GRS

Neuberechnung von kritischen Parametern und deren Validierung für das GRS-"Handbuch zur Kritikalität", Ausgabe 2009

Gesellschaft für Anlagenund Reaktorsicherheit (GRS) mbH

Neuberechnung von kritischen Parametern und deren Validierung für das GRS "Handbuch zur Kritikalität", Ausgabe 2009

R. Kilger F.E. Moser M. Behler

Oktober 2009 Auftrags-Nr.: 867531

Anmerkung:

Das diesem Bericht zu Grunde liegende FE-Vorhaben 3606R02536 wurde im Auftrag des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit durchgeführt. Die Verantwortung für den Inhalt dieser Veröffentlichung liegt beim Auftragnehmer.

Der Bericht gibt die Auffassung und Meinung des Auftragnehmers wieder und muss nicht mit der Meinung des Auftraggebers übereinstimmen.

Kurzfassung

Im Zuge der Überprüfung und Aktualisierung des deutschen "Handbuchs zur Kritikalität" wurden für wässrige Uranoxifluorid-Systeme (UO₂F₂-H₂O), homogene Urandioxid-Wasser-Systeme und schwach moderierte Urandioxid-Systeme reduzierter Dichte (UO₂ mit "Restfeuchte") kritische Parameterkurven neu berechnet und durch Codevergleich und Benchmark-Nachrechnungen validiert.

Da die vormals im Handbuch für UO₂F₂-H₂O-Systeme verwendete Dichterelation der sog. Restwasserauffüllung für diese Systeme zu nichtkonservativen kritischen Parametern führen konnte, wurde auf Basis einer umfangreichen Literaturstudie die alternative Dichterelation additiver molarer Volumina identifiziert. Diese beschreibt die Lösungsund Mischvorgänge des Salzes Uranoxifluorid mit Wasser auf physikalisch genauerer Grundlage, und führt zu konservativeren kritischen Parametern. Berechnet wurden für UO₂F₂-H₂O-Systeme kritische Kugelmassen, Volumina, Zylinderdurchmesser und Schichtdicken für Anreicherungen von 3, 4, 5 und 6 Gew.-% ²³⁵U, jeweils mit einem 30 cm dicken Wasserreflektor.

Für homogene Urandioxid-Wasser-Systeme wurden kritische Kugelmassen, Volumina, Zylinderdurchmesser und Schichtdicken für Anreicherungen von 6, 7 und 8 Gew.-% ²³⁵U, jeweils mit einem 30 cm dicken Wasserreflektor berechnet. Hier kam als Dichterelation die für derartige Systeme geeignete Restwasserauffüllung zum Einsatz.

Für schwach moderierte Urandioxidsysteme mit 1, 2, 3 und 5 Gew.-% Wasseranteil ("Restfeuchte") und 5, 6, 7 und 8 Gew.-% ²³⁵U-Anreicherung wurden ebenfalls kritische Kugelmassen, Volumina, Zylinderdurchmesser und Schichtdicken mit einem 30 cm starken Wasserreflektor berechnet.

Während die Validierung für homogene Urandioxid-Wasser-Systeme durch den Vergleich der Rechenergebnisse unterschiedlicher Rechenverfahren und Querschnittsbibliotheken durchgeführt wurde, wurden für UO₂F₂-H₂O-Systeme und UO₂ mit Restfeuchte geeignete kritische Benchmark-Experimente nachgerechnet. Die Validierung wurde unterstützt durch Rechnungen mit dem Sensitivitäts- und Unsicherheitsanalyseverfahren TSUNAMI aus dem amerikanischen Codepaket SCALE.

Für einige weitere Uranoxid-Wasser-Systeme wurden stichprobenartige Überprüfungen durchgeführt.

Abstract

In the frame of reviewing and updating the German Handbook on Criticality, critical parameters for aqueous uranyl fluoride ($UO_2F_2-H_2O$) systems, homogeneous uranium dioxide-water-systems, and low moderated uranium dioxide systems of reduced density (UO_2 with "residual moisture") have been calculated, and validated by cross-code comparison and critical benchmark experiments calculations.

As the formerly in the Handbook for UO_2F_2 -H₂O-systems used density relation of volume fraction addition yielded to non-conservative critical parameters for such systems, by means of an extensive literature study the alternative density relation of additive molar volumes was identified. It gives an improved, physically justified description of the dissolution and mixing process of the salt uranyl fluoride with water, and leads to more conservative critical parameters. For UO_2F_2 -H₂O systems, critical sphere masses and volumes, cylinder diameters and slab thicknesses for enrichments of 3, 4, 5, and 6 wt.-percent ²³⁵U with 30 cm water reflector have been calculated.

For homogeneous uranium dioxide-water systems, critical sphere masses and volumes, cylinder diameters and slab thicknesses for enrichments of 6, 7, and 8 wt.percent ²³⁵U with 30 cm water reflector have been calculated. Here the density relation of volume fraction addition has been used, being appropriate for such systems.

For low moderated uranium dioxide systems with 1, 2, 3, and 5 wt.-percent water ("residual moisture") and 5, 6, 7, and 8 wt.-percent ²³⁵U enrichment, also critical sphere masses and volumes, cylinder diameters and slab thicknesses with 30 cm water reflector have been calculated.

While for the validation of parameters for homogeneous uranium dioxide-water systems calculated values by means of different methods and cross section libraries have been compared, for UO_2F_2 -H₂O systems and low moderated uranium dioxide systems suitable critical benchmark experiments have been evaluated. The validation process has been supported by calculations using the sensitivity and uncertainty tool TSUNAMI from the American code package SCALE.

For some more uranium oxide-water systems, additional sample checks have been performed.

Inhaltsverzeichnis

1	Einführung	1
2	Rechenmethoden	4
2.1	Uranylfluorid	4
2.2	Homogene Urandioxid-Wasser-Systeme	4
2.3	Schwach moderiertes Urandioxid	5
2.4	Sensitivitäts- und Unsicherheitsanalysen mit TSUNAMI	6
2.4.1	Sensitivitäts- und Unsicherheitsparameter eines kritischen Systems	7
2.4.2	Der Vergleich zweier Systeme mit TSUNAMI-IP	9
3	Neuberechnung von kritischen Parameterkurven für Uranylfluorid	13
3.1	Dichterelation für Uranylfluorid	13
3.1.1	Chemische und physikalische Eigenschaften von Uranylfluorid	13
3.1.2	Dichterelationen	14
3.2	Parameterkurven	25
3.3	Validierung anhand kritischer Experimente mit TSUNAMI	30
3.3.1	Kritische Experimente	31
3.3.2	Sensitivitäts-/Unsicherheitsanalysen mit TSUNAMI	31
4	Homogene Urandioxid-Wasser-Systeme	35
4.1	Kritikalitätsdaten für homogene Mischsysteme aus Urandioxid-Wasser	35
4.2	Validierungsrechnungen zu Kritikalitätsdaten für homogene	
	Mischsysteme aus Urandioxid-Wasser	40
5	Schwach moderierte Urandioxid-Systeme	45
5.1	Vergleich von Rechenergebnissen verschiedener SCALE Versionen	
	am Beispiel des kritischen Kugelradius	45
5.2	Kritische Parameterkurven	48
5.3	Querschnitts- und Flussverteilungen eines kugelförmigen Systems mit	
	schwach moderiertem Urandioxid unter voller Wasserreflexion	66

5.4	Validierung der Ergebnisse für schwach moderiertes Urandioxid	
	anhand von Experiment-Nachrechnungen	.73
5.4.1	Unterstützende Berechnungen mit TSUNAMI	.79
5.4.2	Gegenrechnung einzelner Parameterwerte mit XSDRN und MCNP5	.90
6	Nachrechnung kritischer Parameter mit dem Code XSDRN und	
	KENO Va aus dem SCALE-Paket Version 6	.92
6.1	Homogene Urandioxid-Wasser-Systeme	.92
6.2	Homogene Urantrioxid-Wasser-Systeme	.94
6.3	Heterogene UO ₂ -Systeme	.95
6.4	Homogene Uran-Graphit-Systeme	.97
7	Zusammenfassung	.99
8	Literatur- und Quellenverzeichnis	102
Anhang A	Verwendete Benchmarkexperimente Uranylfluorid	107
Anhang B	Tabellarische Zusammenstellung der Kritikalitätsdaten und	
	Multiplikationsfaktoren für homogenen Urandioxid-Wasser-	
	Systeme	108
Anhang C	Berechnung der maximalen Dichte von homogenisierten	
	Spaltstoff-Wasser Gemischen mit Restfeuchte	115
Anhang D	Tabellarische Auflistung der errechneten kritischen Parameter	116

Abbildungsverzeichnis

Abb. 2-1:	Sensitivität von k_{eff} auf den totalen Wirkungsquerschnitt von ²³⁵ U in Abhängigkeit der Energiegruppe für fünf ausgewählte kritische UO ₂ F ₂ -Wasser-Experimente.	8
Abb. 3-1:	Übersicht über die verschiedenen Dichterelationen für UO ₂ F ₂ -Wasser- Systeme in Abhängigkeit vom Moderationsverhältnis H/U	.15
Abb. 3-2:	Lösungsdichte von UO_2F_2 -Wasser-Systemen nach SCALE4.4a in Abhängigkeit von der Urankonzentration	. 20
Abb. 3-3:	Vergleich der Dichterelationen für UO_2F_2 -Wasser-Systeme in SCALE in den Jahren 1999 und 2000	.21
Abb. 3-4:	Vergleich der aus verschiedenen Dichterelationen für UO2F2-Wasser- Systeme berechneten Urankonzentrationen in Abhängigkeit vom Mode- rationsverhältnis H/U für den Lösungsbereich	.23
Abb. 3-5:	Kleinste kritische Kugelmassen für wässrige UO ₂ F ₂ -Systeme mit 30 cm Wasserreflektor	.26
Abb. 3-6:	Kleinste kritische Kugelvolumina für wässrige UO ₂ F ₂ -Systeme mit 30 cm Wasserreflektor	.27
Abb. 3-7:	Kleinste kritische Zylinderdurchmesser für wässrige UO ₂ F ₂ -Systeme mit 30 cm Wasserreflektor	.28
Abb. 3-8:	Kleinste kritische Schichtdicken für wässrige UO ₂ F ₂ -Systeme mit 30 cm Wasserreflektor	.29
Abb. 3-9:	Kleinste kritische Parameter für wässrige UO ₂ F ₂ -Systeme mit 3, 4, 5 und 6 Gew% Anreicherung ²³⁵ U	. 30
Abb. 3-10:	Verteilung der k _{eff} –Werte aller Benchmarkexperimente in Abhängigkeit von c _k für Anwendungssystem 5	. 33
Abb. 3-11:	Verteilung der k _{eff} –Werte aller Benchmarkexperimente in Abhängigkeit von E _{sum} für Anwendungssystem 5	. 34
Abb. 4-1:	Kritische Kugelmassen für vollständig reflektierte homogene Urandioxid- Wasser-Systeme mit 6, 7 und 8 Gew% ²³⁵ U Anreicherung in	20
	Abhangigkeit von der Urandichte	. 36

Abb. 4-2:	Kritische Kugelvolumina für vollständig reflektierte homogene Urandio- xid-Wasser-Systeme mit 6, 7 und 8 Gew% ²³⁵ U Anreicherung in Ab- hängigkeit von der Urandichte	37
Abb. 4-3:	Kritische Zylinderdurchmesser für vollständig reflektierte homogene Urandioxid-Wasser-Systeme mit 6, 7 und 8 Gew% ²³⁵ U Anreicherung in Abhängigkeit von der Urandichte	38
Abb. 4-4:	Kritische Schichtdicken für vollständig reflektierte homogene Urandioxid- Wasser-Systeme mit 6, 7 und 8 Gew% ²³⁵ U Anreicherung in Abhängig- keit von der Urandichte	39
Abb. 4-5:	Vergleich von mit unterschiedlichen Rechenverfahren ermittelten Multi- plikationsfaktoren für kritische Kugelgeometrien mit vollständig reflektier- ten homogenen Urandioxid-Wasser-Systemen mit 7 Gew% ²³⁵ U Anrei- cherung in Abhängigkeit von der Urandichte	41
Abb. 4-6:	Vergleich von mit unterschiedlichen Rechenverfahren ermittelten Multi- plikationsfaktoren für kritische Zylindergeometrien mit vollständig reflektierten homogenen Urandioxid-Wasser-Systemen mit 7 Gew% ²³⁵ U Anreicherung in Abhängigkeit von der Urandichte	41
Abb. 4-7:	Vergleich von mit unterschiedlichen Rechenverfahren ermittelten Multiplikationsfaktoren für kritische Schichtgeometrien mit vollständig reflektierten homogenen Urandioxid-Wasser-Systemen mit 7 Gew% ²³⁵ U Anreicherung in Abhängigkeit von der Urandichte	42
Abb. 4-8:	Vergleich von mit unterschiedlichen Rechenverfahren ermittelten Multiplikationsfaktoren für kritische Kugelgeometrien mit vollständig reflektierten homogenen Urandioxid-Wasser-Systemen mit 8 Gew% ²³⁵ U Anreicherung in Abhängigkeit von der Urandichte	42
Abb. 4-9:	Vergleich von mit unterschiedlichen Rechenverfahren ermittelten Multiplikationsfaktoren für kritische Zylindergeometrien mit vollständig reflektierten homogenen Urandioxid-Wasser-Systemen mit 8 Gew% ²³⁵ U Anreicherung in Abhängigkeit von der Urandichte	43
Abb. 4-10:	Vergleich von mit unterschiedlichen Rechenverfahren ermittelten Multiplikationsfaktoren für kritische Schichtgeometrien mit vollständig reflektierten homogenen Urandioxid-Wasser-Systemen mit 8 Gew% ²³⁵ U Anreicherung in Abhängigkeit von der Urandichte	43

Abb. 5-1:	Kritische Kugelmassen für homogene Urandioxid-Systeme mit 1 Gew% Restfeuchte bei Anreicherungen von 7 und 8 Gew% ²³⁵ U	49
Abb. 5-2:	Kritische Kugelvolumina für homogene Urandioxid-Systeme mit 1 Gew% Restfeuchte bei Anreicherungen von 7 und 8 Gew% ²³⁵ U	50
Abb. 5-3:	Kritische Zylinderdurchmesser für homogene Urandioxid-Systeme mit 1 Gew% Restfeuchte bei Anreicherungen von 7 und 8 Gew% ²³⁵ U	51
Abb. 5-4:	Kritische Schichtdicken für homogene Urandioxid-Systeme mit 1 Gew% Restfeuchte bei Anreicherungen von 7 und 8 Gew% ²³⁵ U	52
Abb. 5-5:	Kritische Kugelmassen für homogene Urandioxid-Systeme mit 2 Gew% Restfeuchte bei Anreicherungen von 5, 6, 7 und 8 Gew% ²³⁵ U	53
Abb. 5-6:	Kritische Kugelvolumina für homogene Urandioxid-Systeme mit 2 Gew% Restfeuchte bei Anreicherungen von 5, 6, 7 und 8 Gew% ²³⁵ U	54
Abb. 5-7:	Kritische Zylinderdurchmesser für homogene Urandioxid-Systeme mit 2 Gew% Restfeuchte bei Anreicherungen von 5, 6, 7 und 8 Gew% ²³⁵ U	55
Abb. 5-8:	Kritische Schichtdicken für homogene Urandioxid-Systeme mit 2 Gew% Restfeuchte bei Anreicherungen von 5, 6, 7 und 8 Gew% ²³⁵ U	56
Abb. 5-9:	Kritische Kugelmassen für homogene Urandioxid-Systeme mit 3 Gew% Restfeuchte bei Anreicherungen von 5, 6, 7 und 8 Gew% ²³⁵ U	57
Abb. 5-10:	Kritische Kugelvolumina für homogene Urandioxid-Systeme mit 3 Gew% Restfeuchte bei Anreicherungen von 5, 6, 7 und 8 Gew% ²³⁵ U	58
Abb. 5-11:	Kritische Zylinderdurchmesser für homogene Urandioxid-Systeme mit 3 Gew% Restfeuchte bei Anreicherungen von 5, 6, 7 und 8 Gew% ²³⁵ U	59
Abb. 5-12:	Kritische Schichtdicken für homogene Urandioxid-Systeme mit 3 Gew% Restfeuchte bei Anreicherungen von 5, 6, 7 und 8 Gew% ²³⁵ U	60
Abb. 5-13:	Kritische Kugelmassen für homogene Urandioxid-Systeme mit 5 Gew% Restfeuchte bei Anreicherungen von 5, 6, 7 und 8 Gew% ²³⁵ U	61

Abb. 5-14:	Kritische Kugelvolumina für homogene Urandioxid-Systeme mit	
	5 Gew% Restfeuchte bei Anreicherungen von 5, 6, 7 und 8 Gew%	
		. 62
Abb. 5-15:	Kritische Zylinderdurchmesser für homogene Urandioxid-Systeme mit	
	5 Gew% Restfeuchte bei Anreicherungen von 5, 6, 7 und 8 Gew% ²³⁵ U	.63
Abb. 5-16:	Kritische Schichtdicken für homogene Urandioxid-Systeme mit	
	5 Gew% Restfeuchte bei Anreicherungen von 5, 6, 7 und 8 Gew%	. 64
Abb. 5-17:	Materialverteilung einer kritischen Kugel aus UO ₂ mit 7 Gew% ²³⁵ U, Restfeuchte 5 Gew% und 30 cm Wasserreflektor	. 66
Abb. 5-18:	Neutronenflussverteilung einer kritischen Kugel aus UO ₂ mit 7 Gew% 235 U, Restfeuchte 5 Gew% und 30 cm Wasserreflektor	.67
Abb. 5-19:	Verteilung des Spaltquerschnitts von 235 U einer kritischen Kugel aus UO ₂ mit 7 Gew% 235 U, Restfeuchte 5 Gew% und 30 cm Wasserreflektor	. 68
Abb. 5-20:	Verteilung des Spaltquerschnitts von 238 U einer kritischen Kugel aus UO ₂ mit 7 Gew% 235 U, Restfeuchte 5 Gew% und 30 cm Wasserreflektor	. 69
Abb. 5-21:	Verteilung des totalen Wirkungsquerschnitts von ²³⁸ U einer kritischen Kugel aus UO ₂ mit 7 Gew% ²³⁵ U, Restfeuchte 5 Gew% und 30 cm Wasserreflektor	.70
Abb. 5-22:	Verteilung des totalen Wirkungsquerschnitts von 1 H einer kritischen Kugel aus UO ₂ mit 7 Gew% 235 U, Restfeuchte 5 Gew% und 30 cm Wasserreflektor	.71
Abb. 5-23:	Verteilung des totalen Wirkungsquerschnitts von 16 O einer kritischen Kugel aus UO ₂ mit 7 Gew% 235 U, Restfeuchte 5 Gew% und 30 cm Wasserreflektor	.72
Abb. 5-24:	Aufbau der Maracas-Experimentanordnung /MAR 06/	.74
Abb. 5-25:	Querschnitt durch die KENO3D Darstellung der Modellierung von LEU-COMP-THERM-049 Konfiguration 5 in KENO Va	.75
Abb. 5-26:	Querschnitt durch die KENO3D Darstellung der Modellierung von LEU-COMP-THERM-049 Konfiguration 6 in KENO Va	.76

Abb. 5-27:	Querschnitt durch die KENO3D Darstellung der Modellierung von LEU-COMP-THERM-049 Konfiguration 7 in KENO Va	76
Abb. 5-28:	Querschnitt durch die KENO3D Darstellung der Modellierung von LEU-COMP-THERM-049 Konfiguration 8 in KENO Va	77
Abb. 5-29:	Sensitivitätsprofile für 235 U-Spaltung, 238 U-Einfang und 1 H-total bei einer Kugel aus UO ₂ mit 5 Gew% Anreicherung und 5 Gew% Restfeuchte unter voller Reflexion.	81
Abb. 5-30:	Sensitivitätsprofile für ²³⁵ U-total, ²³⁵ U-Spaltung, ²³⁵ U-Einfang und ²³⁵ U- Streuung bei einer Kugel aus UO ₂ mit 5 Gew% Anreicherung und 5 Gew% Restfeuchte unter voller Reflexion.	82
Abb. 5-31:	Sensitivitätsprofil von ²³⁵ U-Spaltung bei einer Kugel aus UO ₂ mit 5 Gew% Anreicherung und 5 Gew% Restfeuchte unter voller Reflexion, sowie bei dem Benchmark-Experiment LEU-COMP-THERM- 049 Fall 5.	83
Abb. 5-32:	Anzahl der Benchmark-Experimente mit $c_{K} > 0,8$ für alle Anwendungs- systeme	84
Abb. 5-33:	Integralwerte c_{K} einer Kugel aus UO ₂ mit 5 Gew% Anreicherung und 5 Gew% Restfeuchte unter voller Reflexion im Vergleich zu 24 Benchmark-Experimenten.	88
Abb. 5-34:	Trendanalyse für das Anwendungssystem 3, Kugel UO ₂ mit 5% 235 U, Restfeuchte 5%, und 30 cm Wasserreflektor	89
Abb. 6-1:	Kritische Kugelmassen homogener Urandioxid-Wasser-Systeme	93
Abb. 6-2:	k _{inf} für homogene UO2-Pulver mit und ohne Restfeuchte in Abhängigkeit vom Anreicherungsgrad.	94
Abb. 6-3:	Kritische Kugelmasse für homogene Urantrioxid-Wasser-Mischung	95

Tabellenverzeichnis

Tab. 3-1:	Auflistung der Anwendungsfälle für die S/U-Analysen mit TSUNAMI, mit Urankonzentration und Moderationsverhältnis H/U _{tot} bzw. H/ ²³⁵ U
Tab. 3-2:	S/U-Parameter der 12 Anwendungssysteme im Vergleich zu dem Satz aus 52 Benchmarkexperimenten
Tab. 5-1:	Tabellarischer Vergleich der kritischen Kugelradien für homogene Urandioxid-Wasser-Systeme mit 7 Gew% Anreicherung und 1 Gew% Restfeuchte, die mit unterschiedlichen SCALE Versionen, Resonanzbehandlungsverfahren und Wirkungsquerschnitten berechnet wurden. 46
Tab. 5-2:	Zusammenfassung der kleinsten kritischen Parameter, des Moderationsverhältnisses und der Urandioxiddichte für schwach moderierte, niedrig angereicherte Urandioxid-Wasser-Systeme
Tab. 5-3:	Berechnete Werte $K_{eff} \pm 1\sigma$ für die 18 Konfigurationen der Maracas- Experimente /MAR 06/ im Vergleich
Tab. 5-4:	Liste der in dieser Arbeit validierten schwach moderierten Urandioxid- Systeme (Anwendungssysteme)
Tab. 5-5:	Validierung von Anwendungssystem 3 (Kugel UO ₂ 5 % ²³⁵ U, Restfeuchte 5 %, 30 cm Wasserreflektor) durch 24 Benchmark-Experimente mittels TSUNAMI
Tab. 5-6:	Vergleichsrechnungen zu den kleinsten kritischen Kugelmassen schwach moderierter, niedrig angereicherter Urandioxidsysteme mit XSDRN und MCNP590
Tab. 6-1:	Kritische Volumina und Massen für heterogene UO2-Systeme96
Tab. 6-2:	Kritische Volumina und Massen für homogene Uran-Graphit-Systeme (18,6% ²³⁵ U)
Tab. B-1:	Kritikalitätsdaten für ein homogenes Urandioxid-Wasser-System mit einer ²³⁵ U-Anreicherung von 6 Gew% in Abhängigkeit von der Urandichte bei vollständiger Wasserreflektion

Tab. B-2:	Kritikalitätsdaten für ein homogenes Urandioxid-Wasser-System mit einer ²³⁵ U-Anreicherung von 7 Gew% in Abhängigkeit von der Urandichte bei vollständiger Wasserreflektion
Tab. B-3:	Kritikalitätsdaten für ein homogenes Urandioxid-Wasser-System mit einer ²³⁵ U Anreicherung von 8 Gew% in Abhängigkeit von der Urandichte bei vollständiger Wasserreflektion
Tab. B-4:	Vergleich der mit XSDRNPM und MCNP4B ermittelten Multiplikationsfaktoren für kritische voll reflektierte Kugelgeometrien mit homogenen Urandioxid-H ₂ O-Systemen bei Anreicherungen mit 7 und 8 Gew% ²³⁵ U
Tab. B-5:	Vergleich der mit XSDRNPM und MCNP4B ermittelten Multiplikationsfaktoren für kritische voll reflektierte Zylindergeometrien mit homogenen Urandioxid-H ₂ O-Systemen bei Anreicherungen mit 7 und 8 Gew% ²³⁵ U
Tab. B-6:	Vergleich der mit XSDRNPM und MCNP4B ermittelten Multiplikations- faktoren für kritische voll reflektierte Schichtgeometrien mit homogenen Urandioxid-H ₂ O-Systemen bei Anreicherungen mit 7 und 8 Gew% ²³⁵ U.114

1 Einführung

Dieser Bericht fasst die durchgeführten Aktualisierungen kritischer Parameter im deutschen Handbuch zur Kritikalität /HEI 98/ zusammen. Die Notwendigkeit zur Überprüfung und ggf. Aktualisierung der teils vor mehr als 35 Jahren berechneten kritischen Parameter ergibt sich zum einen aus den heute geänderten Randbedingungen bei der Handhabung von Spaltmaterial, z. B. bedingt durch die Verwendung höherer Anreicherungen, zum anderen durch neue verbesserte Datenbibliotheken und Rechenverfahren, die genauere Abschätzungen der kritischen Parameter erlauben und das Aufdecken von eventuellen nicht-konservativen Werten bei einzelnen kritischen Parametern ermöglichen. Im Einzelnen werden in diesem Bericht die Berechnungen zu Systemen aus wässriger Uranylfluoridlösung, homogenen Urandioxid-Wasser-Systemen und schwach moderierten Urandioxid-Wasser-Systemen wiedergegeben.

