur, Moderatortemperatur und Borkonzentration, wurden die Werte aus Tab. 2.92 genutzt. Dazu wurde angenommen, dass die Angaben in Tab. 2.92 jeweils über das jeweilige Zeitintervall gemittelte Werte sind (vgl. Kap. 2.6.1, Abschnitt "Bestrahlungsgeschichte"). Die Unterteilung der Zeitschritte in Tab. 2.92 wurde ebenfalls übernommen. Es wurde lediglich der erste Zeitschritt nochmals geteilt, so dass ein zusätzlicher kurzer Zeitschritt von 0,1 Tag zu Beginn jedes Zyklus entstand. Zudem wurde die Länge der offensichtlich als "effective (full) power days" gegebenen Zeitschritte separat für jeden Zyklus so skaliert, dass die Zeitschritte eines Zyklus in der Summe die tatsächliche kalendarische Länge des Zyklus wiedergeben. Um dennoch dieselben Abbrandwerte je Zyklus zu erreichen, wurden im Gegenzug die Leistungswerte zyklusweise mit dem jeweiligen Kehrwert des zuvor genannten Skalierungsfaktors multipliziert. Um letztlich den messtechnisch ermittelten Endabbrand der Probe in der Abbrandrechnung zu erzielen, wurden die Leistungswerte anschließend mit einem über die gesamte Leistungsgeschichte konstanten Faktor skaliert, so dass die für den Abbrandindikator ¹⁴⁸Nd rechnerisch erzielte Nuklidkonzentration mit dem gemessenen Wert innerhalb von 0,2 % übereinstimmt. Weitere Änderungen an den angegebenen Werten wurden nicht vorgenommen. Die so resultierende Bestrahlungsgeschichte ist in Tab. 2.96 zusammengefasst. Die dort angegebenen relativen Leistungen je Zeitschritt beziehen sich auf das Maximum der Leistungsgeschichte, welches bereits im ersten Zeitschritt erreicht wird und für beide Rechenmodellvarianten etwa 63,21 MW/tHM beträgt¹⁸.

Die in Tab. 2.92 angegebene Leistungsgeschichte wird zwar in /SCK 05b/ als repräsentative Leistungsgeschichte für die Probenposition angenommen, tatsächlich ist sie aber die gemittelte Leistungsgeschichte der mittleren zwei Meter Länge der 16 zentralen Stäbe des Brennelements (vgl. Kap. 2.6.1, Abschnitt "Bestrahlungsgeschichte"). Zudem wird von MOTIVE die angegebene Leistung bislang grundsätzlich auf das gesamte Rechenmodell bezogen, d. h. in den vorgenommenen Probennachrechnungen wurden die angegebene Leistungswerte als mittlere Brennelementleistungen angewendet. Bei der Verwendung der gegebenen Leistungsgeschichte ist somit zu unterstellen, dass sich die mittlere Leistung entlang der mittleren zwei Meter Länge der zentralen 16 Stäbe, die mittlere Leistung im analogen Abschnitt aller Stäbe sowie die Leistung an der Probenposition nicht wesentlich voneinander unterscheiden. Dabei

¹⁸ Die angepassten Leistungen unterscheiden sich f
ür beide Rechenmodelle (detailliertes oder vereinfachtes Rechenmodell, Abb. 2.45) um weniger als 0,05 MW/tHM. Der im Text gegebenen Werte ist der Mittelwert f
ür beide Modelle.

sind zeitlich konstante relative Unterschiede zwischen den genannten Leistungen unproblematisch, da diese für die Probenposition durch die abschließende Leistungsnormierung anhand von ¹⁴⁸Nd kompensiert werden. Der in /SCK 04/ für die Probenposition angegebene Leistungsverlauf gibt allerdings einen Hinweis auf mögliche sich zeitlich verändernde relative Unterschiede zwischen den genannten Leistungen im Verlauf der Zyklen (vgl. Kap. 2.6.1, Abschnitt "Bestrahlungsgeschichte"). Somit wird ggf. durch die hier vorliegende Verwendung der Leistungsgeschichte durch MOTIVE eine vom tatsächlichen Verlauf abweichende Leistungsgeschichte modelliert und so ein gewisser Fehler in die Abbrandrechnung eingebracht wird. Eine verbesserte Modellierung kann dadurch erzielt werden, indem die angegebene Leistungsgeschichte nur auf die mittleren 16 Stäbe bezogen wird. Diese Möglichkeit bietet MOTIVE bislang aber noch nicht. Aber auch in diesem Fall ist aufgrund der Mittelung über die mittleren zwei Meter Länge der Brennstäbe zu unterstellen, dass die Form der Leistungsprofile in diesem Bereich der zentralen 16 Stäbe keine unterschiedliche zeitliche Entwicklung nimmt, dem aber /SCK 04/ zu widersprechen scheint (s. o.), und sonstige Unterschiede in der Leistung der Stäbe durch die Verwendung der zweidimensionalen Rechenmodellgeometrie und der separaten Modellierung der Stäbe ausreichend genau wiedergegeben werden.

Auch für die angegebenen Brennstoff- und Moderatortemperaturen ist anzunehmen, dass sie über die mittleren zwei Meter Länge der zentralen 16 Brennstäbe gemittelte Werte wiedergeben (vgl. Kap. 2.6.1, Abschnitt "Bestrahlungsgeschichte"). Zudem ist es insbesondere in MOTIVE bislang nur möglich eine einheitliche Brennstofftemperatur für alle Brennstoffmaterialien anzugeben, wodurch in der Nachrechnung allen Brennstäben dieselbe Brennstofftemperatur zugeordnet wird. Tatsächlich ist aber zu erwarten, dass die Brennstäbe entsprechend ihrer Leistung unterschiedliche Temperaturen aufwiesen. So wird durch dieses Vorgehen ebenfalls ein gewisser Fehler in die Abbrandrechnung eingebracht. Die Maßgabe, die Abbrandrechnung möglichst mit den gegebenen Daten durchzuführen, lässt sich mit der derzeitigen MOTIVE-Version aber nur in dieser Weise erfüllen.

Zusätzlich zur Moderatortemperatur wurde der nominelle Moderatordruck von 158 bar zur Berechnung der Moderatordichte verwendet. Dementsprechend wurde die zusätzlich in /SCK 05b/ angegebene Moderatordichte nicht weiter berücksichtigt, bzw. durch eine aktuelle Parametrisierung der Wasserzustandsgleichung neu berechnet (vgl. Kap. 2.6.1, Abschnitt "Bestrahlungsgeschichte").

Zyklus	Zeit- schritt [d]	Akkumulierte Zeit im Reaktor [d]	Borkonzen- tration [ppm]	Moderator- temperatur [K]	Brennstoff- temperatur [K]	Rel. Leistung bezogen auf Maximum
5	0,1	0,1	965,6	592,7	1030,4	100,000
	5,92	6,02	965,6	592,7	1030,4	100,000
	24,08	30,10	876,6	592,6	1029,4	98,304
	30,10	60,20	783,2	592,5	1028,5	96,512
	30,10	90,30	681,8	593,0	1030,9	94,654
	30,10	120,40	583,2	593,4	1030,2	94,008
	30,10	150,50	489,4	593,7	1028,6	93,508
	30,10	180,60	400,9	594,2	1027,4	93,266
	30,10	210,70	308,3	594,3	1021,4	92,636
	30,10	240,80	206,9	593,9	1008,1	90,682
	30,10	270,90	99,4	593,7	993,7	88,647
	25,48	296,38	10,0	593,4	981,8	87,096
	14,65	311,03	10,0	587,5	957,8	83,026
Revision	22,0	333,03				0,000
6	0,1	333,13	1175,9	590,0	964,0	82,651
	5,97	339,10	1175,9	590,0	964,0	82,651
	24,27	363,37	1088,9	589,9	952,7	81,753
	30,33	393,70	998,8	589,6	937,7	80,087
	30,33	424,03	898,8	589,8	926,1	78,404
	30,33	454,36	800,2	589,9	917,1	77,844
	30,33	484,69	706,1	590,0	909,5	77,443
	30,33	515,02	617,3	590,1	902,7	77,187
	30,33	545,35	529,3	590,1	894,6	76,706
	30,33	575,68	432,0	589,7	883,5	75,136
	30,33	606,01	323,7	589,2	872,7	73,325
	30,33	636,34	212,4	589,0	863,5	71,674
	30,33	666,67	101,8	588,8	855,4	70,681
	25,28	691,95	10,0	588,9	849,4	70,104
	32,05	724,00	10,0	575,2	802,0	64,752
Revision	17,0	741,00				0,000

Tab. 2.96Verwendete Bestrahlungsdaten der Zyklen 5 bis 8 für das Brennelement419 aus GKN-II nach /SCK 05b/

Zyklus	Zeit- schritt [d]	Akkumulierte Zeit im Reaktor [d]	Borkonzen- tration [ppm]	Moderator- temperatur [K]	Brennstoff- temperatur [K]	Rel. Leistung bezogen auf Maximum
7	0,1	741,10	1016,0	585,9	832,5	66,684
	5,90	747,00	1016,0	585,9	832,5	66,684
	24,01	771,01	926,5	585,8	828,5	66,344
	30,01	801,02	833,8	585,7	823,4	65,632
	30,01	831,03	732,3	585,9	820,2	65,291
	30,01	861,04	632,7	586,2	818,6	65,502
	30,01	891,05	537,4	586,4	817,4	65,858
	30,01	921,06	447,5	586,8	816,7	66,296
	30,01	951,07	355,7	586,6	812,6	65,939
	30,01	981,08	255,0	586,2	805,4	64,579
	30,01	1011,09	148,6	585,8	799,2	63,008
	38,91	1050,00	7,8	585,9	793,3	62,311
	39,01	1089,01	7,8	568,8	738,1	55,962
Revision	15,0	1104,01				0,000
8	0,1	1104,11	1228,9	570,8	634,6	18,225
	5.94	1110,05	1228,9	570,8	634,6	18,225
	24.15	1134,20	1119,9	571,0	635,7	18,467
	30.19	1164,39	1001,3	571,2	636,4	18,644
	30.19	1194,58	874,3	571,4	637,4	18,982
	30.19	1224,77	749,2	571,7	638,6	19,352
	30.19	1254,96	627,3	571,9	640,0	19,819
	30.19	1285,15	509,1	572,1	641,6	20,350
	30.19	1315,34	395,4	572,4	643,4	20,930
	30.19	1345,53	282,6	572,6	644,9	21,316
	30.19	1375,72	169,4	572,7	646,2	21,767
	42.67	1418,39	11,9	573,2	648,0	22,250
	34.62	1453,01	11,9	560,2	626,7	20,704

Als Zerfallszeit nach Ende der Bestrahlung wird für jedes Nuklid dessen individueller Zeitraum zwischen Ende der Bestrahlung und Zeitpunkt der Messung berücksichtigt. Ausnahmen bilden die Nuklide ²⁴¹Pu, ²⁴¹Am, ¹⁴⁴Nd, ¹⁴⁷Sm und ¹⁵⁵Gd, bei denen die Messung die Konzentration zum Zeitpunkt der Separation dieser Nuklide von ihren Tochter- bzw. Mutternukliden und nicht zum eigentlichen Zeitpunkt der Messung abbildet. Bei ²⁴¹Pu ist dies der Fall, da aufgrund der Messmethode, in diesem Fall die Massenspektrometrie, das Tochternuklid ²⁴¹Am aus Zerfällen nach der Separation nicht mehr von ²⁴¹Pu unterschieden werden kann. Dagegen sind ²⁴¹Am, ¹⁴⁴Nd, ¹⁴⁷Sm und

¹⁵⁵Gd Tochternuklide, die nach der Separation von ihren Mutternukliden nicht mehr nachgebildet werden. Daher wird für diese Nuklide in der Nachrechnung statt des Zeitraums bis zur Messung, der Zeitraum bis zur Separation von ihren Tochter- bzw. Mutternukliden als Abklingzeit berücksichtigt. Die im Einzelnen in der Nachrechnung herangezogenen Abklingzeiten sind in Tab. 2.97 zusammengestellt.

Nuklid	Abklingzeit [d]	Nuklid	Abklingzeit [d]	Nuklid	Abklingzeit [d]
²³⁴ U	2672	²⁴⁵ Cm	2846	¹⁵³ Eu	2735
²³⁵ U	2672	¹⁴⁴ Ce	2600	¹⁵⁴ Eu	2600
²³⁶ U	2672	¹⁴² Nd	2753	¹⁵⁵ Eu	2600
²³⁸ U	2672	¹⁴³ Nd	2753	¹⁵⁵ Gd	2630
²³⁷ Np	2813	¹⁴⁴ Nd	2623	¹³³ Cs	2648
²³⁸ Pu	2635	¹⁴⁵ Nd	2753	¹³⁵ Cs	2648
²³⁹ Pu	2635	¹⁴⁶ Nd	2753	¹³⁷ Cs	2600
²⁴⁰ Pu	2635	¹⁴⁸ Nd	2753	⁹⁵ Mo	2813
²⁴¹ Pu	2623	¹⁵⁰ Nd	2753	⁹⁹ Tc	2813
²⁴² Pu	2635	¹⁴⁷ Sm	2630	¹⁰¹ Ru	2813
²⁴¹ Am	2623	¹⁴⁸ Sm	2735	¹⁰³ Rh	2813
^{242(m)} Am	2760	¹⁴⁹ Sm	2735	¹⁰⁵ Pd	2813
²⁴³ Am	2760	¹⁵⁰ Sm	2735	¹⁰⁸ Pd	2813
²⁴² Cm	2601	¹⁵¹ Sm	2735	¹⁰⁹ Ag	2813
²⁴³ Cm	2760	¹⁵² Sm	2735		
²⁴⁴ Cm	2601	¹⁵⁴ Sm	2735		

Tab. 2.97Berücksichtigte dividuelle Zerfallszeiten der errechneten Nuklidkonzentra-
tionen des Brennelements 419 aus GKN-II nach /SCK 06/

2.6.3 Resultate

Die aufgrund der nicht exakten 1/8-Brennelementsymmetrie betrachteten zwei Rechenmodelle (detailliertes und vereinfachtes Rechenmodell, Abb. 2.45) zeigen in ihren Resultaten nur geringe Unterschiede. So weichen die errechneten Nuklidkonzentrationen für alle Nuklide deutlich weniger als 1,0 % voneinander ab, in den meisten Fällen liegt diese Abweichung sogar nur bei etwa 0,1 %. Im Vergleich mit den Messwerten können diese Abweichungen zwischen den Rechenmodellen vernachlässigt werden, so dass hier jeweils nur die Resultate des vereinfachten Rechenmodells mit den Messergebnissen verglichen wurden. Der Vergleich zwischen Rechnung und Experiment für die Probe M11 ist in Tab. 2.98 und in Abb. 2.46 dargestellt. Bei der graphischen Darstellung wurde dabei auf die beiden Palladium-Nuklide verzichtet, bei denen die Rechnung um etwa 50 % höhere Werte ergeben hat, als nach den experimentellen Ergebnissen zu erwarten war. Zu erkennen ist eine leichte Unterschätzung von ²³⁵U und ²³⁹Pu, was auf ein zu weiches Neutronenspektrum in der Rechnung schließen lässt. Auch die übrigen Plutonium-Nuklide werden leicht unterschätzt. Die Unterschätzung der Curium-Nuklide fällt hingegen im Vergleich zu anderen Daten relativ klein aus. Gute Übereistimmungen werden auch für die Neodym-, Samarium-, Europium- und Gadolinium-Nuklide sowie für die Cäsium-Nuklide. Bei den metallischen Spaltprodukten ist das Bild gemischt. Während ⁹⁵Mo und ⁹⁹Tc im Rahmen der experimentellen Unsicherheiten gut getroffen werden, sind die Abweichungen bei ¹⁰¹Ru, ¹⁰³Rh und ¹⁰⁹Ag größer.

Nuklid	M11	Nuklid	M11	Nuklid	M11
²³⁴ U	5,4	²⁴⁵ Cm	-13,0	¹⁴⁵ Nd	0,4
²³⁵ U	-6,0	⁹⁵ Mo	10,7	¹⁴⁶ Nd	-0,9
²³⁶ U	0,4	⁹⁹ Tc	-4,1	¹⁴⁸ Nd	0,1
²³⁸ U	0,0	¹⁰¹ Ru	27,3	¹⁵⁰ Nd	-0,1
²³⁷ Np	17,0	¹⁰³ Rh	20,4	¹⁴⁷ Sm	-0,9
²³⁸ Pu	-4,1	¹⁰⁵ Pd	50,1	¹⁴⁸ Sm	-7,4
²³⁹ Pu	-5,0	¹⁰⁸ Pd	55,5	¹⁴⁹ Sm	-4,3
²⁴⁰ Pu	-4,5	¹⁰⁹ Ag	25,2	¹⁵⁰ Sm	-0,5
²⁴¹ Pu	-8,5	¹³³ Cs	5,2	¹⁵¹ Sm	-10,9
²⁴² Pu	-3,7	¹³⁵ Cs	-3,9	¹⁵² Sm	-1,0
²⁴¹ Am	11,0	¹³⁷ Cs	-3,4	¹⁵⁴ Sm	-1,1
^{242m1} Am	-22,6	¹⁴⁴ Ce	-3,8	¹⁵³ Eu	-4,3
²⁴³ Am	9,8	¹⁴² Nd	-7,6	¹⁵⁴ Eu	4,5
²⁴² Cm	-19,5	¹⁴³ Nd	-1,2	¹⁵⁵ Eu	-18,1
²⁴³ Cm	-1,2	¹⁴⁴ Nd	-0,3	¹⁵⁵ Gd	-6,3
²⁴⁴ Cm	-12,4				

Tab. 2.98Vergleich zwischen gemessenen und berechneten Werten als C/E-1 in %

Abb. 2.46 REBUS, M11: Vergleich zwischen Rechnung und experimentellen Daten dargestellt als C/E-1 in Prozent

2.7 Proben des Reaktors Calvert Cliffs-1

Aus dem US-amerikanischen Druckwasserreaktor Calvert Cliffs-1 (900 MWe) stammen insgesamt neun Nachbestrahlungsanalyseproben, die jeweils einem Brennstab aus drei verschiedenen Brennelementen entnommen wurden. Die Proben wurden über drei bzw. vier Zyklen bestrahlt und haben Abbrände im Bereich zwischen 18,7 und 46,5 GWd/tSM. Die Angaben zu Brennelementgeometrie, Materialdaten und Abbrandhistorien stammen im Wesentlichen aus den Dokumenten /GUE 88a/, /GUE 88b/, /GUE 91/, /BIE 94/, /ROD 86/, /PAT 82/, /TAL 01/. Die Daten wurden beim Einpflegen in die SFCOMPO2.0 Datenbank /MIC 17/ teilweise noch einmal überarbeitet, so dass einige Angaben direkt von dort übernommen wurden. Die Messungen sind im Rahmen des amerikanischen Endlagerforschungsprogramms erstellt worden und enthalten daher auch einige für den Endlagersicherheitsnachweis relevante Spaltprodukte.

2.7.1 Experimentelle Daten

Bei den drei Brennelementen handelt es sich um 14 x 14 Brennelemente der Firma Combustion Engineering mit fünf großen Steuerstabführungsrohren, die jeweils den Platz von 2 x 2 normalen Brennstäben einnehmen. Die Brennelemente D047 und D101 sind Standardbrennelemente mit Stäben einer Anreicherung von 2,72 bzw. 3.038 wt% ²³⁵U. Bei dem Brennelement mit der Bezeichnung BT03 handelt es sich um ein Sonderbrennelement mit einem komplexeren Aufbau. Beide Geometrien sind in Abb. 2.47 dargestellt.

Gemäß /PAT 82/ sind im Brennelement während der Bestrahlungsgeschichte einige Stabwechsel vorgenommen worden, die allerdings in der Literatur nicht vollständig nachvollzogen werden können. Daher wurde für die Validierungsrechnung die in der SFCOMPO 2.0 dargestellte Geometrie verwendet, bei der auf Stabwechsel verzichtet wird. Bei den Eckstäben handelt es sich um Brennstoff-freie Stäbe, die ein Edelgasgefülltes Stahlrohr aus Edelstahl (SS304) enthalten. Gemäß /RAD 10/ enthielt das Brennelement BT03 im ersten Zyklus zwölf Stäbe mit abbrennbaren Absorbern in Form von Al₂O₃-B₄C-Pellets. Diese sind in Abb. 2.47 in Orange gekennzeichnet. Zu beachten ist, dass diese Stäbe in der SFCOMPO nicht erwähnt werden. Die Stäbe wurden nach dem ersten Zyklus gezogen, so dass das Brennelement für den Rest der Leistungsgeschichte an diesen Positionen Leerstellen aufwies. Die übrigen Stäbe weisen Anreicherungen von 2,453 wt% (Fuel-1 und Fuel-6), 2,33 wt% (Fuel-4) und 2,82 wt% (Fuel-5)

²³⁵U auf. In Tab. 2.99 sind die relevanten geometrischen Abmessungen der Brennelemente wiedergegeben, in Tab. 2.100 die relevanten gemeinsamen geometrischen Abmessungen der Brennstäbe, Führungsrohre. Die Daten zu den abbrennbaren Absorberstäben und den nicht brennstoffhaltigen Stäben finden sich in Tab. 2.101.

In Tab. 2.102 sind allgemeine Angaben zur Bestrahlungsgeschichte der drei Brennstäbe dargestellt. Diese werden in Tab. 2.103 um Angaben zu Probenposition, Probenabbrand, Brennstofftemperaturen und Moderatortemperaturen ergänzt. Die Brennstoffzusammensetzungen für die verschiedenen Anreicherungen sind in Tab. 2.104 gegeben. Bei der Berechnung der Kernzahldichten wurde dabei von einer Massendichte des Brennstoffs von 10,234 g/cm³ (D101), 10,249 g/cm³ (D047) und 10,141 g/cm³ (BT03) ausgegangen. Es handelt sich dabei um effektive Dichten, die jeweils die Aussparungen an den Pelletstirnseiten ("Pellet Dishing") berücksichtigen. Die Zusammensetzung von Zirkalloy-4 (siehe Tab. 2.105) und dem Edelstahl SS304 (siehe Tab. 2.106) sind jeweils der SCALE Materialbibliothek entnommen. Die Materialzusammensetzung des Absorbermaterials (Tab. 2.107) stammt aus /RAD 10/.

Assembly BT03

Abb. 2.47 Brennelementgeometrien der Brennelemente BT03 (links) sowie D047 und D101 (rechts) aus Calvert Cliffs-1 (aus SFCOMPO 2.0)

Parameter	
Gittertyp	15x15
Brennstababstand [cm]	1,473
Brennelementabstand [cm]	20,78
Brennstablänge [cm]	373
Aktive Brennstablänge [cm]	347,2
Anzahl Brennelemente im Kern	176
Anzahl Führungsrohre	5

Tab. 2.99Geometrische Abmessungen der Brennelemente D047, D101 und BT03

Tab. 2.100Geometrische Abmessungen der Brennstäbe und Führungsrohre für die
Brennelemente D047, D101 und BT03

Parameter	
Durchmesser Brennstoff [cm]	0,9563
Durchmesser Hüllrohr innen [cm]	0,9855
Durchmesser Hüllrohr außen [cm]	1,1176
Material Hüllrohr	Zircaloy-4
Dichte Hüllrohr [g/cm ³]	6,32
Durchmesser Führungsrohre innen [cm]	2,629
Durchmesser Führungsrohre außen [cm]	2,832
Material Führungsrohre	Zircaloy-4
Dichte Führungsrohrmaterial [g/cm ³]	6,32

Tab. 2.101 Zusätzliche geometrische Abmessungen für das Brennelement BT03

Parameter	
Durchmesser abbrennbarer Absorber [cm]	0,9550
Brennstofffreie Stäbe:	
Durchmesser Stahlrohr außen [cm]	0,9450
Durchmesser Stahlrohr innen [cm]	0,660
Material Stahlrohr	SS304

Parameter	MLA098	MKP109	NBD107
BE	D101	D047	BT03
Probenserie	ATM-103	ATM-104	ATM-106
Anzahl Bestrahlungszyklen	3	4	4
Bestrahlungsdauern [Tage] (Ruhezeiten [Tage])	306 (71) 382 (81) 466	306 (71) 382 (81) 466 (85) 461	816 (81) 306 (71) 382 (81) 466

Tab. 2.102Relevante Details der Brennstäbe MLA098, MKP109 und NBD107

Tab. 2.103	Abbrand	und axiale	Probenposition	der Proben au	s Calvert Cliffs-1
100.2.100	/ working	und undio	1 1000110011011	uor r roborr uu	

Stab	I	MLA098	3	I	MKP109 NBI			NBD107		
Probe	Р	BB	JJ	Р	CC	LL	Q	GG	ММ	
Probenabbrand [GWd/tSM]	33,17	26,62	18,68	44,34	37,12	27,35	46,46	37,27	31,4	
Probenhöhe von der aktiven Höhe [cm]	164,2	26,7	11,3	163,7	27,0	12,3	163,6	22,3	13,7	
Brennstofftem- peratur [°C]										
Zyklus 1	-	-	-	-	-	-	1132	1097	960	
Zyklus 2	997	940	829	997	940	829	997	940	829	
Zyklus 3	958	927	850	958	927	850	958	927	850	
Zyklus 4	794	793	775	794	793	775	794	793	775	
Zyklus 5	-	-	-	747	712	709	-	-	-	
Moderatortem- peratur [°C]	570	557,6	557,2	569,9	557,6	557,2	569,9	557,4	557,3	

Tab. 2.104 Brennstoffzusammensetzungen für die drei Brennelemente aus Cal-

vert Cliffs-1

BE	D101		D047				
Stab	MLA098	3 (ATM-103)	MKP10	9 (ATM-104)			
Isotop	Anteil [Gew.%]	Kernzahldich- ten [1/barn*cm]	[Gew.%] Kernzahldich- ten [1/barn*cm]				
²³⁴ U	0,022	5.6192E-06	0,025	6.2852E-06			
²³⁵ U	2,72	6.2868E-04	3,083	7.0319E-04			
²³⁸ U	97,258	2.2195E-02	96,912	2.2154E-02			
0		4.5659E-02		4.5726E-02			
BE	BT03						
Stab	NBD107	′ (ATM-106)	UO2 2,3	3 wt%	UO ₂ 2,82 wt%		
Isotop	Anteil [Gew.%]	Kernzahldich- te [1/barn*cm]	Anteil [Gew.%]	Kernzahldich- te [1/barn*cm]	Anteil [Gew.%]	Kernzahldich- te [1/barn*cm]	
²³⁴ U	0,022	4.9694E-06	0,021	4.7203E-06	0,025	5.7129E-06	
²³⁵ U	2,453	5.5598E-04	2,33	5.2810E-04	2,82	6.3916E-04	
²³⁶ U	0,011	2.5467E-06	0,011	2.4190E-06	0,013	2.9277E-06	
2381.1			97,65 2.1851E-02				
-**0	97,527	2.1823E-02	97,65	2.1851E-02	97,16	2.1/39E-02	

Element	Anteil [wt%]	lsotope	Kernzahldichte [1/barn*cm]	Element	Anteil [wt%]	lsotope	Kernzahldichte [1/barn*cm]
Zr	98,23	⁹⁰ Zr	2,2584E-02	Fe	0,21	⁵⁴ Fe	8,9797E-06
		⁹¹ Zr	4,8708E-03			⁵⁶ Fe	1,3593E-04
		⁹² Zr	7,3642E-03			⁵⁷ Fe	3,0841E-06
		⁹⁴ Zr	7,3042E-03			⁵⁸ Fe	4,0336E-07
		⁹⁶ Zr	1,1522E-03	Cr	0,1	⁵⁰ Cr	3,4330E-06
Sn	1,45	¹¹² Sn	4,9610E-06			⁵² Cr	6,3655E-05
		¹¹⁴ Sn	3,3163E-06			⁵³ Cr	7,0818E-06
		¹¹⁵ Sn	1,6936E-06			⁵⁴ Cr	1,7302E-06
		¹¹⁶ Sn	7,1800E-05	Hf	0,125	¹⁷⁴ Hf	3,5856E-09
		¹¹⁷ Sn	3,7601E-05			¹⁷⁶ Hf	1,1523E-07
		¹¹⁸ Sn	1,1757E-04			¹⁷⁷ Hf	4,1182E-07
		¹¹⁹ Sn	4,1349E-05			¹⁷⁸ Hf	6,0418E-07
		¹²⁰ Sn	1,5552E-04			¹⁷⁹ Hf	3,0166E-07
		¹²² Sn	2,1739E-05			¹⁸⁰ Hf	7,7689E-07
		¹²⁴ Sn	2,6747E-05			¹⁷⁴ Hf	3,5856E-09

Tab. 2.105 Nuklidweise Zusammensetzung des Strukturstoffs Zirkaloy-4

Element	Anteil [wt%]	lsotope	Kernzahl- dichte [1/barn*cm]	Element	Anteil [wt%]	Isotope	Kernzahl- dichte [1/barn*cm]
Fe	68,375	⁵⁴ Fe	3,4218E-03	Ni	9,5	⁵⁸ Ni	5,2686E-03
	⁵⁶ Fe	5,3715E-02			⁶⁰ Ni	2,0295E-03	
		⁵⁷ Fe	1,2405E-03			⁶¹ Ni	8,8219E-05
		⁵⁸ Fe	1,6509E-04			⁶² Ni	2,8128E-04
Cr	19,0	⁵⁰ Cr	7,5916E-04			⁶⁴ Ni	7,1634E-05
		⁵² Cr	1,4640E-02	Si	1,0	²⁸ Si	1,5701E-03
		⁵³ Cr	1,6600E-03			²⁹ Si	7,9761E-05
		⁵⁴ Cr	4,1321E-04			³⁰ Si	5,2640E-05
Mn	2,0	⁵⁵ Mn	1,7407E-03	С	0,08	¹² C	3,1507E-04
Р	0,045	³¹ P	6,9467E-05			¹³ C	3,4077E-06

Tab. 2.106 Zusammensetzung von Edelstahl (SS304) gemäß /REA 17/

 $\textbf{Tab. 2.107} \hspace{0.1 cm} \text{Zusammensetzung des abbrennbaren Absorbers } Al_2O_3\text{-}B_4C$

Element	Isotope	Kernzahldichte [1/barn*cm]	Element	Isotope	Kernzahldichte [1/barn*cm]
В	¹⁰ B	8,5900E-04	Al	²⁷ AI	3,9000E-02
	¹¹ B	3,4400E-03	0	¹⁶ O	5,7859E-02
С	¹² C	1,0586E-03		¹⁷ O	2,2040E-05
	¹³ C	1,1449E-05		¹⁸ O	1,1890E-04

Zyklus	Zeitschritte [d]	Borkonzentration [ppm]	Leistung [MW/tS		м]	
			Р	сс	LL	
2	7	654	27,404	15,371	10,112	
	37,8	614	33,572	20,629	13,803	
	54,1	563	33,370	21,134	14,157	
	65,5	533	33,370	21,539	14,460	
	78	507	33,168	21,943	14,865	
	101,7	468	32,410	22,398	15,219	
	124,5	418	32,561	23,309	15,977	
	147,7	368	32,207	23,915	16,533	
	155,8	333	32,056	24,016	16,685	
	187,2	290	32,056	25,028	17,595	
	221,5	218	33,016	25,533	18,151	
	237,9	162	32,258	26,544	18,960	
	257,1	122	31,651	26,342	18,960	
	269,9	86	31,853	26,696	19,264	
	304,1	36	30,084	25,179	18,354	
	306	0	30,134	25,179	18,404	
	377	0	0,000	0,000	0,000	
3	384,9	883	37,769	19,466	13,298	
	399,3	862	36,404	19,972	13,702	
	419	837	25,483	15,724	10,820	
	435,8	808	39,387	23,157	16,078	
	452,1	775	39,336	24,320	16,938	
	467,5	741	41,258	26,949	18,910	
	506,6	684	37,668	26,443	18,758	
	537,8	611	37,263	27,808	19,972	
	569,6	545	36,404	28,516	20,629	
	601,4	478	35,494	29,073	21,236	
	645,7	368	35,039	29,983	22,146	
	670,7	291	0,000	0,000	0,000	
	729,8	224	34,836	31,348	23,612	
	758,7	120	35,999	32,966	25,028	
	839,7	83	0,000	0,000	0,000	
4	885,8	960	33,320	20,073	14,106	
	909,8	889	33,067	20,781	14,713	
	932,4	827	32,511	21,691	15,522	
	958,1	759	32,005	23,056	16,635	

Zyklus	Zeitschritte [d]	Borkonzentration [ppm]	Leistung	Leistung [MW/tSM]	
			Р	сс	LL
	988,3	706	15,421	10,972	7,938
	1029,5	788	16,078	12,438	9,050
	1079,8	720	15,168	11,882	8,696
	1090,8	673	26,443	21,893	16,078
	1123,6	527	31,196	26,848	19,870
	1147,1	460	30,943	27,404	20,578
	1176,5	370	30,084	27,050	20,477
	1204,6	301	30,690	28,112	21,488
	1270	191	30,235	28,668	22,348
	1305,7	73	30,438	29,679	23,359
	1390,7	31	0,000	0,000	0,000
5	1455,7	919	23,005	13,500	10,011
	1461,2	911	24,269	14,713	10,871
	1467,8	896	24,269	15,067	11,123
	1496,4	854	24,219	15,927	11,932
	1527,6	784	23,865	16,988	12,842
	1554,6	715	23,915	17,797	13,449
	1577,3	655	23,814	18,354	14,005
	1604,4	603	20,477	16,281	12,438
	1659,6	521	21,943	18,404	14,208
	1680,5	434	24,016	20,629	16,028
	1722,4	356	24,219	21,438	16,786
	1744	281	24,269	21,741	17,090
	1771,6	226	22,702	20,427	16,230
	1790,6	173	24,623	22,702	18,050
	1851,8	79	20,224	19,163	15,421

Zyklus	Zeitschritte [d]	Borkonzent- ration [ppm]	Leistung [MW/tSM]	Zyklus	Zeitschritte [d]	Borkonzent- ration [ppm]	Leistung [MW/tSM]
2	7,1	654	29,477		504,2	684	32,718
	37,9	614	36,268		535,2	611	32,873
	54,3	563	36,268		566,8	545	32,718
	65,7	533	36,268		598,4	478	32,255
	78,2	507	36,268		642,3	368	32,255
	101,6	468	36,268		667,3	291	0,000
	124,4	418	36,113		729,0	224	32,718
	147,3	368	35,959		759,2	120	33,953
	155,8	333	35,959		840,2	83	0,000
	187,2	290	36,268	4	887,2	960	26,854
	221,4	218	35,959		911,3	889	26,545
	238	162	36,576		933,8	827	26,699
	257,1	122	35,959		959,3	759	26,699
	269,9	86	36,268		990,0	706	12,964
	304,2	36	34,261		1031,0	788	13,272
	306,1	0	34,261		1081,1	720	13,272
	377,1	0	0,000		1092,0	673	22,995
3	383,9	883	29,477		1102,7	527	27,317
	398,2	862	28,706		1147,8	460	27,625
	417,7	837	20,217		1177,1	370	27,162
	434,2	808	31,947		1205,1	301	27,934
	450,3	775	32,718		1270,2	191	27,780
	465,4	741	34,570		1305,9	73	28,088

 Tab. 2.109
 Leistungsgeschichtedaten f
 ür die Proben des Brennelement D047

Zyklus	Zeit- schritte [d]	Borkon- zentrati- on [ppm]	Leistung [MW/tSM]	Zyklus	Zeit- schritte [d]	Borkon- zentrati- on [ppm]	Leistung [MW/tSM]
1	24,2	330	29,166		1067,4	122	29,774
	43,8		36,610		1080,2	86	30,078
	83,5		36,610		1115,4	36	27,951
	123,2		36,306		1117,3	0	27,799
	162,6		36,002		1188,3	0	0,000
	201,9		35,850	3	1199,2	883	19,140
	241,0		35,698		1213,3	862	18,836
	279,9		35,850		1238,6	837	10,178
	318,9		35,850		1250,8	808	21,267
	358,0		35,698		1267,1	775	21,571
	397,1		35,394		1282,2	741	23,090
	436,5		35,090		1320,3	684	21,723
	465,8		34,787		1351,2	611	22,178
	498,8		0,000		1382,6	545	22,178
	508,8		34,787		1414,1	478	22,178
	548,1		34,331		1457,3	368	22,482
	587,4		34,027		1482,3	291	0,000
	626,7		33,723		1542,3	224	22,634
	646,3		33,420		1570,3	120	24,457
	666,7		32,052		1651,3	83	0,000
	697,5		22,634	4	1696,3	960	20,963
	730,3		18,685		1720,4	889	20,963
	811,3		0,000		1742,8	827	21,115
2	818,5	654	20,204		1768,0	759	21,419
	849,5	614	25,976		1799,0	706	10,178
	865,9	563	28,862		1843,8	788	9,570
	877,3	533	28,710		1891,9	720	10,633
	889,9	507	28,710		1902,8	673	18,836
	913,1	468	28,710		1913,4	527	22,634
	935,8	418	28,710		1958,7	460	23,090
	958,8	368	28,710		1987,4	370	22,938
	967,0	333	28,558		2015,3	301	23,697

Zyklus	Zeit- schritte [d]	Borkon- zentrati- on [ppm]	Leistung [MW/tSM]	Zyklus	Zeit- schritte [d]	Borkon- zentrati- on [ppm]	Leistung [MW/tSM]
	998,0	290	29,318		2081,2	191	23,546
	1031,8	218	29,470		2117,3	73	23,849
	1048,3	162	30,078				

Die zeitliche Entwicklung der Probenleistung für alle Proben und der Borkonzentration sind in Tab. 2.108, Tab. 2.109 und Tab. 2.110 angegeben. Dabei ist zu beachten, dass für die Brennelemente D047 und BT03 jeweils nur ein Satz an Leistungsdichten angegeben ist. Diese Leistungsdichten müssen für die einzelnen Proben entsprechend des Abbrands skaliert werden. Für Zyklus 1 ist kein detaillierter zeitlicher Verlauf der Borkonzentration bekannt. Daher wurde für diesen Zyklus eine plausible mittlere Borkonzentration angenommen.

Stab	MKP109 (ATM-104)			MKP109 (ATM-104)			
Probe	Р	CC	LL		Р	CC	LL	
²³⁴ U	1,36E+02	1,59E+02	1,82E+02	¹⁴³ Nd	8,66E+02	8,12E+02	6,95E+02	
²³⁵ U	4,02E+03	5,87E+03	9,61E+03	¹⁴⁴ Nd	1,86E+03	1,52E+03	1,07E+03	
²³⁶ U	4,19E+03	4,01E+03	3,56E+03	¹⁴⁵ Nd	8,44E+02	7,41E+02	5,79E+02	
²³⁸ U	9,36E+05	9,45E+05	9,56E+05	¹⁴⁶ Nd	9,42E+02	7,74E+02	5,56E+02	
²³⁷ Np	5,34E+02	4,05E+02	3,05E+02	¹⁴⁸ Nd	4,86E+02	4,07E+02	3,01E+02	
²³⁸ Pu	3,05E+02	2,15E+02	1,15E+02	¹⁵⁰ Nd	2,36E+02	1,95E+02	1,41E+02	
²³⁹ Pu	4,94E+03	4,94E+03	4,84E+03	¹⁴⁷ Sm	3,08E+02	2,70E+02	2,30E+02	
²⁴⁰ Pu	2,89E+03	2,54E+03	1,95E+03	¹⁴⁸ Sm	2,25E+02	1,61E+02	1,00E+02	
²⁴¹ Pu	1,16E+03	1,02E+03	7,73E+02	¹⁴⁹ Sm	3,64E+02	2,90E+02	2,09E+02	
²⁴² Pu	9,53E+02	6,54E+02	3,28E+02	¹⁵⁰ Sm	1,07E+01	9,41E+00	7,52E+00	
²⁴¹ Am	4,33E+02	3,90E+02	2,83E+02	¹⁵¹ Sm	1,33E+02	1,10E+02	8,97E+01	
⁷⁹ Se	4,79E+00	4,46E+00	3,36E+00	¹⁵² Sm	5,64E+01	3,81E+01	3,07E+01	
⁹⁰ Sr	5,43E+02	4,86E+02	3,78E+02	¹⁵³ Eu	1,61E+02	1,29E+02	8,52E+01	
⁹⁹ Tc	8,94E+02	8,15E+02	6,35E+02	¹⁵⁴ Eu	1,18E+01	8,78E+00	6,08E+00	
¹²⁶ Sn	2,02E+01	1,67E+01	1,15E+01	¹⁵⁵ Eu	1,82E+00	1,39E+00	1,04E+00	
¹³³ Cs	1,41E+03	1,24E+03	9,64E+02	¹⁵⁴ Gd	2,00E+01	1,50E+01	1,37E+01	
¹³⁴ Cs	3,40E+01	2,27E+01	1,13E+01	¹⁵⁵ Gd	9,96E+00	7,41E+00	6,25E+00	
¹³⁵ Cs	4,87E+02	4,52E+02	4,10E+02	¹⁵⁶ Gd	9,53E+01	7,33E+01	6,36E+01	
¹³⁷ Cs	1,42E+03	1,18E+03	8,77E+02	¹⁵⁸ Gd	2,07E+01	1,49E+01	1,39E+01	
¹²⁹	2,41E+02	2,18E+02	1,35E+02	¹⁶⁰ Gd			1,45E+00	

 Tab. 2.111
 Für die Validierung herangezogener Datensatz von experimentell bestimmten Nukliddaten in g/tSMi