Uranylfluorid UO₂F₂ entsteht in einer stark exothermen chemischen Reaktion, wenn UF₆ mit Wasser in Berührung kommt. Ist dabei Wasser in ausreichender Menge verfügbar, entsteht wässrige Uranylfluoridlösung. Dies kann z. B. beim Reinigen von nicht vollständig entleerten UF₆-Behältern der Fall sein. Für Analysen zur Kritikalitätssicherheit von Anreicherungsanlagen werden daher auch Kritikalitätsdaten von UO₂F₂-Wasser-Systemen benötigt. Wichtige Parameter sind dabei die kritische Masse und der kritische Zylinderdurchmesser, die bei gegebenem Anreicherungsgrad in Abhängigkeit vom Moderationsverhältnis bzw. der Urankonzentration berechnet werden.

Eine wichtige Eingangsgröße in Kritikalitätsrechnungen für Uranylfluoridlösung ist die hier näher untersuchte Dichterelation, die einen Zusammenhang zwischen der Urankonzentration und dem Moderationsverhältnis H/U herstellt. Während der Dichtebereich von Lösungen in der Regel durch empirische Näherungen gut beschrieben wird, müssen für die Dichterelationen im Bereich zwischen gesättigter Lösung und Feststoff meist Annahmen getroffen werden, die im Fall von Uranylfluorid zu deutlich unterschiedlichen kritischen Daten führen können. Dabei ist insbesondere der Moderationsbereich jenseits der Löslichkeitsgrenze wegen fehlender Messdaten nicht eindeutig bestimmt. In der internationalen Literatur werden unterschiedliche Ansätze zur rechnerischen Bestimmung der Dichte von UO₂F₂-H₂O-Systemen verfolgt /HEI 98/, /MAU 78/, /NAI 95/, /JOR 92/. Während die Unterschiede zwischen den verschiedenen Methoden bei Konzentrationen unterhalb der maximalen Löslichkeit von UO₂F₂ in Wasser vergleichsweise gering sind, gibt es beim Übergang von der Lösung über Sus-

1

pensionen bis hin zu feuchten, hydrierten und trockenen Kristallen zum Teil deutliche Diskrepanzen in den Uran- und Gesamtdichten bei gegebenem Moderationsverhältnis.

Niedrig angereichertes Urandioxid stellt heute nach wie vor den wichtigsten Kernbrennstoff für Leistungsreaktoren zur kommerziellen Stromerzeugung dar und wird in entsprechend großen Mengen hergestellt. Aus diesem Grund ist eine hohe Aktualität von kritischen Parametern im Handbuch zur Kritikalität für sämtliche Urandioxid-Wasser-Systeme wichtig. Da die Tendenz weltweit zu steigenden Anreicherungen geht, künftig möglicherweise sogar über 5 Gew.-%²³⁵U hinaus, wurden mit aktuellen Verfahren Kurven für homogene Urandioxid-Wasser-Systeme mit 6, 7 und 8 %²³⁵U-Anreicherung berechnet und validiert, die in Band II des Handbuchs aufgenommen wurden.

Beim Herstellungsverfahren von Urandioxid-Brennelementen werden dem pulverigen Urandioxid organische Additive zugegeben, welche die Formstabilität beim Pressen der Brennstofftabletten für die der Sinterung und eine geeignete Porosität der Tabletten gewährleisten sollen. Diese Additive enthalten Wasserstoff, der so vorübergehend eine schwache Moderation in das Dioxid-Pulver einbringt und die Reaktivität gegenüber dem trockenen Pulver erhöht. Um auch diese Systeme, die im Handbuch zur Kritikalität bislang weitgehend unberücksichtigt geblieben sind, abzudecken, wurden im Rahmen des Vorhabens SR 2536 neu berechnete und validierte Parameterkurven für homogene Urandioxid-Systeme mit Wasser in Form von "Restfeuchte" als Moderationsäquivalent und ²³⁵U-Anreicherungen von 5, 6, 7 und 8 % in das Handbuch zur Kritikalität, Datenband II, aufgenommen.

Im Rahmen der Qualifizierung der kritischen Parameterkurven müssen diese Kurven anhand von kritischen Experimenten validiert werden. Auf internationaler Ebene gewinnt dabei die Anwendung von Sensitivitäts- und Unsicherheitsanalysen (S/U) zunehmend an Bedeutung, insbesondere in Anwendungsfällen, für die keine oder nur wenige direkt vergleichbare kritischen Experimente vorliegen. Auf diesem Feld stellt die Kontrollsequenz TSUNAMI als Bestandteil des aktuellen Codepakets SCALE ab Version 5.0 einen neuen, benutzerfreundlichen Ansatz zur Realisierung derartiger Untersuchungen, die auch im Rahmen der hier vorgestellten Berechnungen durchgeführt wurden, dar. Mit den Sequenzen TSUNAMI-1D und TSUNAMI-3D können für jedes spaltstoffhaltige System energieabhängige Sensitivitätsprofile für jedes Nuklid und jede Nuklidreaktion (Spaltung, Absorption, Streuung) erstellt werden. Diese können durch grafische Anschauung und insbesondere quantifizierbar durch das Modul TSUNAMI-IP miteinander vergleichen werden. Durch diesen Vergleich kann ein Satz an Benchmarkexperimenten identifiziert werden, durch den ein Anwendungssystem validiert werden kann, sowie der Grad der Abdeckung der Anwendung durch den Satz an Experimenten im Detail festgestellt werden. Schwachpunkte in der Abdeckung können so erkannt und durch geeignete Erweiterung des Satzes an Benchmarksystemen behoben oder zumindest abgemildert werden. In klassischen Trendanalysen können die S/U-Parameter E_{sum} und c_k übliche Parameter wie Moderationsverhältnis oder mittlere Spaltungslethargie ergänzen und einen zusätzlichen Informationsgewinn bewirken. Hierbei muss deutlich hervorgehoben werden, dass diese S/U-Analysen keinen Ersatz sondern eine Ergänzung zu den klassischen Validierungsmethoden der Kritikalitätssicherheitsanalyse darstellen.

International ist TSUNAMI inzwischen eine anerkannte und häufig eingesetzte Methode zur Unterstützung von Kritikalitätssicherheitsanalysen, sowie bei der gezielten Planung neuer kritischer Experimente zur Erweiterung der Abdeckung unterschiedlichster Anwendungssysteme /REA 02/, /MUE 05b/.

2 Rechenmethoden

2.1 Uranylfluorid

Basierend auf der Erkenntnis, dass die bisher im Handbuch zur Kritikalität verwendete Dichterelation (Restwasserauffüllung) für wässrige UO₂F₂-Systeme zu niedrigen k-Werten und damit zu einer Unterschätzung der kritischen Parameter führen kann (siehe auch Kapitel 3.1), wurden die Kurven für die kritischen Parameter von wässrigen UO₂F₂-Systemen unter voller Wasserreflexion (30 cm) für Anreicherungen von 3, 4, 5 und 6 Gew.-% ²³⁵U neu gerechnet. Zu Grunde gelegt wurde die Dichterelation der additiven molaren Volumina nach /JOR 92/ wegen ihrer Konservativität, ohne realitätsfern hinsichtlich von Solvationsvorgängen zu sein. Berechnet wurden kleinste kritische Kugelmassen, Kugelvolumina, Zylinderdurchmesser und Schichtdicken in Abhängigkeit der Urankonzentration in Lösung.

Die neu gerechneten kritischen Daten wurden mit dem sogenannten "Eigenvalue-Search-Modus" des Codes XSDRN und der auf ENDF/B-V basierten Bibliothek 238GROUPNDF5 aus dem Codepaket SCALE 4.4a /SCA 00/ bestimmt. Punktuell wurden vergleichende Testrechnungen bei einzelnen Konzentrationen, vor allem bei denjenigen der jeweils kleinsten kritischen Parameter für alle Anreicherungen, mit SCALE 5.0 (CSAS1X und CSAS25) sowie mit MCNP4C2 durchgeführt. Für jeden der betrachteten Fälle konnte k = 1,0 bis auf 2 ‰ genau reproduziert werden.

2.2 Homogene Urandioxid-Wasser-Systeme

Die Berechnungen der Kritikalitätsdaten für homogene Urandioxid-Wasser-Systeme wurden mit dem Programmsystem SCALE 4.3 /SCA 95/ unter Verwendung des eindimensionalen Transportcodes XSDRNPM im Zonen-Suchmodus ('Delta-Search') durchgeführt. Damit wurden die kritischen Kugelradien, Durchmesser von infiniten Zylindern und die kritischen Dicken von infiniten Schichten des jeweiligen homogenen Mischsystems in Abhängigkeit von der Urandichte ermittelt. Die Spaltstoffoberfläche war in allen Fällen von einem 30 cm dicken Wasserreflektor bedeckt. Bei diesen Rechnungen war die Spaltstoffzone in 80 und die Reflektorzone in 30 Ortsintervalle unterteilt. Das Konvergenzkriterium für die Bestimmung der k-Werte lag bei 1×10⁻⁴. Die Streuung wurde in der P₃/S₈-Näherung behandelt. Für die Rechnungen wurde die auf ENDF/B-V Daten

basierende SCALE-Wirkungsquerschnittsbibliothek mit 44 Energiegruppen (44GROUPNDF5) verwendet.

Zur Verifikation wurden einige der so bestimmten Kritikalitätsdaten unter Verwendung anderer Wirkungsquerschnittsbibliotheken, Rechenverfahren und Programme überprüft. Bei der ersten dieser Möglichkeiten wurde das bereits beschriebenen Zonen-Such-Verfahren mit einer ebenfalls auf ENDF/B-V Daten fußenden 238-Gruppen-Wirkungsquerschnittsbibliothek (238GROUPNDF5) wiederholt; die mit unterschiedlichen Wirkungsquerschnittsbibliotheken ermittelten Kritikalitätsdaten können unmittelbar miteinander verglichen werden. Bei den anderen beiden Möglichkeiten wurde mit den berechneten Kritikalitätsdaten das zugehörige Geometriemodell (voll reflektierte Kugel, infiniter Zylinder oder infinite Schicht) aufgebaut und der zugehörige effektive Multiplikationsfaktor berechnet; dies wurde sowohl mit dem Transportcode XSDRNPM aus SCALE als auch mit dem Monte Carlo-Programm MCNP4B /BRI 97/ durchgeführt. Den letzteren Rechnungen lagen Punktwirkungsquerschnittsdaten (hauptsächlich basierend auf ENDF/B-VI Daten) zu Grunde. Bei den Monte-Carlo-Rechnungen wurden 220 Neutronengenerationen mit jeweils 6000 Neutronen gestartet, wobei die ersten 20 Neutronengenerationen bei der Ermittlung des Multiplikationsfaktors keine Berücksichtigung fanden.

2.3 Schwach moderiertes Urandioxid

Für die Kritikalitätsrechnungen wurden die Programme XSDRN (CSAS1) und KENO Va (CSAS25) aus dem Codepaket SCALE /SCA 06/ eingesetzt. Bedingt durch den langen Zeitraum, über den sich die fortlaufende Aktualisierung der Handbuch-Daten bezüglich des Urandioxids erstreckte, kamen je nach aktueller Verfügbarkeit die Versionen 4.4a, 5.0 und 5.1 zum Einsatz.

Die kritischen Parameterkurven wurden mit dem deterministischen eindimensionalen S_N-Code XSDRN im sogenannten "Eigenvalue-Search-Modus" durchgeführt, wobei das in der GRS entwickelte Zusatzmodul XSDRNMOD die Übertragung von Kernzahldichten aus einer CSAS1-Rechnung, die den Eigenvalue-Search nicht direkt unterstützt, in den eigentlichen XSDRN beträchtlich erleichterte (in SCALE 5.1 wird der Eigenvalue-Search auch direkt unterstützt). Verwendet wurden im Laufe der Zeit unterschiedliche Querschnittsbibliotheken (ENDF/B-V basierte 44 und 238 Gruppen-Bibliotheken, ENDF/B-VI basierte 238 Gruppen-Bibliotheken) und Resonanzbehandlungs-

5

verfahren (BONAMI sowie NITAWL-II und III, und CENTRM). Da nicht alle Kurven mit allen Kombinationen und insbesondere nicht alle Kurven mit dem allerneuesten Verfahren gerechnet wurden bzw. werden konnten, wurden an einzelnen Punkten der Parameterkurven stichprobenartig die K-Werte durch Nachrechnung mit anderen Verfahren verifiziert und auf Konsistenz überprüft. In den Kapiteln 5.1 (SCALE) und 5.4.2 (MCNP5 /MCN 06/) sind einige dieser Überprüfungen wiedergegeben.

Für die Validierungsrechnungen anhand von Benchmark-Experimenten wurde der Monte Carlo Code KENO Va aus SCALE herangezogen, der sich zwar von XSDRN unterscheidet, jedoch wurden für beide Transportcodes jeweils identische Querschnittsbibliotheken (ENDF/B-V basierte 44 und 238 Gruppen-Bibliotheken, ENDF/B-VI basierte 238 Gruppen-Bibliotheken) und Resonanzbehandlungsverfahren (BONAMI sowie NITAWL-II und III, und CENTRM) verwendet. Entsprechende Vergleichsrechnungen für die Experimente der Reihe LEU-COMP-THERM-049 (Maracas) /MAR 06/ sind in Kapitel 5.4 dokumentiert.

2.4 Sensitivitäts- und Unsicherheitsanalysen mit TSUNAMI

Bei der Validierung von Anwendungssystemen anhand von Benchmarkexperimenten müssen systematische Unsicherheiten bei der k-Berechnung durch das verwendete Rechensystem (sog. Bias) berücksichtigt werden. Zur Bestimmung dieses Bias gibt es eine ganze Reihe von Methoden, die sich allesamt mehr oder weniger auf die Einschätzung eines erfahrenen Kritikalitätsexperten stützen, der für die Anwendung geeignete Benchmarkexperimente hinsichtlich unterschiedlicher Kriterien auswählt. Dazu gehören Parameter wie das Moderationsverhältnis H/U bzw. H/X, die mittlere Neutronenenergie bei der Spaltung stattfindet ("average energy causing fission"), die Anreicherung, die Urankonzentration, das Neutronenspektrum und mehr, mir denen vor allem versucht wird die reaktivitätsbestimmenden Komponenten des Spaltsystems, also Spaltstoffe, Absorber und Moderatoren, sowie die relevanten Teile des Neutronenspektrums, zu erfassen.

Eine von mehreren Methoden ist die Trendanalyse, bei der die k-Werte verschiedener Benchmarkexperimente in Abhängigkeit je eines dieser Parameter aufgetragen werden und durch linearen Fit der Bias $\Delta k = k_{fit} - 1$ für den Parameterwert der Anwendung feststellt wird. Einen guten Überblick über weitere, auch ausgefeiltere Methoden geben z. B. /BRO 99a/, /HOP 00/ oder vor allem /BRO 04/. Für die Auswahl geeigneter Benchmarkexperimente zur Validierung und für die Durchführung solcher Trendanalysen steht mit den Moduln TSUNAMI und TSUNAMI-IP aus dem SCALE-Pakt seit Version 5 ein benutzerfreundliches Werkzeug zur Verfügung.

2.4.1 Sensitivitäts- und Unsicherheitsparameter eines kritischen Systems

Für die Durchführung von Sensitivitäts- und Unsicherheitsanalysen (S/U) von spaltstoffhaltigen Systemen stehen in SCALE ab Version 5.0 mit TSUNAMI-1D und -3D zwei unterschiedliche Kontrollsequenzen zur Verfügung. Beide errechnen, basierend auf der Methode der Störungstheorie erster Ordnung, durch direkte und adjungierte Berechnung den Eigenwert des Systems sowie Sensitivität und Unsicherheit von k aus Varianzen und Kovarianzen der Wirkungsquerschnitte, bezüglich einzelner Nuklide und Reaktionstypen (Spaltung, Absorption, usw.) in 44 Energiegruppen. Dabei nutzt TSUNAMI-1D eine speziell erweiterte Version des deterministischen eindimensionalen Transportcodes XSDRNPM, und TSUNAMI-3D eine entsprechende Version des dreidimensionalen Monte Carlo Codes KENO Va. Beide Varianten nutzen zur Erzeugung der Wirkungsquerschnitte eigens für diesen Zweck erweiterte Varianten der bekannten Codes BONAMI und NITAWL, nämlich BONAMIST und NITAWLST, welche zur Prozessierung der Kovarianzdaten in der Querschnittsbibliothek in der Lage sind.

Sensitivitätsrechnungen mit TSUNAMI erzeugen energieabhängige Sensitivitätswerte (Sensitivitätsprofile), welche die relativen Änderungen im k-Wert des Systems als Funktion der relativen Änderungen in den Wirkungsquerschnitten pro Energiegruppe wiedergeben. Unsicherheitsanalysen liefern eine Abschätzung der Unsicherheit im k-Wert eines Systems, hervorgerufen durch Unsicherheiten in den Wirkungsquerschnitten, und liefern Zusammenhänge in den Unsicherheiten in k beim Vergleich verschiedener Systeme.

Abb. 2-1 zeigt exemplarisch die Sensitivität von k (pro Einheit Lethargie als Normierung) auf die energieabhängigen totalen Querschnitte von ²³⁵U für fünf kritische Experimente mit Uranylfluorid in Wasser (Kugelgeometrie) in unterschiedlichen Konzentrationen, Reflektoren und Anreicherungen. Alle Systeme besitzen ein thermalisiertes Neutronenspektrum.

Abb. 2-1: Sensitivität von k_{eff} auf den totalen Wirkungsquerschnitt von ²³⁵U in Abhängigkeit der Energiegruppe für fünf ausgewählte kritische UO₂F₂-Wasser-Experimente.

Die Linien in den Farben blau, rot, grün und gelb gehören zu Systemen mit etwa 5 Gew.-% Anreicherung von ²³⁵U. Man sieht die deutlich ausgeprägte Sensitivität dieser Systeme auf die energieabhängigen Spaltquerschnitte im thermischen Energiebereich um 0,0625 eV, sowie eine in dieser Darstellung kaum erkennbare Sensitivität in den anderen Energiebereichen. Dagegen gehört die Linie in der Farbe Magenta zu einem hoch angereicherten System mit 93,5 Gew.-% ²³⁵U. Hier ist die Sensitivität von k im thermischen Bereich gegenüber den niedrig angereicherten Systemen deutlich reduziert; dafür erkennt man eine negative Sensitivität im schnellen Bereich des Neutronenspektrums durch einen vergleichsweise hohen Schnellspaltanteil.

Generell lässt sich sagen, dass eine positive Sensitivität auf eine reaktivitätserhöhende Wirkung dieses Querschnitts (für dieses Nuklid, diese Reaktion, in diesem Energiebereich) hinweist, während eine negative Sensitivität auf eine reaktivitätsverringernde Wirkung hinweist.

Rein anschaulich erkennt man in **Abb. 2-1** die hohe Ähnlichkeit der vier niedrig angereicherten, wässrigen UO₂F₂-Systeme, sowie die Andersartigkeit hinsichtlich der Sensitivität der Wirkungsquerschnitte des hoch angereicherten Systems. Diese Darstellungsweise liefert erste wertvolle Erkenntnisse zur neutronischen Vergleichbarkeit zweier Systeme, ist so aber schwer quantifizierbar. Zudem muss dieser Vergleich für alle Nuklide (hier: ²³⁵U, ²³⁸U, ¹⁶O, ¹⁹F, ¹H) und alle Nuklidreaktionen (Spaltung, Absorption, elastische und inelastische Streuung) parallel durchgeführt werden. Für eine größere Anzahl an Systemen (Experimenten, Anwendungssystemen) ist dies nur mit hohem Aufwand durchzuführen und darüber hinaus kaum mehr überschaubar. Zu diesem Zweck wurde ein entsprechender Vergleichsalgorithmus in SCALE 5.0 aufgenommen, der eine beliebige Anzahl an Systemen quantifizierbar miteinander vergleichen kann. Die entsprechende Kontrollsequenz TSUNAMI-IP und ihre Ergebnisse werden im nächsten Abschnitt besprochen.

2.4.2 Der Vergleich zweier Systeme mit TSUNAMI-IP

Mit TSUNAMI-1D/-3D lassen sich S/U-Parameter für einzelne Systeme errechnen und mit der Kontrollsequenz TSUNAMI-IP anwenderfreundlich untereinander oder mit einem Benchmarkexperiment vergleichen. TSUNAMI-IP errechnet aus den vorgegebenen Systemen eine Reihe von integralen Indices, deren Werte unterschiedliche Auskünfte über Ähnlichkeiten und Unterschiede zwischen den beiden Systemen liefern. Für die theoretische Herleitung dieser Indices sei auf weiterführende Literatur, z. B. /REA 02/ oder /BRO 04/, verwiesen.

Im Folgenden sind die wichtigsten integralen Parameter mit ihrer Bedeutung aufgelistet. Empfohlene Werte, die mehr als Richtlinie denn als bindend aufzufassen sind, sind mit angegeben.

• Integraler Index c_k

Misst die Ähnlichkeit zweier Systeme in Bezug auf die integrale energieabhängige Unsicherheit der Wirkungsquerschnitte auf k_{eff}.

Mögliche Werte: 0 (völlig verschieden) $\leq c_k \leq 1$ (identisch).

(Mathematisch sind auch die physikalisch sinnlosen Werte $-1 \le c_k < 0$ möglich.) Validierungsempfehlung: 15-20 Experimente mit $c_k \ge 0,9$ pro Anwendersystem, oder 25-40 Experimente mit $c_k \ge 0,8$ pro Anwendersystem.

• Integraler Index E_{sum}

E_{sum} ist ein <u>sensitivität</u>sbasierter integraler Index, er korrespondiert zu der Summe der Produkte der Sensitivitätskoeffizienten für zwei Systeme über alle Energiegruppen und alle Nuklide.

Mögliche Werte: 0 (völlig verschieden) $\leq E_{sum} \leq 1$ (identisch).

(Mathematisch sind auch die physikalisch sinnlosen Werte $-1 \le E_{sum} < 0$ möglich.) Validierungsempfehlung: 15-20 Experimente mit $E_{sum} \ge 0,9$ pro Anwendersystem, oder 25-40 Experimente mit $E_{sum} \ge 0,8$ pro Anwendersystem.

• Integraler Index G ("groß-G")

Der Index G bemisst die Ähnlichkeit zweier Systeme basierend auf normalisierten Differenzen in den energieabhängigen Sensitivitätsdaten für Spaltung, Einfang und Streuung für alle Nuklide. Das Ähnlichkeitsmaß von G basiert auf dem Konzept der <u>Abdeckung einer Anwendung durch ein Experiment</u>. Eine physikalische Interpretation von G ist das Verhältnis der Summe der Sensitivitätskoeffizienten einer Anwendung, welche durch ein Experiment abgedeckt werden, zu der Summe sämtlicher Sensitivitätskoeffizienten der Anwendung.

Mögliche Werte: 0 (völlig nicht abgedeckt) $\leq G \leq 1$ (völlig abgedeckt).

• Nuklid-Reaktionsspezifischer integraler Index g ("klein-g")

Der Nuklid-Reaktionsspezifische integrale (NRsi) Index g entspricht dem Index G, außer dass die Integration über alle Nuklide und Reaktionen entfällt, und g somit ein Maß für die Abdeckung einer <u>Anwendung durch ein Experiment hinsichtlich einer</u> <u>speziellen Nuklid-Reaktion</u>, z. B. ²³⁵U-Spaltung oder ¹⁶O-Streuung, darstellt.

• Nuklid-Reaktionsspezifischer integraler Index T(E)

Der NRsi Index T(E) ist das N.R.-spezifische Analogon zu E_{sum} . Um T(E) zu definieren, führt man eine Hilfsgröße dE ein, welche wie E_{sum} definiert ist, ohne Summation über Nuklide und Reaktionstypen. Die Größe dE bezieht sich somit auf eine System-zu-System bezogene Ähnlichkeit für verschiedene Nuklid-Reaktions-Paare (NRP). Ihre Normierung sorgt dafür, dass dE = 1 wird, wenn ein System mit sich selbst verglichen wird. T(E) ist dann definiert als

$$T(E)_{xeaj} = \frac{dE_{xeaj}}{dE_{xaaj}}$$
(2-1)

mit e Experiment, a Anwendung, x Reaktionstyp, n Nuklid. Anders als die bisher definierten Indices ist T(E) nicht auf den Bereich zwischen 0 und 1 normiert.

Ist der Wert von T(E) < 1, so ist der Einfluss dieses NRP auf k_{eff} im Benchmark-Experiment weniger wichtig für die Sensitivität als in der Anwendung, weshalb dieses Experiment hinsichtlich des betrachteten NRP weniger bzw. nicht zur Validierung geeignet ist. Ist dagegen T(E) \geq 1, so ist dieses NRP in dem Benchmark-Experiment genauso wichtig oder wichtiger als in der Anwendung, weshalb dieses Experiment hinsichtlich des betrachteten NRP zur Validierung geeignet ist.

• Nuklid-Reaktionsspezifischer integraler Index T(c_k)

Analog zu dE lassen sich Indices $d(c_k)$ NRP-spezifisch bezüglich Unsicherheit definieren, die sich ebenso analog zu dem Parameter $T(c_k)$ verbinden lassen. Seine Funktionsweise und Bedeutung ist hinsichtlich Unsicherheit korrespondierend zu T(E) hinsichtlich Sensitivität.