Stab MI A098 (ATM 103)						
Stab						
Probe	Р	BB	JJ			
²³⁴ U	1,36E+02	1,37E+02	1,59E+02			
²³⁵ U	5,42E+03	7,87E+03	1,16E+04			
²³⁶ U	3,70E+03	3,39E+03	2,84E+03			
²³⁸ U	9,55E+05	9,69E+05	9,70E+05			
²³⁷ Np	3,89E+02	3,40E+02	1,98E+02			
²³⁸ Pu	1,68E+02	1,10E+02	5,50E+01			
²³⁹ Pu	4,75E+03	4,82E+03	4,49E+03			
²⁴⁰ Pu	2,40E+03	2,00E+03	1,41E+03			
²⁴¹ Pu	9,22E+02	7,74E+02	5,15E+02			
²⁴² Pu	6,21E+02	3,75E+02	1,58E+02			
²⁴¹ Am	3,97E+02	3,28E+02	2,21E+02			
⁷⁹ Se	4,65E+00	3,85E+00	2,88E+00			
⁹⁰ Sr	4,30E+02	3,62E+02	2,76E+02			
⁹⁹ Tc	7,49E+02	6,21E+02	4,68E+02			
¹²⁶ Sn	1,55E+01	1,25E+01	7,90E+00			
¹³⁵ Cs	3,27E+02	3,07E+02	2,75E+02			
¹³⁷ Cs	1,05E+03	8,53E+02	6,00E+02			

 Tab. 2.112
 Für die Validierung herangezogener Datensatz von experimentell bestimmten Nukliddaten in g/tSMi

Stab	NBD107 (A	TM-106)			
Probe	Q	GG	MM	Probe	GG
²³⁴ U	8,497E+01	1,441E+02	1,736E+02	¹⁴³ Nd	7,189E+02
²³⁵ U	1,595E+03	3,074E+03	4,379E+03	¹⁴⁴ Nd	1,603E+03
²³⁶ U	3,449E+03	3,437E+03	3,244E+03	¹⁴⁵ Nd	7,246E+02
²³⁸ U	9,384E+05	9,572E+05	9,581E+05	¹⁴⁶ Nd	7,805E+02
²³⁷ Np	4,290E+02	3,645E+02	2,967E+02	¹⁴⁸ Nd	4,124E+02
²³⁸ Pu	3,224E+02	2,209E+02	1,618E+02	¹⁴⁷ Sm	2,659E+02
²³⁹ Pu	4,272E+03	4,351E+03	4,327E+03	¹⁴⁸ Sm	1,713E+02
²⁴⁰ Pu	2,948E+03	2,633E+03	2,345E+03	¹⁵⁰ Sm	3,000E+02
²⁴¹ Pu	1,005E+03	9,223E+02	8,236E+02	¹⁵¹ Sm	7,970E+00
²⁴² Pu	1,326E+03	8,795E+02	6,197E+02	¹⁵² Sm	1,210E+02
²⁴¹ Am	7,207E+02	4,827E+02	3,901E+02	¹⁵⁴ Sm	4,470E+01
⁷⁹ Se	4,425E+00	4,159E+00	3,088E+00	¹⁵³ Eu	1,483E+02
⁹⁰ Sr	4,980E+02	4,271E+02	3,826E+02	¹⁵⁴ Eu	7,074E+00
⁹⁹ Tc	7,221E+02	5,936E+02	5,101E+02	¹⁵⁵ Eu	1,138E+00
¹²⁶ Sn	1,930E+01	1,470E+01	1,296E+01		
¹³⁵ Cs	4,716E+02	4,086E+02	3,978E+02		
¹³⁷ Cs	1,464E+03	1,119E+03	9,761E+02		

 Tab. 2.113
 Für die Validierung herangezogener Datensatz von experimentell bestimmten Nukliddaten in g/tSMi

In Tab. 2.111, Tab. 2.112 und Tab. 2.113 sind die für die Validierung verwendeten gemessenen Nuklidkonzentrationen angegeben. Die Messdaten stammen in erster Linie vom Pacific Northwest National Laboratory (PNL). Für die drei Proben des Stabs MKP109 sowie die die Probe GG des Stabs NBD107 wurden zusätzliche Messungen vom Los Alamos National Laboratory (LANL) und dem Khlopin Radium Institut (KRI) durchgeführt. Die jeweiligen Besonderheiten dieser Messungen werden in /RAD 10/ diskutiert und die verschiedenen Messungen zu einem einheitlichen Datensatz zusammengefasst. In der vorliegenden Arbeit wird diesem Ansatz gefolgt und die Daten wurden entsprechend übernommen. Einzelne in /RAD 10/ als nicht fehlerbehaftet gekennzeichnete Werte wurden für die Validierung von MOTIVE nicht übernommen.

2.7.2 Modellierung

Für die Modellierung der Brennelemente wurden die einzelnen Brennstäbe eines Brennelements so modelliert, dass abgesehen von symmetriebedingt äquivalenten Stäben alle Stäbe einzeln abgebrannt und verfolgt werden. Dies bedeutet, dass 33 unterschiedliche Stabsorten betrachtet wurden. Die geometrische Modellierung ist in Abb. 2.48 anhand des Beispiels desBrennelements BT03 gezeigt. Für die Proben des

Abb. 2.48 KENO-VI Modell des Calvert Cliffs Brennelements BT03. Links Brennelement mit abbrennbaren Absorberstäben, rechts mit gezogenen Absorberstäben

Stabs MKP09 wurde die brennelementgemittelte Leistung bei Probennachrechnung so angepasst, dass die Konzentration von ¹⁴⁸Nd als Abbrandindikator möglichst exakt der gemessenen entspricht. Bei den Proben des Stabs MLA098, bei denen keine Daten für ¹⁴⁸Nd vorliegen, wurde eine Anpassung an den Abbrandindikator ¹³⁷Cs vorgenommen. Bei den Proben des Stabs NBD107 liegt nur für die Probe GG eine Messung für ¹⁴⁸Nd vor. Für die anderen beiden Proben wurde der Nominalabbrand beibehalten. Auf eine Anpassung an ¹³⁷Cs wurde nicht vorgenommen, da einerseits die berechneten ¹³⁷Cs Konzentrationen bereits im Rahmen der Messgenauigkeit (2σ der angegebenen Messunsicherheit) mit den gemessenen Werten übereinstimmen und andererseits bei einer Anpassung der Wert für ²³⁵U auf eine größere Abweichung vom tatsächlichen Abbrandwert hindeutete).

2.7.3 Resultate

Die Ergebnisse der Nachrechnungen sind in Tab. 2.114 – Tab. 2.116 sowie in Form von Balkendiagrammen in Abb. 2.49 – Abb. 2.51 gezeigt. Die Ergebnisse von allen drei Brennelementen zeigen gute Übereinstimmungen bei den Uran- und Plutonium-Nukliden, wobei jeweils ein leichter Trend zu größerer Unterschätzung der ²³⁹Pu-Konzentration zu erkennen ist, je weiter unten die Probe im Brennstab entnommen wurde. Als weitere Aktinoiden wurden ²³⁷Np und ²⁴¹Am gemessen. Die Übereinstimmung für diese Nuklide liegt im Bereich anderer Nachrechnungen, bei den Proben aus dem Brennelement D101 sogar deutlich besser. Die Übereinstimmungen zwischen Rechnung und Experiment für die Spaltprodukte sind größtenteils gut, größere Abweichungen gibt es für die Gadolinium-Nuklide beim Brennelement D047 und für ⁹⁹Tc beim Brennelement BT03.

Stab	MLA098 (ATM-103)				
Probe	Р	BB	JJ		
²³⁴ U	4,6	14,6	11,7		
²³⁵ U	-0,1	-4,5	-3,4		
²³⁶ U	-4,8	-4,1	-4,6		
²³⁸ U	-0,9	-1,8	-1,1		
²³⁷ Np	2,6	-9,2	-0,9		
²³⁸ Pu	5,2	0,9	-10,8		
²³⁹ Pu	2,0	-2,1	-4,2		
²⁴⁰ Pu	2,1	2,5	-1,1		
²⁴¹ Pu	0,4	-2,2	-4,9		
²⁴² Pu	-0,6	3,2	1,5		
²⁴¹ Am	-3,0	-2,4	-5,0		
⁷⁹ Se	-1,4	0,1	-1,9		
⁹⁰ Sr	-8,6	-6,9	-7,2		
⁹⁹ Tc	7,1	7,9	4,2		
¹²⁶ Sn	40,0	34,2	37,0		
¹³⁵ Cs	5,0	4,1	2,9		
¹³⁷ Cs	0,1	0,1	0,1		

Tab. 2.114Abweichung zwischen Rechnung (C) und Experiment (E) als Werte C/E-1in Prozent für den Stab MLA098

Stab	MKP109 (ATM-104)				MKP109 (ATM-104)		
Probe	Р	СС	LL		Р	СС	LL
²³⁴ U	3,2	-2,2	-1,5	¹⁴³ Nd	0,6	-0,2	-0,6
²³⁵ U	0,5	-1,1	-2,3	¹⁴⁴ Nd	-2,4	-1,8	-1,1
²³⁶ U	-0,6	-0,6	-1,3	¹⁴⁵ Nd	-1,5	-1,4	-1,0
²³⁸ U	0,0	-0,3	-0,5	¹⁴⁶ Nd	-0,9	-0,8	-0,4
²³⁷ Np	-0,5	8,2	0,3	¹⁴⁸ Nd	0,0	0,1	0,1
²³⁸ Pu	0,9	-1,3	-5,2	¹⁵⁰ Nd	2,5	2,0	1,0
²³⁹ Pu	-0,7	-2,0	-3,2	¹⁴⁷ Sm	-5,8	2,9	5,0
²⁴⁰ Pu	-1,7	-1,8	-3,9	¹⁴⁸ Sm	-5,8	-0,6	-1,8
²⁴¹ Pu	-2,9	-3,8	-5,2	¹⁴⁹ Sm	2,4	6,3	5,4
²⁴² Pu	-3,6	-1,9	-3,8	¹⁵⁰ Sm	-7,1	-3,9	10,0
²⁴¹ Am	-12,2	-13,7	-9,7	¹⁵¹ Sm	-3,4	6,2	4,7
⁷⁹ Se	19,3	11,6	14,5	¹⁵² Sm	-5,5	9,2	-11,3
⁹⁰ Sr	-8,4	-9,5	-7,2	¹⁵³ Eu	-4,5	-1,2	3,5
⁹⁹ Tc	12,0	6,4	4,6	¹⁵⁴ Eu	2,8	8,0	7,5
¹²⁶ Sn	42,0	37,9	37,0	¹⁵⁵ Eu	2,6	5,9	6,5
¹³³ Cs	0,8	0,2	-0,5	¹⁵⁴ Gd	34,8	39,6	-11,4
¹³⁴ Cs	-13,8	-6,6	5,3	¹⁵⁵ Gd	2,5	8,4	-22,8
¹³⁵ Cs	1,4	2,1	1,4	¹⁵⁶ Gd	72,0	44,2	-21,2
¹³⁷ Cs	-3,3	-1,6	-2,5	¹⁵⁸ Gd	41,0	34,2	-21,6
¹²⁹	-13,6	-21,5	-10,3	¹⁶⁰ Gd	-	-	-48,2

Tab. 2.115Abweichung zwischen Rechnung (C) und Experiment (E) als Werte C/E-1in Prozent für den Stab MKP109

Stab	NBD107 (ATM	-106)			
Probe	Q	GG	MM	Probe	GG
²³⁴ U	28,6	-14,5	-23,4	¹⁴³ Nd	-1,6
²³⁵ U	-4,8	-6,4	-4,8	¹⁴⁴ Nd	-2,1
²³⁶ U	0,0	-0,9	1,5	¹⁴⁵ Nd	-1,4
²³⁸ U	-0,2	-1,2	-0,7	¹⁴⁶ Nd	-0,3
²³⁷ Np	16,5	11,2	15,2	¹⁴⁸ Nd	0,0
²³⁸ Pu	7,5	5,5	5,9	¹⁴⁷ Sm	2,2
²³⁹ Pu	-4,7	-6,6	-7,5	¹⁴⁸ Sm	-2,5
²⁴⁰ Pu	-1,4	-2,2	-2,0	¹⁵⁰ Sm	1,6
²⁴¹ Pu	-5,7	-8,8	-9,0	¹⁵¹ Sm	-9,9
²⁴² Pu	-3,5	-4,5	-2,6	¹⁵² Sm	2,0
²⁴¹ Am	-41,2	-19,2	-8,9	¹⁵⁴ Sm	1,1
⁷⁹ Se	29,8	16,5	38,2	¹⁵³ Eu	-10,6
⁹⁰ Sr	-7,9	-7,7	-7,8	¹⁵⁴ Eu	1,2
⁹⁹ Tc	44,0	46,0	48,3	¹⁵⁵ Eu	-9,1
¹²⁶ Sn	69,6	68,1	56,1		
¹³⁵ Cs	-5,0	0,4	-1,5		
¹³⁷ Cs	-4,5	-0,5	-2,9		

Tab. 2.116Abweichung zwischen Rechnung (C) und Experiment (E) als Werte C/E-1in Prozent für den Stab NBD107

Abb. 2.49 Nachrechnungsergebnisse in der Form C/E-1 in Prozent für die Proben des Brennelements D101

Abb. 2.50 Nachrechnungsergebnisse in der Form C/E-1 in Prozent für die Proben des Brennelements D047

Abb. 2.51 Nachrechnungsergebnisse in der Form C/E-1 in Prozent für die Proben des Brennelements BT03

Einen Sonderfall stellen die Nuklide ⁷⁹Se und ¹²⁶Sn dar. Hierbei handelt es sich um langlebige Spaltprodukte, die insbesondere für den Langzeitsicherheitsnachweis von Endlagern relevant sind. Wie auch bei einigen anderen Nukliden wurden hier nicht die Massen, sondern die Aktivitäten gemessen und daraus unter Verwendung der Halbwertszeiten auf die jeweilige Nuklidkonzentration geschlossen. Allerdings ist bei diesen Nukliden der Wert der Halbwertszeiten mit großen Unsicherheiten behaftet. Es wurden in der Vergangenheit sehr unterschiedliche Werte gemessen /JÖR 10/, /BIE 09/. Die in der SFCOMPO zur Umrechnung verwendeten Halbwertszeiten sind dort nicht direkt angegeben, können jedoch aus den vorhandenen Daten rückgeschlossen werden. Für ¹²⁶Sn ergibt sich so eine Halbwertszeit von 2,3E+05 Jahren und für ⁷⁹Se eine Halbwertszeit von 3,35E+05 Jahren. Der Wert für ¹²⁶Sn stammt aus der ENDF/B-VII.1-Evaluation, der Wert für ⁷⁹Se scheint ein Mittelwert der Daten aus JEFF und ENDF/B zu sein. Je nachdem welche Evaluation oder welcher experimentelle Wert für die Halbwertszeiten für die Umrechnung verwendet wird, kann den Vergleich zwischen Rechnung und Experiment wesentlich beeinflussen. Eine nähere Untersuchung hierzu steht noch aus. Eine mögliche Option ist hier auch der direkte Vergleich der berechneten und gemessenen Aktivitäten. Dann geht nur noch die im Rechenverfahren, hier also in MOTIVE, verwendete Halbwertszeit ein.

3 Nachrechnungen von SWR-Proben

3.1 Proben des Reaktors Fukushima-Daini-2

Aus dem Siedewasserreaktor Fukushima-Daini-2, der von der japanischen Tokyo Electric Power Company (TEPCO) betrieben wird, wurden insgesamt 18 Nachbestrahlungsanalyseproben aus den zwei Brennstäben SF98 und SF99 des Brennelements (BE) 2F2DN23 nachgerechnet. Das Brennelement wurde in der Periode vom 14.01.1989 bis zum 16.11.1992 über drei Zyklen für insgesamt 1.174 Tage bestrahlt. Dabei wurden Probenabbrände von 4,15 bis 43,99 GWd/tSM erreicht. Die Angaben zu Brennelementgeometrien, Materialdaten und Abbrandhistorien stammen vorwiegend aus der Datenbank SFCOMPO /MIC 17/ und wurden teilweise aus der Veröffentlichung /MER 10/ ergänzt.

3.1.1 Experimentelle Daten

Bei dem Brennelement 2F2DN23 handelt es sich um ein 8 x 8 SWR-Brennelement mit zwei zentralen, diagonal versetzten Wasserrohren. Das Brennelement enthält neben fünf verschiedenen Anreicherungen acht Brennstäbe mit dem abbrennbaren Neutronenabsorber Gd₂O₃. Der Probenstab SF98 ist ein normaler Brennstab, der Stab SF99 ein Gadolinium-haltiger Brennstab. In Abb. 3.1 ist die schematische Darstellung des Brennelements mit den unterschiedlichen Brennstäben farblich kodiert dargestellt. Das Brennelement ist diagonalsymmetrisch. Das Steuerstabkreuz wird in Abb. 3.1 links und oben eingefahren. Zusätzlich wird das Brennelement von einem Wasserkasten umgeben.
Assembly 2F2DN23

Abb. 3.1 Schematische Darstellung des Brennelements aus Fukushima-Daini-2 /MIC 17/

In Tab. 3.1 sind die relevanten geometrischen Abmessungen des Brennelements wiedergegeben, in Tab. 3.2 die relevanten geometrischen Abmessungen der Brennstäbe und Wasserrohre.

Parameter	
Gittertyp	8 x 8
Brennstababstand [cm]	1,63
Brennelementabstand [cm]	15,2
Brennstablänge [cm]	406,6
Aktive Brennstablänge [cm]	371,0
Anzahl Brennelemente	62
Anzahl Wasserrohre	1
Durchmesser Wasserkasten innen [cm]	13,4
Durchmesser Wasserkasten außen [cm]	13,806

 Tab. 3.1
 Geometrische Abmessungen des Brennelements 2F2DN23 /MIC 17/,

 /MER 10/

Tab. 3.2Geometrische Abmessungen der Brennstäbe, Führungs- und Instrumental-
rohre /MIC 17/, /MER 10/

Parameter	
Durchmesser Brennstoff [cm]	1,03
Durchmesser innen Hüllrohr [cm]	1,058
Durchmesser außen Hüllrohr [cm]	1,23
Material Hüllrohr	Zircaloy-2
Durchmesser innen Wasserrohre [cm]	1,35
Durchmesser außen Wasserrohre [cm]	1,50
Material Führungs- und Instrumentalrohre	Zircaloy-2

Aus dem Brennelement 2F2DN23 wurden aus Brennstab SF98 die Proben SF98-1 bis SF98-8 und aus Brennstab SF99 die Proben SF99-1 bis SF99-10 entnommen. Weiter Details der 18 Proben aus den beiden Brennstäben finden sich in Tab. 3.3 und Tab. 3.4.

Details zur Brennstoffzusammensetzung wurden auch /MIC 17/ entnommen. Die allgemeinen Werte und die nuklidweise Brennstoffzusammensetzung der UO₂ Brennstäben sind in Tab. 3.5, die der zwei Abschnitte der UO₂-Gd₂O₃ Brennstäbe in Tab. 3.6. Alle Brennstäbe besitzen eine Dichte von 95 % der theoretischen Dichte: 10,412 g/cm³. Die angegebenen Gew-% wurden für die Rechnung unter Berücksichtigung der Dichte des Brennstoffs in Kernzahldichten umgerechnet.