• "Completeness"-Parameter R

Ergänzend wurde ein Parameter definiert, der die "Completeness", also die <u>Voll-</u> ständigkeit eines Satzes von Benchmarkexperimenten hinsichtlich der Abdeckung <u>der Validierung einer bestimmten Anwendung</u> angibt. Diese Abdeckung ist definiert durch den Vergleich der Größe von jedem gruppenweisen Sensitivitätskoeffizienten für die Anwendung in Bezug auf jede der korrespondierenden Sensitivitäten des Satzes an Benchmark-Systemen.

Mögliche Werte: $0 \le R \le 1$.

Achtung: da die Untersuchungen, ab welchem R eine Anwendung als hinreichend abgedeckt betrachtet werden kann, noch nicht abgeschlossen sind, stellt die Größe von R bisher lediglich einen relativen Wert dar, wobei gilt: je höher desto besser.

Systeme können immer nur paarweise miteinander verglichen werden. TSUNAMI-IP verlangt deshalb nach einer Liste von Benchmarkexperimenten und einer Liste von Anwendungssystemen, und vergleicht jedes Element der ersten Liste mit jedem Element der zweiten Liste. Neben den einzelnen S/U-Indices für jedes Paar an Benchmark- und Anwendungssystem erstellt TSUNAMI-IP Parameterlisten bezüglich Abdeckung bzw. Nichtabdeckung jedes Anwendungssystems hinsichtlich jedes Nuklid-Reaktionspaares für jede Energiegruppe durch das Benchmarksystem, und liefert so Hinweise darauf, ob der Satz von Benchmarkexperimenten abdeckend zur rechnerischen Validierung der Anwendungssysteme geeignet ist. Mit Hilfe der Indices G und g können außerdem Defizite in der Abdeckung, aufgelöst nach Nuklid, Reaktion und Energiegruppen, identifiziert werden. Mit diesen Informationen kann der Satz an Benchmarkexperimenten gegebenenfalls geeignet erweitert werden, um die Abdeckung in der Validierung zu verbessern bzw. zu vervollständigen.

Da erschöpfende Untersuchungen zur Bewertung der aufgeführten Indices von der Entwicklerseite her noch nicht abgeschlossen sind, können bezüglich der Werte für die Indices, ab denen eine vollständige Abdeckung hinsichtlich der Validierung von Anwendungen zu erwarten ist, lediglich Empfehlungen abgegeben werden /BRO 04/.

In SCALE der Version 5.1 und insbesondere der Version 6 stehen inzwischen weitere, erweiterte und verbesserte Varianten dieser Sensitivitäts- und Unsicherheitsanalysewerkzeuge zur Verfügung, die im Rahmen dieses Vorhabens aus Zeitgründen nicht mehr zum Einsatz kommen konnten.

12

3 Neuberechnung von kritischen Parameterkurven für Uranylfluorid

3.1 Dichterelation für Uranylfluorid

3.1.1 Chemische und physikalische Eigenschaften von Uranylfluorid

Uranylfluorid (UO₂F₂), auch Uranoxifluorid genannt, ist ein Zwischenprodukt bzw. ein meist unerwünschtes Nebenprodukt bei der Konversion von Uranhexafluorid (UF₆) zu Urandioxid (UO₂) oder metallischem Uran. Es entsteht bei Kontakt von UF₆ mit Wasser oder Luftfeuchtigkeit in einer exothermen Reaktion nach der Reaktionsgleichung

$$UF_6 + 2 H_2O \rightarrow UO_2F_2 + 4 HF.$$

Die maximale theoretische Trockendichte von UO_2F_2 beträgt 6,37 g/cm³ /JOH 53/, was einer Uranpartialdichte von 4,96 gU/cm³ entspricht. Seine molare Masse beträgt 307,88 g/mol bei einer Urananreicherung von 5 Gew.-% ²³⁵U /SCA 00/.

An trockener Luft und bei Raumtemperatur ist Uranylfluorid stabil. Bei höheren Temperaturen zersetzt es sich bei Sauerstoffeinwirkung unter Freisetzung giftiger Fluordämpfe zu U_3O_8 /DOE 03/, gemäß

$$3 \text{ UO}_2\text{F}_2 + \text{O}_2 \rightarrow \text{U}_3\text{O}_8 + 3 \text{ F}_2.$$

 UO_2F_2 ist gut wasserlöslich. Die maximale Löslichkeit der dehydrierten Form in Wasser beträgt unter Raumbedingungen 1,54 g/cm³, was einer Urankonzentration von 1,19 gU/cm³ in Lösung entspricht. Das Moderationsverhältnis am Punkt maximaler Löslichkeit beträgt H/U = 17,8 /CLA 82/.

Trockenes Uranylfluorid ist hygroskopisch und an Luft nicht brennbar. Bei Kontakt mit Wasser ändert es seine Farbe von einem leuchtenden Orange hin zu Gelb /DOE 03/. Im stabilen hydrierten Zustand als $UO_2F_2 \cdot 2H_2O$ besitzt Uranylfluorid eine Dichte von 4,76 g/cm³, was einer Uranpartialdichte von 3,3 gU/cm³ entspricht. Diese hydrierte Form besitzt das Moderationsverhältnis H/U = 4. Im Moderationsbereich 0 < H/U < 4 existieren Gemische von Kristallen unterschiedlicher Hydrierung /JOR 92/. Auch die hydrierte Form absorbiert unter Volumenzunahme weitere Feuchtigkeit und beginnt ab H/U ≥ 16 zu zerfließen /WYA 98/.

3.1.2 Dichterelationen

Es existieren mehrere unterschiedliche Ansätze zur Bestimmung der Dichte eines UO_2F_2 -Wasser-Gemisches:

- Die Methode der Restwasserauffüllung. Dieser Ansatz der Volumenaddition der Komponenten eines Gemischs wird bislang im deutschen Handbuch zur Kritikalität /HEI 98/ angewandt.
- Eine empirische Dichteformel f
 ür Lösungen von UO₂F₂ nach Johnson und Kraus /JOH 53/. Auf ihr basieren die verwendeten Lösungsdichten in den Kritikalitätshandbüchern von Frankreich /MAU 78/ und Japan /NAI 95/.
- 3. Das Prinzip des additiven molaren Volumens. Diese Relation wurde von Jordan und Turner am ORNL (USA) eingesetzt /JOR 92/.
- 4. Die Dichterelation der Urenco in Gronau für den Konzentrationsbereich oberhalb gesättigter Lösung /MIL 01/.
- 5. Interpolation über die Restvolumenauffüllung mit gesättigter Lösung im Konzentrationsbereich oberhalb der gesättigten Lösung (eigener Vorschlag).
- Eine im Codepaket SCALE4.4a implementierte, an experimentelle Daten angelehnte Dichterelation /SCA 00/, sowie eine lineare Dichteformel, die in einem früheren SCALE-Paket Verwendung fand /PET 99/.

Um die nachfolgende Beschreibung zu erleichtern, werden die angesprochenen Relationen vorab in einer Übersichtsgrafik (Abb. 3-1) vorgestellt. Grau dargestellt ist der Bereich der Moderationsverhältnisse, bei denen die kleinsten kritischen Massen zwischen 3 und 20 Gew.-% Anreicherung an ²³⁵U auftreten (man beachte die logarithmische Skalierung der x-Achse).

Abb. 3-1: Übersicht über die verschiedenen Dichterelationen für UO₂F₂-Wasser-Systeme in Abhängigkeit vom Moderationsverhältnis H/U.

Restwasserauffüllung

Ein einfacher Ansatz zur rechnerischen Dichtebestimmung eines UO₂F₂-Wassergemisches besteht in der Vorgabe einer Urankonzentration in gU/cm³. Unter der Annahme der theoretischen Dichte von Uranylfluorid von 6,37 g/cm³ ergibt sich aus dem verbleibenden Volumen, welches auf 1 cm³ fehlt, der Wasseranteil des als homogen angenommenen Gemischs. Dieses Verfahren der sogenannten "Restwasserauffüllung" zur Dichtebestimmung liegt den meisten Kritikalitätsdaten im GRS Handbuch zur Kritikalität zugrunde /HEI 98/. Es entspricht anschaulich der Vermischung eines feinpulverisierten, unlöslichen Festkörpers mit einer Flüssigkeit.

Unter diesen Voraussetzungen lässt sich für die Urankonzentration in Lösung folgende Dichteformel ableiten:

$$c(U) = 26,444 \cdot \left(\frac{H}{U} + \frac{34,222}{\rho(\mathsf{UO}_2\mathsf{F}_2)}\right)$$
(3-1)

Die Restwasserauffüllung beinhaltet keine Lösungseffekte und Dichteänderungen, wie sie bei Lösungsvorgängen von Salzen in Wasser typischerweise auftreten. Salze wie UO₂F₂ verlieren jedoch bei Lösungsvorgängen ihre Kristallstruktur und erfahren eine Änderung in den Kernzahldichten. Deshalb kann die Restwasserauffüllung nur als sehr einfache Näherung angesehen werden.

Empirische Dichterelation für Lösungen von UO₂F₂ in Wasser

Im Jahre 1953 veröffentlichten J.S. Johnson und K.V. Kraus eine Dichterelation für Uranylfluorid-Lösungen in Wasser, die sie durch einen Fit an experimentelle Messdaten gewannen /JOH 53/. Auf dieser Relation basieren die Urandichten, die für die Kritikalitätsrechnungen u.a. im französischen /MAU 78/ und im japanischen /NAI 95/ Handbuch zur Kritikalität bezüglich UO_2F_2 in Wasser verwendet werden.

$$\frac{1}{D} = \frac{1}{D_0} + aF_2 + bF_2^2 \tag{3-2}$$

In GI. (3-2) bedeuten *D* die Gesamtdichte der Lösung, D_0 die Dichte des reinen Lösungsmittels Wasser, und F_2 den Gewichtsanteil von UO₂F₂ in der Lösung. Die Parameter *a* und *b* wurden durch einen Fit zu a = -0,9120 und b = 0,0567 bei 25°C bestimmt /JOH 53/. In einer späteren Untersuchung wurden die Werte zu a = -0,9114 und b = 0,0569 bei 20°C /CLA 82/ bestimmt.

Zur Bestimmung des Gewichtsanteils F_2 von UO₂F₂ in der Lösung wird die theoretische Dichte von 6,37 g/cm³ von trockenem Uranylfluorid eingesetzt. Extrapoliert man jedoch Gl. (3-2) zu H/U = 0, also zum wasserfreien Feststoff, so ergibt sich ein Wert von 6,77 g/cm³ für die Dichte von Uranylfluorid, was einer Uranpartialdichte von 5,23 gU/cm³ entspricht. Zu beachten ist dabei, dass diese extrapolierte Dichte nicht die eingesetzte echte Uranylfluoriddichte ist!

Die Fitfunktion wurde aus Messungen an Lösungen gewonnen. Eine Extrapolation über die gesättigte Lösung mit $c(UO_2F_2) = 1,54$ g/cm³ hinaus ist strenggenommen nicht zulässig. Diese Dichterelation wird dennoch als konservativ Einhüllende in /MAU 78/ und /NAI 95/ über den gesamten Bereich bis hin zur (extrapolierten) theoretischen Dichte angewandt.

Parallel dazu kommt im französischen Handbuch eine zweite Relation zum Einsatz, die dem genannten Vorgehen entspricht, jedoch bei der Bestimmung des Parameters F_2 anstatt der theoretischen Urandichte von 4,96 gU/cm³ in UO₂F₂ die geringere Dichte 3,2 gU/cm³ eines Kristalls "UO₂F₂-H₂O Standard" einsetzt /MAU 78/, welche in etwa der Dichte des hydrierten Kristalls UO₂F₂ · 2H₂O (3,3 gU/cm³) entspricht.

Prinzip der additiven molaren Volumina

Eine neuere Methode zur Dichtebestimmung von wässrigen Uranylfluoridsystemen besteht in einer Variation des Prinzips der additiven molaren Volumina, die W.C. Jordan und J.C. Turner 1992 veröffentlichten /JOR 92/. In ihrer allgemeinen Formulierung für Uranlösungen lautet die entsprechende Relation für die Urandichte in Abhängigkeit vom Moderationsverhältnis:

$$\rho_U = \frac{M_U}{\frac{V_{uc}}{N} + \left(\frac{H}{U} - M \cdot Y\right) \cdot \frac{V_M}{M}}$$
(3-3)

In GI. (3-3) bedeuten M_U das Molgewicht von Uran, V_{UC}/N das spezifische molare Volumen der Uranverbindung, V_M/M das spezifische molare Volumen des Lösungsmittels, M die Anzahl an H-Atomen im Lösungsmittel, und Y die Anzahl moderierender Atome in der Uranverbindung. Nähere Erläuterungen finden sich in /JOR 92/. Im Falle des UO_2F_2 geht /JOR 92/ nicht von der theoretischen Dichte 6,37 g/cm³ des trockenen Kristalls aus, sondern von dem hydrierten Kristall $UO_2F_2 \cdot 2H_2O$. Damit wird GI. (3-3) für Uranylfluorid und Wasser zu

$$\rho_U = \frac{238}{\frac{344,057}{4,76} + \left(\frac{H}{U} - 4\right) \cdot \frac{18,016}{2 \cdot 0,9982}} \quad (H/U \ge 4) \tag{3-4}$$

Der Wert 238 in Gl. (3-4) steht stellvertretend für das mittlere Atomgewicht des enthaltenen Urans, welches je nach Anreicherung geringfügig variiert.

Am Ende des Definitionsbereichs bei H/U = 4 liefert GI. (3-4) eine Urankonzentration von 3,29 gU/cm³. Für kleinere Moderationsverhältnisse H/U < 4 ist GI. (3-4) nicht mehr gültig. Im Bereich von $0 \le H/U < 4$ wird stattdessen linear mit H/U zwischen der theoretischen Dichte des wasserfreien UO₂F₂ und der des hydrierten UO₂F₂ · 2H₂O gemäß GI. (3-5) interpoliert:

$$\rho_U = 4,96 - 0,32 \cdot \frac{H}{U} \qquad (H/U < 4) \qquad (3-5)$$

Für H/U = 4 ergibt GI. (3-5) eine Urandichte von 3,68 gU/cm³. Damit kommt es am Berührungspunkt von GI. (3-4) und GI. (3-5) zu einer Diskontinuität der Dichte. Dies ist beabsichtigt, es soll damit der Tatsache Rechnung getragen werden, dass für H/U < 4 eine ganze Reihe von hydrierten UO₂F₂-Salzen in Mischung existiert /JOR 92/.

Urenco Gronau

Die Firma Urenco greift im Konzentrationsbereich der nichtgesättigten Lösungen auf die empirische Dichteformel GI. (3-2) zurück. Im Bereich $3,5 \le H/U \le 17,8$ wird eine lineare Dichteinterpolation zwischen der gesättigten Lösung und einem hydrierten Kristall $UO_2F_2 \cdot 1,75H_2O$ mit der Dichte 3,295 gU/cm³ angenommen. Für noch geringere Moderationsverhältnisse werden keine Angaben gemacht /MIL 01/.

Restvolumenauffüllung mit gesättigter Lösung

In einer einfachen Erweiterung der Restwasserauffüllung wird für Konzentrationen von UO_2F_2 in Wasser, die über der Löslichkeitsgrenze liegen, von einer Restvolumenauffüllung durch gesättigte Lösung anstelle von reinem Lösungsmittel ausgegangen; unterhalb der Sättigungskonzentration greift man auf GI. (3-2), zurück. Für höhere Konzentrationen geht man von einer Menge an festem Uranylfluorid aus, die so gewählt ist, dass eine Volumenauffüllung mit gesättigter Lösung die gewünschte Gesamturankonzentration bzw. das gewünschte Moderationsverhältnis ergibt. So werden im Gegensatz zur Restwasserauffüllung Lösungseffekte berücksichtigt, und zugleich der bei der Extrapolation von GI. (3-2) auf $H \rightarrow 0$ auftretende zu hohe Wert für die theoretische Dichte von UO_2F_2 vermieden.

Dichterelationen im Codesystem SCALE 4.4a

Einen weiteren, nicht näher dokumentierten Weg zur Dichtebestimmung verfolgt das amerikanische Codesystem SCALE 4.4a /SCA 00/. Das Benutzerhandbuch des Codesystems verweist dabei lediglich ohne Literaturreferenz auf experimentelle Daten.

Die Werte für die Lösungsdichte, die danach bestimmt werden, liegen zwischen den entsprechenden Werten der Restwasserauffüllung nach GI. (3-1) und der Dichterelation nach GI. (3-2), wie **Abb. 3-2** zeigt. Insbesondere wird auch hier wie bei der Restwasserauffüllung und der Anwendung von GI. (3-2) die Löslichkeitsgrenze von UO₂F₂ in Wasser nicht gesondert beachtet.

Abb. 3-2: Lösungsdichte von UO₂F₂-Wasser-Systemen nach SCALE4.4a in Abhängigkeit von der Urankonzentration

Eine Antwort von L. Petrie (ORNL) auf eine Forumsanfrage zur verwendeten Dichterelation in SCALE aus dem Jahre 1999 /PET 99/, die einen linearen Zusammenhang nach GI. (3-6) zwischen der Lösungsdichte und der Urankonzentration angibt, muss inzwischen als veraltet angesehen werden, da die mit SCALE 4.4a errechneten Werte für die Lösungsdichte einen nichtlinearen Verlauf aufweisen, wie **Abb. 3-3** zeigt.

$$D = 1,00146 + \left(1 + \frac{30,553}{A}\right) \cdot c_{U}$$
(3-6)

In GI. (3-6) bedeuten *D* die Lösungsdichte, *A* das mittlere Atomgewicht des Urans in der entsprechenden Anreicherung, und c_U die Urankonzentration in Lösung. Der Gültigkeitsbereich dieser Formel ist nicht angegeben, dürfte sich jedoch auf Konzentrationen unterhalb der Sättigung beschränken, wie die folgende **Abb. 3-3** andeutet.

Abb. 3-3: Vergleich der Dichterelationen für UO₂F₂-Wasser-Systeme in SCALE in den Jahren 1999 und 2000

Im Bereich unterhalb der Löslichkeitsgrenze stimmen die beiden Varianten in **Abb. 3-3** gut überein, darüber hinaus weicht die neuere Dichterelation von SCALE 4.4a deutlich vom linearen Verlauf ab.

Diskussion der Dichterelationen

Ein Vergleich der verschiedenen Dichterelationen für UO_2F_2 - H_2O -Systeme zeigt, dass man die Diskussion in drei Konzentrationsbereiche untergliedern muss (siehe auch **Abb. 3-1**).

Im Bereich nicht gesättigter Lösungen, also bei Konzentrationen unterhalb der Maximalkonzentration von Uranylfluorid in Wasser von 1,19 gU/cm³ bzw. 1,54 gUO₂F₂/cm³, stimmen sämtliche Dichterelationen mit Ausnahme der Restwasserauffüllung nahezu überein. Letztere Methode liefert geringfügig niedrigere Lösungsdichten bei gegebener Urankonzentration und führt als Folge davon bei niedrig angereichertem Uranylfluorid zu größeren Werten für die kritischen Parameter, verglichen mit den anderen Dichterelationen. **Abb. 3-4** zeigt als Vergrößerung aus **Abb. 3-1** die Urankonzentration in Abhängigkeit vom Moderationsverhältnis für den Lösungsbereich $H/U \ge 17,8$. Die Dichteberechnung nach der Methode der Restwasserauffüllung berücksichtigt keine Volumenänderung beim Auflösen des Salzes UO_2F_2 in Wasser. Das zeigt sich am Abweichen der nach dieser Methode berechneten Dichte von den Ergebnissen der anderen Dichterelationen, die sich an empirischen Daten orientieren. Da die Restwasserauffüllung im vorliegenden Fall zu größeren (nicht konservativen) Kritikalitätsdaten führt, muss ihre Anwendbarkeit auf wässrige UO_2F_2 -Systeme überprüft werden.

Abb. 3-4: Vergleich der aus verschiedenen Dichterelationen für UO2F2-Wasser-Systeme berechneten Urankonzentrationen in Abhängigkeit vom Moderationsverhältnis H/U für den Lösungsbereich

Im Bereich geringerer Moderationsverhältnisse, für Urankonzentrationen oberhalb der maximalen Löslichkeitsgrenze von Uranylfluorid laufen die Dichterelationen zum Teil deutlich auseinander.

Für $4 \le H/U \le 17,8$ liegt das Gemisch als feuchter Feststoff vor /WYA 98/. In diesem Bereich werden ebenfalls alle diskutierten Dichterelationen angewendet. Die Werte der Urandichte bei H/U = 4 streuen zwischen 2,8 gU/cm³ (Restwasserauffüllung) und 3,3 gU/cm³ (additive molare Volumina). Die Methode der Auffüllung mit gesättigter Lösung, die für $H/U \ge 17,8$ mit der empirischen Dichteformel zusammenfällt, liegt in die sem Konzentrationsbereich zwischen der empirischen Dichteformel und der Restwasserauffüllung. Das Moderationsverhältnis H/U = 4 bezeichnet die stabile hydrierte Form $UO_2F_2 \cdot 2H_2O$ der Uranylfluorids. An dieser Stelle endet der Gültigkeitsbereich einiger der betrachteten Dichterelationen, beispielsweise der Interpolationsmethode der Urenco, deren Kurvenverlauf in der Darstellung in **Abb. 3-1** mit demjenigen der Methode der additiven molaren Volumina weitgehend übereinstimmt.

Für H/U < 4, also im Bereich unterschiedlich hydrierter Mischkristalle, liefern nur noch die extrapolierten Dichterelationen Werte, sowie der zweite Ast der Methode der additiven molaren Volumina nach GI. (3-5), der in diesem Moderationsbereich zwischen dem trockenen und dem hydrierten Kristall interpoliert. Diese Relation zeigt an der Stelle H/U = 4 einen Sprung in der Dichtefunktion von UO_2F_2 -H₂O-Systemen /JOR 92/. Jede der in diesem Bereich angewandten Relationen liefert bei einer Extrapolation auf H/U = 0, zu der theoretischen Dichte von UO_2F_2 , den entsprechenden Wert von 6,37 g/cm³ bzw. 4,92 gU/cm³, mit Ausnahme der extrapolierten Dichterelation der Lösung /JOH 53/. Letztere führt zu einer maximalen Dichte von 6,77 g/cm³ bzw. 5,23 gU/cm³ bei H/U = 0. Dabei ist zu beachten, dass diese Relation anhand von empirischen Lösungsdaten, nicht aber allgemein für Gemischdaten ermittelt wurde und deshalb für H/U < 17,8 nicht verifiziert sein dürfte. Die Extrapolation von GI. (3-2) /JOH 53/ in diesen Bereich niedriger Moderation ist daher eigentlich nicht gerechtfertigt, es sei denn als konservative Näherung.

Da empirische Daten im Bereich niedriger Moderation, H/U < 4, weitgehend fehlen, ist es für die Belange der Kritikalitätssicherheit zweckmäßig, einen konservativen Weg zu wählen, dabei aber unnötig hohe Konservativitäten zu vermeiden. Die Methode der Restwasserauffüllung erweist sich für niedrig angereicherte UO_2F_2 -H₂O-Systeme als weniger geeignet, da sie im Falle des wasserlöslichen UO_2F_2 das System nicht richtig beschreibt und zu weniger konservativen kritischen Parametern führt. Die anderen Dichterelationen sind im Bereich der reinen Lösung einander sehr ähnlich und deshalb für Kritikalitätsrechnungen nahezu gleichwertig. Für den Bereich geringerer Moderation jenseits der Löslichkeitsgrenze bietet sich die Methode der additiven molaren Volumina nach /JOR 92/ an, da sie zum einen konservativer als die Restwasser- und die "Gesättigte-Lösungs-Auffüllung" ist, andererseits aber realistischer sein dürfte als die Extrapolation der empirischen Lösungsdichterelation nach Jordan und Turner /JOH 53/, deren Anwendung im Bereich H/U < 0,5 zu überhöhten Dichtewerten führt.

Der Vergleich zeigt, dass die Methode der Restwasserauffüllung über den gesamten Konzentrationsbereich jeweils zur niedrigsten Lösungsdichte im Vergleich aller betrachteten Dichterelationen führt, und darauf bei gegebener Urankonzentration zum niedrigsten Moderationsverhältnis (siehe **Abb. 3-2**). Dies hat in den Kritikalitätsrechnungen einen niedrigeren k-Wert zur Folge, was u.U. sogar zu einer Unterschätzung der kritischen Parameter führen kann.

3.2 Parameterkurven

Abb. 3-5 bis **Abb. 3-8** zeigen die errechneten Parameterkurven für Anreicherungen von 3, 4, 5 und 6 Gew.-%²³⁵U. Deutlich sichtbar ist in den Kurven die Diskontinuität, welche sich durch den Phasenübergang bei H/U = 4 auf Grund der verwendeten Dichterelation der additiven molaren Volumina nach /JOR 92/ ergibt, vgl. Kapitel 3.1.2. Diese Lücke in den Kurvenverläufen wird billigend in Kauf genommen, da sie physikalisch als real betrachtet wird.

Abb. 3-5: Kleinste kritische Kugelmassen für wässrige UO₂F₂-Systeme mit 30 cm Wasserreflektor

Abb. 3-6: Kleinste kritische Kugelvolumina für wässrige UO₂F₂-Systeme mit 30 cm Wasserreflektor

Abb. 3-7:Kleinste kritische Zylinderdurchmesser für wässrige UO2F2-Systeme mit
30 cm Wasserreflektor

Abb. 3-8: Kleinste kritische Schichtdicken für wässrige UO₂F₂-Systeme mit 30 cm Wasserreflektor

Darüber hinaus fasst **Abb. 3-9** die jeweils kleinsten kritischen Parameter für alle betrachteten Geometrien und Anreicherungen zusammen. Die gerechneten Punkte wurden durch Interpolationskurven für Zwischenwerte der Anreicherung ergänzt.