Parameter	01	02	03	04	05	06	07	08
Probenabbrand [GWd/tSM]	4,15	26,51	36,94	42,35	43,99	39,92	39,41	27,18
Probenhöhe von der aktiven Höhe [cm]	3,9	16,7	42,3	69,2	121,4	205,0	275,7	339,7
Dampfblasen- gehalt [%]	0,0	0,0	3,0	11,0	32,0	54,5	68,0	73,0
Moderatordichte [kg/m ³]	740,19	740,19	719,08	662,79	515,02	356,70	261,71	226,52

Tab. 3.3Relevante Details der acht Proben aus Brennstab SF98

Parameter	01	02	03	04	05
Probenabbrand [GWd/tSM]	7,53	22,63	32,44	35,42	37,41
Probenhöhe von der ak- tiven Höhe [cm]	13,4	28,6	50,2	68,6	118,9
Dampfblasengehalt [%]	0,0	1,4	5,8	10,8	27,7
Moderatordichte [kg/m ³]	740,19	730,34	699,38	664,20	545,28
Parameter	06	07	08	09	10
Parameter Probenabbrand [GWd/tSM]	06 32,36	07 32,13	08 21,83	09 16,65	10 7,19
ParameterProbenabbrand[GWd/tSM]Probenhöhe von der ak- tiven Höhe [cm]	06 32,36 206,1	07 32,13 274,4	08 21,83 338,8	09 16,65 354,0	10 7,19 367,6
ParameterProbenabbrand[GWd/tSM]Probenhöhe von der ak- tiven Höhe [cm]Dampfblasengehalt [%]	06 32,36 206,1 54,7	07 32,13 274,4 66,5	08 21,83 338,8 71,7	09 16,65 354,0 72,9	10 7,19 367,6 74,3

Tab. 3.4Relevante Details der zehn Proben aus Brennstab SF99

Tab. 3.5	Daten zur Materialzusammer	nsetzung des UO2 Brennstoffs
----------	----------------------------	------------------------------

Parame- ter	U _{nat}	Fuel 1	Fuel 2	Fuel 3	Fuel 4	Fuel 5
²³⁴ U [Gew%]	0,006	0,018	0,026	0,03	0,031	0,035
²³⁵ U [Gew%]	0,71	71 1,997 2		3,405	3,448	3,91
²³⁶ U [Gew%]	0,003	0,008	0,013	0,016	0,016	0,018
²³⁸ U [Gew%]	99,281	97,976	97,058	96,549	96,505	96,037
²³⁴ U [KZD]	1,4172E-06	4,2515E-06	6,1410E-06	7,0857E-06	7,3218E-06	8,2665E-06
²³⁵ U [KZD]	1,6699E-04	4,6967E-04	6,8274E-04	8,0080E-04	8,1091E-04	9,1956E-04
²³⁶ U [KZD]	7,0259E-07	2,1077E-06	3,0445E-06	3,7470E-06	3,7470E-06	4,2153E-06
²³⁸ U [KZD]	2,3056E-02	2,2752E-02	2,2539E-02	2,2421E-02	2,2410E-02	2,2301E-02
¹⁶ O	4,6450E-02	4,6457E-02	4,6461E-02	4,6464E-02	4,6464E-02	4,6467E-02

Isotop	Gd ₂ O ₃		Gd ₂ O ₃ oben	
	[Gew%]	Kernzahldichten	[Gew%]	Kernzahldichten
²³⁴ U	0,030	6,7668E-06	0,030	6,8731E-06
²³⁵ U	3,410	7,6589E-04	3,410	7,7792E-04
²³⁶ U	0,016	3,5784E-06	0,016	3,6346E-06
²³⁸ U	96,544	2,1410E-02	96,544	2,1747E-02
^{nat} Gd	4,5	-	3,0	-
¹⁵² Gd	0,19	3,0602E-06	0,19	2,0402E-06
¹⁵⁴ Gd	2,13	3,3861E-05	2,13	2,2574E-05
¹⁵⁵ Gd	14,58	2,3029E-04	14,58	1,5353E-04
¹⁵⁶ Gd	20,3	3,1858E-04	20,3	2,1239E-04
¹⁵⁷ Gd	15,62	2,4357E-04	15,62	1,6238E-04
¹⁵⁸ Gd	24,95	3,8660E-04	24,95	2,5773E-04
¹⁶⁰ Gd	22,23	3,4015E-04	22,23	2,2676E-04
¹⁶ O		4,6707E-02		4,6626E-02

Tab. 3.6Daten zur Materialzusammensetzung des Gd2O3 Brennstoffs /MIC 17/

Nach /MIC 17/ bestehen alle Strukturmaterialien aus Zirkaloy-4. Hierfür wurden die Kernzahldichten mit der angegebenen Dichte und der natürlichen Isotopen-Zusammensetzung (aus /MAG 18/) berechnet. Die verwendeten Werte sind in Tab. 3.7 wiedergegeben.

Element	[wt%]	Isotope	Kernzahldichte [1/barn*cm]	Element	[wt%]	lsotope	Kernzahldichte [1/barn*cm]
Zr	98,23	⁹⁰ Zr	2,1778E-02	Fe	0,21	⁵⁴ Fe	8,8154E-06
		⁹¹ Zr	4,6971E-03			⁵⁶ Fe	1,3344E-04
		⁹² Zr	7,1016E-03			⁵⁷ Fe	3,0277E-06
		⁹⁴ Zr	7,0437E-03			⁵⁸ Fe	3,9598E-07
		⁹⁶ Zr	1,1111E-03	Cr	0,1	⁵⁰ Cr	3,3702E-06
Sn	1,45	¹¹² Sn	4,8703E-06			⁵² Cr	6,2491E-05
		¹¹⁴ Sn	3,2557E-06			⁵³ Cr	6,9523E-06
		¹¹⁵ Sn	1,6626E-06			⁵⁴ Cr	1,6985E-06
		¹¹⁶ Sn	7,0487E-05	Hf	0,01	¹⁷⁴ Hf	3,5662E-09
		¹¹⁷ Sn	3,6913E-05			¹⁷⁶ Hf	1,1591E-07
		¹¹⁸ Sn	1,1542E-04			¹⁷⁷ Hf	4,0754E-07
		¹¹⁹ Sn	4,0593E-05]		¹⁷⁸ Hf	5,9437E-07
		¹²⁰ Sn	1,5268E-04			¹⁷⁹ Hf	2,9509E-07
		¹²² Sn	2,1341E-05			¹⁸⁰ Hf	7,5582E-07
		¹²⁴ Sn	2,6258E-05				

 Tab. 3.7
 Nuklidweise Zusammensetzung des Strukturstoffs Zirkaloy-2

/MIC 17/ gibt die Bestrahlungsgeschichte in Form von spezifischer Leistung an. Während die Leistung für 17 Zeitpunkte in den drei bestrahlten Zyklen angegeben ist, wird für den Dampfblasengehalt für jede Probe nur ein Wert angegeben, der in Tab. 3.3 und Tab. 3.4 wiedergegeben ist. Die verwendeten Leistungswerte für die Proben aus dem Brennstab SF98 sind in Tab. 3.8 wiedergegeben, die für Brennstab SF99 in Tab. 2.9. Dabei ist in der letzten Spalte die Zeit in Tagen zwischen Reaktorabschaltung und Messdatum der jeweiligen Probe angegeben.

Zyklus	Zeitschritte [d]	Leistung [MW/tSM]								
		SF98-01	SF98-02	SF98-03	SF98-04	SF98-05	SF98-06	SF98-07	SF98-08	
5	6	1,27	8,10	11,29	12,95	13,45	12,21	12,05	8,31	
	3	3,20	20,46	28,50	32,68	33,95	30,81	30,41	20,98	
	132	3,95	25,22	35,14	40,29	41,84	37,98	37,49	25,86	
	21	0	0	0	0	0	0	0	0	
	5	1,43	9,13	12,73	14,59	15,16	13,76	13,58	9,37	
	244	3,44	22,00	30,65	35,15	36,51	33,13	32,70	22,56	
	8	3,99	25,47	35,49	40,70	42,27	38,36	37,87	26,12	
Revision	117	0	0	0	0	0	0	0	0	
6	5	1,43	9,13	12,73	14,59	15,16	13,76	13,58	9,37	
	317	3,44	22,00	30,65	35,15	36,51	33,13	32,70	22,56	
	9	0	0	0	0	0	0	0	0	
	4	1,49	9,52	13,27	15,21	15,80	14,34	14,15	9,76	
	72	3,50	22,38	31,19	35,76	37,15	33,71	33,28	22,95	
	10	3,95	25,22	35,14	40,29	41,84	37,98	37,49	25,86	
Revision	81	0	0	0	0	0	0	0	0	
7	3	1,63	10,42	14,52	16,65	17,29	15,69	15,49	10,69	
	365	3,65	23,29	32,45	37,20	38,64	35,07	34,62	23,88	
Lagerung	[d]	2008,8	2008,8	2008,8	2008,8	2154,9	2264,5	2154,9	2154,9	

Tab. 3.8Bestrahlungsgeschichte der Reaktorzyklen 5 bis 7 für die Proben aus dem
Brennstab SF98

Zyklus	Zeitschritte [d]	Leistung [MW/tSM]									
		SF99-01	SF99-02	SF99-03	SF99-04	SF99-05	SF99-06	SF99-07	SF99-08	SF99-09	SF99-10
5	6	2,3	6,92	9,92	10,83	11,44	9,89	9,82	6,67	5,09	2,2
	3	5,81	17,46	25,03	27,33	28,87	24,97	24,79	16,84	12,85	5,55
	132	7,16	21,53	30,86	33,69	35,58	30,78	30,56	20,76	15,84	6,84
	21	0	0	0	0	0	0	0	0	0	0
	5	2,59	7,8	11,18	12,21	12,89	11,15	11,07	7,52	5,74	2,48
	244	6,25	18,78	26,92	29,4	31,05	26,85	26,66	18,12	13,82	5,97
	8	7,23	21,75	31,17	34,04	35,95	31,09	30,87	20,98	16	6,91
Revi- sion	117	0	0	0	0	0	0	0	0	0	0
6	5	2,59	7,8	11,18	12,21	12,89	11,15	11,07	7,52	5,74	2,48
	317	6,25	18,78	26,92	29,4	31,05	26,85	26,66	18,12	13,82	5,97
	9	0	0	0	0	0	0	0	0	0	0
	4	2,7	8,13	11,65	12,72	13,44	11,62	11,54	7,84	5,98	2,58
	72	6,35	19,11	27,39	29,91	31,59	27,33	27,13	18,43	14,06	6,08
	10	7,16	21,53	30,86	33,69	35,58	30,78	30,56	20,76	15,84	6,84
Revi- sion	81	0	0	0	0	0	0	0	0	0	0
7	3	2,96	8,9	12,75	13,92	14,71	12,72	12,63	8,58	6,54	2,83
	365	6,61	19,88	28,5	31,11	32,86	28,42	28,22	19,17	14,62	6,32
Lageru [d]	ing	2447,1	2445	2447,1	2445	2447,1	2445	2447,1	2374,1	2447,1	2445

Tab. 3.9Bestrahlungsgeschichte der Reaktorzyklen 5 bis 7 für die Proben aus dem
Brennstab SF99

Während die individuellen Leistungen unterschiedlich sind, ist die zeitliche Entwicklung der Leistung relativ zu der jeweiligen Maximalleistung für alle Proben der Brennstäbe SF98 und SF99 identisch. Diese ist in Abb. 3.2 graphisch dargestellt.

Abb. 3.2 Bestrahlungsgeschichte der Proben des Brennelements SF98

Für die Abbrandrechnungen wurde die Leistungsgeschichte für jedes Experiment mit einem Faktor so normiert, dass die Abweichung der berechneten zur gemessenen ¹⁴⁸Nd Konzentration als Abbrandindikator minimiert wird.

Die isotopenaufgelöste Zusammensetzung der Proben wurden mithilfe zerstörender Analysemethoden ermittelt. Die gefundenen Konzentrationen werden in /MIC 17/ in Gramm pro Gramm anfänglichem Schwermetall (g/gSMi) für Aktinoide nach einer Abklingzeit von 2008,8 Tage angegeben. Diese Werte wurden in Gramm pro Tonne anfänglichem Schwermetall (g/tSMi) umgerechnet. Die Nukliddichten der Samarium Isotope werden nach der jeweiligen Abklingzeit angegeben, alle anderen Nuklide wurden auf den Zeitpunkt der Reaktorabschaltung korrigiert. Für die Proben aus Brennstab SF98 sind die Werte in Tab. 3.10 gezeigt, für die Proben aus Brennstab SF99 in Tab. 3.11.

Isotop	SF98-01	SF98-02	SF98-03	SF98-04	SF98-05	SF98-06	SF98-07	SF98-08
¹⁰⁶ Ru	1,749E+01	4,985E+01	1,091E+02	1,237E+02	1,326E+02	1,113E+02	1,309E+02	7,522E+01
¹²⁵ Sb	-	-	-	-	-	5,223E+00	-	-
¹³⁴ Cs	3,579E+00	3,214E+01	1,010E+02	1,407E+02	1,553E+02	1,514E+02	1,621E+02	6,979E+01
¹³⁷ Cs	1,634E+02	8,286E+02	1,329E+03	1,577E+03	1,588E+03	1,508E+03	1,559E+03	9,494E+02
¹⁴⁴ Ce	2,782E+01	1,833E+02	2,996E+02	3,538E+02	4,107E+02	3,520E+02	3,786E+02	2,867E+02
¹⁴³ Nd	1,208E+02	7,567E+02	8,234E+02	8,486E+02	9,039E+02	9,199E+02	9,183E+02	7,358E+02
¹⁴⁴ Nd	1,153E+02	8,511E+02	1,275E+03	1,492E+03	1,476E+03	1,284E+03	1,207E+03	7,478E+02
¹⁴⁵ Nd	9,192E+01	5,974E+02	7,648E+02	8,423E+02	8,667E+02	7,950E+02	7,845E+02	5,770E+02
¹⁴⁶ Nd	7,769E+01	5,278E+02	7,629E+02	8,916E+02	9,320E+02	8,427E+02	8,330E+02	5,550E+02
¹⁴⁸ Nd	4,560E+01	2,905E+02	4,058E+02	4,662E+02	4,850E+02	4,407E+02	4,356E+02	2,997E+02
¹⁵⁰ Nd	2,187E+01	1,279E+02	1,867E+02	2,193E+02	2,294E+02	2,098E+02	2,080E+02	1,389E+02
¹⁴⁷ Sm	4,777E+01	2,303E+02	3,091E+02	3,207E+02	3,025E+02	2,891E+02	2,800E+02	2,454E+02
¹⁴⁸ Sm	5,983E+00	5,771E+01	1,531E+02	1,971E+02	2,022E+02	1,855E+02	1,852E+02	1,079E+02
¹⁴⁹ Sm	6,367E-01	2,201E+00	2,553E+00	2,502E+00	3,701E+00	3,374E+00	4,199E+00	4,082E+00
¹⁵⁰ Sm	3,343E+01	1,790E+02	3,309E+02	3,865E+02	3,808E+02	3,536E+02	3,505E+02	2,408E+02
¹⁵¹ Sm	2,554E+00	8,203E+00	9,192E+00	9,738E+00	1,039E+01	1,272E+01	1,310E+01	1,245E+01
¹⁵² Sm	2,230E+01	9,016E+01	1,425E+02	1,555E+02	1,432E+02	1,233E+02	1,222E+02	9,771E+01
¹⁵⁴ Sm	4,561E+00	1,874E+01	3,950E+01	4,828E+01	4,912E+01	4,377E+01	4,472E+01	2,933E+01

Tab. 3.10Nuklidzusammensetzung der Nachbestrahlungsanalyseproben des Brennelements SF98 (zum Zeitpunkt der Reaktorabschaltung,
außer Sm Isotope nach der jeweiligen Abklingzeit)

Isotop	SF98-01	SF98-02	SF98-03	SF98-04	SF98-05	SF98-06	SF98-07	SF98-08
¹⁵⁴ Eu	8,151E-01	6,857E+00	1,818E+01	2,413E+01	2,601E+01	2,931E+01	2,924E+01	1,708E+01
²³⁴ U	4,880E+01	2,677E+02	2,178E+02	1,976E+02	1,903E+02	1,860E+02	1,962E+02	2,354E+02
²³⁵ U	4,128E+03	1,743E+04	8,142E+03	5,966E+03	6,315E+03	9,062E+03	9,357E+03	1,545E+04
²³⁶ U	4,858E+02	3,551E+03	4,994E+03	5,284E+03	5,307E+03	5,140E+03	5,140E+03	4,291E+03
²³⁸ U	9,884E+05	9,460E+05	9,406E+05	9,358E+05	9,328E+05	9,334E+05	9,332E+05	9,431E+05
²³⁷ Np	2,379E+01	1,479E+02	3,346E+02	4,318E+02	3,862E+02	5,157E+02	4,573E+02	2,918E+02
²³⁸ Pu	3,135E+00	2,827E+01	1,167E+02	1,678E+02	1,936E+02	1,692E+02	2,083E+02	9,544E+01
²³⁹ Pu	2,297E+03	3,372E+03	3,694E+03	3,792E+03	4,265E+03	5,305E+03	5,628E+03	5,341E+03
²⁴⁰ Pu	5,474E+02	1,121E+03	2,135E+03	2,458E+03	2,613E+03	2,630E+03	2,668E+03	1,816E+03
²⁴¹ Pu	1,332E+02	4,308E+02	8,949E+02	1,032E+03	1,172E+03	1,292E+03	1,355E+03	9,079E+02
²⁴² Pu	1,688E+01	9,292E+01	4,623E+02	6,622E+02	6,939E+02	5,431E+02	5,439E+02	2,220E+02
²⁴¹ Am	1,028E+01	2,300E+01	3,271E+01	3,417E+01	3,734E+01	4,091E+01	4,388E+01	3,295E+01
^{242m} Am	7,984E-02	2,967E-01	4,999E-01	5,298E-01	6,417E-01	8,623E-01	8,975E-01	7,074E-01
²⁴³ Am	5,839E-01	6,991E+00	6,678E+01	1,138E+02	1,273E+02	1,116E+02	1,087E+02	3,259E+01
²⁴² Cm	5,309E-01	3,581E+00	1,696E+01	2,263E+01	3,460E+01	5,925E+01	2,892E+01	1,153E+01
²⁴³ Cm	-	3,710E-02	3,135E-01	4,247E-01	4,946E-01	5,347E-01	5,932E-01	2,073E-01
²⁴⁴ Cm	3,094E-02	8,003E-01	1,696E+01	3,635E+01	4,999E+01	4,299E+01	4,484E+01	8,687E+00
²⁴⁵ Cm	-	1,646E-02	5,485E-01	1,338E+00	2,322E+00	2,480E+00	2,734E+00	3,928E-01
²⁴⁶ Cm	-	-	7,666E-02	2,311E-01	3,850E-01	2,935E-01	3,007E-01	1,635E-02
²⁴⁷ Cm	-	-	-	-	-	-	-	-

Isotop	SF99-01	SF99-02	SF99-03	SF99-04	SF99-05	SF99-06	SF99-07	SF99-08	SF99-09	SF99-10
¹⁰⁶ Ru	2,66E+04	3,28E+04	8,06E+04	7,83E+04	6,99E+04	6,90E+04	4,99E+04	4,37E+04	5,03E+04	3,86E+04
¹²⁵ Sb	9,66E+02	3,67E+03	4,21E+03	4,59E+03	4,67E+03	5,07E+03	3,84E+03	2,43E+03	1,23E+03	8,97E+02
¹³⁴ Cs	1,04E+04	4,64E+04	9,12E+04	1,13E+05	1,31E+05	1,14E+05	1,19E+05	5,68E+04	3,21E+04	1,09E+04
¹³⁷ Cs	2,86E+05	8,52E+05	1,23E+06	1,35E+06	1,43E+06	1,25E+06	1,27E+06	8,34E+05	6,33E+05	2,77E+05
¹⁴⁴ Ce	-	2,15E+05	-	2,92E+05	3,85E+05	3,17E+05	4,24E+05	2,54E+05	1,66E+05	-
¹⁴³ Nd	1,95E+05	6,14E+05	7,63E+05	7,81E+05	8,40E+05	7,98E+05	8,09E+05	6,14E+05	5,01E+05	1,90E+05
¹⁴⁴ Nd	2,63E+05	6,54E+05	1,32E+06	1,20E+06	1,17E+06	9,32E+05	8,17E+05	5,53E+05	4,41E+05	2,51E+05
¹⁴⁵ Nd	1,58E+05	4,92E+05	6,73E+05	7,20E+05	7,51E+05	6,52E+05	6,51E+05	4,67E+05	3,71E+05	1,52E+05
¹⁴⁶ Nd	1,41E+05	4,48E+05	6,61E+05	7,31E+05	7,77E+05	6,67E+05	6,65E+05	4,40E+05	3,31E+05	1,37E+05
¹⁴⁸ Nd	8,28E+04	2,49E+05	3,57E+05	3,90E+05	4,13E+05	3,58E+05	3,56E+05	2,41E+05	1,84E+05	7,97E+04
¹⁵⁰ Nd	4,18E+04	1,14E+05	1,67E+05	1,84E+05	1,98E+05	1,74E+05	1,72E+05	1,14E+05	8,44E+04	4,04E+04
¹⁴⁷ Sm	7,78E+04	-	2,61E+05	-	2,77E+05	-	2,44E+05	1,97E+05	1,63E+05	-
¹⁴⁸ Sm	1,65E+04	-	1,17E+05	-	1,58E+05	-	1,34E+05	7,55E+04	4,48E+04	-
¹⁴⁹ Sm	8,84E+02	-	2,47E+03	-	2,72E+03	-	3,43E+03	2,96E+03	2,60E+03	-
¹⁵⁰ Sm	6,17E+04	-	2,68E+05	-	3,25E+05	-	2,78E+05	1,83E+05	1,31E+05	-
¹⁵¹ Sm	3,41E+03	-	8,49E+03	-	1,03E+04	-	1,29E+04	1,16E+04	1,00E+04	-
¹⁵² Sm	3,95E+04	-	1,18E+05	-	1,27E+05	-	1,02E+05	7,73E+04	6,17E+04	-
¹⁵⁴ Sm	9,38E+03	-	3,35E+04	-	4,22E+04	-	3,58E+04	2,21E+04	1,54E+04	-
¹⁵⁴ Eu	2,66E+03	1,02E+04	1,79E+04	1,99E+04	2,47E+04	2,55E+04	2,66E+04	1,40E+04	8,22E+03	2,76E+03

Tab. 3.11Nuklidzusammensetzung der Proben des Brennelements SF99 (zum Zeitpunkt der Reaktorabschaltung, außer Sm Isotope nach
der jeweiligen Abklingzeit)

Isotop	SF99-01	SF99-02	SF99-03	SF99-04	SF99-05	SF99-06	SF99-07	SF99-08	SF99-09	SF99-10
²³⁴ U	3,90E+04	2,01E+05	1,78E+05	1,67E+05	1,60E+05	1,65E+05	1,64E+05	1,96E+05	2,18E+05	4,09E+04
²³⁵ U	2,91E+06	1,40E+07	8,66E+06	6,98E+06	7,38E+06	1,05E+07	1,09E+07	1,58E+07	1,91E+07	3,04E+06
²³⁶ U	6,87E+05	3,47E+06	4,25E+06	4,48E+06	4,52E+06	4,30E+06	4,25E+06	3,46E+06	2,83E+06	6,74E+05
²³⁸ U	9,84E+08	9,52E+08	9,45E+08	9,43E+08	9,39E+08	9,41E+08	9,40E+08	9,49E+08	9,54E+08	9,84E+08
²³⁷ Np	5,67E+04	2,18E+05	3,63E+05	3,67E+05	4,62E+05	4,15E+05	4,46E+05	2,76E+05	1,98E+05	5,49E+04
²³⁸ Pu	1,13E+04	3,96E+04	9,70E+04	1,15E+05	1,23E+05	1,37E+05	1,38E+05	6,48E+04	3,43E+04	1,10E+04
²³⁹ Pu	3,01E+06	3,91E+06	3,98E+06	3,87E+06	4,55E+06	5,63E+06	6,04E+06	5,45E+06	4,73E+06	3,01E+06
²⁴⁰ Pu	1,06E+06	1,52E+06	2,13E+06	2,29E+06	2,54E+06	2,45E+06	2,49E+06	1,65E+06	1,18E+06	1,05E+06
²⁴¹ Pu	3,60E+05	6,76E+05	9,45E+05	1,01E+06	1,20E+06	1,26E+06	1,31E+06	8,33E+05	5,37E+05	3,36E+05
²⁴² Pu	8,24E+04	1,90E+05	4,37E+05	5,57E+05	6,07E+05	4,33E+05	4,22E+05	1,72E+05	8,33E+04	7,33E+04
²⁴¹ Am	2,70E+04	2,11E+04	3,95E+04	3,41E+04	4,36E+04	4,56E+04	4,85E+04	3,62E+04	2,89E+04	1,61E+04
^{242m} Am	2,47E+02	4,24E+02	5,44E+02	5,42E+02	6,92E+02	9,31E+02	9,24E+02	6,81E+02	4,08E+02	2,14E+02
²⁴³ Am	5,79E+03	1,90E+04	6,50E+04	9,04E+04	1,13E+05	8,51E+04	8,45E+04	2,57E+04	9,26E+03	5,62E+03
²⁴² Cm	2,85E+03	1,62E+04	2,27E+04	3,48E+04	6,13E+04	3,84E+04	4,07E+04	1,59E+04	5,53E+03	3,58E+03
²⁴³ Cm	3,00E+01	9,31E+01	2,76E+02	3,69E+02	4,75E+02	4,41E+02	4,76E+02	1,63E+02	7,26E+01	3,28E+01
²⁴⁴ Cm	5,89E+02	3,18E+03	1,65E+04	2,69E+04	3,87E+04	3,01E+04	3,00E+04	6,15E+03	1,52E+03	6,83E+02
²⁴⁵ Cm	1,01E+01	8,76E+01	5,70E+02	1,01E+03	1,77E+03	1,74E+03	1,79E+03	2,70E+02	8,19E+01	1,32E+01
²⁴⁶ Cm	9,57E-01	-	6,95E+01	1,50E+02	2,41E+02	1,60E+02	1,56E+02	1,44E+01	1,22E+01	-
²⁴⁷ Cm	3,95E-01	-	1,43E+00	-	2,81E+00	-	3,88E+00	-	1,22E+01	-

3.1.2 Modellierung

Bei der Modellierung wurde darauf geachtet die gegebenen experimentellen Bedingungen möglichst originalgetreu nachzubilden und dabei vorhandene Symmetrien auszunutzen, um die Rechnung zu vereinfachen ohne Details zu verlieren. Zwar wurde das Brennelement komplett modelliert, aber aufgrund der Symmetrie entlang der beiden Diagonalen musste nur für die Hälfte des Brennelements individuelle Brennstäbe modelliert werden. Dies reduziert die Anzahl an individuell zu betrachtenden Brennstäben auf 20. Abb. 3.3 zeigt die Implementierung des Brennelements in SCALE-Geometrie. Bei dem Brennelement 17G wurden die gadoliniumhaltigen Brennstäbe für die Berechnung in 10 Ringzonen mit gleicher Fläche unterteilt, um den aufgrund der Neutronenselbstabschirmung radial variierenden Gadoliniumabbrand genauer berechnen zu können.

Abb. 3.3 Implementierung der Brennelemente in SCALE-Geometrie

Die Brennstäbe wurden wie in den experimentellen Daten angegeben mit einem heliumgefüllten Zwischenraum zwischen Brennstoff und Hüllrohr modelliert (Kernzahldichte = 2.404400E-04). Die geometrischen Abmessungen und Materialdaten wurden wie in Kapitel 3.1.1 beschrieben übernommen. Die Parameter der Abbrandrechnungen sind in Tab. 2.13 wiedergegeben. Die betrachteten Nuklide sind in Tab. 3.12 angegeben.

Betrachtete Nuklide									
²³⁴ U	²³⁵ U	²³⁶ U	²³⁸ U						
²³⁷ Np									
²³⁸ Pu	²³⁹ Pu	²⁴⁰ Pu	²⁴¹ Pu	²⁴² Pu					
²⁴¹ Am	^{242m1} Am	²⁴³ Am							
²⁴² Cm	²⁴³ Cm	²⁴⁴ Cm	²⁴⁵ Cm	²⁴⁶ Cm	²⁴⁷ Cm				
¹⁴³ Nd	¹⁴⁴ Nd	¹⁴⁵ Nd	¹⁴⁶ Nd	¹⁴⁸ Nd	¹⁵⁰ Nd				
¹⁴⁷ Sm	¹⁴⁸ Sm	¹⁴⁹ Sm	¹⁵⁰ Sm	¹⁵¹ Sm	¹⁵² Sm	¹⁵⁴ Sm			
¹⁰⁶ Ru	¹²⁵ Sb								
¹³⁴ Cs	¹³⁷ Cs								
¹⁴⁴ Ce	¹⁵⁴ Eu								

 Tab. 3.12
 Liste der betrachteten Nuklide

3.1.3 Resultate

Die Ergebnisse für die Proben aus Fukushima Daini-2 sind in Tab. 3.13 und Tab. 3.14 sowie in graphischer Form in Abb. 3.4 – Abb. 3.6 gezeigt. Insgesamt zeigt der Vergleich zwischen Rechnung und Experiment eine mit den DWR-Proben vergleichbare Qualität. Es lassen sich keine auffällig größeren Abweichungen feststellen. Im Detail ergibt sich folgendes Bild: Bei den Proben des Stabs SF98 werden die Uran-Nuklide gut getroffen während sich für die Plutonium-Nuklide eine leichte Unterschätzung ergibt. Dies gilt insbesondere auch für ²³⁵U und ²³⁹Pu. Aufgrund der Schwierigkeit einer exakten Bestimmung des Dampfblasengehalts an den Probenpositionen stellt sich die Frage, ob eventuell Trends aufgrund der axialen Änderung des Neutronenspektrums sichtbar werden. Beim Stab SF98 ist eine geringfügig höhere Unterschätzung des ²³⁹Pu Gehalts bei den Proben aus der Mitte des Stabs im Vergleich zu den weiter von den Enden stammenden Proben zu erkennen. Für die höheren Aktinoiden zeigt sich eine Unterschätzung, die sich im von der Nachrechnung von DWR-Proben bekannten Rahmen bewegt. Auffällig ist lediglich die große Unterschätzung von ²⁴²Cm. Die Spaltprodukte zeigen eine gute Übereinstimmung zwischen Rechnung und Experiment, mit Ausnahme der Samarium-Nuklide, die im Vergleich zu anderen Proben stärker unterschätzt werden.

Bei den Proben des Stabs SF99 zeigt sich ein etwas anderes Bild. Hier wird ²³⁵U durch die Rechnung leicht überschätzt, während ²³⁹Pu gut getroffen wird. Es ist ein leichter Trend der C/E-1-Werte über die axiale Probenposition zu erkennen. Die übrigen Uranund Plutonium-Nuklide zeigen eine gute Übereinstimmung. Bei den höheren Aktinoiden ist eine Unterschätzung im normalen Rahmen zu sehen, mit Ausnahme von ²⁴²Cm und ²⁴⁷Cm die stark unterschätzt werden. Hinsichtlich der Spaltprodukte ist eine deutliche Unterschätzung für die Cäsium-Nuklide auszumachen, während die Samarium-Nuklide überdurchschnittlich gut übereinstimmen. ¹⁴⁴Ce und ¹⁴⁴Nd weisen eine große Streuung der C/E-1-Werte auf.

Die Darstellung der über die Stäbe gemittelten Ergebnisse (Abb. 3.6 und Abb. 3.7) bestätigt im Wesentlichen die an den Einzelproben gemachten Beobachtungen. Auffällig ist vor allem die relativ große Streuung bei den höheren Aktinoiden.

	SF98-03	SF98-04	SF98-05	SF98-06	SF98-07	SF98-08
²³⁴ U	0,5	0,1	-0,6	6,4	-0,2	1,4
²³⁵ U	4,1	4,5	-1,3	-4,1	1,4	1,9
²³⁶ U	1,5	1,6	2,1	1,8	1,5	0,5
²³⁸ U	0,0	0,1	0,1	0,2	0,1	0,0
²³⁷ Np	6,1	0,1	26,1	-7,2	8,9	8,1
²³⁸ Pu	0,9	1,1	7,3	15,1	1,2	-6,1
²³⁹ Pu	-3,7	-4,0	-5,1	-10,6	-5,5	-4,5
²⁴⁰ Pu	-5,3	-7,0	-6,1	-8,6	-6,9	-5,7
²⁴¹ Pu	-2,0	-1,6	-2,2	-5,8	-3,8	-4,0
²⁴² Pu	-5,4	-4,9	-0,8	1,7	-2,8	-4,7
²⁴¹ Am	-14,2	-15,6	-12,4	-3,3	0,4	6,7
^{242m1} Am	-29,4	-29,8	-30,9	-32,4	-23,6	-24,6
²⁴³ Am	-12,1	-9,4	-0,3	-9,0	-3,7	-6,1
²⁴² Cm	-27,4	-27,5	-45,9	-70,3	-37,0	-26,6
²⁴³ Cm	-16,4	-1,0	7,0	-8,8	-10,3	-18,2
²⁴⁴ Cm	-13,5	-10,2	-7,5	-15,3	-11,1	-14,8
²⁴⁵ Cm	-8,2	-1,9	-4,4	-21,8	-10,1	-16,8
²⁴⁶ Cm	-29,9	-23,8	-23,3	-33,7	-25,7	1,8
¹⁰⁶ Ru	16,6	31,3	33,0	39,7	18,7	16,2
¹²⁵ Sb	-	-	-	76,9	-	-
¹³⁴ Cs	-0,5	-2,9	-0,2	-11,0	-15,3	-3,9
¹³⁷ Cs	-1,2	-4,4	-1,3	-5,3	-9,6	2,3
¹⁴⁴ Ce	8,9	2,4	-9,7	-3,1	-11,5	-15,0
¹⁴³ Nd	0,2	1,2	-1,2	-2,0	-0,4	0,0
¹⁴⁴ Nd	-3,6	-1,4	2,2	0,5	3,0	5,6
¹⁴⁵ Nd	1,1	1,8	1,2	1,9	1,4	1,6
¹⁴⁶ Nd	-0,5	-0,8	-0,7	-0,9	-0,8	-0,3
¹⁴⁸ Nd	0,2	0,3	0,2	0,3	0,2	0,3
¹⁵⁰ Nd	-0,4	-0,8	-0,3	-0,7	-0,5	-0,6
¹⁴⁷ Sm	-10,1	-10,4	-4,3	-3,7	-4,2	-8,1
¹⁴⁸ Sm	-18,5	-18,1	-11,9	-13,7	-12,3	-17,3
¹⁴⁹ Sm	-2,3	8,2	-20,8	-7,8	-20,4	-26,9
¹⁵⁰ Sm	-10,1	-10,1	-3,7	-4,9	-4,6	-8,5
¹⁵¹ Sm	-12,4	-12,0	-8,3	-16,2	-9,7	-12,8
¹⁵² Sm	-9,3	-10,0	-2,9	-0,1	-3,8	-8,0
¹⁵⁴ Sm	-12,4	-11,4	-5,9	-5,1	-6,9	-14,9
¹⁵⁴ Eu	2,2	-1,7	4,5	-7,8	-0,5	-6,1

Tab. 3.13Vergleich zwischen gemessenen und berechneten Werten als C/E-1 in %

	SF99 -02	SF99 -03	SF99 -04	SF99 -05	SF99 -06	SF99 -07	SF99 -08	SF99 -09	SF99 -10
²³⁴ U	8,9	5,3	6,8	5,8	8,6	7,7	7,7	4,9	15,8
²³⁵ U	7,3	8,9	17,3	6,2	5,9	6,9	3,8	3,4	4,2
²³⁶ U	1,5	2,8	1,7	3,2	1,5	2,3	1,2	3,3	-1,3
²³⁸ U	-0,1	0,0	-0,1	0,0	0,0	0,0	0,0	-0,1	0,0
²³⁷ Np	-2,5	-10,3	0,1	-10,6	-4,3	-7,3	-6,0	-5,1	5,2
²³⁸ Pu	27,1	12,9	18,2	35,6	9,7	18,1	7,1	13,5	10,8
²³⁹ Pu	-2,9	-4,0	0,7	-7,0	-8,0	-4,8	-2,5	3,6	8,7
²⁴⁰ Pu	0,8	-2,1	-2,1	-5,7	-4,4	-3,6	-3,8	0,0	-1,9
²⁴¹ Pu	0,4	2,1	4,0	-1,1	-2,1	0,2	-0,2	7,5	6,9
²⁴² Pu	1,7	3,9	-0,4	4,1	5,7	4,4	0,0	5,9	-2,7
²⁴¹ Am	10,8	-28,7	-14,6	-24,9	-12,3	-9,6	-9,4	-16,3	5,8
^{242m1} Am	-30,5	-32,5	-28,8	-34,5	-34,6	-23,9	-25,9	-14,0	-8,2
²⁴³ Am	-2,4	-2,1	-4,8	-2,8	-7,6	-4,5	-10,5	-1,1	-6,5
²⁴² Cm	-60,8	-42,4	-55,7	-70,6	-58,6	-59,7	-54,9	-29,9	-31,7
²⁴³ Cm	3,8	5,0	2,8	3,8	-4,5	-4,6	-16,5	-21,7	-18,7
²⁴⁴ Cm	-4,9	-0,5	-6,3	-3,9	-15,5	-7,6	-16,6	0,7	-8,9
²⁴⁵ Cm	-5,3	6,1	-0,2	-0,4	-21,9	-9,5	-18,4	-37,2	0,3
²⁴⁶ Cm	-	-12,4	-23,1	-15,5	-31,8	-22,9	-33,7	-86,8	-
¹⁰⁶ Ru	-	-68,1	-	-27,3	-	-65,5	-	-99,9	-
¹²⁵ Sb	154,9	72,8	102,8	150,4	112,4	193,7	82,4	8,6	-9,3
¹³⁴ Cs	45,0	89,8	92,9	105,3	65,9	120,4	116,6	214,2	135,4
¹³⁷ Cs	-9,4	-5,1	-7,0	-7,4	-13,7	-16,6	-15,2	-10,4	-13,8
¹⁴⁴ Ce	-4,5	-5,4	-5,6	-5,7	-6,9	-9,1	-6,3	-6,0	-6,2
¹⁴³ Nd	22,1	-	27,9	-0,2	4,7	-23,6	-14,0	3,7	-
¹⁴⁴ Nd	-0,9	-1,2	0,7	-2,2	-1,3	-2,0	-1,3	-2,4	-0,5
¹⁴⁵ Nd	-10,2	-28,8	-12,4	-4,2	-4,3	6,3	3,5	-5,1	-26,1
¹⁴⁶ Nd	0,8	0,5	0,7	0,4	1,6	0,1	0,8	-0,4	0,1
¹⁴⁸ Nd	-0,4	-1,1	-1,7	-1,5	-1,6	-1,9	-0,8	-0,6	-0,6
¹⁵⁰ Nd	0,3	0,3	0,2	0,3	0,1	-0,4	0,1	0,0	0,3
¹⁴⁷ Sm	0,5	0,7	0,7	0,6	-0,5	-0,2	-0,4	0,7	0,5
¹⁴⁸ Sm	-	-0,8	-	-2,1	-	-0,8	-2,2	-2,0	-
¹⁴⁹ Sm	-	-11,8	-	-13,6	-	-11,7	-13,3	-6,2	-
¹⁵⁰ Sm	-	12,7	-	14,7	-	3,3	1,4	7,2	-
¹⁵¹ Sm	-	-0,4	-	-2,8	-	-2,1	-3,6	-0,4	-
¹⁵² Sm	-	-2,5	-	-7,7	-	-7,2	-7,3	0,6	-
¹⁵⁴ Sm	-	0,8	-	-0,5	-	1,7	-0,8	-0,9	-
¹⁵⁴ Eu	-	-1,2	-	-2,0	-	-1,0	-5,0	-2,7	-
²³⁴ U	5,5	3,5	7,1	0,7	-5,7	-2,6	-4,4	1,9	4,4

Tab. 3.14Vergleich zwischen gemessenen und berechneten Werten als C/E-1 in %

Abb. 3.4 Fukushima Daini-2, SF98: Vergleich zwischen Rechnung und experimentellen Daten dargestellt als C/E-1 in Prozent

Abb. 3.5 Fukushima Daini-2, SF99: Vergleich zwischen Rechnung und experimentellen Daten dargestellt als C/E-1 in Prozent

Abb. 3.6 Darstellung der Mittelwerte und Standardabweichungen für die Mittelung über die Proben des Brennelements SF98

Abb. 3.7 Darstellung der Mittelwerte und Standardabweichungen für die Mittelung über die Proben des Brennelements SF99

4 Zusammenfassung der Nachrechnungen

Um die Ergebnisse der in den vorhergehenden Kapiteln dokumentierten Validierungsrechnungen an Nachbestrahlungsanalyseproben verschiedener Reaktoren zusammenfassend zu quantifizieren, werden im Folgenden nuklidweise gemittelte Ergebnisse dargestellt und anhand vergleichbarer Analysen eingeordnet. Die Analyse erfolgt getrennt für DWR-Proben und SWR-Proben. Es ist außerdem anzumerken, dass es sich hierbei um eine von einer speziellen Problemstellung unabhängige und insofern generische Validierung handelt. Validierungsrechnungen für problemspezifische Analysen erfordern eventuell eine Auswahl passender experimenteller Daten und zusätzliche Auswertungs- und Bewertungsschritte. Ein Beispiel hierfür ist die Validierung eines Abbrandprogramms für die Inventarbestimmung bei der Anwendung von Abbrandkredit bei Analysen zur Kritikalitätssicherheit. Eine solche Validierung ist beispielhaft für das Programm KENOREST in /BEH 14/ durchgeführt worden. Die vorliegende Datenbasis von Probennachrechnungen kann direkt für eine Validierung anhand des dort beschriebenen Verfahrens eingesetzt werden.

4.1 DWR

Im Folgenden werden die Ergebnisse aus der Gesamtheit der hier gesammelten Nachrechnungen von Nachbestrahlungsanalyseproben aus DWR-Anlagen analysiert. In Tab. 4.1 sind für alle Nuklide für die Messdaten zur Verfügung stehen der Mittelwert der C/E-1-Werte über alle in Kapitel 0 beschriebenen DWR-Proben dargestellt. Ebenso enthält die Tabelle die zugehörigen Standardabweichungen und für jedes Nuklid die Anzahl der Proben, für die ein Messwert vorhanden ist. In Abb. 4.1 sind diese Daten in graphischer Form dargestellt. Mit Ausnahme der aufgrund der geringen Konzentrationen schwer zu messenden Nuklide²³²U.²³⁶Pu und²⁴⁴Pu liegen die Mittelwerte der Uran- und Plutonium-Nuklide in einem Bereich ± 6 %, und weisen relativ geringe Varianzen auf. Die übrigen Aktinoiden weisen größtenteils niedrige zweistellige, teilweise auch einstellige Abweichungen auf. Allerdings sind die Standardabweichungen deutlich größer als bei Uran und Plutonium, d. h. die Streuung der individuellen Datenpunkte ist wesentlich größer. Bei den Spaltprodukten fallen vor allem die Neodym-, Caesium und einige der Samarium-Nuklide durch gute Übereinstimmung zwischen Experiment und Rechnung auf größere Abweichungen gibt es vor allem bei den Europium- und Gadolinium-Nukliden, wobei hier große Varianzen auf hohe Ungenauigkeiten bei den einzelnen Messungen hindeuten.