Abb. 3-9: Kleinste kritische Parameter für wässrige UO₂F₂-Systeme mit 3, 4, 5 und 6 Gew.-% Anreicherung ²³⁵U

3.3 Validierung anhand kritischer Experimente mit TSUNAMI

In /BRO 04/ wird gezeigt, dass sich die S/U-Parameter c_k und E_{sum} hervorragend für Trendanalysen in der Validierung von Anwendungssystemen durch Benchmarkexperimente eignen. Da die beiden Parameter durch paarweisen Vergleich mit den Benchmarkexperimenten gewonnen werden, muss man aber anders als in der klassischen Trendanalyse diese Prozedur für jede einzelne Anwendung separat durchführen. Aufgetragen werden die k-Werte der Experimente jeweils über einem der beiden S/U-Parameter. Da c_k und E_{sum} beide so definiert sind, dass der Vergleich zweier identischer Systeme einen Wert von 1,0 ergibt, erhält man den Bias aus der S/U-Trendanalyse durch Extrapolation der linearen Regression durch alle Wertepunkte im Diagramm auf 1,0, also auf das Anwendungssystem.

3.3.1 Kritische Experimente

Zur Validierung der verwendeten Codes wurde ein Satz von 52 Benchmarkexperimenten zur Verwendung in der S/U-Methode mittels TSUNAMI ausgewählt und eingesetzt. Davon sind 4 Fälle UO₂F₂-Experimente aus /CLA 82/, sowie 48 verschiedene, weitere aus dem "International handbook of evaluated criticality safety benchmark experiments" /NEA 06/ ausgewählte Experimente. Dabei wurden nicht nur Experimente mit niedrig angereichertem UO₂F₂ ausgewählt, sondern auch andere, hinreichend ähnliche bzw. relevante Systeme, z. B. wässrige (UO₂)(NO₃)₂-Systeme (Neutronenspektrum) oder reflektierte UF₄-Systeme (Neutronenstreuung an ¹⁹F). Eine vollständige Liste aller verwendeten Benchmarkexperimente findet sich in Anhang A. Der mittlere errechnete k-Wert aller 52 Experimente liegt bei 1,003 ± 0,005.

3.3.2 Sensitivitäts-/Unsicherheitsanalysen mit TSUNAMI

Für die S/U-Analysen werden 12 Anwendungsbeispiele herangezogen. Es handelt sich um diejenigen Konzentrationen bzw. Systeme, bei denen jeweils für 3, 4, 5 und 6 Gew.-% ²³⁵U die kleinsten Werte für kritische Kugelmassen und –volumina sowie Zylinderdurchmesser und Schichtdicken auftreten.

Anwendung [% ²³⁵ U]	U konz g/cm³	H/U _{tot}	H/ ²³⁵ U	
KM 4	1,05	21,0	519,9	
KM 5	0,90	25,2	498,4	
KM 6	0,80	28,9	475,5	
KV 4	1,75	11,0	272,4	
KV 5	1,60	12,4	245,8	
KV 6	1,50	13,5	222,9	
ZD 4	1,80	10,6	262,1	
ZD 5	1,65	11,9	235,9	
ZD 6	1,55	13,0	213,6	
SD 4	1,90	9,8	243,1	
SD 5	1,75	11,0	217,9	
SD 6	1,70	11,5	118,9	

Tab. 3-1:Auflistung der Anwendungsfälle für die S/U-Analysen mit TSUNAMI, mit
Urankonzentration und Moderationsverhältnis H/Utot bzw. H/235U.

In Tab. 3-1 bedeuten die Abkürzungen KM die kleinste kritische Kugelmasse, KV das kleinste kritische Kugelvolumen, ZD den kleinsten kritischen Zylinderdurchmesser, und SD die kleinste kritische Schichtdicke.

Tab. 3-2 listet für jedes der zwölf Anwendungssysteme die Anzahl an Experimenten aus dem betrachteten Satz an Benchmarkexperimenten auf, deren c_k - und E_{sum} -Werte höher als 0,8 liegt. Darüber hinaus wird der Completeness-Parameter R angegeben, sowie die Unsicherheit von k_{eff} in Prozent als relative Standardabweichung, die von TSUNAMI-IP aufgrund des gewählten Satzes für die Anwendungssysteme aus den Lücken in der Validierungsabdeckung errechnet wird.

Tab. 3-2:S/U-Parameter der 12 Anwendungssysteme im Vergleich zu dem Satz
aus 52 Benchmarkexperimenten.

Anwendung	Anzahl Exp. mit c _k > 0,8	Anzahl Exp. mit E _{sum} > 0,8	Completeness R	Penalty [%rel. SD]
KM 4%	47	44	0,6659	0,0000
KM 5%	46	44	0,6400	0,0000
KM 6%	45	44	0,6059	0,0000
KV 4%	51	48	0,5392	0,0100
KV 5%	51	47	0,5251	0,0271
KV 6%	52	45	0,5128	0,0269
ZD 4%	51	48	0,5671	0,0087
ZD 5%	51	47	0,5557	0,0075
ZD 6%	52	45	0,5391	0,0225
SD 4%	51	47	0,6453	0,0054
SD 5%	51	45	0,6316	0,0027
SD 6%	51	44	0,6062	0,0020

Diese Tabelle zeigt, dass für jede Anwendung (KM kleinste kritische Kugelmasse, KV kleinstes kritisches Kugelvolumen, ZD kleinste kritische Zylinderdicke, SD kleinste kritische Schichtdicke; Anreicherung 4, 5 und 6 Gew.-% ²³⁵U) mehr als die in /BRO 04/ empfohlenen 40 Experimente mit $c_k > 0.8$ und $E_{sum} > 0.8$ in dem zur Validierung gewählten Satz an Benchmarkexperimenten vorhanden sind. Der als Relativität zu verstehende Completeness-Parameter R zeigt an, dass das System der kleinsten kritischen Kugelmasse für 4 Gew.-% Anreicherung am besten abgedeckt wird, und dasjenige des kleinsten kritischen Kugelvolumens mit 6 Gew.-% Anreicherung an wenigsten; absolute Aussagen lassen sich daraus bislang nicht treffen. Schließlich zeigt sich noch, dass der größte von TSUNAMI aus den Unsicherheiten nicht abgedeckter Nuklid-Reaktions-Energiegruppen errechnete Bias in k_{eff} , 0,0271 % relativer Standardabweichung für das System der kleinsten kritischen Kugelmasse mit 5 Gew.-% Anreicherung, sehr klein und somit nicht von praktischer Bedeutung ist.

Für jede Nuklidreaktion in jeder Anwendung ist darüber hinaus mindestens ein Experiment mit dem entsprechenden $T(c_k) > 0.95$ vorhanden, sowie mindestens ein Experiment mit $T(E_{sum}) > 0.95$, meist sind es jedoch deutlich mehr. Somit kann davon ausgegangen werden, dass die Anwendungen durch den verwendeten Satz an Benchmarkexperimenten hinlänglich gut abgedeckt werden, insbesondere da die experimentell gemessenen k-Werte aller Experimente durch das Rechenverfahren hinlänglich gut reproduziert werden konnten.

Da es aus zeitlichen Gründen nicht möglich war, für alle zwölf Anwendungssysteme eine auf c_k und E_{sum} basierende Trendanalyse zur Bestimmung des Bias in k_{eff} durchzuführen, wurde exemplarisch das Anwendungssystem 5 ausgewählt, da von TSUNAMI für dieses System der höchste Sicherheitsabschlag wegen Unsicherheiten in den Querschnitten bei nicht abgedeckten Nuklid-Reaktions-Energiegruppen-Trippeln errechnet wurde.

Die **Abb. 3-10** und **Abb. 3-11** zeigen die errechneten k-Werte aller Benchmarkexperimente gegen c_k bzw. E_{sum} aus dem Vergleich mit Anwendungssystem 5 aufgetragen.

Abb. 3-10:Verteilung der k_{eff} -Werte aller Benchmarkexperimente in Abhängigkeit
von c_k für Anwendungssystem 5

Abb. 3-11:Verteilung der k_{eff}-Werte aller Benchmarkexperimente in Abhängigkeit
von E_{sum} für Anwendungssystem 5

Die eingetragenen roten Geraden sind durch linearen Fit für alle Datenpunkte gewonnen. Deren Extrapolation auf den Wert 1,0 von c_k bzw. E_{sum} ergibt den Bias in k_{eff}, der sich für das Anwendungssystem 5 aus der Validierung mit dem gegebenen Satz von Benchmarkexperimenten ableitet /BRO 04/. Dieser Wert beträgt 0,76 % aus der Unsicherheitsanalyse mittels c_k, und 0,51 % aus der Sensitivitätsanalyse mittels E_{sum}; in beiden Fällen ist der extrapolierte k-Wert > 1,0. Da der erste Parameter für Uransysteme allgemein als etwas genauer angesehen wird und dessen Wert der höhere von beiden ist, ergibt sich für dieses Anwendungssystem 5 aus der Validierungsprozedur mittels S/U-Analyse ein Bias von 0,76 % in k_{eff} (die beiden Werte sind nicht als additiv zu betrachten). Bei der Festlegung z. B. eines unteren kritischen Limits in einer Kritikalitätssicherheitsanalyse wäre dieser Bias zu berücksichtigen.

4 Homogene Urandioxid-Wasser-Systeme

Urandioxid besitzt eine theoretische Dichte von 10,96 g/cm³; dies entspricht einer Urandichte von 9,66 gU/cm³. Bei den folgenden Serienrechnungen wurden die kritischen Parameter in Abhängigkeit von der Urandichte ermittelt; dabei wurde das durch die Variationen der Urandichte entstehende freie Restvolumen zur Gänze vom Moderator (H₂O) ausgefüllt.

4.1 Kritikalitätsdaten für homogene Mischsysteme aus Urandioxid-Wasser

Die Tabellen Tab. B-1 bis Tab. B-3 im Anhang B beinhalten eine Zusammenfassung der Kritikalitätsdaten für vollständig reflektierte homogene Urandioxid-Wasser-Systeme mit Anreicherungen von 6, 7 und 8 Gew % ²³⁵U. In Abb. 4-1 bis Abb. 4-4 sind die kritischen Parameter (Kugelmasse, Kugelvolumen, Zylinderdurchmesser und Schichtdicke) für diese Systeme in Abhängigkeit von der Urandichte dargestellt.

Abb. 4-1: Kritische Kugelmassen für vollständig reflektierte homogene Urandioxid-Wasser-Systeme mit 6, 7 und 8 Gew.-%²³⁵U Anreicherung in Abhängigkeit von der Urandichte

Abb. 4-2: Kritische Kugelvolumina für vollständig reflektierte homogene Urandioxid-Wasser-Systeme mit 6, 7 und 8 Gew.-%²³⁵U Anreicherung in Abhängigkeit von der Urandichte

Abb. 4-3:Kritische Zylinderdurchmesser für vollständig reflektierte homogene
Urandioxid-Wasser-Systeme mit 6, 7 und 8 Gew.-% ²³⁵U Anreicherung
in Abhängigkeit von der Urandichte

bb. 4-4: Kritische Schichtdicken für vollständig reflektierte homogene Urandioxid-Wasser-Systeme mit 6, 7 und 8 Gew.-% ²³⁵U Anreicherung in Abhängigkeit von der Urandichte

4.2 Validierungsrechnungen zu Kritikalitätsdaten für homogene Mischsysteme aus Urandioxid-Wasser

Die in Kapitel 4.1 aufgelisteten Kritikalitätsdaten wurden für die beiden Anreicherungen 7 Gew.-% und 8 Gew.-% ²³⁵U punktuell für ausgewählte Urandichten mit anderen Rechenverfahren überprüft. Dazu wurde mit den im Delta-Search ermittelten Kritikalitätsdaten das zugehörige Geometriemodell (vollständig reflektierte Kugel bzw. Zylinder oder Schicht) aufgebaut und die zugehörigen Multiplikationsfaktoren sowohl mit dem S_N-Code XSDRNPM aus dem Programmsystem SCALE 4.3 /SCA 95/ als auch mit dem Monte-Carlo-Programm MCNP4B /BRI 97/ bestimmt; im Fall der XSDRNPM-Rechnungen kamen dabei Wirkungsquerschnittsbibliotheken mit 44 und mit 238 Gruppen zum Einsatz.

In Tab. B-4 bis Tab. B-6 im Anhang B sind die Resultate dieser Vergleichsrechnungen zusammengestellt. Darin finden sich für die Urandichten 0,6, 2,0, 4,0, 6,0 und 8,0 gU/cm³ die kritischen Parameter für Kugel-, Zylinder- und Schichtgeometrie bei voller Wasserreflexion und die dafür mit anderen Rechenverfahren berechneten Multiplikationsfaktoren. In **Abb. 4-5** bis **Abb. 4-10** sind die Multiplikationsfaktoren aus Tab. B-4 bis Tab. B-6 graphisch dargestellt.

Abb. 4-5: Vergleich von mit unterschiedlichen Rechenverfahren ermittelten Multiplikationsfaktoren für kritische Kugelgeometrien mit vollständig reflektierten homogenen Urandioxid-Wasser-Systemen mit 7 Gew.-%²³⁵U Anreicherung in Abhängigkeit von der Urandichte

Abb. 4-8: Vergleich von mit unterschiedlichen Rechenverfahren ermittelten Multiplikationsfaktoren für kritische Kugelgeometrien mit vollständig reflektierten homogenen Urandioxid-Wasser-Systemen mit 8 Gew.-%²³⁵U Anreicherung in Abhängigkeit von der Urandichte

Abb. 4-9: Vergleich von mit unterschiedlichen Rechenverfahren ermittelten Multiplikationsfaktoren für kritische Zylindergeometrien mit vollständig reflektierten homogenen Urandioxid-Wasser-Systemen mit 8 Gew.-%²³⁵U Anreicherung in Abhängigkeit von der Urandichte

Abb. 4-10: Vergleich von mit unterschiedlichen Rechenverfahren ermittelten Multiplikationsfaktoren für kritische Schichtgeometrien mit vollständig reflektierten homogenen Urandioxid-Wasser-Systemen mit 8 Gew.-%²³⁵U Anreicherung in Abhängigkeit von der Urandichte

Aus Tab. B-4 bis Tab. B-6 sowie aus **Abb. 4-5** bis **Abb. 4-10** können die folgenden Ergebnisse abgeleitet werden:

In allen untersuchten Fällen waren die aus den Nachrechnungen mit XSDRNPM und MCNP4B resultierenden Multiplikationsfaktoren kleiner als die mit den Delta-Search-Rechnungen korrespondierenden Werte im Intervall von 0,9999 bis 1,0001 (Konvergenzkriterium für Delta-Search); das heißt, die Delta-Search-Rechnungen waren stets konservativer als die Nachrechnungen. Bei den Nachrechnungen mit MCNP4B nahm der Multiplikationsfaktor mit zunehmender Urandichte von ca. 0,995 (Mittelwert) bei 0,6 gU/cm³ bis zu ca. 0,985 (Mittelwert) bei 8,0 gU/cm³ ab; ein sehr ähnliches Verhalten zeigten die Multiplikationsfaktoren der Nachrechnungen mit XSDRNPM unter Verwendung der 238-Gruppen-Wirkungsquerschnittsbibliothek. Bei **XSDRNPM-**Nachrechnungen mit der 44-Gruppen-Wirkungsquerschnittsbibliothek, die auch bei den Delta-Search-Rechnungen verwendet wurde, war keine signifikante Abhängigkeit der Multiplikationsfaktoren von der Urandichte erkennbar; sie streuten im ganzen Dichtebereich um einen Mittelwert von ca. 0,998.

5 Schwach moderierte Urandioxid-Systeme

5.1 Vergleich von Rechenergebnissen verschiedener SCALE Versionen am Beispiel des kritischen Kugelradius

Die kritischen Parameterkurven wurden mit unterschiedlichen Versionen des Codepakets SCALE sowie mit verschiedenen Kombinationen von Resonanzbehandlungsverfahren und Querschnittsbibliotheken verwendet. Dadurch wurde es erforderlich, die entsprechenden Rechenergebnisse für identische Systeme miteinander zu vergleichen, um die Aktualität entsprechender Methoden abzuwägen. In Tab. 5-1 sind exemplarisch mit verschiedenen Verfahren berechnete kritische Kugelradien für 7 Gew.-% ²³⁵U Anreicherung und einen Gewichtsanteil von 1 % Restfeuchte im Oxid über den gesamten Konzentrationsbereich an Urandioxid aufgelistet.

Tab. 5-1:Tabellarischer Vergleich der kritischen Kugelradien für homogene Uran-
dioxid-Wasser-Systeme mit 7 Gew.-% Anreicherung und 1 Gew.-%
Restfeuchte, die mit unterschiedlichen SCALE Versionen, Resonanzbe-
handlungsverfahren und Wirkungsquerschnitten berechnet wurden.

c(UO ₂)	SCALE4.4a	SCALE5.1	SCALE5.1	5.1b5/4.4a	5.1b6/4.4a
	ENDF/B-V	ENDF/B-V	ENDF/B-VI		
	NITAWL	CENTRM	CENTRM		
g/cm ³	krit r (cm)	krit r (cm)	krit r (cm)		
0,50	4585,41	-	4550,00	-	0,992
0,75	1618,46	1729,00	1630,00	1,068	1,007
1,00	994,62	1044,00	1005,00	1,050	1,010
1,25	716,52	747,10	725,10	1,043	1,012
1,50	559,04	580,50	566,40	1,038	1,013
1,75	458,06	474,50	464,60	1,036	1,014
2,00	387,86	401,30	393,70	1,035	1,015
2,25	336,39	347,80	341,60	1,034	1,015
2,50	296,87	306,80	301,60	1,033	1,016
2,75	265,73	274,40	270,00	1,033	1,016
3,00	240,54	248,30	244,40	1,032	1,016
3,25	219,78	226,70	223,30	1,031	1,016
3,50	202,31	208,70	205,50	1,032	1,016
3,75	187,43	193,30	190,40	1,031	1,016
4,00	174,62	180,00	177,20	1,031	1,015
4,25	163,46	168,50	165,90	1,031	1,015
4,50	151,99	158,30	155,90	1,042	1,026
4,75	144,97	149,30	147,00	1,030	1,014
5,00	137,23	141,30	139,10	1,030	1,014
5,25	130,28	134,10	131,90	1,029	1,012
5,50	124,02	127,50	125,50	1,028	1,012
5,75	118,34	121,60	119,70	1,028	1,012
6,00	113,14	116,20	114,40	1,027	1,011
6,25	108,41	111,30	109,60	1,027	1,011
6,50	104,06	106,80	105,10	1,026	1,010
6,75	100,05	102,60	101,00	1,025	1,009
7,00	96,35	98,77	97,22	1,025	1,009
7,25	92,91	95,20	93,71	1,025	1,009
7,50	89,72	91,87	90,45	1,024	1,008
7,75	86,74	88,78	87,41	1,024	1,008
8,00	83,97	85,89	84,57	1,023	1,007
8,25	81,36	83,19	81,93	1,022	1,007
8,50	78,91	80,66	79,44	1,022	1,007
8,75	76,61	78,28	77,10	1,022	1,006
9,00	74,44	76,04	74,90	1,021	1,006
9,25	72,40	73,92	72,83	1,021	1,006
9,50	70,46	71,91	70,86	1,021	1,006

Stellvertretend für weitere verwendete Kombinationen an SCALE-Versionen, Resonanzbehandlungsverfahren und Querschnittsbibliotheken wurden die Werte aus SCALE 4.4a mit NITAWL und ENDF/B-V in 238 Gruppen (A, Spalte 2), SCALE 5.1 mit CENTRM und ENDF/B-V in 238 Gruppen (B, Spalte 3), sowie SCALE 5.1 mit CENTRM und ENDF/B-VI in 238 Gruppen (C, Spalte 4) aufgeführt. Ersteres ist das älteste hier angewandte Verfahren, letzteres das modernste, und die mittlere Kombination ist diejenige mit der größten Abweichung vom ältesten angewandten Verfahren. In Spalte 5 ist das Verhältnis der berechneten Werte nach den Verfahren B zu A dargestellt, in Spalte 6 das Verhältnis gemäß C zu A.

Man erkennt, dass sich die Ergebnisse des ältesten und des modernsten verwendeten Verfahrens für das betrachtete System kaum unterscheiden. Mit einer Ausnahme bei der Konzentration 4,5 g/cm³ (2,6 %; als Ausreißer zu betrachten) liegen die Unterschiede bei unter 1,6 % im Radius, mit kleineren Abweichungen bei höheren Konzentrationen¹. Bei Gegenrechnungen (Ermittlung von k_{eff} bei gegebener Konzentration und errechnetem Radius) zeigte sich vor allem bei den niedrigen Konzentrationen eine geringe Sensitivität des k_{eff}-Werts auf entsprechende Variationen der Radien. Dies dürfte daran liegen, dass bei kritischen Radien im Bereich mehrerer Meter k_{eff} sich bereits in der Nähe des infiniten Multiplikationsfaktors k_{inf} des Spaltmaterials bewegt.

(Die hier mit SCALE 4.4a und XSDRNMOD durchgeführten Eigenvalue-Search-Rechnungen gaben die relative Sensitivität $S_k(r) = (r/k_{eff}) \times (dk_{eff}/dr)$ nicht direkt an. Der Eigenvalue-Search von SCALE 5.1 gab bei der Berechnung von Parameterkurven beispielsweise für 5 % ²³⁵U und 2 Gew.-% Restfeuchte je nach UO₂-Konzentration Werte für die Sensitivität von k_{eff} auf den Radius < 0,15 (r/k_{eff})×(dk_{eff}/dr) bei k_{eff} = 1,00 aus, bei UO₂-Konzentrationen im Bereich > 5 g/cm³ auch S_k < 0,05 (r/k_{eff})×(dk_{eff}/dr).)

Im Gegensatz zu C liegen die Werte nach B um bis zu knapp 7 % über A, was eine signifikante Abweichung darstellt. Entsprechende Gegenrechnungen wie oben beschrieben mit verschiedenen Kombinationen zeigen aber, dass $k_{eff} = 1,00$ mit den Radien nach A und C deutlich besser reproduziert wird. Zusätzlich fällt auf, dass mit Ausnahme der geringsten Konzentration stets die Reihenfolge im berechneten kritischen Radius für die drei Verfahren gilt: A < C < B.

¹ Anmerkung: Wegen der dritten Potenz des Radius in der Formel f
ür das Kugelvolumen, V = (4/3) × π × r³, bedeutet aufgrund der Fehlerpropagation ein relativer Fehler von 1 % im Radius gleichzeitig einen relativen Fehler von 3 % im Volumen, und folglich auch in der Masse (= Dichte × Volumen).

Weitere, an dieser Stelle nicht dokumentierte Vergleichsrechnungen für andere Parameterwerte (Anreicherung, Restfeuchte) wurden in geringerer Breite, doch mit äquivalentem Ergebnis durchgeführt. Da zudem in /SCA 06/ Kombination B als mit Vorsicht zu verwenden bezeichnet wird, werden die Varianten A und C als Referenzmethoden für die Neuberechnung der Parameterkurven ausgewählt.

Dies bedeutet insbesondere, dass mit dem Erscheinen der SCALE Version 5.1 bereits vorliegendes, umfangreiches Datenmaterial, welches mit Version 4.4a berechnet wurde, nicht obsolet wurde und infolgedessen nicht zeitaufwändig erneut berechnet werden musste. Der Einhaltung des Standes von Wissenschaft und Technik ist dennoch genüge getan. Die Tatsache, dass mit ENDF/B-VI basierten Daten geringfügig kleinere k-Werte (und folglich etwas größere kritische Daten) errechnet werden, wurde in der Literatur bereits häufiger erwähnt, so u.a. in /REM 02/.

5.2 Kritische Parameterkurven

Die Abbildungen dieses Kapitels zeigen die errechneten kritischen Werte für Kugelmasse (kg UO₂), Kugelvolumen (Liter), Zylinderdurchmesser (cm) und Schichtdicke (cm) für Anreicherungen an ²³⁵U von 5, 6, 7 und 8 Gew.-%, bei Zusatz von Restfeuchten von 1 Gew.-% (H/U = 0,3), 2 Gew.-% (H/U = 0,6), 3 Gew.-% (H/U = 0,9) und 5 Gew.-% (H/U = 1,5) Wasser, bezogen auf Urandioxid als 100 %. Urandioxid plus x Gew.-% Restfeuchte ergeben also 100+x % Gesamtmasse. Der Bezug der Restfeuchte auf die Dioxid-Masse ist die wesentliche Ursache, weshalb bei den hier aufgeführten Systemen die Konzentration in Gramm Uran<u>dioxid</u> (ohne Restfeuchte) und nicht wie sonst im Handbuch üblich in Gramm Uran pro Volumeneinheit angegeben ist. Auch die kritischen Massen sind in Gramm Uran<u>dioxid</u> ohne Restfeuchte angegeben.

Bei gegebener Urandioxiddichte und fester Restfeuchte verbleibendes freies Volumen ist bis zum Erreichen voller Volumenausfüllung bei maximaler Urandichte als Vakuum unterstellt und entsprechend mithomogenisiert. Bei allen Berechnungen wurde ein Wasserreflektor der Dicke 30 cm um das jeweilige System berücksichtigt.

In Anhang C ist aufgeführt, wie die bei gegebener Restfeuchte maximal erreichbare Urandioxiddichte berechnet wurde. Anhang D listet sämtliche errechneten kritischen Parameter tabellarisch auf.

Jede der folgenden 16 Abbildungen bezieht sich auf einen bestimmten Zusatz an Restfeuchte, der in einem Textrahmen oben in den Abbildungen mit angegeben ist, während die verschiedenen Urananreicherungen in Gewichtsprozent ²³⁵U als Kurvenparameter eingetragen sind.