Nuklid	# Proben	C/E - 1 Mittel- wert	σ (C/E – 1)	Nuklid	# Proben	C/E - 1 Mittel- wert	σ (C/E – 1)
²³² U	6	-37,2	50,0	¹²⁵ Sb	23	86,5	44,1
²³⁴ U	59	6,0	10,9	129	6	10,9	60,3
²³⁵ U	59	0,2	5,0	¹³³ Cs	14	2,9	2,1
²³⁶ U	59	-0,5	3,3	¹³⁴ Cs	41	-7,8	7,9
²³⁸ U	48	-0,2	0,5	¹³⁵ Cs	20	0,5	3,0
²³⁷ Np	53	-1,4	17,2	¹³⁷ Cs	59	-2,1	4,9
²³⁶ Pu	6	45,3	11,6	¹⁴⁰ Ce	5	3,0	1,1
²³⁸ Pu	59	-4,2	12,2	¹⁴² Ce	5	5,7	0,9
²³⁹ Pu	59	-2,5	4,3	¹⁴⁴ Ce	24	2,7	8,0
²⁴⁰ Pu	59	-0,2	6,0	¹⁴² Nd	22	-4,8	11,5
²⁴¹ Pu	59	-5,7	4,9	¹⁴³ Nd	54	0,4	3,5
²⁴² Pu	59	-3,2	7,6	¹⁴⁴ Nd	35	-2,4	2,4
²⁴⁴ Pu	3	-42,3	11,5	¹⁴⁵ Nd	54	1,0	2,4
²⁴¹ Am	59	-1,7	19,0	¹⁴⁶ Nd	43	-0,9	0,7
^{242m1} Am	38	-24,9	13,8	¹⁴⁸ Nd	54	0,0	0,1
²⁴³ Am	50	-8,0	12,1	¹⁵⁰ Nd	42	-0,2	1,5
²⁴² Cm	32	-10,7	16,7	¹⁴⁷ Pm	5	17,9	23,9
²⁴³ Cm	28	-0,6	48,3	¹⁴⁷ Sm	39	5,6	9,4
²⁴⁴ Cm	39	-10,7	11,4	¹⁴⁸ Sm	20	-5,7	2,8
²⁴⁵ Cm	30	-9,2	17,5	¹⁴⁹ Sm	35	-3,3	6,5
²⁴⁶ Cm	20	-17,4	16,5	¹⁵⁰ Sm	39	3,1	5,5
²⁴⁷ Cm	10	-29,7	7,3	¹⁵¹ Sm	39	-9,0	6,2
⁷⁹ Se	9	14,1	13,1	¹⁵² Sm	39	3,7	4,1
⁹⁰ Sr	14	-9,0	6,3	¹⁵⁴ Sm	20	2,0	6,0
⁹⁵ Mo	22	-3,5	8,9	¹⁵¹ Eu	28	-29,0	20,5
⁹⁹ Tc	31	5,6	16,5	¹⁵³ Eu	34	-2,3	3,8
¹⁰¹ Ru	17	4,4	11,8	¹⁵⁴ Eu	35	8,3	7,3
¹⁰⁶ Ru	25	11,3	23,1	¹⁵⁵ Eu	26	-17,0	19,7
¹⁰³ Rh	22	8,5	15,9	¹⁵⁴ Gd	9	10,0	15,9
¹⁰⁵ Pd	1	50,1	0,0	¹⁵⁵ Gd	33	-14,9	15,4
¹⁰⁸ Pd	1	55,5	0,0	¹⁵⁶ Gd	9	9,8	27,6
¹⁰⁹ Ag	20	64,5	57,5	¹⁵⁷ Gd	5	-22,3	10,1
^{110m1} Ag	5	70,7	38,1	¹⁵⁸ Gd	9	17,4	17,3
¹²⁶ Sn	9	46,9	13,2	¹⁶⁰ Gd	7	-5,6	17,7

Tab. 4.1Mittelwert und Standardabweichung für C/E-1 für alle DWR-Proben

Abb. 4.1 Mittelwert und Standardabweichung für C/E-1 für alle DWR-Proben

C/E-1 mean and std for all calculated data

Nuklid	# Proben	C/E - 1 Mittelwert MOTIVE	C/E - 1 Mittelwert KENOREST	Nuklid	# Proben	C/E - 1 Mittelwert MOTIVE	C/E - 1 Mittelwert KENOREST
²³² U	6	-37,2	-43,4	¹³³ Cs	4	1,1	0,2
²³⁴ U	41	5,2	2,4	¹³⁴ Cs	24	-5,6	2,3
²³⁵ U	41	-0,4	0,9	¹³⁵ Cs	10	0,7	2,9
²³⁶ U	41	0,3	-3,6	¹³⁷ Cs	41	-2,2	-1,5
²³⁸ U	30	-0,2	0,3	¹⁴⁴ Ce	21	2,2	4,0
²³⁷ Np	35	3,8	11,7	¹⁴² Nd	12	-11,5	-10,8
²³⁶ Pu	6	45,3	38,7	¹⁴³ Nd	36	0,3	2,9
²³⁸ Pu	41	-3,5	-3,2	¹⁴⁴ Nd	25	-2,4	-2,2
²³⁹ Pu	41	-2,0	1,0	¹⁴⁵ Nd	36	1,5	1,8
²⁴⁰ Pu	41	1,2	2,8	¹⁴⁶ Nd	25	-0,6	0,5
²⁴¹ Pu	41	-5,3	-2,5	¹⁴⁸ Nd	36	0,1	0,9
²⁴² Pu	41	-1,7	-2,4	¹⁵⁰ Nd	24	-0,4	-0,1
²⁴⁴ Pu	1	-27,1	-41,4	¹⁴⁷ Pm	1	45,7	30,8
²⁴¹ Am	41	-3,2	4,8	¹⁴⁷ Sm	21	10,8	4,2
^{242m1} Am	26	-24,4	-13,1	¹⁴⁸ Sm	10	-5,5	-6,4
²⁴³ Am	32	-5,5	-5,8	¹⁴⁹ Sm	17	-5,8	0,5
²⁴² Cm	21	-5,3	-13,6	¹⁵⁰ Sm	21	5,4	6,6
²⁴³ Cm	17	7,6	-7,2	¹⁵¹ Sm	21	-9,3	8,9
²⁴⁴ Cm	21	-5,3	-21,9	¹⁵² Sm	21	5,2	30,7
²⁴⁵ Cm	17	0,0	-28,3	¹⁵⁴ Sm	10	-0,7	-2,3
²⁴⁶ Cm	17	-17,5	-38,3	¹⁵¹ Eu	12	-48,1	-24,6
²⁴⁷ Cm	10	-29,7	-45,4	¹⁵³ Eu	16	-2,1	9,4
⁷⁹ Se	9	14,1	18,0	¹⁵⁴ Eu	25	9,2	-6,1
⁹⁰ Sr	10	-10,0	-0,9	¹⁵⁵ Eu	16	-26,1	-23,0
⁹⁵ Mo	12	2,1	2,8	¹⁵⁴ Gd	3	21,0	4,2
⁹⁹ Tc	21	7,9	9,5	¹⁵⁵ Gd	15	-22,9	-1,5
¹⁰¹ Ru	12	2,5	4,5	¹⁵⁶ Gd	3	31,7	28,0
¹⁰⁶ Ru	21	13,6	15,3	¹⁵⁸ Gd	3	17,8	24,4
¹⁰³ Rh	12	10,1	12,7	¹⁶⁰ Gd	1	-48,2	-48,7
¹²⁶ Sn	9	46,9	33,8				

 Tab. 4.2
 Vergleich C/E-1 f
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F

Abb. 4.2 Vergleich C/E-1 für MOTIVE und KENOREST

4.1.1 Vergleich mit KENOREST

Bei der Bewertung der Ergebnisse ist vor allem auch ein Vergleich mit anderen Abbrandprogrammen von Bedeutung, insbesondere mit den Ergebnissen entsprechender Rechnungen für das Vorgängerprogramm KENOREST. Um einen entsprechenden Vergleich zu ermöglichen, wurde aus den im hier vorliegenden Bericht berücksichtigten Proben eine Untermenge ausgewählt, für die auch Nachrechnungsergebnisse mit dem Programm KENOREST existieren. Dies gewährleistet eine Vergleichbarkeit der Mittelwerte. Die entsprechenden Ergebnisse sind in Tab. 4.2 und Abb. 4.2 dargestellt. Es zeigt sich, dass für MOTIVE insbesondere bei den Aktinoiden eine Verbesserung in der Nachrechnung gegenüber KENOREST erzielt werden konnte. Dies gilt für die wichtigen Uran- und Plutonium-Nuklide und insbesondere auch für die Curium-Nuklide. Die erzielten Verbesserungen können grundsätzlich von Änderungen in den Berechnungsmethoden oder von Änderungen in den zugrundeliegenden nuklearen Daten herrühren. Da eine Trennung der einzelnen Effekte nicht ohne weiteres möglich ist, ist eine eindeutige Zuordnung schwierig. Ein wesentlicher Beitrag wird jedoch von der Verwendung neuerer Wirkungsquerschnittsdaten herrühren.

Bei den Spaltprodukten ergibt sich ein gemischtes Bild. Manche Spaltprodukte werden von MOTIVE besser berechnet, andere wiederum von KENOREST. Größere Unterschiede zwischen MOTIVE und KENOREST ergeben sich insbesondere bei ¹⁵⁴Eu, ¹⁵⁴Gd und ¹⁵⁵Gd. Hierbei ist allerdings die große Streubreite der Ergebnisse zu beachten die auf größere experimentelle Unsicherheiten hindeutet.

Der Vergleich der Ergebnisse von MOTIVE für die beiden unterschiedlichen hier betrachteten Probensätze macht außerdem deutlich, dass zumindest bei einigen Nukliden der erzielte Mittelwert nicht unwesentlich von der Auswahl der Proben abhängt. Das ist darauf zurückzuführen, dass einige Probenserien für bestimmte Nuklide ein deutliches Bias aufweisen, der dann auf den Mittelwert für den gesamten Probensatz durchschlägt.

4.1.2 Vergleich mit SCALE

Zur Validierung der in Code-Paket SCALE 6.1 /OAK 11/ enthaltenen Inventarberechnungsmethoden und der mitgelieferten ENDF/B-VII Wirkungsquerschnittsbibliothek wurde in /ILA 12/ ein zum vorliegenden Bericht vergleichbarer Datensatz an Nachrechnungen von Nachbestrahlungsanalyseproben publiziert. Die Rechnungen wurden dabei mit TRITON/NEWT und der 238-Gruppen-Biliothek durchgeführt. Zur Einordnung der hier vorgestellten Ergebnisse wird im Folgenden ein Vergleich der Nachrechnungsergebnisse vorgenommen.

Nuklid	# Proben	C/E - 1 Mittelwert	σ (C/E – 1)	Nuklid	# Proben	C/E - 1 Mittelwert	σ (C/E – 1)
²³⁴ U	55	0,176	12,4	¹⁰⁹ Ag	6	0,746	77,3
²³⁵ U	92	0,035	1,2	¹²⁵ Sb	18	0,466	99,6
²³⁶ U	77	0,035	-1,9	¹³³ Cs	10	0,017	1,9
²³⁸ U	92	0,004	-0,1	¹³⁴ Cs	59	0,071	-7
²³⁸ Pu	77	0,059	-11,7	¹³⁵ Cs	16	0,037	2,7
²³⁹ Pu	92	0,035	4,1	¹³⁷ Cs	73	0,031	-0,7
²⁴⁰ Pu	92	0,034	2,2	¹⁴³ Nd	36	0,032	0,8
²⁴¹ Pu	92	0,045	-1,4	¹⁴⁵ Nd	36	0,022	-0,5
²⁴² Pu	91	0,061	-5,9	¹⁴⁸ Nd	77	0,014	0,6
²³⁷ Np	36	0,195	3,9	¹⁴⁴ Ce	32	0,081	-2,1
²⁴¹ Am	39	0,207	10,2	¹⁴⁷ Sm	24	0,034	1,6
²⁴³ Am	38	0,14	2,9	¹⁴⁹ Sm	20	0,062	1,9
²⁴⁴ Cm	57	0,111	-4,4	¹⁵⁰ Sm	24	0,032	0,8
²⁴⁵ Cm	24	0,156	-1,5	¹⁵¹ Sm	24	0,044	-2,1
²⁴⁶ Cm	14	0,255	-4,4	¹⁵² Sm	24	0,037	1,6
⁹⁰ Sr	15	0,069	-0,9	¹⁵¹ Eu	12	0,198	-10,7
⁹⁹ Tc	20	0,154	15,2	¹⁵³ Eu	19	0,031	-0,9
¹⁰¹ Ru	7	0,123	5,8	¹⁵⁴ Eu	44	0,104	4,2
¹⁰⁶ Ru	31	0,227	7,9	¹⁵⁵ Eu	11	0,077	-4,4
¹⁰³ Rh	8	0,109	9,1	¹⁵⁵ Gd	19	0,144	-8,4

 Tab. 4.3
 Tabelle der mit SCALE6.1 und ENDF/B-VII erzielten Nachrechnungsergebnisse. Aus /ILA 12/

Abb. 4.3 Vergleich der gemittelten C/E-1 Werte für MOTIVE und SCALE6.1

Abb. 4.4 Abbrandabhängige Darstellung der Nachrechnungsergebnisse: Aktinoiden

Abb. 4.5 Abbrandabhängige Darstellung der Nachrechnungsergebnisse: Spaltprodukte

Die mit SCALE 6.1 erzielten Ergebnisse sind in Tab. 4.3 dargestellt. Der Datensatz umfasst insgesamt 92 Proben und ist somit etwas größer als der hier vorgestellte Probensatz. Von den im vorliegenden Bericht analysierten Proben wurden in /ILA 12/ die Proben aus den Reaktoren TMI-1, Takahama-3, Calvert Cliffs, Gösgen und GKN-II untersucht. Zusätzlich wurden Proben aus den Reaktoren Trino Vercellese, Obrigheim, Turkey Point-3, und H. B. Robinson-2 berücksichtigt. Bei einer der Proben aus Gösgen handelt es sich um eine Probe aus dem proprietären MALIBU Programm, das der GRS nicht zur Verfügung steht. Der Vergleich zwischen den nuklidweisen Mittelwerten der C/E-1-Werte von MOTIVE und SCALE 6.1 unter Berücksichtigung der Standardabweichungen ist in Abb. 4.3 gezeigt. Aufgrund der unterschiedlichen zugrundeliegenden Datensätze hat der Vergleich eine geringfügig eingeschränkte Aussagekraft. Unterschiede bei einzelnen Nukliden sollten nicht überbewertet werden. Insgesamt sind die Nachrechnungsergebnisse für beide Programme von vergleichbarer Qualität. Die Nachrechnung der Isotope von Uran, Plutonium und Neptunium scheint bei MOTIVE geringfügig besser zu sein, während bei Americium und Curium SCALE etwas bessere Ergebnisse erzielt. Bei den Spaltprodukten ergibt sich kein eindeutiger Vorteil für eines der beiden Verfahren. Auffällig sind allerdings die geringeren Abweichungen der SCALE-Ergebnisse bei Europium und Gadolinium. Aufgrund der großen Streubreite der Ergebnisse für diese Nuklide kann hier aber auch der Einfluss der Probenauswahl eine deutliche Rolle spielen, d.h. bei den nachgerechneten Proben hat sich möglicherweise zufällig eine bessere Übereinstimmung ergeben.

In Abb. 4.4 und Abb. 4.5 ist eine Auftragung der Nachrechnungsergebnisse über dem Abbrand für einzelne Nuklide beispielhaft gezeigt. Diese Darstellung ermöglicht einerseits das Auffinden von systematischen Bias und Trends in der Nachrechnung und kann außerdem dazu dienen einzelne Probenserien zu identifizieren die eventuell mit einem systematischen Fehler behaftet ist.

Für ²³⁵U und ²³⁹Pu ist jeweils eine Streuung der Ergebnisse um die "Nulllinie" herum zu erkennen. Auffällig ist die große Streuung der Werte der von ANL gemessenen Proben des Brennelements NJ05YU aus TMI-1. Bei ²⁴⁵Cm zeigt sich ein negatives Bias der vor allem von den NJ07OG-Proben aus TMI-1 herrührt. Bei den Spaltprodukten ist für ¹³⁷Cs wiederum die Streuung der Werte um Null herum ohne erkennbare systematische Effekte zu sehen. ⁹⁹Tc hat ein deutliches positives Bias, ohne dass ein Trend über den Abbrand zu erkennen ist. Auffällig ist die große Abweichung der drei Werte des Brennelements BT03 von Calvert Cliffs. Das Diagramm für ¹⁵⁵Eu lässt vor allem erkennen, dass die ANL-Proben des Brennelements NJ05YU aus TMI-1 deutlich von den

anderen Werten abweichen. Hier zeigt sich besonders deutlich der Effekt, dass das Weglassen einzelner experimenteller Serien zu deutlich anderen Ergebnissen führen kann.

4.2 SWR

Da alle bisher nachgerechneten SWR-Proben aus einem Brennelement stammen und deren Analyse von einem Labor durchgeführt wurde, ist die Aussagekraft der Nachrechnungen hier noch begrenzt. Systematisch bedingte Trends sind nicht auszuschließen und insbesondere so nicht quantifizierbar. Die Ergebnisse umfassen einen Satz von 15 Proben. Die Mittelwerte und Standardabweichungen der Ergebnisse sind in Tab. 4.4 und Abb. 4.6 dargestellt. Aus der Darstellung lässt sich entnehmen, dass die Qualität der Ergebnisse vergleichbar mit der der DWR-Proben ist. Mit Ausnahme von ²³⁸Pu werden die Isotope von Uran und Plutonium alle im Bereich von ± 5 % getroffen. Für Neodym, Cäsium, Cer, Samarium und Europium liegen die Ergebnisse größtenteils in einer ähnlichen Größenordnung. Die höheren Aktinoiden werden systematisch unterschätzt.

Nuklid	#	C/E - 1	σ
NUKIU	Proben	Mittelwert	C/E – 1
²³⁴ U	15	5,3	4,3
²³⁵ U	15	4,7	4,7
²³⁶ U	15	1,7	1,1
²³⁸ U	6	0,1	0,1
²³⁷ Np	15	0,1	9,3
²³⁸ Pu	15	11,5	10,4
²³⁹ Pu	15	-3,3	4,5
²⁴⁰ Pu	15	-4,2	2,6
²⁴¹ Pu	15	-0,1	3,7
²⁴² Pu	15	0,4	3,8
²⁴¹ Am	15	-9,2	10,9
^{242m1} Am	15	-26,9	7,1
²⁴³ Am	15	-5,5	3,5
²⁴² Cm	15	-46,6	15,4
²⁴³ Cm	15	-6,6	9,6
²⁴⁴ Cm	15	-9,1	5,3
²⁴⁵ Cm	15	-10,0	11,0
²⁴⁶ Cm	13	-27,7	19,5
²⁴⁷ Cm	4	-65,2	25,7
¹³⁴ Cs	15	-8,8	5,3
¹³⁷ Cs	15	-5,0	2,9
¹⁴⁴ Ce	13	-0,6	14,2
¹⁴³ Nd	15	-0,9	1,0
¹⁴⁴ Nd	15	-5,0	10,2
¹⁴⁵ Nd	15	0,9	0,7
¹⁴⁶ Nd	15	-0,9	0,5
¹⁴⁸ Nd	15	0,2	0,2
¹⁵⁰ Nd	15	-0,1	0,6
¹⁴⁷ Sm	11	-4,4	3,4
¹⁴⁸ Sm	11	-13,5	3,4
¹⁴⁹ Sm	11	-2,8	13,7
¹⁵⁰ Sm	11	-4,7	3,3
¹⁵¹ Sm	11	-8,7	4,5
¹⁵² Sm	11	-3,1	4,0
¹⁵⁴ Sm	11	-6,2	4,5
¹⁵⁴ Eu	15	0,1	4,5

Tab. 4.4Mittelwert und Standardabweichung für C/E-1 für alle SWR-Proben

Abb. 4.6 Mittelwert und Standardabweichung für C/E-1 für alle SWR-Proben

Abb. 4.7Vergleich der Nachrechnungsergebnisse für die SWR-Proben zwischen
MOTIVE und KENOREST
Beim Vergleich der Nachrechnungsergebnisse zeigen sich deutliche Verbesserungen der MOTIVE Ergebnisse gegenüber den KENOREST Ergebnissen, insbesondere bei Uran und Plutonium und den höheren Aktinoiden. Wie schon für die DWR-Nachrechnungen diskutiert ist eine eindeutige Zuordnung dieser Verbesserungen zu einzelnen Effekten schwierig. Allerding kann davon ausgegangen werden, dass ein wesentlicher Beitrag hierzu von Verbesserungen in den Wirkungsquerschnittsdaten herrührt. Bei den Spaltprodukten ist das Ergebnis weniger eindeutig. Allerdings zeigen sich auch hier Verbesserungen bei wichtigen Nukliden wie ¹³⁷Cs und ¹⁴⁹Sm.