Abb. 5-1:Kritische Kugelmassen für homogene Urandioxid-Systeme mit 1 Gew.-%Restfeuchte bei Anreicherungen von 7 und 8 Gew.-%

Abb. 5-2:Kritische Kugelvolumina für homogene Urandioxid-Systeme mit1 Gew.-% Restfeuchte bei Anreicherungen von 7 und 8 Gew.-% 235U

Abb. 5-3:Kritische Zylinderdurchmesser f
ür homogene Urandioxid-Systeme mit
1 Gew.-% Restfeuchte bei Anreicherungen von 7 und 8 Gew.-%235U

Abb. 5-4:Kritische Schichtdicken für homogene Urandioxid-Systeme mit1 Gew.-% Restfeuchte bei Anreicherungen von 7 und 8 Gew.-% 235U

Abb. 5-5:Kritische Kugelmassen für homogene Urandioxid-Systeme mit 2 Gew.-%Restfeuchte bei Anreicherungen von 5, 6, 7 und 8 Gew.-%

Abb. 5-6:Kritische Kugelvolumina für homogene Urandioxid-Systeme mit
2 Gew.-% Restfeuchte bei Anreicherungen von 5, 6, 7 und 8 Gew.-%235U

Abb. 5-7:Kritische Zylinderdurchmesser für homogene Urandioxid-Systeme mit
2 Gew.-% Restfeuchte bei Anreicherungen von 5, 6, 7 und 8 Gew.-%235U

Abb. 5-8:Kritische Schichtdicken für homogene Urandioxid-Systeme mit
2 Gew.-% Restfeuchte bei Anreicherungen von 5, 6, 7 und 8 Gew.-%235U

Abb. 5-9:Kritische Kugelmassen für homogene Urandioxid-Systeme mit 3 Gew.-%Restfeuchte bei Anreicherungen von 5, 6, 7 und 8 Gew.-%

Abb. 5-10:Kritische Kugelvolumina für homogene Urandioxid-Systeme mit
3 Gew.-% Restfeuchte bei Anreicherungen von 5, 6, 7 und 8 Gew.-%235U

Abb. 5-11: Kritische Zylinderdurchmesser für homogene Urandioxid-Systeme mit 3 Gew.-% Restfeuchte bei Anreicherungen von 5, 6, 7 und 8 Gew.-% ²³⁵U

Abb. 5-12: Kritische Schichtdicken für homogene Urandioxid-Systeme mit 3 Gew.-% Restfeuchte bei Anreicherungen von 5, 6, 7 und 8 Gew.-% ²³⁵U

Abb. 5-13:Kritische Kugelmassen für homogene Urandioxid-Systeme mit 5 Gew.-%Restfeuchte bei Anreicherungen von 5, 6, 7 und 8 Gew.-%

Abb. 5-14:Kritische Kugelvolumina für homogene Urandioxid-Systeme mit5 Gew.-% Restfeuchte bei Anreicherungen von 5, 6, 7 und 8 Gew.-%235U

Abb. 5-15: Kritische Zylinderdurchmesser für homogene Urandioxid-Systeme mit 5 Gew.-% Restfeuchte bei Anreicherungen von 5, 6, 7 und 8 Gew.-% ²³⁵U

Abb. 5-16: Kritische Schichtdicken für homogene Urandioxid-Systeme mit 5 Gew.-% Restfeuchte bei Anreicherungen von 5, 6, 7 und 8 Gew.-% ²³⁵U

In der folgenden Tab. 5-2 sind die jeweils kleinsten kritischen Parameter aus den voran gegangenen Abbildungen, sowie das Moderationsverhältnis und die vorliegende Urandioxiddichte zusammen gefasst. Tab. 5-2:Zusammenfassung der kleinsten kritischen Parameter, des Moderationsverhältnisses und der Urandioxiddichte für schwach mo-
derierte, niedrig angereicherte Urandioxid-Wasser-Systeme.

System	Kugelmasse [kg UO ₂]	Kugelvolumen [Liter]	Zylinderdicke [cm]	Schichtdicke [cm]	Moderations- verhältnis H/U	Urandioxiddichte [g UO ₂ / cm ³]
U(5)O ₂ , 2% Rf.	21540,29	2396,83	120,56	69,42	0,6	8,987
U(5)O ₂ , 3% Rf.	4747,10	575,82	73,40	40,06	0,9	8,244
U(5)O ₂ , 5% Rf.	1205,52	170,37	48,08	24,72	1,5	7,076
U(6)O ₂ , 2% Rf.	7291,87	811,38	82,66	45,48	0,6	8,987
U(6)O ₂ , 3% Rf.	2824,85	342,66	61,16	32,30	0,9	8,244
U(6)O ₂ , 5% Rf.	922,016	130,30	43,64	21,84	1,5	7,076
U(7)O ₂ , 1% Rf.	13019	1318,25	97,42	54,48	0,3	9,876
U(7)O ₂ , 2% Rf.	3998,88	444,96	66,76	35,34	0,6	8,987
U(7)O ₂ , 3% Rf.	1950,75	236,63	53,64	27,58	0,9	8,244
U(7)O ₂ , 5% Rf.	760,153	107,43	40,68	19,97	1,5	7,076
U(8)O ₂ , 1% Rf.	5901,04	597,51	73,98	39,66	0,3	9,876
U(8)O ₂ , 2% Rf.	2579,35	287,01	57,22	29,42	0,6	8,987
U(8)O ₂ , 3% Rf.	1465,40	177,75	48,46	24,34	0,9	8,244
U(8)O ₂ , 5% Rf.	644,40	91,068	38,30	18,45	1,5	7,076

5.3 Querschnitts- und Flussverteilungen eines kugelförmigen Systems mit schwach moderiertem Urandioxid unter voller Wasserreflexion

Mit zwei Zusatzprogrammen zu KENO Va, nämlich KMART (Berechnung) und KENO3D (Darstellung), wurden für eine kritische Kugel aus UO₂ mit 7 Gew.-% ²³⁵U, Restfeuchte 5 Gew.-%, maximaler Dichte und 30 cm Wasserreflektor (entspricht Anwendungssystem 10 in Tab. 5-4) die räumliche Verteilung des Materials, des Neutronenflusses, des Spaltquerschnitts von ²³⁵U und ²³⁸U, sowie des totalen Querschnitts von ²³⁸U, ¹H und ¹⁶O untersucht. Da KMART die genannten Verteilungen zonenweise berechnet, wurde die kritische Kugel samt Reflektor in schmale Kugelschalen unterteilt. Die folgenden sieben Abbildungen dieses Abschnitts stellen diese Verteilungen grafisch dar.

Abb. 5-17:Materialverteilung einer kritischen Kugel aus UO2 mit 7 Gew.-% 235U,Restfeuchte 5 Gew.-% und 30 cm Wasserreflektor

In Abb. 5-17 sieht man die Spaltstoffkugel eingebettet in den Wasserreflektor.

Abb. 5-18 zeigt die Neutronenflussverteilung dieser kritischen Anordnung. Rot bedeutet maximalen, blau minimalen bis verschwindenden Fluss. Man erkennt, dass der Fluss im Zentrum der Kugel maximal ist und nach außen hin und bis in den Reflektor stetig abnimmt. An der äußeren Oberfläche des Reflektors verschwindet der Fluss praktisch. Dies zeigt, dass man bei 30 cm Wasser gerechtfertigt von "voller Wasserreflexion" sprechen kann.

Abb. 5-19: Verteilung des Spaltquerschnitts von ²³⁵U einer kritischen Kugel aus UO₂ mit 7 Gew.-% ²³⁵U, Restfeuchte 5 Gew.-% und 30 cm Wasserreflektor

Abb. 5-19 illustriert die Verteilung des Spaltquerschnitts von ²³⁵U. Außerhalb der Spaltstoffkugel gleich null, besitzt er direkt an der Kontaktfläche zum Reflektor sein absolutes Maximum. Hier ist der Bereich der besten Thermalisierung innerhalb des Spaltstoffs. Gleich dahinter fällt der Fluss auf sein Minimum innerhalb der Kugel. Dahinter befindet sich ein breites lokales Maximum mit Zentrum im Mittelpunkt der Kugel. Hier wird die Spaltung von ²³⁵U durch die geringe Moderation der Restfeuchte gefördert.

Abb. 5-20: Verteilung des Spaltquerschnitts von ²³⁸U einer kritischen Kugel aus UO₂ mit 7 Gew.-% ²³⁵U, Restfeuchte 5 Gew.-% und 30 cm Wasserreflektor

Wie in **Abb. 5-20** ersichtlich wird, besitzt die Verteilung des Spaltquerschnitts von ²³⁸U, im Gegensatz zu ²³⁵U, sein Maximum im Zentrum der Kugel und nimmt nach außen hin kontinuierlich ab. ²³⁸U ist kein thermisch spaltbares Nuklid sondern schnell spaltend, deshalb nimmt der Querschnitt sowohl durch Leckage als auch durch die radial vom Mittelpunkt wegführend zunehmende, innerhalb der freien Neutronenweglänge mittlere Moderation stetig und zunehmend ab.

Abb. 5-21: Verteilung des totalen Wirkungsquerschnitts von ²³⁸U einer kritischen Kugel aus UO₂ mit 7 Gew.-% ²³⁵U, Restfeuchte 5 Gew.-% und 30 cm Wasserreflektor

Die Verteilung des totalen Wirkungsquerschnitts von ²³⁸U in **Abb. 5-21** entspricht anschaulich nahezu derjenigen des Spaltquerschnitts in **Abb. 5-20**. Dies deutet darauf hin, dass der totale Wirkungsquerschnitt von ²³⁸U in diesem System wesentlich vom (Schnell-)Spaltquerschnitt dominiert ist. In einem schwach moderierten, niedrig angereicherten kritischen Urandioxidsystem erscheint dies durchaus plausibel.

Abb. 5-22: Verteilung des totalen Wirkungsquerschnitts von ¹H einer kritischen Kugel aus UO₂ mit 7 Gew.-% ²³⁵U, Restfeuchte 5 Gew.-% und 30 cm Wasserreflektor.

Wasserstoff ist sowohl in der Restfeuchte als auch im Reflektor enthalten. **Abb. 5-22** zeigt die Verteilung des totalen Wirkungsquerschnitts von ¹H. Das Maximum befindet sich im Reflektor an der Kontaktfläche zur Spaltstoffkugel. Dies liegt an der deutlich höheren ¹H-Dichte im Reflektor gegenüber der Restfeuchte innerhalb der Kugel. Im Zentrum der Spaltstoffkugel befindet sich aufgrund der Neutronenflussverteilung ein lokales Maximum, das deutlich niedriger als das absolute Maximum ist.

Abb. 5-23: Verteilung des totalen Wirkungsquerschnitts von ¹⁶O einer kritischen Kugel aus UO₂ mit 7 Gew.-% ²³⁵U, Restfeuchte 5 Gew.-% und 30 cm Wasserreflektor

Sauerstoff befindet sich im Reflektor, in der Restfeuchte, sowie in der Brennstoffmatrix des Urandioxids. Somit liegt ¹⁶O im gesamten System in hoher Dichte vor. Dementsprechend weist die Verteilung des totalen Wirkungsquerschnitts von ¹⁶O, dargestellt in **Abb. 5-23**, ein Maximum im Mittelpunkt des Systems auf und nimmt in radialer Richtung kontinuierlich bis zur äußeren Begrenzung des Reflektors hin ab. Im Wesentlichen stimmt die Verteilung dieses Querschnitts qualitativ mit derjenigen des Neutronenflusses überein.

5.4 Validierung der Ergebnisse für schwach moderiertes Urandioxid anhand von Experiment-Nachrechnungen

Zur Validierung der verwendeten Verfahren empfiehlt sich die Nachrechnung der 18 Experimente der Serie LEU-COMP-THERM-049, "Maracas Programme: polythenereflected critical configurations with low-enriched and low-moderated uranium dioxide powder, U(5)O2" /MAR 06/, durchgeführt von 1983 bis 1987 in Valduc, Frankreich. Abgesehen von diesen Experimenten ist allerdings die Auswahl an geeigneten Experimenten, welche zur Codevalidierung für schwach moderierte Urandioxid-Systeme geeignet sind, begrenzt, wie auch in /BRO 04/ festgestellt wird.

In den Maracas Experimenten wurden Urandioxidpulver (5 % ²³⁵U) mit homogen verteiltem, geringen Wassergehalt (Werte von H/U: 2; 2,5 und 3) in mehreren kubischen Boxen aus Aluminium unter Polyäthylen-Reflexion auf einer sogenannten Split-Table-Anordnung in den kritischen Zustand gebracht. Boxen mit Spaltstoff wurden in 18 unterschiedlichen Konfigurationen nach dem Baukastenprinzip angeordnet ("kubische Honigwabe") und mit gleich großen Boxen mit Polyäthylen als Reflektor umgeben, und teilweise auch in einer Art dreidimensionalen Schachbrett-Anordnung positioniert. **Abb. 5-24** zeigt den experimentellen Aufbau /MAR 06/.

Abb. 5-24: Aufbau der Maracas-Experimentanordnung /MAR 06/.

Zur Nachrechnung dieser Experimente wurde der Monte Carlo Code KENO Va aus den jeweiligen SCALE-Paketen ausgewählt, da der eindimensionale S_N-Code XSDRN für solche komplexen Anordnungen ungeeignet ist. Aus zeitlichen Gründen konnten jedoch nicht alle 18 Konfigurationen modelliert werden. Nur für die Fälle 5, 6, 7 und 8 aus /MAR 06/ wurde ein eigenes KENO-Modell erstellt, während für die verbleibenden 14 Konfigurationen auf die in /MAR 06/ angegebenen vorgefertigten Eingabedateien zurückgegriffen wurde (lediglich hinsichtlich der verwendeten Anzahl an Neutronen und Neutronengenerationen, sowie hinsichtlich der Bibliotheken und Resonanzverfahren wurden geeignete Anpassungen vorgenommen). Zur Verifizierung wurden zusätzlich auch die Fälle, in denen eine eigene Modellierung erstellt wurde, mittels der vorgegebenen Eingabedaten berechnet und mit der Eigenmodellierung verglichen. Wie bei der Berechnung der Parameterkurven wurden verschiedene Versionen von SCALE sowie Bibliotheken und Resonanzbehandlungsverfahren einander gegenüber gestellt.

Abb. 5-25, **Abb. 5-26**, **Abb. 5-27** und **Abb. 5-28** zeigen jeweils KENO3D-Darstellungen von Schnitten durch die selbst erstellten KENO-Modelle der Konfigurationen 5, 6, 7 und 8 /MAR 06/.

Abb. 5-25:Querschnitt durch die KENO3D Darstellung der Modellierung von
LEU-COMP-THERM-049 Konfiguration 5 in KENO Va

Abb. 5-26:Querschnitt durch die KENO3D Darstellung der Modellierung von
LEU-COMP-THERM-049 Konfiguration 6 in KENO Va

Abb. 5-27:Querschnitt durch die KENO3D Darstellung der Modellierung von
LEU-COMP-THERM-049 Konfiguration 7 in KENO Va

Abb. 5-28:Querschnitt durch die KENO3D Darstellung der Modellierung von
LEU-COMP-THERM-049 Konfiguration 8 in KENO Va

Das in den Abbildungen angegebene Material AG3 (dunkelblau) ist die Aluminiumlegierung, aus der die den Spaltstoff enthaltenden Boxen gefertigt waren. Die Gummidichtungen (hellblau) sind aufgrund ihrer geringen Größe in den Abbildungen nur bei starker Vergrößerung zu erkennen. Da der Gummi durch seine wasserstoffhaltige chemische Zusammensetzung aber einen geringen Beitrag zu der ohnehin schwachen Moderation leistet, wurde er nicht vernachlässigt sondern in das Modell implementiert.

Die Rechenergebnisse für alle Konfigurationen und alle Kombinationen der Rechenverfahren sind in Tab. 5-3 einander gegenüber gestellt.

Exp. Case #	KENO Va (4.4a) 44GROUPNDF5 NITAWL	KENO Va (4.4a) 238GROUPNDF5 NITAWL	KENO Va (5.0) 238GROUPNDF5 NITAWL Eig. Modellierung	KENO Va (5.0) 238GROUPNDF5 NITAWL	KENO Va (5.1) 238GROUPNDF5 CENTRM	KENO Va (5.1) 238GROUPNDF6 CENTRM	KENO Va 44GROUPNDF5 NITAWL /MAR 06/
1	$1,\!00063\pm0,\!00037$	$0,\!99013 \pm 0,\!00042$	n/a	$0,\!99094 \pm 0,\!00040$	$0,\!99283 \pm 0,\!00036$	$0,99144 \pm 0,00034$	$1,\!0010\pm0,\!0007$
2	$1,\!00120\pm0,\!00036$	$0,\!99076 \pm 0,\!00037$	n/a	$0,99119 \pm 0,00039$	$0,\!99376 \pm 0,\!00038$	$0,99179 \pm 0,00036$	$1,\!0022\pm0,\!0007$
3	1,00129 ±0,00040	$0,\!99126 \pm 0,\!00041$	n/a	$0,99060 \pm 0,00037$	$0,\!99364 \pm 0,\!00035$	$0,\!99208 \pm 0,\!00043$	$1,\!0015\pm0,\!0007$
4	$1,00494 \pm 0,00038$	$0,\!99522\pm0,\!00036$	n/a	$0,\!99529 \pm 0,\!00037$	$0,\!99764 \pm 0,\!00037$	$0,99533 \pm 0,00038$	$1,0049 \pm 0,0006$
5	$0,\!99795 \pm 0,\!00044$	$0,\!99008 \pm 0,\!00042$	$0,\!98932\pm0,\!00082$	$0,\!98948 \pm 0,\!00036$	$0,\!99203 \pm 0,\!00039$	$0,99089 \pm 0,00037$	$0,\!9989 \pm 0,\!0008$
6	$0,99987 \pm 0,00039$	$0,\!99204 \pm 0,\!00044$	$0,99160 \pm 0,00069$	$0,\!99072\pm0,\!00040$	$0,\!99395 \pm 0,\!00041$	$0,99189 \pm 0,00040$	$1,\!0009\pm0,\!0007$
7	$0,\!99825\pm0,\!00037$	$0,\!99036 \pm 0,\!00037$	$0,\!99118 \pm 0,\!00069$	$0,\!99022\pm0,\!00037$	0,99281 ± 0,00039	$0,\!99063 \pm 0,\!00042$	$1,\!0001\pm0,\!0006$
8	$0,99886 \pm 0,00037$	$0,\!98986 \pm 0,\!00037$	$0,\!99163 \pm 0,\!00067$	$0,98970 \pm 0,00037$	$0,\!99222\pm0,\!00035$	$0,99115 \pm 0,00039$	$1,\!0000\pm0,\!0007$
9	$0,99710 \pm 0,00037$	$0,\!98936 \pm 0,\!00043$	n/a	$0,\!98932\pm0,\!00034$	$0,\!99189 \pm 0,\!00041$	$0,99010 \pm 0,00036$	$0,9981 \pm 0,0007$
10	$0,\!99868 \pm 0,\!00040$	$0,\!99102\pm0,\!00043$	n/a	$0,\!99124\pm0,\!00043$	$0,\!99451 \pm 0,\!00037$	$0,99197 \pm 0,00036$	$0,\!9987\pm0,\!0007$
11	$0,\!99729 \pm 0,\!00042$	$0,\!98994 \pm 0,\!00046$	n/a	0,98931 ± 0,00039	$0,\!99290 \pm 0,\!00037$	$0,98966 \pm 0,00038$	$0,\!9978 \pm 0,\!0007$
12	$0,99782 \pm 0,00038$	$0,\!99003 \pm 0,\!00046$	n/a	$0,\!98971 \pm 0,\!00037$	$0,\!99295 \pm 0,\!00036$	$0,99103 \pm 0,00048$	$0,\!9986 \pm 0,\!0007$
13	$0,99782 \pm 0,00038$	$0,\!98984 \pm 0,\!00046$	n/a	$0,98955 \pm 0,00043$	$0,\!99282\pm0,\!00039$	$0,99029 \pm 0,00038$	$0,\!9987 \pm 0,\!0008$
14	$0,\!99897\pm0,\!00036$	$0,\!99040 \pm 0,\!00047$	n/a	$0,\!99045\pm0,\!00041$	$0,\!99307 \pm 0,\!00038$	$0,99164 \pm 0,00039$	$0,\!9998 \pm 0,\!0007$
15	$1,\!00113\pm0,\!00040$	$0,\!99236 \pm 0,\!00041$	n/a	$0,\!99220\pm0,\!00043$	$0,\!99390\pm0,\!00040$	$0,99265 \pm 0,00038$	$1,\!0000\pm0,\!0006$
16	$0,99900 \pm 0,00039$	$0,\!99124\pm0,\!00038$	n/a	$0,\!99103\pm0,\!00036$	$0,99306 \pm 0,00038$	$0,\!99113 \pm 0,\!00039$	$1,\!0001\pm0,\!0007$
17	$0,\!99866 \pm 0,\!00040$	$0,\!99084 \pm 0,\!00035$	n/a	$0,\!98995\pm0,\!00039$	$0,\!99372\pm0,\!00038$	$0,\!99087 \pm 0,\!00038$	$0,\!9996 \pm 0,\!0006$
18	1,00223 ± 0,00038	0,99400 ± 0,00039	n/a	0,99364 ± 0,00042	$0,99575 \pm 0,00037$	0,99570 ± 0,00040	$1,0026 \pm 0,0007$

Tab. 5-3:Berechnete Werte $K_{eff} \pm 1\sigma$ für die 18 Konfigurationen der Maracas-Experimente /MAR 06/ im Vergleich.

In der Tabelle sind die Rechenergebnisse mittels KENO Va aus den SCALE Versionen 4.4a, 5.0 und 5.1 aufgeführt, mit unterschiedlichen Kombinationen aus Gruppenstruktur (44 oder 238), Resonanzbehandlung (NITAWL oder CENTRM), sowie Datenbasis (ENDF/B-V oder B-VI). In allen Fällen wurden 1100 Neutronengenerationen (die ersten 100 Generationen wurden verworfen) und 5000 Neutronen pro Generation, also 5 Mio. Neutronenschicksale, verfolgt. In der letzten Spalte sind zusätzlich zum Vergleich Rechenergebnisse aus /MAR 06/ mit KENO angegeben.

Zunächst kann man feststellen, dass die Ergebnisse der vier eigenen Modellierungen (Spalte 4) gut mit denjenigen der vorgegebenen Eingabedaten übereinstimmen, insbesondere im Fall identischer Methodenparameter (Spalte 5). Darüber hinaus erkennt man, dass der experimentell mit einer Messgenauigkeit von 0,1 % erreichte kritische Wert K = 1,000 in allen aufgeführten Fällen mit zufriedenstellender Genauigkeit durch die Rechnungen reproduziert werden kann. Tendenziell ist eine leichte Unterschätzung von $k_{eff} = 1,0$ zu beobachten. Diese Unterschätzung könnte durch die Tatsache erklärt werden, dass der Wert $k_{eff} = 1$ experimentell aus dem subkritischen Bereich so nahe wie möglich angenähert wurde, ohne ihn letztlich zu erreichen /MAR 06/.

5.4.1 Unterstützende Berechnungen mit TSUNAMI

Mit Hilfe von TSUNAMI und TSUNAMI-IP /REA 03/, /BRO 04/, /SCA 06/ des SCALE-Pakets Version 5.1 wurde die Eignung der ausgewählten Benchmark-Experimente zur Validierung der durchgeführten Parameterrechnungen nachgewiesen, sowie eine beispielhafte Trendanalyse durchgeführt. Die Version 5.1 zeichnet sich gegenüber der älteren Version neben methodischen Verbesserungen v.a. durch von ENDF/B-V auf B-VI aktualisierte Wirkungsquerschnittsdaten aus, sowie der Tatsache, dass in Version 5.1 nun CENTRM/PMC anstelle von NITAWL das Standardverfahren zur Resonanzbehandlung ist. Optional sind in beiden Versionen beide Verfahren anwählbar, allerdings ist NITAWL nicht mit ENDF/B-VI Querschnittsdaten kompatibel /SCA 06/. Zusätzliche, auf Unsicherheiten in den nuklearen Datenbasen beruhende Einflüsse auf den Multiplikationsfaktor wurden explizit und implizit durch Fehlerpropagation quantifiziert.

Um die Eignung der 18 Experimente des MARACAS Programms zur Validierung von schwach moderierten Urandioxid-Systemen zu demonstrieren, wurden entsprechende Sensitivitäts- und Unsicherheitsprofile (S/U-Profile) mit TSUNAMI aus SCALE 5.1 er-

stellt. Die Fälle 03 und 13 von LEU-COMP-THERM-033 /NEA 06/ (Polyäthylenreflektierte, schwach moderierte Uran(2%)tetrafluorid-Quader) sowie die Experimente YDR14PL2, YDR14PL3, YDR14UN2, und YDR14UN3 aus NUREG-CR-6361 /LIC 97/ (schwach moderierte homogene Uran(2%)-Paraffin-Mischungen mit Reflektor) wurden zusätzlich in die Validierungsrechnungen mit einbezogen.

Als sogenannte Anwendungssysteme zum Vergleich mit den Benchmark-Experimenten mittels TSUNAMI-IP wurden für alle Anreicherungen und Restfeuchte jeweils diejenigen Kugeln mit den kleinsten kritischen Massen ausgewählt; in allen Fällen waren dies die Systeme mit maximaler Dichte (siehe Tab. 5-2). Auch für diese Systeme wurden S/U-Profile erstellt. Alle Anwendungssysteme besitzen einen Wasserreflektor der Dicke 30 cm. Tab. 5-4 listet die untersuchten Anwendungssysteme im Detail auf.

Nummer	Beschreibung des A (jew. Kugelgeometrie, ma	H/U	
1	UO ₂ 5 Gew% ²³⁵ U	Restfeuchte 2 Gew%	0,6
2	UO ₂ 5 Gew% ²³⁵ U	Restfeuchte 3 Gew%	0,9
3	UO ₂ 5 Gew% ²³⁵ U	Restfeuchte 5 Gew%	1,5
4	UO ₂ 6 Gew% ²³⁵ U	Restfeuchte 2 Gew%	0,6
5	UO ₂ 6 Gew% ²³⁵ U	Restfeuchte 3 Gew%	0,9
6	UO ₂ 6 Gew% ²³⁵ U	Restfeuchte 5 Gew%	1,5
7	UO ₂ 7 Gew% ²³⁵ U	Restfeuchte 1 Gew%	0,3
8	UO ₂ 7 Gew% ²³⁵ U	Restfeuchte 2 Gew%	0,6
9	UO ₂ 7 Gew% ²³⁵ U	Restfeuchte 3 Gew%	0,9
10	UO ₂ 7 Gew% ²³⁵ U	Restfeuchte 5 Gew%	1,5
11	UO ₂ 8 Gew% ²³⁵ U	Restfeuchte 1 Gew%	0,3
12	UO ₂ 8 Gew% ²³⁵ U	Restfeuchte 2 Gew%	0,6
13	UO ₂ 8 Gew% ²³⁵ U	Restfeuchte 3 Gew%	0,9
14	UO ₂ 8 Gew% ²³⁵ U	Restfeuchte 5 Gew%	1,5

Tab. 5-4:Liste der in dieser Arbeit validierten schwach moderierten Urandioxid-
Systeme (Anwendungssysteme)

Abb. 5-29 und **Abb. 5-30** zeigen ausgewählte Sensitivitätsprofile für eine schwach moderierte Urandioxidkugel mit 5 Gew.-% Anreicherung und 5 Gew.-% Restfeuchte unter voller Reflexion (Anwendungssystem 3).

Abb. 5-29: Sensitivitätsprofile für ²³⁵U-Spaltung, ²³⁸U-Einfang und ¹H-total bei einer Kugel aus UO₂ mit 5 Gew.-% Anreicherung und 5 Gew.-% Restfeuchte unter voller Reflexion.

Aufgetragen ist die Sensitivität von k_{eff} gegenüber Änderungen in den Wirkungsquerschnitten in einem bestimmten Lethargieintervall über der Energie. Sensitivitäten, die zu einer Reaktivitätssteigerung beitragen, haben positive Werte, z. B. die Spaltreaktion von ²³⁵U (blau) im thermischen Energiebereich, oder die moderierende Wirkung von ¹H (grün) im epithermischen Bereich der ²³⁸U-Resonanzen (höhere Moderation verstärkt bei der Abbremsung der Neutronen die Überwindung der epithermischen Resonanzen von ²³⁸U, was zu einer Erhöhung der Anzahl der zu ²³⁵U-Spaltungen führenden thermischen Neutronen führt). Eine Erhöhung dieser Querschnitte hätte eine Erhöhung von k_{eff} zur Folge. Reaktivitätsmindernde Sensitivitäten sind negativ, wie z. B. für den dargestellten ²³⁸U-Einfangsquerschnitt (rot) bei den Energien der Einfangresonanzen dieses Nuklids. Eine Erhöhung derartiger Querschnitte hätte eine Verringerung von k_{eff} zur Folge.

Abb. 5-30: Sensitivitätsprofile für ²³⁵U-total, ²³⁵U-Spaltung, ²³⁵U-Einfang und ²³⁵U-Streuung bei einer Kugel aus UO₂ mit 5 Gew.-% Anreicherung und 5 Gew.-% Restfeuchte unter voller Reflexion.

In **Abb. 5-30** ist die Sensitivität des totalen Wirkungsquerschnitts von ²³⁵U (dunkelblau) dargestellt, zusammen mit den jeweiligen Beiträgen der Einzelreaktionen Spaltung (hellblau), Einfang (grün) und Streuung (gelb). Man sieht, dass die Streuung nur einen vernachlässigbaren Beitrag leistet, während Spaltung und Einfang in diesem System stark konkurrierende Prozesse darstellen.

In **Abb. 5-31** sind zum Vergleich exemplarisch die Sensitivitätsprofile der Spaltung von ²³⁵U jeweils bei einer Kugel aus UO₂ mit 5 Gew.-% Anreicherung und 5 Gew.-% Restfeuchte unter voller Reflexion (Anwendungssystem 3) und dem Benchmark-Experiment LEU-COMP-THERM-049 Fall 5 einander gegenüber gestellt.

Abb. 5-31: Sensitivitätsprofil von ²³⁵U-Spaltung bei einer Kugel aus UO₂ mit
 5 Gew.-% Anreicherung und 5 Gew.-% Restfeuchte unter voller Reflexion, sowie bei dem Benchmark-Experiment LEU-COMP-THERM-049 Fall
 5.

Man sieht in **Abb. 5-31**, dass das Anwendungssystem (blau) und das Benchmark-Experiment (rot) qualitativ sehr ähnlich, quantitativ aber unterschiedlich sensitiv auf Änderungen im Spaltquerschnitt von ²³⁵U reagieren. In diesem Fall ist dies auf die unterschiedlichen Moderationsverhältnisse H/U (1,5 bei der Kugel und 2,5 im Experiment) zurückzuführen. Die Anreicherung ist mit 5 Gew.-% ²³⁵U in beiden Fällen identisch. Die höhere Moderation im Experiment bewirkt eine bessere Thermalisierung der Neutronen gegenüber dem Anwendungssystem, und deshalb eine höhere Sensitivität von k_{eff} auf den Spaltquerschnitt im thermischen Energiebereich, während die Sensitivität im epithermischen Bereich reduziert ist.

Diese am Beispiel der ²³⁵U-Spaltung bereits optisch erkennbare hohe qualitative Übereinstimmung der Sensitivitäten dieser beiden Systeme kann u.a durch den von TSUNAMI-IP berechneten Parameter c_K quantifiziert werden, der ein auf Unsicherheiten in den zugrunde liegenden nuklearen Datenbasen basierendes Maß für die Ähnlichkeit zweier Systeme ist. Der Wert von c_K errechnet sich aus dem integralen Vergleich aller Nuklid-Reaktionen, nicht nur aus dem Vergleich der spezifischen Nuklid-Reaktion ²³⁵U-Spaltung. Der für den Vergleich dieser beiden Systeme errechnete Wert von $c_{K} = 0,9526 \pm 0,0006$ liegt hoch genug, um die Eignung dieses Experiments zur Validierung des genannten Anwendungssystems zu demonstrieren. Für die vorliegenden Validierungsrechnungen wurde ein Grenzwert von $c_{K} > 0,8$ für diesen Parameter festgelegt, um eine Eignung des jeweiligen Experiments anzuzeigen.

In **Abb. 5-32** ist die Anzahl aller Benchmark-Experimente mit $c_{K} > 0,8$ für alle Anwendungssysteme als Balkendiagramm grafisch dargestellt.

Abb. 5-32: Anzahl der Benchmark-Experimente mit $c_{K} > 0,8$ für alle Anwendungssysteme

Man erkennt in **Abb. 5-32**, dass für die Systeme mit 1 Gew.-% Restfeuchte (7, 11) kein Experiment mit $c_K > 0.8$ vorliegt; für Systeme mit 2 Gew.-% Restfeuchte (1, 4, 8, 12) sind es jeweils 4, mit 3 Gew.-% (2, 5, 9, 13) jeweils 14, und für 5 Gew.-% (3, 6, 10, 14) jeweils 18. Alle diese Experimente gehören zu LEU-COMP-THERM-049, also zum Maracas-Programm. Kein einziges anderes der ausgewählten Benchmark-Experimente (H/U \approx 8) erzielte einen Wert von $c_K > 0.8$ bezüglich dieser Anwendungssysteme, um eine Eignung zur Validierung der 14 Anwendungssysteme zu demonstrieren. Interessant ist weiterhin, dass die Anreicherung an ²³⁵U (5 – 8 %) in diesen Anwendungssystemen gegenüber der Moderation eine untergeordnete Rolle zu spielen scheint (alle Maracas-Experimente besitzen 5 Gew.-% ²³⁵U Anreicherung und H/U von jeweils 2, 2,5 und 3).

Für die Anwendungssysteme mit 1 Gew.-% Restfeuchte (H/U = 0,3) ist auch im Maracas-Programm kein geeignetes Validierungsexperiment vorhanden. Der sehr geringe Moderationsgrad dieser Anwendungssysteme bedingt, dass eventuell trockene Urandioxidsysteme mit voller Wasserreflexion besser zur Validierung geeignet sein könnten. Da das SCALE-Paket für derartige Systeme weltweit hinlänglich gut validiert ist (siehe z. B. /LIC 97/), soll an dieser Stelle nicht vertieft darauf eingegangen werden.

Tab. 5-5 fasst die Ergebnisse der Benchmark-Validierungsrechnungen mit TSUNAMI bzw. TSUNAMI-IP zusammen, exemplarisch mit c_{K} und G für den Anwendungssystem 3 (Kugel UO₂ 5% ²³⁵U, Restfeuchte 5%, 30 cm Wasserreflektor).

Tab. 5-5:Validierung von Anwendungssystem 3 (Kugel UO2 5 % 235U, Restfeuchte 5 %, 30 cm Wasserreflektor) durch 24 Benchmark-
Experimente mittels TSUNAMI.

Experiment Num- mer	Experiment- bezeichnung	k _{eff} des Experiments	Querschnitts- unsicherheit (%)	Сĸ	G
1	LCT-049, Maracas, Fall1, H/U=2	0.9905±0.0003	0.5807±0.0007	0.9822±0.0005	0.8342±0.0139
2	LCT-049, Maracas, Fall2, H/U=2	0.9908±0.0002	0.5824±0.0008	0.9820±0.0005	0.8374±0.0183
3	LCT-049, Maracas, Fall3, H/U=2	0.9915±0.0003	0.5847±0.0008	0.9843±0.0005	0.8374±0.0180
4	LCT-049, Maracas, Fall4, H/U=2	0.9954±0.0002	0.5875±0.0008	0.9859±0.0005	0.8758±0.1861
5	LCT-049, Maracas, Fall5, H/U=2.5	0.9901±0.0002	0.5469±0.0009	0.9526±0.0006	0.7880±0.0204
6	LCT-049, Maracas, Fall6, H/U=2.5	0.9917±0.0002	0.5498±0.0009	0.9517±0.0006	0.7933±0.0195
7	LCT-049, Maracas, Fall7, H/U=2.5	0.9905±0.0002	0.5463±0.0008	0.9480±0.0006	0.7859±0.0199
8	LCT-049, Maracas, Fall8, H/U=2.5	0.9905±0.0002	0.5487±0.0009	0.9553±0.0006	0.7908±0.0209
9	LCT-049, Maracas, Fall9, H/U=3	0.9893±0.0003	0.5267±0.0009	0.9118±0.0006	0.7481±0.0215
10	LCT-049, Maracas, Fall10, H/U=3	0.9919±0.0003	0.5288±0.0008	0.9126±0.0006	0.7523±0.0195
11	LCT-049, Maracas, Fall11, H/U=3	0.9897±0.0003	0.5285±0.0009	0.9116±0.0006	0.7524±0.0213

12	LCT-049, Maracas, Fall12, H/U=3	0.9908±0.0003	0.5290±0.0008	0.9206±0.0006	0.7557±0.0175
13	LCT-049, Maracas, Fall13, H/U=3 und 2	0.9901±0.0003	0.5549±0.0009	0.9570±0.0005	0.8072±0.0203
14	LCT-049, Maracas, Fall14, H/U=3 und 2	0.9912±0.0002	0.5530±0.0009	0.9587±0.0005	0.8040±0.0206
15	LCT-049, Maracas, Fall15, H/U=3 und 2	0.9924±0.0002	0.5537±0.0008	0.9589±0.0005	0.8059±0.0192
16	LCT-049, Maracas, Fall16, H/U=3 und 2	0.9907±0.0002	0.5437±0.0009	0.9473±0.0005	0.7829±0.0212
17	LCT-049, Maracas, Fall17, H/U=3 und 2	0.9911±0.0002	0.5465±0.0008	0.9552±0.0005	0.7893±0.0194
18	LCT-049, Maracas, Fall18, H/U=3 und 2	0.9951±0.0003	0.5218±0.0008	0.9550±0.0005	0.7376±0.0210
19	LCT-033 03: UF ₄ Paraffin Mix. u2f4-1	1.0006±0.0003	0.6017±0.0014	0.7413±0.0006	0.4007±0.0447
20	LCT-033 13: UF ₄ Paraffin Mix. u2f4-5	0.9976±0.0003	0.5209±0.0011	0.5844±0.0007	0.2597±0.0285
21	ydr14pl2	1.0022±0.0002	0.5489±0.0010	0.6425±0.0006	0.4883±0.1048
22	ydr14pl3	1.0138±0.0003	0.5523±0.0013	0.7741±0.0007	0.6412±0.1979
23	ydr14un2	1.0054±0.0005	0.5770±0.0029	0.6909±0.0016	0.5545±0.0940
24	ydr14un3	1.0192±0.0003	0.5728±0.0022	0.7789±0.0011	0.6603±0.0425

Die in Tab. 5-5 aufgelisteten Werte für c_{K} sind in **Abb. 5-33** grafisch dargestellt.

Abb. 5-33: Integralwerte c_K einer Kugel aus UO₂ mit 5 Gew.-% Anreicherung und 5 Gew.-% Restfeuchte unter voller Reflexion im Vergleich zu 24 Benchmark-Experimenten.

Man sieht aus Tab. 5-5 und **Abb. 5-33** nun im Detail, dass die c_{K} -Werte der 18 Maracas-Experimente für das Anwendungssystem 3 deutlich über 0,8 liegen (also hinreichend ähnlich sind), jedoch keines der anderen Experimente². Den höchsten Wert für c_{K} liefern die Experimente 1 bis 4, die von allen 18 mit H/U = 2 das niedrigste Moderationsverhältnis aufweisen (siehe auch Tab. 5-5), und damit dem Moderationsverhältnis des Anwendungssystems 3 von H/U = 1,5 am nächsten kommen.

Auf Basis der Werte von k_{eff} der Benchmark-Experimente, sowie der zugehörigen Werte von c_K bezüglich Anwendungssystem 3 lässt sich eine Trendanalyse zur Bestimmung des Bias durchführen, der sich aus der Validierung durch den gegebenen Satz an Experimenten ergibt. Da für Anwendungssystem 3 18 Experimente mit c_K > 0,9 vor-

² Es ist zu erwarten, dass die 18 Maracas-Experimente untereinander korreliert sind, da sie dem selben Labor und Messprogramm entstammen. Basiert eine Validierung ausschließlich auf diesen Experimenten, könnte ein systematischer Fehler den errechneten Bias verfälschen. Diese Problematik kann hier jedoch nicht weiter verfolgt werden.

liegen, werden nach Empfehlung von /BRO 04/ diejenigen Experimente mit $0.8 < c_{K} < 0.9$ für diese Trendanalyse nicht berücksichtigt.

Die Trendanalyse wurde mit dem zusammen mit SCALE 5.1 ausgelieferten Analyseprogramm USLSTATS nach /LIC 97/ durchgeführt. Das Ergebnis ist in **Abb. 5-34** grafisch dargestellt.

Abb. 5-34:Trendanalyse f
ür das Anwendungssystem 3, Kugel UO_2 mit 5% ^{235}U ,Restfeuchte 5%, und 30 cm Wasserreflektor

Die blauen Punkte in **Abb. 5-34** stellen die k_{eff}-Werte der Experimente mit ihren statistischen Unsicherheiten (1 σ) aus der Monte Carlo Rechnung dar, aufgetragen über dem zugehörigen c_K-Wert. Die blaue Linie stellt eine lineare Regression durch diese Punkte dar, extrapoliert bis c_K = 1,0, was im Sinne der Unsicherheitsanalyse exakt das Anwendungssystem 3 bedeutet. Bei c_K = 1,0 liest man etwa k_c \approx 0,993 ab. Daraus erkennt man, dass sich aus den Validierungsrechnungen ein negativer Bias $\beta = k_c - 1$ /LIC 97/ von etwa -0,7 % in k_{eff} ergibt. Ein negativer Bias darf zwar nicht berücksichtigt werden, aber dennoch bedeutet dies, dass die Rechnungen zu Anwendungssystem 3 nicht mit einem zusätzlichen (positiven) Bias beaufschlagt werden müssen.

Die grüne Linie in **Abb. 5-34** zeigt das statistische Konfidenzintervall, und die rote und die gelbe Linie bedeuten die "upper subcritical limits", welche in /LIC 97/ definiert sind.

Ein administrativer Sicherheitsabstand von 0,05 wurde hierbei unterstellt. USL(1) beinhaltet u.a. diesen Sicherheitsabstand sowie das Konfidenzintervall, während USL(2) eine Art von "best estimate" Abschätzung der echten Unsicherheit darstellt. Dass USL(2) auf der ganzen Skala oberhalb des administrativen Sicherheitsabstands liegt, bedeutet, dass letzterer für Anwendungssystem 3 ausreichend groß festgelegt ist.

Es bleibt hinzuzufügen, dass die TSUNAMI-Rechnungen für alle in dieser Arbeit betrachteten Experimente und Anwendungssysteme eine Unsicherheit von ca. 0,55 % in $\Delta k/k$ aufgrund von Unsicherheiten in den nuklearen Datenbasen ergeben. Dieser Wert ist durchweg charakteristisch für alle typischen niedrig angereicherten Urandioxid-Systeme. Die vier wichtigsten Beiträge zu dieser Unsicherheit liefern in absteigender Reihenfolge die Varianzen zu den Wirkungsquerschnitten der Nuklid-Reaktionen ²³⁸U(n, γ), ²³⁵U(n,γ), ²³⁵U($\bar{\nu}$) und ²³⁵U(Spaltung).

5.4.2 Gegenrechnung einzelner Parameterwerte mit XSDRN und MCNP5

Zur Überprüfung der Ergebnisse für die Kurvenparameter wurden für diejenigen Kugelsysteme, bei denen die jeweils kleinste kritische Masse auftritt (siehe Tab. 5-2), der entsprechende k_{eff} -Wert mit MCNP5 /MCN 06/ berechnet und mit dem erwarteten Wert $k_{eff} = 1,00$ verglichen. Dazu wurden Daten nach ENDF/B-VI (Erweiterung .66c) verwendet. In jeder Rechnung wurden 7500×600, also 3,75 Mio. Neutronenschicksale (die ersten 100 Generationen werden verworfen), in einer Kugel mit jeweils kleinstem kritischen Kugelradius und 30 cm Wasserreflektor verfolgt. Da in den schwach moderierten Urandioxid-Systemen kleinste kritische Massen und Volumina bei den selben Konzentrationen auftreten, werden mit diesen Rechnungen gleichzeitig auch die kleinsten kritischen Volumina überprüft. Weitere Gegenrechnungen wurden mit XSDRN (CSAS1) aus SCALE 5.1 durchgeführt. Die Rechenergebnisse sind in Tab. 5-6 aufgelistet.

Tab. 5-6:Vergleichsrechnungen zu den kleinsten kritischen Kugelmassen
schwach moderierter, niedrig angereicherter Urandioxidsysteme mit
XSDRN und MCNP5.

Sustam	XSDRN ENDF/B-VI	Μ		
System	SCALE5.1	K_{eff}	1σ	3 σ
U(5)O ₂ 2% Rw.	1,00128	0,99783	0,00033	0,00099
U(5)O ₂ 3% Rw.	1,00219	0,99910	0,00036	0,00108
U(5)O ₂ 5% Rw.	1,00178	0,99972	0,00038	0,00114
U(6)O ₂ 2% Rw.	1,00040	0,99716	0,00032	0,00096
U(6)O ₂ 3% Rw.	1,00121	0,99884	0,00036	0,00108
U(6)O ₂ 5% Rw.	1,00080	0,99808	0,00040	0,00120
U(7)O ₂ 1% Rw.	1,00244	0,99910	0,00029	0,00087
U(7)O ₂ 2% Rw.	1,00049	0,99794	0,00034	0,00102
U(7)O ₂ 3% Rw.	1,00184	0,99897	0,00037	0,00111
U(7)O ₂ 5% Rw.	1,00189	0,99910	0,00040	0,00120
U(8)O ₂ 1% Rw.	1,00141	0,99951	0,00031	0,00093
U(8)O ₂ 2% Rw.	1,00178	0,99642	0,00034	0,00102
U(8)O ₂ 3% Rw.	1,00220	0,99911	0,00038	0,00114
U(8)O ₂ 5% Rw.	0,99989	0,99932	0,00039	0,00117

Man sieht in Tab. 5-6, dass der kritische Wert von k = 1,0 für die 14 Systeme durch MCNP5 knapp unterschätzt wird, vor allem bei 2 Gew.-% Restfeuchte. Dagegen überschätzt der deterministische S_N-Code XSDRN (CSAS1) den Wert k = 1,0 außer in einem einzigen Fall stets leicht um $\approx 0,1 - 0,2$ %. Die tendenzielle Unterschätzung von mit SCALE errechneten k-Werten durch MCNP ist typisch und durch die präziseren Punktquerschnittsdaten in MCNP bedingt, während SCALE zur konservativen Seite tendiert. Somit bestätigen auch die Rechnungen mit MCNP5 die in Kapitel 5.2 angegebenen kleinsten kritischen Parameterwerte.

Die im Kapitel 5.4 dargestellten Rechnungen zeigen die Eignung der verwendeten Verfahren zur Berechnung kritischer Parameter von schwach moderierten Urandioxid-Wasser-Systemen im Rahmen des Handbuchs zur Kritikalität, sowie die Eignung der ausgewählten Benchmark-Experimente zur Validierung. 6 Nachrechnung kritischer Parameter mit dem Code XSDRN und KENO Va aus dem SCALE-Paket Version 6

Das SCALE-Paket ist inzwischen in der Version 6 verfügbar, die insbesondere mit der Wirkungsquerschnittsbibliothek ENDF/B-VII (238 Energiegruppen) eine aktualisierte Datenbibliothek bereit stellt. Die im Handbuch zur Kritikalität angegebenen kritischen Parameter wurden dagegen teils vor mehr als 35 Jahren mit heute nicht mehr gebräuchlichen Datenbibliotheken (z. B. ENDF/B–IV, 27 oder 44 Energiegruppen) ermittelt. Um der Weiterentwicklung der Codes und Datenbibliotheken Rechnung zu tragen, wurden für einige Systeme kritischen Parameter nachgerechnet und mit den bisherigen Werten verglichen.

Für diese Nachrechnungen wurde in allen Fällen der Code XSDRN (CSAS1) in P₃/S₈-Näherung und die Datenbibliothek ENDF/B-VII in 238 Energiegruppen genutzt. Die kritischen Parameter – hier der kritische Kugelradius, aus dem kritische Masse und Volumen errechnet wurden – wurden durch die in der CSAS-Sequenz enthalten Suchfunktion ermittelt. Als Konvergenzkriterium galt $\varepsilon = 10^{-5}$ und die Resonanzbehandlung erfolgte durch das Modul CENTRM/PMC des SCALE-Pakets. Für die Dichten der betrachteten Systeme wurden, falls nicht anders erwähnt, Werte von 10,96 g/cm³ für Urandioxid und 8,34 g/cm³ für Urantrioxid zugrunde gelegt.

6.1 Homogene Urandioxid-Wasser-Systeme

Für homogene UO₂-Wasser-Systeme mit Anreicherungen von 4 % und 5 % wurden kritische Kugelmassen für Urankonzentrationen von 0,34 gU/cm³ bis 7,0 gU/cm³ unter voller Reflexion (30 cm Wasser) berechnet. Das bei den einzelnen Urankonzentrationen verbleibende Restvolumen wurde vollständig mit Wasser aufgefüllt (Restwasserauffüllung).

Die damit erzielten Resultate sind in **Abb. 6-1** zusammen mit einzelnen Werten der bisherigen im Handbuch referenzierten Rechnungen wiedergegeben. Letztere Werte sind allerdings nur noch als gezeichnete Kurven verfügbar und mussten durch Ablesen aus den Kurven ermittelt werden.

Abb. 6-1: Kritische Kugelmassen homogener Urandioxid-Wasser-Systeme

Der Vergleich bisheriger und aktueller Ergebnisse zeigt, dass die mit der aktuellen Datenbibliothek ermittelten Werte um 3 % - 15 % unterhalb der bisherigen Werte für die kritischen Kugelmassen liegen. Die bisherigen Verteilungen der kritischen Kugelmassen (vermutlich auch weiterer kritischer Parameter) können damit gegenüber den neueren Rechnungen nicht als konservativ angesehen werden.

Desweiteren wurde der infinite Multiplikationsfaktor k_{inf} für homogene UO₂-Pulver mit und ohne Restfeuchte untersucht. Die Ergebnisse sind in **Abb. 6-2** zusammen mit einigen bisherigen Werten wiedergegeben. Im Fall ohne Restfeuchte (0 Gew.-% H₂O) liegen die mit aktueller Datenbasis berechneten Multiplikationsfaktoren um 1 % - 2 % unter der bisherigen Werten, wodurch die bisherigen Werte als konservativ bestätigt werden. Dagegen zeigen die Fälle mit Restfeuchte das entgegengesetzte Bild. Dort liefert die aktuelle Datenbibliothek um etwa 1 % - 2 % höhere Multiplikationsfaktoren, so dass die bisherigen Verteilungen nicht zwingend konservativ sind.