5 Zusammenfassung und Ausblick

Der vorliegende Bericht fasst den aktuellen Stand der Validierungsrechnungen für das in der GRS entwickelte Abbrand- und Inventarberechnungsprogramm MOTIVE zusammen. Die hier dargestellten Ergebnisse wurden mit der Version v0.6.1 und ENDF/B-VII.1 Wirkungsquerschnittsdaten unter Verwendung von KENO-VI aus SCALE 6.2.2 erstellt. Mit den im vorhergehenden Kapitel gezeigten Vergleichen konnte gezeigt werden, dass die mit MOTIVE erzielte Ergebnisqualität vergleichbar mit denjenigen etablierter Programmsysteme ist. MOTIVE ersetzt künftig das bei der GRS in der Vergangenheit entwickelte Programmsystem KENOREST. Im Vergleich zu diesem konnte mit MOTIVE, insbesondere bei den Aktinoiden, eine Verbesserung bei der Probennachrechnung erzielt werden.

Der Aufbau der Validierungsdatenbasis für MOTIVE ist ein kontinuierlicher Prozess, der mit dem hier vorgelegten Bericht noch nicht abgeschlossen ist. Die Datenbank SFCOMPO2.0 stellt noch einige weitere Nachbestrahlungsanalyseproben bereit, die bisher noch nicht mit MOTIVE nachgerechnet wurden. Insbesondere bei den SWR-Proben kann der bisher erreichte Umfang des Validierungsdatensatzes als noch nicht ausreichend angesehen werden. Es ist daher geplant, die hier vorgestellten Arbeiten weiterzuführen, um die Validierungsdatenbasis zu vervollständigen.

Neben der korrekten Berechnung des Nuklidinventars sind auch daraus abgeleitete Ergebnisgrößen von großem Interesse bei der Abbrandberechnung. Daher sind solche abgeleiteten Größen soweit möglich ebenfalls einer Validierung zu unterziehen. Der nächste geplante Schritt in dieser Richtung ist die Validierung der Berechnung der Nachzerfallsleistung mit MOTIVE.

Literaturverzeichnis

- /BEC 02/ Bechtel SAIC Company: Three Mile Island Unit 1 Radiochemical Assay Comparisons to SAS2H Calculations. Office of Civilian Radioactive Waste, CAL-UDC-NU-000011, Rev. A: Las Vegas, NV, 2002.
- /BEH 14/ Behler, M., Hannstein, V., Kilger, R., Moser, F.-E., Pfeiffer, A., Stuke, M.: Quantifizierung der Rechengenauigkeit von Codesystemen zum Abbrandkredit durch Experimentnachrechnungen. GRS, Bd. 336, 196 S., Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH: Köln, 2014.
- /BIE 94/ Bierman, S. R., Talbert, R. J.: Benchmark data for validating irradiated fuel compositions used in criticality calculations. Hrsg.: U.S. Departement of Energy, PNL-10045, 76 S., DOI 10.2172/10193492, October 1994.
- /BIE 09/ Bienvenu, P., Ferreux, L., Andreoletti, G., Arnal, N., Lépy, M.-C., Bé, M.-M.: Determination of 126Sn half-life from ICP-MS and gamma spectrometry measurements. Bd. 97, DOI 10.1524/ract.2009.1673, 2009.
- /GUE 88a/ Guenther, R. B., Blahnik, D. E., Campbell, T. K., Jenquin, U. P., Mendel, L. E., Thomas, L. E., Thornhill, C. K.: Characterization of Spent Fuel Approved Testing Material-ATM-103. Pacific Northwest Laboratory (PNL), PNL-5109-103, 273 S., April 1988.
- /GUE 88b/ Guenther, R. B., Blahnik, D. E., Campbell, T. K., Jenquin, U. P., Mendel, L. E., Thornhill, C. K.: Characterization of Spent Fuel Approved Testing Material-ATM-106. Pacific Northwest Laboratory (PNL), PNL-5109-106, 330 S., October 1988.
- /GUE 91/ Guenther, R. J., Blahnik, D. E., Jenquin, U. P., Mendel, J. E., Thomas, L.
 E., Thornhill, C. K.: Characterization of spent fuel approved testing material--ATM-104. Pacific Northwest Laboratory (PNL), PNL-5109-104, 416 S., DOI 10.2172/138327, Dezember 1991.

- /ILA 10/ Ilas, G., Gauld, I. C., Difilippo, F. C., Emmett, M. B.: Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation – Calvert Cliffs, Takahama, and Three Mile Island Reactors. Oak Ridge National Laboratory (ORNL), NUREG/CR-6968, ORNL/TM-2008/071, 134 S., February 2010.
- /ILA 12/ Ilas, G., Gauld, I. C., Radulescu, G.: Validation of new depletion capabilities and ENDF/B-VII data libraries in SCALE. Annals of Nuclear Energy, Bd. 46, S. 43–55, DOI 10.1016/j.anucene.2012.03.012, 2012.
- /INT 07/ International Association for the Properties of Water and Steam: Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam. 49 S.: Lucerne, Switzerland, August 2007.
- /JÖR 10/ Jörg, G., Bühnemann, R., Hollas, S., Kivel, N., Kossert, K., van Winckel, S., Gostomski, C. L. v.: Preparation of radiochemically pure 79Se and highly precise determination of its half-life. Applied Radiation and Isotopes, Bd. 68, Nr. 12, S. 2339–2351, DOI 10.1016/j.apradiso.2010.05.006, 2010.
- /KER 15/ Kernkraftwerk Gösgen-Däniken AG (Hrsg.): Kernkraftwerk Gösgen, Technick und Betrieb. 2. Aufl., 73 S., 2015.
- /KIL 08a/ Kilger, R., Hesse, U., Langenbuch, S.: Isotopic inventory calculations taking into account 2D/3D environment conditions during fuel irradiation. In: American Nuclear Society (ANS) (Hrsg.): International Conference on the Physics of Reactors, "Nuclear Power: A Sustainable Resource". PHYSOR, Interlaken, Switzerland, September 14-19, 2008.
- /KIL 08b/ Kilger, R., Hesse, U., Langenbuch, S.: KENOREST Nachrechnung der Nuklidinventare von Nachbestrahlungsproben aus dem ARIANE Programm. Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, GRS-A-3428, 69 S., Mai 2008.

- /LEB 03/ Lebenhaft, J. R., Trellue, H. R.: Validation of Monteburns for MOX Fuel using ARIANE Experimental Results. In: American Nuclear Society (ANS) (Hrsg.): Proceedings of Nuclear Mathematical and Computational Sciences (M&C 2003). Nuclear Mathematical and Computational Sciences (M&C 2003), Gatlinburg, TN, USA, 6. - 11. April 2003: La Grange Park, IL, USA, 2003.
- /MAC 04/ Macian, R., Zimmermann, M. A., Chawla, R.: Assessment of CASMO-4 predictions of the isotopic inventory of high burn-up MOX fuel. In: American Nuclear Society (ANS) (Hrsg.): Proceedings of PHYSOR 2004. PHYSOR 2004: The Physics of Fuel Cycles and Advanced Nuclear Systems Global Developments, Chicago, IL, USA, 25. 29. April 2004, ISBN 0-89448683-7: La Grange Park, IL, USA, 2004.
- /MAG 18/ Magill, J., Dreher, R., Sóti, Z.: Karlsruher Nuklidkarte. 10. Aufl., ISBN 978-3-943868-50-0, Nucleonica, 2018.
- /MER 10/ Mertyurek, U., Francis, M. W., Gauld, I. C.: SCALE 5 Analysis of BWR Spent Nuclear Fuel Isotopic Compositions for Safety Studies. Oak Ridge National Laboratory (ORNL), ORNL/TM-2010/286, ORNL/TM-2010/286, 103 S., December 2010.
- /MIC 17/ Michel-Sendis, F., Gauld, I. C., MARTINEZ, J. S., Alejano, C., Bossant, M., Boulanger, D., Cabellos, O., Chrapciak, V., Conde, J., Fast, I., Gren, M., Govers, K., Gysemans, M., Hannstein, V., et al.: SFCOMPO-2.0, An OECD NEA database of spent nuclear fuel isotopic assays, reactor design specifications, and operating data. Annals of Nuclear Energy, Bd. 110, S. 779– 788, DOI 10.1016/j.anucene.2017.07.022, 2017.
- /OAK 11/ Oak Ridge National Laboratory (ORNL): SCALE -A Comprehensive Modeling and Simulation Suite for Nuclear Safety Analysis and Design.
 ORNL/TM-2005/39, Version 6.1, Juni 2011. Available from Radiation Safety Information Computational Center at Oak Ridge National Laboratory as CCC-785.
- /PAT 82/ Pati, S. R., VanSaun, P. A.: Isotopics and Transuranic Nuclide Content of Three- and Four-Cycle Calvert Cliffs-I Fuel. EPRI, 34 S., December 1982.

- /PET 16/ Petrie, L. M., Lefebvre, R. A., Wiarda, D.: Standard Composition Library. In: Rearden, B. T., Jessee, M. A. (Hrsg.): SCALE Code System. Oak Ridge National Laboratory (ORNL), ORNL/TM-2005/39, Version 6.2.1: Oak Ridge, Tennessee, August 2016. Available from Radiation Safety Information Computational Center as CCC-834.
- /PRI 03/ Primm, R. T.: ARIANE International Programme, Final Report. Oak Ridge National Laboratory (ORNL), ORNL/SUB/97-XSV750-1, 539 S.: Oak Ridge TN, USA, May 2003.
- /RAD 10/ Radulescu, G., Gauld, I. C., Ilas, G.: SCALE 5.1 Predictions of PWR Spent Nuclear Fuel Isotopic Compositions. Oak Ridge National Laboratory (ORNL), 233 S., DOI 10.2172/983556, 2010.
- /REA 17/ Rearden, B. T., Jessee, M. A. (Hrsg.): SCALE Code System. Oak Ridge National Laboratory (ORNL), ORNL/TM-2005/39, Version 6.2.2, 2747 S.: Oak Ridge, Tennessee, Februar 2017. Available from Radiation Safety Information Computational Center as CCC-834.
- /ROD 86/ Roddy, J. W., Claiborne, H. C., Ashline, R. C., Johnson, P. J., Rhyne, B. T.: Physical and decay characteristics of commercial LWR spent fuel. Oak Ridge National Laboratory (ORNL), ORNL/TM-9591/V1&R1, 163 S., DOI 10.2172/6105618, 1986.
- /SAN 03/ Sanders, C. E., Gauld, I. C.: Isotopic Analysis of High-Burnup PWR Spent Fuel Samples From the Takahama-3 Reactor. U.S. Nuclear Regulatory Commission (U.S.NRC), NUREG/CR-6798, 81 S., 2003.
- /SCK 04/ SCK-CEN: REBUS International Program Reactivity Tests for a Direct Evaluation of the Burnup Credit on Selected Irradiated LWR Fuel Bundles, Gamma Spectroscopy PIE on Irradiated GKN II Fuel Rods. SCK-CEN, Belgonucleaire, RE 2004/29, 52 S., Dezember 2004.
- /SCK 05a/ SCK-CEN: REBUS International Program Reactivity Tests for a Direct Evaluation of the Burnup Credit on Selected Irradiated LWR Fuel Bundles, VENUS Fuel Characterisation Report. SCK-CEN, Belgonucleaire, RE 2001/13, Rev. C, 14 S., Dezember 2005.

- /SCK 05b/ SCK-CEN: REBUS International Programme PWR Reactivity Tests for a Direct Evaluation of the Burnup Credit on Selected Irradiated LWR Fuel Bundles, Fuel Irradiation History Report. SCK-CEN, Belgonucleaire, RE 2002/18, Rev. B, 20 S., Juni 2005.
- /SCK 06/ SCK-CEN: REBUS International Program Reactivity Tests for a Direct Evaluation of the Burnup Credit on Selected Irradiated LWR Fuel Bundles, Destructive Radiochemical Spent Fuel Characterization of a PWR UO2 Fuel Sample. SCK-CEN, Belgonucleaire, RE 2005/35, Rev. A, 31 S., Mai 2006.
- /SUY 11/ Suyama, K., Murazaki, M., Ohkubo, K., Nakahara, Y., Uchiyama, G.: Reevaluation of Assay Data of Spent Nuclear Fuel obtained at Japan Atomic Energy Research Institute for validation of burnup calculation code systems. Annals of Nuclear Energy, Bd. 38, Nr. 5, S. 930–941, DOI 10.1016/j.anucene.2011.01.025, 2011.
- /TAL 01/ Talbert, R. J., Grady-Raap, M. C.: Compilation of Radiochemical Analyses of Spent Nuclear Fuel Samples. Pacific Northwest National Lab (PNNL), PNNL-13677, 38 S., DOI 10.2172/789918: Richland, Washington, September 2001.
- /WIM 01/ Wimmer, L. B.: Summary Report of Commercial reactor Criticality Data for Three Mile Island Unit 1, Technical Report. Yucca Mountain Project, TDR-UDC-NU-000004, Rev. 01, DOI 10.2172/789897: Las Vegas, Nevada, 29. August 2001.

Abbildungsverzeichnis

Abb. 2.1	Schematische Darstellung der Brennelemente G13 und 17G aus Ohi-1 und Ohi-2 (aus SFCOMPO 2.0)5
Abb. 2.2	Bestrahlungsgeschichte der Probe 91E07 des Brennelements G13 aus Ohi-1
Abb. 2.3	Bestrahlungsgeschichte der Proben 89G01, 89G03 , 89G05 , 89G08, und 89G10 des Brennelements 17G aus Ohi-213
Abb. 2.4	Implementierung der Brennelemente in SCALE-Geometrie
Abb. 2.5	Ohi-1, Probe 91E07: Vergleich zwischen Rechnung und experimentellen Daten da24rgestellt als C/E-1 in Prozent
Abb. 2.6	Ohi-2 Proben: Vergleich zwischen Rechnung und experimentellen Daten dargestellt als C/E-1 in Prozent24
Abb. 2.7	Darstellung der Mittelwerte und Standardabweichungen für die Mittelung über alle Proben von Ohi-225
Abb. 2.8	Schematische Darstellung der Brennelemente NT3G23 und NT3G24 aus Takahama-326
Abb. 2.9	Bestrahlungsgeschichte der Brennstäbe SF95-1, SF96-1, und SF97-1
Abb. 2.10	Geometrie-Modell der Brennelemente der Takahama-3 Proben41
Abb. 2.11	Takahama-3, SF95: Vergleich zwischen Rechnung und experimentellen Daten dargestellt als C/E-1 in Prozent
Abb. 2.12	Takahama-3, SF96: Vergleich zwischen Rechnung und experimentellen Daten dargestellt als C/E-1 in Prozent
Abb. 2.13	Takahama-3, SF97: Vergleich zwischen Rechnung und experimentellen Daten dargestellt als C/E-1 in Prozent
Abb. 2.14	Darstellung der Mittelwerte und Standardabweichungen für die Mittelung über die Proben SF95-2 bis SF95-549
Abb. 2.15	Darstellung der Mittelwerte und Standardabweichungen für die Mittelung über die Proben SF96-2 bis SF96-550
Abb. 2.16	Darstellung der Mittelwerte und Standardabweichungen für die Mittelung über die Proben SF97-2 bis SF97-651
Abb. 2.17	Schematische Darstellung der Brennelemente NJ05YU und NJ070G aus TMI-153

Abb. 2.18	Bestrahlungsgeschichte der Proben aus Brennstab D5 des Brennelements NJ05YU	63
Abb. 2.19	Bestrahlungsgeschichte der Proben aus Brennstab H5 des Brennelements NJ05YU	63
Abb. 2.20	Bestrahlungsgeschichte der Proben aus den Brennstäben O1, O12 und O13 des Brennelements NJ070G	64
Abb. 2.21	Implementierung der Brennelemente NJ05YU und NJ070G in SCALE-Geometrie	71
Abb. 2.22	TMI-1, NJ07OG: Vergleich zwischen Rechnung und experimentellen Daten dargestellt als C/E-1 in Prozent	76
Abb. 2.23	TMI-1, NJ05YU: Vergleich zwischen Rechnung und experimentellen Daten dargestellt als C/E-1 in Prozent für die von ANL gemessenen Proben	77
Abb. 2.24	TMI-1, NJ05YU: Vergleich zwischen Rechnung und experimentellen Daten dargestellt als C/E-1 in Prozent für die von ORNL gemessenen Proben	78
Abb. 2.25	Darstellung der Mittelwerte und Standardabweichungen für die Mittelung über die Proben des Brennelements NJ07OG	79
Abb. 2.26	Darstellung der Mittelwerte und Standardabweichungen für die Mittelung über die von ANL gemessenen Proben des Brennelements NJ05YU	80
Abb. 2.27	Darstellung der Mittelwerte und Standardabweichungen für die Mittelung über die von ORNL gemessenen Proben des Brennelements NJ05YU	81
Abb. 2.28	Schematische Darstellung des Brennelements 12-40 aus dem Reaktor Gösgen /PRI 03/	84
Abb. 2.29	Schematische Darstellung der Brennelemente 1601 (links) und 1701 (rechts) aus dem Reaktor Gösgen /PRI 03/	84
Abb. 2.30	Tausch von Brennstäben im Brennelement 12-40 mit den jeweiligen Stababbränden nach /PRI 03/	93
Abb. 2.31	Brennstabbelegung im Rechenmodell für das Brennelement 12-40 aus dem Reaktor Gösgen	. 104
Abb. 2.32	Schematische Darstellung des KENO-VI-Geometriemodells für das Brennelement 12-40 aus dem Reaktor Gösgen	. 105

Abb. 2.33	ARIANE, GU1: Vergleich zwischen Rechnung und experimentellen Daten dargestellt als C/E-1 in Prozent	117
Abb. 2.34	ARIANE, GU3': Vergleich zwischen Rechnung und experimentellen Daten dargestellt als C/E-1 in Prozent	118
Abb. 2.35	ARIANE, GU4: Vergleich zwischen Rechnung und experimentellen Daten dargestellt als C/E-1 in Prozent	119
Abb. 2.36	Schematische Darstellung des Brennelements M308 aus dem Beznau-I /PRI 03/	121
Abb. 2.37	Brennstabbelegung im detaillierten Rechenmodell für das Brennelement M308 aus dem Reaktor Beznau-I	142
Abb. 2.38	Brennstabbelegung im vereinfachten Rechenmodell für das Brennelement M308 aus dem Reaktor Beznau-I	143
Abb. 2.39	Schematische Darstellung der KENO-VI-Geometriemodelle für das detaillierte (links) und vereinfachte (rechts) Rechenmodell für das Brennelement M308 aus dem Reaktor Beznau-I	143
Abb. 2.40	ARIANE, BM5': Vergleich zwischen Rechnung und experimentellen Daten dargestellt als C/E-1 in Prozent	156
Abb. 2.41	ARIANE, BM6: Vergleich zwischen Rechnung und experimentellen Daten dargestellt als C/E-1 in Prozent	157
Abb. 2.42	Schematische Darstellung des Brennelements 419 aus GKN-II /SCK 05b/	159
Abb. 2.43	Brennstabbelegung im detaillierten Rechenmodell für das Brennelement 419 aus GKN-II	175
Abb. 2.44	Brennstabbelegung im vereinfachten Rechenmodell für das Brennelement 419 aus GKN-II	175
Abb. 2.45	Schematische Darstellung der KENO-VI-Geometriemodelle für das detaillierte (links) und vereinfachte (rechts) Rechenmodell für das Brennelement 419 aus GKN-II	176
Abb. 2.46	REBUS, M11: Vergleich zwischen Rechnung und experimentellen Daten dargestellt als C/E-1 in Prozent	185
Abb. 2.47	Brennelementgeometrien der Brennelemente BT03 (links) sowie D047 und D101 (rechts) aus Calvert Cliffs-1 (aus SFCOMPO 2.0)	187
Abb. 2.48	KENO-VI Modell des Calvert Cliffs Brennelements BT03. Links Brennelement mit abbrennbaren Absorberstäben, rechts mit gezogenen Absorberstäben	201