Somit ergeben die Rechnungen mit SCALE 6 für viele der untersuchen Urandioxid-Wasser-Systeme im Vergleich zu den derzeit vorhandenen Verteilungen im Kritikalitätshandbuch kleinere kritische Parameter bzw. größere Multiplikationsfaktoren, so dass in diesen Fällen eine entsprechende zukünftige Aktualisierung wünschenswert erscheint.

6.2 Homogene Urantrioxid-Wasser-Systeme

Neben Urandioxid wurde auch die kritische Kugelmasse für Urantrioxid für eine Anreicherung von 5% in Abhängigkeit der Urandichte von 0,3 gU/cm³ bis 6,0 gU/cm³ nachgerechnet. Auch in diesem Fall wurde volle Reflexion (30 cm Wasser) berücksichtigt und das verbleibende Volumen vollständig mit Wasser aufgefüllt (Restwasserauffüllung). Die ermittelten Werte gibt **Abb. 6-3** zusammen mit einigen Werten der bisherigen Rechnung wieder. Bisherige und mit aktueller Datenbasis nachgerechnete Werte zeigen hier eine qualitativ sehr gute Übereinstimmung, wobei zu beachten ist, dass die bisherigen Werte aus einer gezeichneten Kurve abgelesen wurden und somit keine exakten Zahlenwerte zum Vergleich vorliegen.

Abb. 6-3: Kritische Kugelmasse für homogene Urantrioxid-Wasser-Mischung.

6.3 Heterogene UO₂-Systeme

Als heterogene Systeme wurden unendlich ausgedehnte Stabgitter betrachtet. Um eine kritische Kugelmasse für ein solches System zu bestimmen, wurde mit der CELLMIX-Option der CSAS-Sequenz die Materialzusammensetzung einer Stabzelle (Pelletdurchmesser: 0,9 cm, Hüllrohrwandstärke: 0,07 cm Zirkalloy-2, Stabaußendurchmesser: 1,075 cm, Temperatur 293 K) im Modul CENTRM des SCALE-Pakets homogenisiert und mit der Datenbibliothek ENDF/B-VII (in 238 Energiegruppen) entsprechende effektive makroskopischer Wirkungsquerschnitte berechnet. Die homogenisierte Materialzusammensetzung dieser Stabzelle wurde in Form einer Kugel mit umgebenden 30 cm Wasserreflektor in das Modul KENO Va des SCALE-Pakets eingebracht, um so einen kugelförmigen Ausschnitt eines Stabgitters anzunähern. Unter Verwendung der vorab berechneten makroskopischen Wirkungsquerschnitte wurde mit der Suchfunktion im KENO Va (CSAS5S, critical dimension) der kritische Kugelradius ermittelt. Dazu werden bei jedem Durchlauf der Suchfunktion 550 Generationen a 20.000 Neutronen (die ersten 50 Generationen, wurden jeweils für die keff-Berechnung verworfen) simuliert.

Die kritischen Radien wurden hier für eine Urananreicherung von 4% und für einzelne Moderator-Spaltstoff-Volumenverhältnisse bestimmt. Dieses Verhältnis wurde bei gegebener Stabgeometrie durch eine geeignete Wahl des Stababstandes (pitch) festgelegt. Die hier errechneten Werte und die entsprechenden bisherigen Werte sind in Tab. 6-1 zusammengestellt.

Moderator- Spaltstoff- Verhältnis	pitch /cm	Krit. Radius/cm (SCALE 6)	Krit. Vo- lumen/l (SCALE 6)	Krit. Masse/kg (SCALE 6)	Krit. Volumen/I (bisherige Wer- te)	Krit. Masse/kg (bisherige Wer- te)
1,0	0,62125	27,532	87,42	347,96	91	430
2,0	0,73824	21,766	43,19	121,76	42,5	137
3,0	0,83907	20,614	36,69	80,06	37	89
4,0	0,92902	20,814	37,77	67,23	38,5	74
5,0	1,01100	21,677	42,67	64,13	43	68

Tab. 6-1:Kritische Volumina und Massen für heterogene UO2-Systeme.

Der Vergleich zeigt, dass das aus dem kritischen Radius leicht zu errechnende kritische Volumen qualitativ gut mit den bisherigen Ergebnissen übereinstimmt. Für ein Moderator-Spaltstoffe-Volumenverhältnis von 2 liegt der neu errechnete Werte mit etwa 1,5 % leicht über dem bisherigen Wert in den anderen Fällen liegen die aktuellen Werte um wenige Prozent (≤ 4 %) unter den bisherigen Werten.

Die aus dem Volumen zu berechnende kritische Masse zeigt dagegen deutlich größere Abweichungen. Dort liegen die aktuellen Resultate bis zu 20 % unter den bisherigen Werten. Für große Moderator-Spaltstoff-Volumenverhältnisse verringert sich die Diskrepanz zwischen den errechneten Massen auf etwa 6 %. Eine zufriedenstellende Erklärung der relativ guten Übereinstimmung der Volumina bei gleichzeitiger deutlicher Diskrepanz der Massen konnte in Ermangelung genauer Nachvollziehbarkeit der aus dem Jahr 1973 stammenden bisherigen Rechnung nicht gefunden werden. Wegen der begrenzten Aussagekraft einer kritischen Kugelmasse eines Stabgitters wird ohnehin erwogen, diese Kurven aus dem Handbuch zu entfernen.

6.4 Homogene Uran-Graphit-Systeme

Neben den Verteilungen für wassermoderierte Systeme wurden auch einzelne Werte kritischer Massen für graphitmoderierte Systeme nachgerechnet. Dazu wurde ein homogenes Uran-Graphit-System mit 18,6% Anreicherung und voller Reflexion (30 cm Wasser, bzw. 100 cm Graphit) herangezogen. (Im Handbuch wird ein System aus 20 % U(93) und 80 % ²³⁸U betrachtet, was hier als eine Anreicherung von 18,6 % interpretiert wird.) Die kritische Masse wurde für verschiedene Moderationsverhältnisse C/²³⁵U bei einer angenommenen Graphitdichte von 1,9 g/cm und einer dem Moderationsverhältnis (bezogen auf Atomdichten) angepassten Urandichte analog zur eingangs beschriebenen Vorgehensweise ermittelt.

Tab. 6-2:Kritische Volumina und Massen für homogene Uran-Graphit-Systeme
(18,6% ²³⁵U).

30	cm	Wasser-Reflektor:
----	----	-------------------

Moderator- Krit.		Krit.	Krit.	Krit. Volumen/l	Krit. Masse/kg
Spaltstoff-	Radius/cm	Volumen/I	Masse/kg	(bisherige Wer-	(bisherige
Verhältnis	(SCALE 6)	(SCALE 6)	(SCALE 6)	te)	Werte)
2000	68,02	1318,25	24,52	2100	39
3000	65,31	1166,88	14,47	1600	19
5000	64,45	1121,39	8,35	1350	9,5
10000	67,95	1314,19	4,89	1450	5,5
20000	77,92	1981,69	3,69	2300	4,2

100 cm Graphit-Reflektor:

Moderator- Spaltstoff-	Krit. Radius/cm	Krit. Volumen/l	Krit. Masse/kg	Krit. Volumen/l (bisherige Wer-	Krit. Masse/kg (bisherige
Verhältnis	(SCALE 6)	(SCALE 6)	(SCALE 6)	te)	Werte)
2000	39,42	256,59	4,77	320	6,5
3000	40,00	268,08	3,32	300	3,7
5000	41,94	309,01	2,30	330	2,5
10000	47,28	442,71	1,65	470	1,75
20000	57,33	789,29	1,47	860	1,6

Die so erzielten Ergebnisse sind in Tab. 6-2 mit den zugehörigen bisherigen Werten zusammengestellt. Die mit der aktuellen Datenbasis errechneten Werte liegen in allen

Fällen unter den bisherigen Werten, zum Teil mit einer deutlichen Diskrepanz von etwa 30 %. Mit steigenden Moderator-Spaltstoff-Verhältnissen verringert sich dieser Unterschied, bleibt aber in der Größenordnung von etwa 10 %. Damit können auch in diesem Fall die bisherigen Werte nicht als konservativ angenommen werden und eine Nachrechnung der bisherigen Verteilungen erscheint zukünftig wünschenswert.

7 Zusammenfassung

Im Zuge der fortschreitenden Aktualisierung des von der GRS herausgegebenen deutschen "Handbuchs zur Kritikalität" wurden kritische Parameter, wie Kugelmassen, Kugelvolumina, Zylinder- und Schichtdicken, für wässrige Uranylfluorid-Systeme mit 3, 4, 5 und 6 Gew.-% ²³⁵U, für homogene Urandioxid-Wasser-Systeme mit 6, 7 und 8 Gew.-% ²³⁵U und für schwach moderierte Urandioxid-Wasser-Systeme mit 5, 6, 7 und 8 Gew.-% ²³⁵U und Restfeuchten von 1, 2, 3 und 5 Gew.-% Wasser, bezogen auf die Dioxid-Masse, mit Hilfe aktueller Rechenverfahren neu berechnet und validiert.

Bei der Bestimmung von Kernzahldichten spaltbarer Materialien in wässriger Lösung muss eine spezielle Dichterelation angewandt werden, um nichtlineare Lösungseffekte zu berücksichtigen, die die Dichte der resultierenden Lösung beeinflussen. Für Uranyl-fluorid in Wasser wurde im "Handbuch zur Kritikalität" die Methode der sogenannten "Restwasserauffüllung" verwendet. Neuere Studien zeigen, dass diese Methode zu nichtkonservativen Werten für die kleinsten kritischen Parameter (Kugelmasse und -volumen, Zylinderdurchmesser und Schichtdicke) führt. In der internationalen Literatur finden sich eine Reihe von empirischen und semi-empirischen Dichterelationen für dieses System, von denen die Methode der additiven molaren Volumina ausgewählt wurde, da sie die realen Lösungsverhältnisse gut wiedergibt und zu konservativeren Parametern als die Restwasserauffüllung führt. Mit Hilfe dieser Relation wurden die kritischen Parameterkurven von wässrigen Uranylfluorid-Wasser-Systemen bei Anreicherungen von 3, 4, 5 und 6 Gew.-% ²³⁵U neu berechnet.

Zur Validierung dieser Kurven wurde ein abdeckender Satz von 52 geeigneten Benchmarkexperimenten ausgewählt und nachgerechnet. Zusätzlich wurde das moderne, international zunehmend an Bedeutung gewinnende Verfahren der Sensitivitäts- und Unsicherheitsanalyse angewandt, um die systematische Unsicherheit des Rechenverfahrens zu bestimmen. Hierfür wurden umfangreiche Vergleichsrechnungen mit der Kontrollsequenz TSUNAMI aus dem Codepaket SCALE 5.0 durchgeführt, und für das System des kleinsten kritischen Kugelvolumens mit 5 % Anreicherung exemplarisch eine Trendanalyse mittels Sensitivitäts- und Unsicherheitsparametern durchgeführt. Für dieses System konnte so exemplarisch ein rechnerischer Bias von +0,76 % in k_{eff} durch das verwendete Rechenverfahren sowie die durch die zur Validierung verwendeten Benchmark-Experimente bestimmt werden, welcher bei einer Kritikalitätssicherheitsanalyse für dieses System als zusätzliche Unsicherheit in k_{eff} aufgrund des Rechenverfahrens zu berücksichtigen wäre. Für die homogenen Urandioxid-Wasser-Systeme wurden kritische Kugelmassen, Kugelvolumina, Zylinder- und Schichtdicken in Abhängigkeit der Urankonzentration ermittelt. Dazu wurde aus dem Programmsystem SCALE der Version 4.3 der eindimensionale Transportcode XSDRNPM zusammen mit der auf ENDF/B-V basierenden Wirkungsquerschnittsbibliothek in 44 Energiegruppen verwendet. Die Resultate wurden punktuell für einzelne Urandichten mit anderen Rechencodes und mit aktuelleren Datenbibliotheken (ENDF/B-VI) überprüft. Der Vergleich zeigt insgesamt eine gute Übereinstimmung zwischen den verschiedenen Rechencodes bzw. Bibliotheken, wobei mit SCALE 4.3 und ENDF/B-V stets die konservativsten Werte ermittelt wurden.

Im Fall der schwach moderierten Systeme erfolgte die Berechnung der kritischen Parameter je nach Verfügbarkeit mit den SCALE-Versionen 4.4a, 5.0 oder 5.1. Die Validierung wurde mit Hilfe der 18 Konfigurationen des Maracas-Experiments /MAR 06/ vorgenommen. Unterstützend wurden Untersuchungen mit dem Sensitivitäts- und Unsicherheitsverfahren TSUNAMI /REA 03/ aus SCALE 5.1 /SCA 06/ durchgeführt, welche die Eignung der gewählten Experimente untermauern, und Unsicherheiten in k_{eff} quantifizieren, welche aus Unsicherheiten in den nuklearen Datenbasen resultieren. Ein Bias, welcher sich aus der Validierung durch die gewählten Experimente für die Parameterkurven ergibt, wurde exemplarisch für ein repräsentatives Anwendungssystem (Kugel maximaler Dichte, 5 Gew.-% ²³⁵U und Restfeuchte 5 Gew.-%) quantifiziert. Da er negativ und zudem von geringem Betrag war, wurde er als zu vernachlässigend eingestuft.

Zusätzlich wurden zur Überprüfung der errechneten Parameter die jeweiligen Werte, bei denen die kleinsten kritischen Kugelmassen und Volumina für alle betrachteten Systeme auftreten, durch Rechnungen mit MCNP5 und ENDF/B-VI Wirkungsquerschnittsdaten sowie mit XSDRN (CSAS1) und ENDF/B-VI aus SCALE 5.1 verifiziert.

Die berechneten Parameterkurven werden in die kommende Ausgabe Oktober 2009 des Handbuchs zur Kritikalität aufgenommen.

Abschließend wurden kritische Parameter einiger im Handbuch aufgeführter Systeme mit der aktuell verfügbaren Version 6 des SCALE-Pakets nachgerechnet. Für homogene Urandioxid-Wasser-Systeme, heterogene Urandioxid-Wasser-Systeme und homogene Urandioxid-Graphit-Systeme wurden mit der aktuellen Datenbibliothek ENDF/B-VII und aktuellen Codeversionen kleinere kritische Parameter (hier Kugelradien) als

derzeit im Handbuch angegeben berechnet. Auch für schwach moderierte homogene Urandioxid-Wasser-Systeme wurden gegenüber dem Handbuch kleinere infinite Multiplikationsfaktoren gefunden. Dies muss als Hinweis darauf gewertet werden, dass die bisherigen Werte für diese Systeme nicht durchgängig hinreichend konservativ sind; eine zukünftige Aktualisierung der kritischen Parameter dieser Systeme sowie die Überprüfung weiterer Systeme erscheinen daher wünschenswert.

Die Werte der ebenfalls überprüften homogenen Urantrioxid-Wasser-Systeme zeigten dagegen eine sehr gute qualitative Übereinstimmung mit denen auf der Datenbibliothek ENDF/B-VII basierenden Nachrechnungen.

8 Literatur- und Quellenverzeichnis

Zitierte und weiterführende Literatur zu den Themen Uranylfluorid-Wasser und Sensitivitäts-/Unsicherheitsanalysen.

- /ANN 96/ J. Anno (1996): "Renouvellement du standard de criticite Francais. Recueil de courbes presentant les variations des masses minimales critiques", IPSN, SEC/T/98.074, Cedex, Frankreich.
- /BOW 03/ S.M. Bowman, D.F. Hollenbach, M.D. DeHart, B.T. Rearden, I.C. Gauld,
 S. Goluoglu (2003): "SCALE 5: Powerful New Criticality Safety Analysis
 Tools", ICNC 2003, Tokai-mura, Japan, October 20-24, 2003.
- /BRI 97/ J. F. Briesmeister: MCNP A General Monte Carlo N-Particle Transport Code, Version 4B, LA-12625-M, Version 4B, March 1997
- /BRO 99a/ B.L. Broadhead, C.M. Hopper, R.L. Childs, C.V. Parks (1999): "Sensitivity and Uncertainty Analyses Applied to Criticality Safety Validation – Methods Development", ORNL/TM-13692/V1, Oak Ridge, USA.
- /BRO 99b/ B.L. Broadhead, C.M. Hopper, R.L. Childs, C.V. Parks (1999): "Sensitivity and Uncertainty Analyses Applied to Criticality Safety Validation – Illustrative Applications and Initial Guidance", ORNL/TM-13692/V2, Oak Ridge, USA.
- /BRO 99c/ B.L. Broadhead, R.L. Childs, B.T. Rearden (1999): "Computational Methods for Sensitivity and Uncertainty Analysis in Criticality Safety", ICNC 99, Versailles, France, September 20-24, 1999.
- /BRO 00a/ B.L. Broadhead, B.T. Rearden (2000): "Foundations for Sensitivity-Based Criticality Validation Techniques", Transactions of ANS 2000 International Winter Meeting, Washington D.C., November 12-16, 2000.
- /BRO 00b/ B.L. Broadhead (2000): "Uncertainty Analysis Methods for S/U Criticality Validation Techniques", Transactions of ANS 2000 International Winter Meeting, Washington D.C., November 12-16, 2000.

- /BRO 04/ B.L. Broadhead, B.T. Rearden, C.M. Hopper, J.J. Wagschal, C.V. Parks (2004): "Sensitivity- and Uncertainty-Based Criticality Safety Validation Techniques", Nuclear Science and Engineering: **146**, 340-366 (2004).
- /CAR 72/ R. D. Carter, G.R. Kiel, K.R. Ridgway: ARH-600 Criticality Handbook Vol. 1, Atlantic Richfielf Hanford Company, Richland, WA 1968, Rev. 1972
- /CHI 99/ R.L. Childs (1999): "SEN1: A One-dimensional Cross-Section Sensitivity and Uncertainty Module for Criticality Safety Analysis." ORNL/TM-13738, Oak Ridge, USA.
- /CLA 82/ H.K. Clark (1982): "Subcritical Limits for Uranium-235 Systems", Nucl. Sci. Eng., 81, 351-378.
- /DOE 03/ DUF₆-Guide (2003), Ref.: Appendix A of the PEIS (DOE/EIS-0269) http://web.ead.anl.gov/uranium/guide/ucompound/propertiesu/fluoride.cfm
- /GAU 02/ I.C. Gauld (2002): "Strategies for Application of Isotopic Uncertainties in Burnup Credit", ORNL/TM-2001/257, Oak Ridge, USA.
- /GMA 01/ B. Gmal: Vergleichende Untersuchungen zur Verdünnungsformel für wässrige Uranylnitratlösung bei der Berechnung von Kritikalitätsparametern, Technischer Bericht GRS, Mai 2001
- /GOL 03/ S. Goluoglu, C.M. Hopper, B.T. Rearden (2003): "Extended Interpretation of Sensitivity Data for Benchmark Areas of Applicability", ANS 2003 Annual Meeting, San Diego, California, USA, June 1-5, 2003.
- /HEI 98/ W. Heinicke, H. Krug, W. Thomas, W. Weber, B. Gmal, E.F. Moser (1998): "Handbuch zur Kritikalität", (GRS)mbH, Dezember 1998.
- /HOP 00/ C.M. Hopper (2000): "Overview of Sensitivity and Uncertainty Analysis Methods for Establishing Areas of Applicability and Subcritical Margins", Transactions of ANS 2000 International Winter Meeting, Washington D.C., November 12-16, 2000.
- /JOH 53/ J.S. Johnson, K.A. Kraus (1953): "Density and refractive index of Uranyl Fluoride Solutions", Am. Chem. Soc., 75, 4594.

- /JOR 92/ W.C. Jordan, J.C. Turner (1992): "Estimated critical conditions for $UO_2F_2 H_2O$ Systems in fully water-reflected spherical geometry", ORNL/TM-12292, Oak Ridge, USA.
- /LIC 97/ J.J. Lichtenwalter, S.M. Bowman, M.D. DeHart, C.M. Hopper, "Criticality Benchmark Guide for Light-Water-Reactor Fuel in Transportation and Storage Packages", NUREG/CR-6361, ORNL/TM-13211 (1997)
- /MAR 06/ "Maracas Programme: Polythene-reflected critical configurations with lowenriched and low-moderated uranium dioxide powder, U(5)O₂."
 Als Experiment LEU-COMP-THERM-049 enthalten in Vol. IV von /NEA 06/
- /MAU 78/ L. Maubert (1978): "Standard de criticite valeurs minimales critiques", IPSN CEA-N-2051, Frankreich.
- /MCN 06/ RSICC CODE PACKAGE CCC-730: MCNP/MCNPX: Monte Carlo N– Particle Transport Code System Including MCNP5 1.40 and MCNPX 2.5.0 and Data Libraries, January 2006
- /MEN 01/ D. Mennerdahl (2001): "Basic critical values. Best estimate data for reference systems used in nuclear criticality safety", EMS Systems, EMS/NC/2001-01, T\u00e4by, Sweden.
- /MIL 01/ B.E. Miles et al. (2001): "Kritische und sichere Kritikalitätsparameter homogener Uranylfluorid-/Wasser-Systeme und von Anordnungen von UF₆-Rohrleitungen mit Anreicherung von 5 % bzw. 6 % U-235", Erläuterungsbericht E276 (-*OY—00-E276), Urenco Deutschland.
- /MUE 05a/ D.E. Mueller, G.A. Harms (2005): "Using the SCALE 5 TSUNAMI-3D Sequence in Critical Experiment Design", ANS 2005 Winter Meeting, Washington D.C., USA, November 13-17, 2005.
- /MUE 05b/ D.E. Mueller, B.T. Rearden (2005): "Sensitivity Coefficient Generation for a Burnup Credit Cask Model using TSUNAMI-3D", NCSD 2005, Knoxville Tennessee, USA, September 19-22, 2005.

- /NAI 95/ Y. Naito, H. Okuno (1995): "Nuclear criticality safety handbook (English translation)", Jap. Orig.: N. Shobo (1988), JAERI-Review 95-013, To-kai-mura, Japan.
- /NEA 06/ OECD/NEA (2006): "International Handbook of evaluated criticality safety benchmark experiments", NEA/NSC/DOC(95)03, September 2006 Edition
- /PAR 00/ C.V. Parks, B.L. Broadhead, M.D. DeHart, I.C. Gauld (2000): "Validation Issues for Depletion and Criticality Analysis in Burnup Credit", IAEA Technical Committee Meeting, July 10-14, 2000, Vienna, Austria.
- /PAX 87/ W.C. Paxton, N.L. Pruvost (1987): "Critical dimensions of systems containing ²³⁵U, ²³⁹Pu and ²³³U", 1986 Revision, LA-10860-MS, Los Alamos, USA, 1987.
- /PET 99/ L. Petrie (1999), Antwort auf Anfrage: SCALE Dichterelation für UO₂F₂, http://www-rsicc.ornl.gov/cgibin/enote.pl?nb=scale&action=view&page=111 RSICC, Oak Ridge, USA.
- /REA 00/ B.T. Rearden (2000): "Sensitivity and Uncertainty Analysis for Nuclear Criticality Safety using KENO in the SCALE Code System", Monte Carlo 2000, Lisbon, Portugal, October 23-26, 2000.
- /REA 02/ B.T. Rearden, K.R. Elam (2002): "Investigations and Recommendations on the Use of Existing Experiments in Criticality Safety Analysis of Nuclear Fuel Cycle Facilities for Weapons-Grade Plutonium", ORNL/TM-2001/262, Oak Ridge, USA.
- /REA 03/ B.T. Rearden, C.M. Hopper, K.R. Elam, S. Goluoglu, C.V. Parks (2003):
 "Applications of the TSUNAMI Sensitivity and Uncertainty Analysis Methodology", ICNC 2003, Tokai-mura, Japan, October 20-24, 2003.
- /REA 04/ B.T. Rearden (2004): "Perturbation Theory Eigenvalue Sensitivity Analysis with Monte Carlo Techniques", Nuc. Sci. Eng: **146**, 367-382 (2004)

- /REA 05a/ B.T. Rearden, W.J. Anderson, G.A. Harms (2005): "Use of Sensitivity and Uncertainty analysis in the Design of Reactor Physics and Criticality Benchmark Experiments for Advanced Nuclear Fuel", Nuc. Tech. **151**, 133-158 (2005)
- /REA 05b/ B.T. Rearden, M.L. Williams, J.E. Horwedel (2005): "Advances in the TSUNAMI Sensitivity and Uncertainty Analysis Codes Beyond SCALE 5", Scale State-of-the-Art Analysis Tools, 760-762, 2005.
- /REM 02/ I. Remec, J.C. Gehin, P. D'hondt, E. Sartori, "OECD/NEA Kritz-2 UO₂ and MOX Benchmarks", PHYSOR 2002, Seoul, Korea, October 7-10, 2002
- /SCA 95/ Scale 4.3: Modular Code System for Performing Standardized Computer Analyses for Licensing Evaluation for Workstations and Personal Computers, Oak Ridge National Laboratory 1995
- /SCA 00/ SCALE 4.4a: A Modular Code System for Performing Standardized Computer Analysis for Licensing Evaluation for Workstations and Personal Computers, NUREG/CR-0200 Rev. 6, Vol. I, II and III (March 2000)
- /SCA 04/ SCALE 5.0: A Modular Code System for Performing Standardized Computer Analysis for Licensing Evaluation for Workstations and Personal Computers, NUREG/CR-0200 Rev. 7, Vol. I, II and III (June 2004)
- /SCA 06/ SCALE: A Modular Code System for Performing Standardized Computer Analyses for Licensing Evaluation, ORNL/TM-2005/39, Version 5.1, Vols. I-III, November 2006. Available from Radiation Safety Information Computational Center at Oak Ridge National Laboratory as CCC-732.
- /WYA 98/ M.S. Wyatt et al (1998): "Physics of enriched uranyl fluoride deposit characterizations using active neutron and gamma interrogation techniques with ²⁵²Cf", ORNL/CP-98771, Oak Ridge, USA