Abb. 2.49	Nachrechnungsergebnisse in der Form C/E-1 in Prozent für die Proben des Brennelements D101205
Abb. 2.50	Nachrechnungsergebnisse in der Form C/E-1 in Prozent für die Proben des Brennelements D047206
Abb. 2.51	Nachrechnungsergebnisse in der Form C/E-1 in Prozent für die Proben des Brennelements BT03207
Abb. 3.1	Schematische Darstellung des Brennelements aus Fukushima-Daini- 2 /MIC 17/210
Abb. 3.2	Bestrahlungsgeschichte der Proben des Brennelements SF98217
Abb. 3.3	Implementierung der Brennelemente in SCALE-Geometrie
Abb. 3.4	Fukushima Daini-2, SF98: Vergleich zwischen Rechnung und experimentellen Daten dargestellt als C/E-1 in Prozent
Abb. 3.5	Fukushima Daini-2, SF99: Vergleich zwischen Rechnung und experimentellen Daten dargestellt als C/E-1 in Prozent
Abb. 3.6	Darstellung der Mittelwerte und Standardabweichungen für die Mittelung über die Proben des Brennelements SF98
Abb. 3.7	Darstellung der Mittelwerte und Standardabweichungen für die Mittelung über die Proben des Brennelements SF99
Abb. 4.1	Mittelwert und Standardabweichung für C/E-1 für alle DWR-Proben233
Abb. 4.2	Vergleich C/E-1 für MOTIVE und KENOREST235
Abb. 4.3	Vergleich der gemittelten C/E-1 Werte für MOTIVE und SCALE6.1238
Abb. 4.4	Abbrandabhängige Darstellung der Nachrechnungsergebnisse: Aktinoiden
Abb. 4.5	Abbrandabhängige Darstellung der Nachrechnungsergebnisse: Spaltprodukte
Abb. 4.6	Mittelwert und Standardabweichung für C/E-1 für alle SWR-Proben 244
Abb. 4.7	Vergleich der Nachrechnungsergebnisse für die SWR-Proben zwischen MOTIVE und KENOREST245

Tabellenverzeichnis

Tab. 1.1	Liste der im Rahmen des Berichts untersuchten Nachbestrahlungsanalyseproben	2
Tab. 2.1	Geometrische Abmessungen der Brennelemente G13 und 17G	6
Tab. 2.2	Geometrische Abmessungen der Brennstäbe, Führungs- und Instrumentalrohre	6
Tab. 2.3	Relevante Details der 6 Proben aus Ohi-1 und Ohi-2	7
Tab. 2.4	Daten zur Materialzusammensetzung des Brennstoffs	7
Tab. 2.5	Nuklidweise Brennstoffzusammensetzung der UO2 Brennstäbe	7
Tab. 2.6	Nuklidweise Brennstoffzusammensetzung der UO ₂ -Gd ₂ O ₃ Brennstäbe	8
Tab. 2.7	Nuklidweise Zusammensetzung des Strukturmaterials Zirkaloy-4	9
Tab. 2.8	Bestrahlungsgeschichte der Reaktorzyklen 4 bis 7 für die eine Probe aus Ohi-1	10
Tab. 2.9	Bestrahlungsgeschichte der Reaktorzyklen 5 und 6 für die fünf Proben aus Ohi-2	12
Tab. 2.10	Nuklidzusammensetzung (zur Reaktorabschaltung) und Spaltprodukte (nach 5 Jahren Abklingzeit) der Probe 91E07 des Brennelements G13 aus Ohi-1	14
Tab. 2.11	Nuklidzusammensetzung (zur Reaktorabschaltung) für die Proben 89G01, 89G03, 89G05, 89G08, und 89G10 des Brennelements 17G aus Ohi-2 (Aktinoide)	15
Tab. 2.12	Nuklidzusammensetzung (nach 5 Jahren Abklingzeit) für die Proben 89G01, 89G03, 89G05, 89G08, und 89G10 des Brennelements 17G aus Ohi-2 (Spaltprodukte)	16
Tab. 2.13	Parameter der Abbrandrechnung	18
Tab. 2.14	Liste der betrachteten Nuklide	18
Tab. 2.15	Vergleich zwischen gemessenen und berechneten Werten als C/E-1 in % für Ohi-1 und Ohi-2	21
Tab. 2.16	Mittelwert und Standardabweichung bei Mittelung der Proben aus Ohi-2	22

Tab. 2.17	Geomet rische Abmessungen der Brennelemente G13 und 17G /MIC 17/, /SUY 11/	27
Tab. 2.18	Geometrische Abmessungen der Brennstäbe, Führungs- und Instrumentalrohre /MIC 17/, /SUY 11/	28
Tab. 2.19	Relevante Details der Brennstäbe SF95, SF96 und SF97	28
Tab. 2.20	Relevante Details der Proben des Brennstabs SF95	28
Tab. 2.21	Relevante Detail der Proben des Brennstabs SF96	29
Tab. 2.22	Relevante Detail der Proben des Brennstabs SF97	29
Tab. 2.23	Nuklidweise Brennstoffzusammensetzung der Brennstäbe und der gadoliniumhaltigen Absorberbrennstäbe	30
Tab. 2.24	Nuklidweise Zusammensetzung des Strukturstoffs Zirkaloy-4	31
Tab. 2.25	Bestrahlungsgeschichte der Reaktorzyklen 5 und 6 für die Proben aus Brennstab SF95	32
Tab. 2.26	Bestrahlungsgeschichte der Reaktorzyklen 5 und 6 für die Proben aus Brennstab SF96	34
Tab. 2.27	Bestrahlungsgeschichte der Reaktorzyklen 5 bis 7 für die Proben aus Brennstab SF97	35
Tab. 2.28	Nuklidzusammensetzung aller gemessener Nuklide zur Reaktorabschaltung der Nachbestrahlungsanalyseproben des Brennstabs SF95	38
Tab. 2.29	Nuklidzusammensetzung aller gemessener Nuklide zur Reaktorabschaltung der Nachbestrahlungsanalyseproben des Brennstabs SF96	39
Tab. 2.30	Nuklidzusammensetzung aller gemessener Nuklide zur Reaktorabschaltung der Nachbestrahlungsanalyseproben des Brennstabs SF97	40
Tab. 2.31	Liste der betrachteten Nuklide	42
Tab. 2.32	Vergleich zwischen gemessenen und berechneten Werten als C/E-1 in % für die Stäbe SF95 und SF96	44
Tab. 2.33	Vergleich zwischen gemessenen und berechneten Werten als C/E-1 in %	45
Tab. 2.34	Geometrische Abmessungen der Brennelemente NJ05YU und NJ070G	54

Tab. 2.35	Geometrische Abmessungen der Brennstäbe, Führungs- und Instrumentalrohre und Absorberstäbe	54
Tab. 2.36	Relevante Details der Proben des Brennstabs D5 des Brennelements NJ05YU	55
Tab. 2.37	Relevante Details der Proben des Brennstabs H6 des Brennelements NJ05YU	55
Tab. 2.38	Relevante Details der Proben der Brennstäbe O1, O12, und O13 des Brennelements NJ070G	55
Tab. 2.39	Nuklidweise Brennstoffzusammensetzung der Brennstäbe und der gadoliniumhaltigen Absorberbrennstäbe in [Gew.%]	56
Tab. 2.40	Nuklidweise Brennstoffzusammensetzung der Brennstäbe und der gadoliniumhaltigen Absorberbrennstäbe in Kernzahldichten	57
Tab. 2.41	Nuklidweise Zusammensetzung des Strukturstoffs Zirkaloy-4	58
Tab. 2.42	Bestrahlungsgeschichte der Reaktorzyklen 9 und 10 für die Proben aus Stab D5 aus dem Brennelement NJ05YU in MW/tSM	59
Tab. 2.43	Bestrahlungsgeschichte der Reaktorzyklen 9 und 10 für die erste Hälfte der Proben aus Brennstab H6 aus dem Brennelement NJ05YU in MW/Node	60
Tab. 2.44	Bestrahlungsgeschichte der Reaktorzyklen 9 und 10 für die zweite Hälfte der Proben aus Brennstab H6 aus dem Brennelement NJ05YU in MW/Node	61
Tab. 2.45	Bestrahlungsgeschichte des Reaktorzykus 10 für die Proben aus den Brennstäben O1, O12, und O13 aus dem Brennelement NJ070G in MW/Node	62
Tab. 2.46	Nuklidzusammensetzung aller gemessenen Nuklide zum jeweiligen Messzeitpunkt für die Proben aus Brennstab D5 des Brennelements NJ05YU	65
Tab. 2.47	Nuklidzusammensetzung aller gemessenen Nuklide zum jeweiligen Messzeitpunkt der Nachbestrahlungsanalyseproben für die erste Hälfte der Proben aus Brennstab H6 des Brennelements NJ05YU	66
Tab. 2.48	Nuklidzusammensetzung aller gemessenen Nuklide zum jeweiligen Messzeitpunkt der Nachbestrahlungsanalyseproben für die zweiten Hälfte der Proben des Brennstabs H6 des Brennelements NJ05YU	67
Tab. 2.49	Nuklidzusammensetzung aller gemessenen Nuklide zum jeweiligen Messzeitpunkt für die Proben des Brennelements NJ070G	69

Tab. 2.50	Liste der betrachteten Nuklide	72
Tab. 2.51	Vergleich zwischen gemessenen und berechneten Werten als C/E-1 in % für das Brennelement NJ07OG	73
Tab. 2.52	Vergleich zwischen gemessenen und berechneten Werten als C/E-1 in % für die vom ANL gemessenen Proben des Brennelements NJ05YU	74
Tab. 2.53	Vergleich zwischen gemessenen und berechneten Werten als C/E-1 in % für die vom ORNL gemessenen Proben des Brennelements NJ05YU	75
Tab. 2.54	Relevante Reaktordaten des Reaktors Gösgen /PRI 03/	85
Tab. 2.55	Geometrische Abmessungen der Brennelemente 12-40, 1601 und 1701 sowie dessen Brennstäbe nach /PRI 03/	86
Tab. 2.56	Nuklidweise Brennstoffzusammensetzung der Proben GU1, GU3/GU3' und GU4 nach /PRI 03/	87
Tab. 2.57	Brennstoffdichteangaben für die Proben GU1, GU3/GU3' und GU4 nach /PRI 03/	87
Tab. 2.58	Bestrahlungszeitraum der Brennelemente 12-40 (Zyklus 12 – 15) sowie 1601 und 1701 (Zyklus 16 – 18) nach /PRI 03/	88
Tab. 2.59	Bestrahlungsdaten der Reaktorzyklen 12 bis 15 des Reaktors Gösgen für die Probe GU1 /PRI 03/	90
Tab. 2.60	Bestrahlungsdaten der Reaktorzyklen 16 bis 18 des Reaktors Gösgen für die Proben GU3/GU3' und GU4 /PRI 03/	91
Tab. 2.61	Nuklidweise Zusammenstellung der verwendeten Messmethoden für die Proben GU1, GU3/GU3' und GU4 /PRI 03/	95
Tab. 2.62	Gemessene Massenverhältnisse im bestrahlten Brennstoff zum Messzeitpunkt für die Proben GU1 (SCK•CEN) und GU4 (ITU) /PRI 03/	97
Tab. 2.63	Gemessene Massenverhältnisse im bestrahlten Brennstoff zum Messzeitpunkt für die Proben GU3 (ITU) und GU3' (SCK•CEN) /PRI 03/	. 100
Tab. 2.64	Verwendete nuklidweise Zusammensetzung der Brennstoffe der Brennelemente 12-40, 1601 und 1701 aus dem Reaktor Gösgen nach /PRI 03/	. 106
Tab. 2.65	Im Rechenmodell verwendete nuklidweise Zusammensetzung von Zirkaloy-4 nach /PET 16/	. 107

Tab. 2.66	Verwendete Bestrahlungsdaten der Zyklen 12 bis 15 für das Brennelement 12-40 des Reaktors Gösgen nach /PRI 03/1	112
Tab. 2.67	Verwendete Bestrahlungsdaten der Zyklen 16 bis 18 für die Brennelemente 1601 und 1701 des Reaktors Gösgen nach /PRI 03/ 1	113
Tab. 2.68	Berücksichtigte individuelle Zerfallszeiten der errechneten Nuklidkonzentrationen der Proben des Reaktors Gösgen nach /PRI 03/	114
Tab. 2.69	Vergleich zwischen gemessenen und berechneten Werten als C/E-1 in %	116
Tab. 2.70	Relevante Reaktordaten des Reaktors Beznau-I /PRI 03/1	22
Tab. 2.71	Geometrische Abmessungen des Brennelements M308 und dessen Brennstäbe nach /PRI 03/1	122
Tab. 2.72	Nuklidweise Brennstoffzusammensetzung der Proben BM5/BM5' und BM6, gemessen März 1990, nach /PRI 03/1	124
Tab. 2.73	Brennstoffdichteangaben für die Proben BM5/BM5' und BM6 nach /PRI 03/1	124
Tab. 2.74	Wahrscheinliche Brennstoffzusammensetzung für das Brennelement M308 des Reaktors Beznau-I nach /KIL 08b/1	125
Tab. 2.75	Bestrahlungszeitraum des Brennelements M308 nach /PRI 03/1	126
Tab. 2.76	Bestrahlungsdaten der Reaktorzyklen 20 bis 25 des Reaktors Beznau-I für die Proben BM5/BM5' /PRI 03/1	128
Tab. 2.77	Bestrahlungsdaten der Reaktorzyklen 20 bis 25 des Reaktors Beznau-I für die Probe BM6 /PRI 03/1	130
Tab. 2.78	Nuklidweise Zusammenstellung der verwendeten Messmethoden für die Proben BM5/BM5' und BM6 /PRI 03/1	134
Tab. 2.79	Gemessene Massenverhältnisse im bestrahlten Brennstoff für die Proben BM5 (PSI) und BM5' (SCK•CEN) /PRI 03/1	136
Tab. 2.80	Gemessene Massenverhältnisse zum jeweiligen Zeitpunkt der Messung für die Probe BM6 /PRI 03/1	139
Tab. 2.81	Verwendete nuklidweise Zusammensetzung des Brennstoffs für das Brennelement M308 aus dem Reaktor Beznau-I nach /PRI 03/	145
Tab. 2.82	Verwendete Bestrahlungsdaten der Zyklen 20 bis 25 für das Brennelement M308 des Reaktors Beznau-I nach /PRI 03/	148

Tab. 2.83	Berücksichtigte dividuelle Zerfallszeiten der errechneten Nuklidkonzentrationen der Proben BM5' und BM6 aus dem Brennelement M308 des Reaktors Beznau-I nach /PRI 03/	153
Tab. 2.84	Vergleich zwischen gemessenen und berechneten Werten als C/E-1 in %	155
Tab. 2.85	Relevante Reaktordaten des GKN-II /SCK 05b/	160
Tab. 2.86	Geometrische Abmessungen des Brennelements 419 und dessen Brennstäbe nach /SCK 04/, /SCK 05b/, /SCK 05a/	162
Tab. 2.87	Nuklidweise Brennstoffzusammensetzung nach /SCK 05a/	164
Tab. 2.88	Brennstoffdichte nach /SCK 05a/	165
Tab. 2.89	Brennstoffzusammensetzung nach /SCK 05b/	165
Tab. 2.90	Zusammensetzung des Hüllrohrs nach /SCK 05a/	166
Tab. 2.91	Bestrahlungszeitraum des Brennelements 419 nach /SCK 05b/	167
Tab. 2.92	Gemittelte Bestrahlungsdaten der Reaktorzyklen 5 bis 8 des Brennelements 419 aus GKN-II /SCK 05b/	169
Tab. 2.93	Gemessene Nuklid-Massenverhältnisse zum jeweiligen Zeitpunkt der Messung /SCK 06/	172
Tab. 2.94	Daten der chemischen Separation verschiedener Elemente /SCK 06/	173
Tab. 2.95	Verwendete nuklidweise Zusammensetzung des Brennstoffs für das Brennelement 419 aus GKN-II nach /SCK 05a/ und /SCK 05b/	. 178
Tab. 2.96	Verwendete Bestrahlungsdaten der Zyklen 5 bis 8 für das Brennelement 419 aus GKN-II nach /SCK 05b/	181
Tab. 2.97	Berücksichtigte dividuelle Zerfallszeiten der errechneten Nuklidkonzentrationen des Brennelements 419 aus GKN-II nach /SCK 06/	. 183
Tab. 2.98	Vergleich zwischen gemessenen und berechneten Werten als C/E-1 in %	184
Tab. 2.99	Geometrische Abmessungen der Brennelemente D047, D101 und BT03	188
Tab. 2.100	Geometrische Abmessungen der Brennstäbe und Führungsrohre für die Brennelemente D047, D101 und BT03	188
Tab. 2.101	Zusätzliche geometrische Abmessungen für das Brennelement BT03	188

Tab. 2.102	Relevante Details der Brennstäbe MLA098, MKP109 und NBD107	. 189
Tab. 2.103	Abbrand und axiale Probenposition der Proben aus Calvert Cliffs-1	. 189
Tab. 2.104	Brennstoffzusammensetzungen für die drei Brennelemente aus Calvert Cliffs-1	. 190
Tab. 2.105	Nuklidweise Zusammensetzung des Strukturstoffs Zirkaloy-4	. 191
Tab. 2.106	Zusammensetzung von Edelstahl (SS304) gemäß /REA 17/	. 192
Tab. 2.107	Zusammensetzung des abbrennbaren Absorbers Al ₂ O ₃ -B ₄ C	. 192
Tab. 2.108	Leistungsgeschichtedaten für die Proben des Stabs MLA098	. 193
Tab. 2.109	Leistungsgeschichtedaten für die Proben des Brennelement D047	. 195
Tab. 2.110	Leistungsgeschichtedaten für die Proben des Brennelement BT03	. 196
Tab. 2.111	Für die Validierung herangezogener Datensatz von experimentell bestimmten Nukliddaten in g/tSMi	. 198
Tab. 2.112	Für die Validierung herangezogener Datensatz von experimentell bestimmten Nukliddaten in g/tSMi	. 199
Tab. 2.113	Für die Validierung herangezogener Datensatz von experimentell bestimmten Nukliddaten in g/tSMi	. 200
Tab. 2.114	Abweichung zwischen Rechnung (C) und Experiment (E) als Werte C/E-1 in Prozent für den Stab MLA098	. 202
Tab. 2.115	Abweichung zwischen Rechnung (C) und Experiment (E) als Werte C/E-1 in Prozent für den Stab MKP109	203
Tab. 2.116	Abweichung zwischen Rechnung (C) und Experiment (E) als Werte C/E-1 in Prozent für den Stab NBD107	. 204
Tab. 3.1	Geometrische Abmessungen des Brennelements 2F2DN23 /MIC 17/, /MER 10/	. 210
Tab. 3.2	Geometrische Abmessungen der Brennstäbe, Führungs- und Instrumentalrohre /MIC 17/, /MER 10/	. 211
Tab. 3.3	Relevante Details der acht Proben aus Brennstab SF98	. 211
Tab. 3.4	Relevante Details der zehn Proben aus Brennstab SF99	. 212
Tab. 3.5	Daten zur Materialzusammensetzung des UO ₂ Brennstoffs	. 212
Tab. 3.6	Daten zur Materialzusammensetzung des Gd ₂ O ₃ Brennstoffs /MIC 17/	. 213

Tab. 3.7	Nuklidweise Zusammensetzung des Strukturstoffs Zirkaloy-2214
Tab. 3.8	Bestrahlungsgeschichte der Reaktorzyklen 5 bis 7 für die Proben aus dem Brennstab SF98215
Tab. 3.9	Bestrahlungsgeschichte der Reaktorzyklen 5 bis 7 für die Proben aus dem Brennstab SF99216
Tab. 3.10	Nuklidzusammensetzung der Nachbestrahlungsanalyseproben des Brennelements SF98 (zum Zeitpunkt der Reaktorabschaltung, außer Sm Isotope nach der jeweiligen Abklingzeit)
Tab. 3.11	Nuklidzusammensetzung der Proben des Brennelements SF99 (zum Zeitpunkt der Reaktorabschaltung, außer Sm Isotope nach der jeweiligen Abklingzeit)
Tab. 3.12	Liste der betrachteten Nuklide
Tab. 3.13	Vergleich zwischen gemessenen und berechneten Werten als C/E-1 in %
Tab. 3.14	Vergleich zwischen gemessenen und berechneten Werten als C/E-1 in %
Tab. 4.1	Mittelwert und Standardabweichung für C/E-1 für alle DWR-Proben 232
Tab. 4.2	Vergleich C/E-1 für MOTIVE und KENOREST
Tab. 4.3	Tabelle der mit SCALE6.1 und ENDF/B-VII erzielten Nachrechnungsergebnisse. Aus /ILA 12/237
Tab. 4.4	Mittelwert und Standardabweichung für C/E-1 für alle SWR-Proben 243

Gesellschaft für Anlagenund Reaktorsicherheit (GRS) gGmbH

Schwertnergasse 1 50667 Köln Telefon +49 221 2068-0 Telefax +49 221 2068-888

Boltzmannstraße 14 **85748 Garching b. München** Telefon +49 89 32004-0 Telefax +49 89 32004-300

Kurfürstendamm 200 **10719 Berlin** Telefon +49 30 88589-0 Telefax +49 30 88589-111

Theodor-Heuss-Straße 4 **38122 Braunschweig** Telefon +49 531 8012-0 Telefax +49 531 8012-200

www.grs.de