Anhang A Verwendete Benchmarkexperimente Uranylfluorid

NR	EXPERIMENT	k _{eff}	c _k (Anw. 05)	E _{sum} (Anw. 05)
1	clark82 exp.01 uo2f2-h2o 93.13% u5 0.69693 gu/ccm amv, 11.52cm h2o-refl 30cm	1,0035	0,7799	0,9132
2	clark82 exp.19 uo2f2-h2o 4.98% u5 0.91018 gu/ccm amv; 25.39cm unrefl.	1,0038	0,9888	0,9894
3	clark82 exp.22 uo2f2-h2o 4.89%u5 0.4522 gu/ccm amv, 34.40cm h2o-refl 30cm	0,9999	0,9294	0,9542
4	clark82 exp.23 uo2f2-h2o 4.89%u5 0.4917 gu/ccm amv; 34.40cm unrefl.	0,9944	0,9458	0,9603
5	heu-sol-therm-012 uranium aqueous 91 liter sphere #1	$1,0022 \pm 0,0002$	$0,\!8760 \pm 0,\!0078$	$0,\!9284 \pm 0,\!0068$
6	heu-sol-therm-043 2: 91 liter sphere uo2f2	$1,0075 \pm 0,0003$	$0,8924 \pm 0,0618$	$0,\!9340\pm0,\!0062$
7	heu-sol-therm-043 3: 174 liter sphere uo2f2	$1,0029 \pm 0,0002$	$0,8704 \pm 0,0066$	$0,9210 \pm 0,0131$
8	leu-comp-therm-033 003 uf4 paraffin mix. u2f4-1	$0,9965 \pm 0,0002$	$0,8340 \pm 0,0011$	$0,7518 \pm 0,0026$
9	leu-comp-therm-033 013 uf4 paraffin mix. u2f4-5	$0,9977 \pm 0,0002$	$0,8845 \pm 0,0010$	$0,7569 \pm 0,0045$
10	leu-comp-therm-033 019 uf4 mixture u3f4-1	$1,0054 \pm 0,0003$	$0,8638 \pm 0,0046$	$0,7210 \pm 0,0030$
11	leu-comp-therm-033 022 uf4 paraffin mixture u3f4-2	$1,0088 \pm 0,0003$	$0,9128 \pm 0,0018$	$0,7406 \pm 0,0032$
12	leu-comp-therm-049 case 05 simp, h/u=2.5; maracs; 2006-12-12 kig	$0,9902 \pm 0,0003$	$0,8192 \pm 0,0184$	$0,\!8060\pm0,\!0090$
13	leu-comp-therm-049 06 simp, h/u=2.5; (maracas)	$0,9919 \pm 0,0003$	$0,8155 \pm 0,0510$	$0,8054 \pm 0,0099$
14	leu-comp-therm-049 07 simp, h/u=2.5; (maracas)	$0,9914 \pm 0,0003$	$0,8188 \pm 0,0789$	$0,8130 \pm 0,0091$
15	leu-comp-therm-049 08 simp, h/u=2.5; (maracas)	$0,9909 \pm 0,0003$	$0,8093 \pm 0,0114$	$0,7949 \pm 0,0091$
16	leu-sol-therm-001 uranylnitrat-lsg. sheba-ii 06/23/96	$1,0109 \pm 0,0003$	$0,9770 \pm 0,0029$	$0,9874 \pm 0,0051$
17	uranium aqueous leu 170 liter (reflected) sphere #1	$0,9993 \pm 0,0002$	$0,9259 \pm 0,0059$	$0,9528 \pm 0,0119$
18	uranium aqueous leu 170 liter (bare) sphere #2	$0,9954 \pm 0,0002$	$0,9430 \pm 0,0073$	$0,9607 \pm 0,0059$
19	uranium aqueous leu 170 liter (reflected) sphere #3	$1,0005 \pm 0,0002$	$0,9359 \pm 0,0051$	$0,9577 \pm 0,0111$
20	leu-sol-therm-004 01; uranylnitrat-lsg.	$1,0031 \pm 0,0003$	$0,8772 \pm 0,0055$	$0,9589 \pm 0,0081$
21	leu-sol-therm-004 29; uranylnitrat-lsg.	$1,0044 \pm 0,0002$	$0,8678 \pm 0,0309$	$0,9582 \pm 0,0069$
22	leu-sol-therm-004 33; uranylnitrat-lsg.	$1,0021 \pm 0,0002$	$0,8590 \pm 0,0204$	$0,9533 \pm 0,0089$
23	leu-sol-therm-004 34; uranylnitrat-lsg.	$1,0039 \pm 0,0003$	$0,8484 \pm 0,0285$	$0,9527 \pm 0,0061$
24	leu-sol-therm-004 46; uranylnitrat-lsg.	$1,0044 \pm 0,0002$	$0,8396 \pm 0,0065$	$0,9497 \pm 0,0079$
25	leu-sol-therm-004 51; uranylnitrat-lsg.	$1,0034 \pm 0,0002$	$0,8327 \pm 0,0043$	$0,9472 \pm 0,0091$
26	leu-sol-therm-004 54; uranylnitrat-lsg.	$1,0037 \pm 0,0002$	$0,8258 \pm 0,0109$	$0,9453 \pm 0,0092$
27	leu-sol-therm-007 14 uranylnitrat-lsg. 10% unrefl. zyl. stacy14	$1,0132 \pm 0,0003$	$0,8760 \pm 0,0070$	$0,9595 \pm 0,0074$
28	leu-sol-therm-007 30 uranylnitrat-lsg. 10% unrefl. zyl. stacy30	$1,0154 \pm 0,0002$	$0,8666 \pm 0,0067$	$0,9590 \pm 0,0047$
29	leu-sol-therm-007 32 uranylnitrat-lsg. 10% unrefl. zyl. stacy32	$1,0136 \pm 0,0002$	$0,8573 \pm 0,0799$	$0,9555 \pm 0,0056$
30	leu-sol-therm-007 36 uranylnitrat-lsg. 10% unrefl. zyl. stacy36	$1,0165 \pm 0,0002$	$0,8454 \pm 0,0041$	$0,9504 \pm 0,0088$
31	leu-sol-therm-007 49 uranylnitrat-lsg. 10% unrefl. zyl. stacy49	$1,0148 \pm 0,0002$	$0,8364 \pm 0,0110$	$0,9479 \pm 0,0097$
32	leu-sol-therm-016 105 uranylnitrat-lsg. 10% slab stacy105	$1,0062 \pm 0,0003$	$0,9299 \pm 0,0035$	$0,9763 \pm 0,0047$
33	leu-sol-therm-016 113 uranylnitrat-lsg. 10% slab stacy113	$1,0064 \pm 0,0003$	$0,9261 \pm 0,0068$	$0,9744 \pm 0,0048$
34	leu-sol-therm-016 125 uranylnitrat-lsg. 10% slab stacy125	$1,0057 \pm 0,0002$	$0,9162 \pm 0,0340$	$0,9694 \pm 0,0062$
35	leu-sol-therm-016 129 uranylnitrat-lsg. 10% slab stacy129	$1,0049 \pm 0,0003$	$0,9120 \pm 0,0044$	$0,9669 \pm 0,0062$
36	leu-sol-therm-016 131 uranylnitrat-lsg. 10% slab stacy131	$1,0046 \pm 0,0003$	$0,9065 \pm 0,0034$	$0,9646 \pm 0,0066$
37	leu-sol-therm-016 140 uranylnitrat-lsg. 10% slab stacy140	$1,0025 \pm 0,0002$	$0,8982 \pm 0,0037$	$0,9587 \pm 0,0100$
38	leu-sol-therm-016 196 uranylnitrat-lsg. 10% zyl. stacy196	$1,0044 \pm 0,0002$	$0,8931 \pm 0,0088$	$0,9564 \pm 0,0113$
39	leu-sol-therm-017 104 uranylnitrat-lsg. 10% unrefl. slab. stacy104	$1,0098 \pm 0,0003$	$0,9251 \pm 0,0033$	$0,9749 \pm 0,0048$
40	leu-sol-therm-017 122 uranylnitrat-lsg. 10% unrefl. slab. stacy122	$1,0091 \pm 0,0003$	$0,9218 \pm 0,0062$	$0,9744 \pm 0,0043$
41	leu-sol-therm-017 123 uranylnitrat-lsg. 10% unrefl. slab. stacy123	$1,0072 \pm 0,0003$	$0,9123 \pm 0,0077$	$0,9688 \pm 0,0056$
42	leu-sol-therm-017 126 uranylnitrat-lsg. 10% unrefl. slab. stacy126	$1,0080 \pm 0,0003$	$0,9084 \pm 0,0965$	$0,9650 \pm 0,0075$
43	leu-sol-therm-017 130 uranylnitrat-lsg. 10% unrefl. slab. stacy130	$1,0075 \pm 0,0003$	$0,9035 \pm 0,0033$	$0,9642 \pm 0,0058$
44	leu-sol-therm-017 147 uranylnitrat-lsg. 10% unrefl. slab. stacy147	$1,0076 \pm 0,0002$	$0,8965 \pm 0,1563$	$0,9608 \pm 0,0090$
45	leu-sol-therm-020 216 uranylnitrat-lsg. 10% zyl. stacy216	$1,0007 \pm 0,0002$	$0,8806 \pm 0,0147$	$0,9481 \pm 0,0112$
46	leu-sol-therm-020 217 uranylnitrat-lsg. 10% zyl. stacy217	$0,9998 \pm 0,0003$	$0,8711 \pm 0,0058$	$0,9465 \pm 0,0101$
47	leu-sol-therm-020 220 uranylnitrat-lsg. 10% zyl. stacy220	$0,9985 \pm 0,0002$	$0,8555 \pm 0,0045$	$0,9387 \pm 0,0167$
48	leu-sol-therm-020 226 uranylnitrat-lsg. 10% zyl. stacy226	$0,9995 \pm 0,0002$	$0,8446 \pm 0,0066$	0,9389 ± 0,0115
49	leu-sol-therm-021 215 uranylnitrat-lsg. 10% unrefl. zyl. stacy215	0,9983 ± 0,0002	$0,8759 \pm 0,0275$	$0,9505 \pm 0,0092$
50	leu-sol-therm-021 218 uranylnitrat-lsg. 10% unrefl. zyl. stacy218	0,9983 ± 0,0003	$0,8662 \pm 0,0156$	$0,9456 \pm 0,0114$
51	leu-sol-therm-021 221 uranylnitrat-lsg. 10% unrefl. zyl. stacy221	$0,9973 \pm 0,0002$	$0,8520 \pm 0,0052$	$0,9399 \pm 0,0122$
52	leu-sol-therm-021 223 uranylnitrat-lsg. 10% unrefl. zyl. stacy223	$0,9779 \pm 0,0002$	$0,8486 \pm 0,0092$	$0,9401 \pm 0,0093$

Anhang B Tabellarische Zusammenstellung der Kritikalitätsdaten und Multiplikationsfaktoren für homogenen Urandioxid-Wasser-Systeme

Tab. B-1:Kritikalitätsdaten für ein homogenes Urandioxid-Wasser-System mit einerner235U-Anreicherung von 6 Gew.-% in Abhängigkeit von der Urandichtebei vollständiger Wasserreflektion

Kritikalitätsdaten für homogene Urandoxid-Wasser-Systeme mit 6 Gew% ²³⁵ U.							
Urandichte	Kritische	Kritisches	Kritischer	Kritische			
g U/cm ³	Kugelmasse	Kugelvolumen	Zylinderdurchmesser	Schichtdicke			
	kg Uran	Liter	cm	cm			
0,25	2419,17939	9676,71755	182,29795	98,61029			
0,26	602,66443	2317,94011	115,48200	71,37280			
0,27	295,47978	1094,36955	96,40140	53,96520			
0,28	200,30149	715,36246					
0,29	147,92207	510,07609					
0,30	119,61740	398,72466	67,08190	40,59480			
0,35	61,85482	176,72805	50,83100	29,26520			
0,40	45,42071	113,55179	43,29337	24,22735			
0,45			38,60240				
0,50	33,32109	66,64218	35,70700	19,22166			
0,60	29,05950	48,43249	31,71430	16,58743			
0,70	27,38101	39,11573	29,40665	15,04660			
0,80	26,99618	33,74523	27,83470	13,98734			
0,90	27,27187	30,30207	26,72787	13,22328			
1,00	28,01697	28,01697	25,94307	12,69456			
1,10	29,04377	26,40343	25,35490	12,28138			
1,20	30,31431	25,26192	24,92613	11,96131			
1,30	31,80493	24,46533	24,60430	11,71625			
1,40	33,42020	23,87157	24,36480	11,52383			
1,50	35,24050	23,49367	24,19383	11,38295			
1,60	37,16676	23,22922	24,07830	11,26355			
1,70	39,31697	23,12763	23,99793	11,18814			
1,80	41,59481	23,10823	23,97040	11,13189			
1,90	44,05262	23,18559	23,97320	11,09470			
2,00	46,63719	23,31860	24,01490	11,07719			
2,10	49,31564	23,48364	24,06910	11,07614			
2,20	52,24122	23,74601	24,15078	11,09166			
2,30	55,40694	24,08997	24,25183	11,10239			
2,40	58,68915	24,45381	24,37220	11,16045			
2,50	62,18436	24,87375	24,48240	11,20396			
2,70	69,82739	25,86200	24,78286	11,33154			
3,00	83,29322	27,76441	25,40831	11,61075			
3,20	93,86342	29,33232	25,87700	11,85018			
3,50	112,08117	32,02319	26,68243	12,24997			
3,70	126,26862	34,12665	27,26520	12,56297			
4,00	151,99304	37,99826	28,31054	13,10312			
4,50	207,53814	46,11959	30,29440	14,21297			
5,00	288,32723	57,66545	32,83727	15,60362			
5,50	410,62936	74,65988	35,91355	17,34854			
6,00	599,55820	99,92637	39,90623	19,59782			
6,50	915,14456	140,79147	44,93933	22,65940			
7,00	1474,62947	210,66135	51,81843	26,75780			
7,50	2585,33911	344,71188	61,52383	32,64217			
8,00	5131,06173	641,38272	76,47800	41,88220			
8,50	12629,97528	1485,87944	102,40146	58,06680			
9,00	53440,20349	5937,80039	165,29226	97,97614			

Tab. B-2:Kritikalitätsdaten für ein homogenes Urandioxid-Wasser-System mit einerner235U-Anreicherung von 7 Gew.-% in Abhängigkeit von der Urandichte
bei vollständiger Wasserreflektion

Kritikalitätsdaten für homogene Urandoxid-Wasser-Systeme mit 7 Gew% ²³⁵ U.						
Urandichte	Kritische	Kritisches	Kritischer	Kritische		
a U/cm ³	Kugelmasse	Kugelvolumen	Zvlinderdurchmesser	Schichtdicke		
Ŭ	kg Uran	Liter	cm	cm		
0.20	259380 55490	1296902 77451	640 41400			
0.21	2319 36983	11044 61821	010,11100	100 94420		
0.22	458 57162	2084 41644	113 00400	67 77300		
0.22	206 77735	800 03108	90.84420	5/ 100/0		
0,20	0,0000	0.00000	77 38080	46 81200		
0,24	102 57209	414 20021	68 11200	40,01200		
0,25	0.00000	414,20031	62 07080	41,44020		
0,20	0,00000	0,00000	62,07960			
0,27	70,02420	201,37134	40.04500	20,00200		
0,30	47,99009	109,99004	49,04560	20,00200		
0,35	34,39433	90,04107	41,01040	22,99040		
0,40	20,42009	/1,0/14/	30,70300	19,70300		
0,45	00.05004	40 70007	33,54540	40,45000		
0,50	23,35034	46,70067	31,31014	16,45036		
0,60	21,60634	36,01056	28,57234	14,55140		
0,70	21,24801	30,35430	26,77900	13,36359		
0,80	21,55183	26,93979	25,59869	12,55755		
0,90	22,21805	24,68672	24,77689	11,95809		
1,00	23,18443	23,18443	24,17777	11,54123		
1,10	24,32812	22,11647	23,73509	11,19668		
1,20	25,65471	21,37893	23,41789	10,95569		
1,30	27,13449	20,87269	23,18249	10,75259		
1,40	28,73688	20,52634	23,01551	10,61004		
1,50	30,46654	20,31102	22,90623	10,49114		
1,60	32,35210	20,22006	22,83746	10,39894		
1,70	34,30941	20,18201	22,80989	10,34529		
1,80	36,52560	20,29200	22,81129	10,31639		
1,90	38,73516	20,38692	22,84574	10,28561		
2,00	41,15853	20,57927	22,89809	10,30681		
2,10	43,67532	20,79777	22,93906	10,29141		
2,20	46,46276	21,11944	23,07226	10,33495		
2,30	49,39340	21,47539	23,15989	10,37028		
2,40	52,37992	21,82497	23,27094	10,40962		
2,50	55,50799	22,20320	23,43594	10,46401		
2,60	58,92325	22,66279	23,59329	10,53031		
2,70	62,62188	23,19329	23,75240	10,60444		
2,80	66,37546	23,70552	23,95157	10,67316		
2,90	70,43642	24,28842	24,15296	10,78947		
3,00	74,70898	24,90299	24,36189	10,87244		
3,10	79,26910	25,57068		10,98304		
3,20	84,16904	26,30282	24,82063	11,10631		
3,30	89,33459	27,07109	25,07415	11,21469		
3,40	94,86692	27,90204	25,31857	11,34708		
3,50	100,60833	28,74524	25,60591			
3,60	106,82712	29,67420	25,86157	11,61993		
3,70	113,48922	30,67276	26,15389	11,77299		
3,80	120,36950	31,67619	26,45015	11,92913		
3,90	127,77462	32,76272	26,77886	12,09603		
4,00	135,64464	33,91116	27,08873	12,27734		
4,10	144,21148	35,17353	27,46374	12,46550		
4,20	153,43886	36,53306	27,81240	12,63825		
4,30	162,81355	37,86362	28,18180	12,84379		
4,40	173,14307	39,35070	28,57723	13,04899		
4,50	184,11905	40,91534	28,99606	13,25852		
4,60	195,93664	42,59492	29,42260	13,49250		
4,70	209,42885	44,55933	29,82086	13,72470		
4,80	222,29363	46,31117	30,26937	13,98604		
4,90	236,88626	48,34413	30,75250	14,20313		

5.00	253.93294	50.78659	31.24531	14.47458
5.10	270.91803	53,12118	31,70086	14,75821
5.20	289.35303	55.64481	32,23088	15,06119
5,30	309,15612	58,33134	32,77400	-,
5.40	329.89303	61.09130	33,34611	15.66736
5,50	352,08499	64,01545	33,94446	16,02342
5.60	377.01519	67.32414	34,54263	16,42461
5.70	404,10241	70.89516	35.17345	16,79559
5.80	433,45152	74.73302	35.88571	17.15247
5.90	465.32935	78.86938	36.54634	17,53565
6.00	500.12714	83.35452	37.27240	17.96275
6.10	539.25246	88.40204	38.01994	18,46067
6.20	581,15464	93.73462	38.84060	18.84444
6.30	625,76242	99.32737	39.68658	19,33836
6.40	675.27572	105.51183	40,56800	19.83175
6.50	731.05710	112,47032	41,41006	20.34823
6,60	793,16066	120,17586	42,41590	20,93774
6.70	859.52115	128,28674	43,39154	21,50880
6,80	933,44270	137,27098	44,42871	22,14313
6,90	1015.25340	147,13817	45,51991	22,79263
7,00	1106,25176	158,03597	46,73040	23,45006
7,10	1207,01083	170,00153	48,10980	24,18011
7,20	1318,65675	183,14677	49,23513	24,97894
7,30	1444,61208	197,89207	50,57333	25,79706
7,40	1586,42995	214,38243	52,04090	26,66454
7,50	1745,26476	232,70197	53,47303	27,55097
7,60	1924,47770	253,22075	55,14520	28,55737
7,70	2129,52152	276,56124	56,85788	29,58037
7,80	2359,83898	302,54346	58,67447	30,67807
7,90	2625,78124	332,37737	60,60330	31,82477
8,00	2926,79011	365,84876	62,66863	33,14766
8,10	3272,22997	403,97901	64,88100	34,37485
8,20	3672,14798	447,82292	67,24037	35,90185
8,30	4135,33505	498,23314	69,78643	37,47263
8,40	4673,98776	556,42711	72,53669	39,14183
8,50	5305,61130	624,18956	75,49760	41,02080
8.60	6047.89503	703.24361	78.80380	42.98873
8,70	6950,76013	798,93795	- ,	45,21357
0 00	9062 07075	016 04770	96 21909	17 51062
8,00	0002,97975	1055 05560	90,71650	50 28665
0,90	11124 06026	1000,90009	90,71030	52 47704
9,00	13/31 0023/	1/75 03/32	101 87423	57 17763
9,10	165/11 010234	1707 02501	100,02486	61 63200
9,20 0 30	21062 78601	226/ 81570	118 06000	67 222/6
9,30	28127 01872	2204,01070	120 08220	7/ 81600
9,40	120121,01012	1/23 86377	1/7 15620	85 60766
9,00	42020,10004	6860 76707	173 16560	102 15207
3,00	00000,00000	0000,10101	175,10503	102,13231

Tab. B-3:Kritikalitätsdaten für ein homogenes Urandioxid-Wasser-System mit einerner235U Anreicherung von 8 Gew.-% in Abhängigkeit von der Urandichte
bei vollständiger Wasserreflektion

Kritikalitätsdaten für homogene Urandoxid-Wasser-Systeme mit 8 Gew% ²³⁵ U.						
Urandichte	Kritische	Kritisches	Kritischer	Kritische		
g U/cm ³	Kugelmasse kg	Kugelvolumen	Zylinderdurchmesser	Schichtdicke		
	Uran	Liter	cm	cm		
0.18	2290,29659	12723.86993	188,24460	112,90100		
0.19	412,91885	2173,25712	111,92800	65.82680		
0.20	159 18424	795 92119	85 94680	52 59240		
0,20	77 02065	35/ 18/77	00,04000	30 06660		
0.25	11,52000	178 71836	51 11040	20,43680		
0,23	26 24502	124 12070	51,11040	29,40000		
0,27	20,21502	07 7000	41 12690	22 60020		
0,30	29,31002	97,72200	41,12000	22,00020		
0,35	23,72034	07,79000	35,59060	19,23022		
0,40	20,40196	51,00491	32,40440	17,09032		
0,45	40.0000		30,19640			
0,50	18,00092	36,00184	28,57746	14,60359		
0,60	17,44933	29,08221	26,36560	13,14004		
0,65	17,43000	26,81538				
0,70	17,61897	25,16996	24,98803	12,17717		
0,80	18,19835	22,74793	24,05103	11,51914		
0,90	19,06651	21,18501	23,39134	11,02675		
1,00	20,10289	20,10289	22,91709	10,75712		
1,10	21,32200	19,38364	22,56746	10,49865		
1,20	22,64795	18,87329	22,32251	10,20743		
1,30	24,04654	18,49734	22,14837	10,03958		
1,40	25,62394	18,30281	22,02914	9,94208		
1,50	27,31842	18,21228	21,95974	9,84436		
1.60	29.11237	18,19523	21,92700	9.79056		
1.70	30,98980	18,22930	21,90906	9,75046		
1 80	33 01394	18,34108	21 92808	9 72640		
1 90	35 14757	18 49872	21 98831	9 72557		
2 00	37 41570	18 70785	22,06811	9 75144		
2,00	39,84693	18 97473	22,00011	9 75055		
2,10	12 36582	10,07470	22,14720	0 78333		
2,20	45,00002	19,56807	22,24720	9,85035		
2,00	47,00007	10,00007	22,50020	0,88718		
2,40	50 87585	20 35034	22,51205	0,03/00		
2,50	54 12505	20,33034	22,00009	9,95490		
2,00	57 20572	20,01733	22,02009	10 07700		
2,70	60,00822	21,25707	22,99249	10,07700		
2,00	64,71000	21,70012	23,17092	10,10303		
2,90	04,71900	22,31090	23,37303	10,24240		
3,00	70,73001	22,91204	23,36217	10,34452		
3,10	72,94356	23,53018	23,79820	10,44842		
3,20	11,42122	24,19601	24,03123	10,54802		
3,30	82,02959	24,85745	24,26014	10,69358		
3,40	87,07064	25,60901	24,51491	10,77793		
3,50	92,29637	26,37039	24,77211	10,92422		
3,60	97,99048	27,21958	25,04423	11,05806		
3,70	103,94388	28,09294	25,32403	11,20704		
3,80	110,17342	28,99301	25,61113	11,34022		
3,90	116,90995	29,97691	25,92351	11,51099		
4,00	124,17786	31,04447	26,22474	11,65866		
4,10	131,55004	32,08537	26,53817	11,83240		
4,20	139,68261	33,25776	26,87243	12,00100		
4,30	148,56369	34,54969	27,20749	12,19593		
4,40	157,49942	35,79532	27,56829	12,38221		
4,50	167,25303	37,16734	27,99015	12,57783		
4,60	178,62018	38,83047	28,31089	12,77655		
4,70	188,82296	40,17510	28,70710	12,98111		
4,80	200,50771	41,77244	29,12349	13,21108		
4,90	213,40542	43,55213	29,54103	13,42494		
5,00	226,63686	45,32737	29,98283	13,66857		

5,10	241,87104	47,42569	30,42689	13,91425
5,20	257,43096	49,50595	30,88227	14,17607
5,30	273,88268	51,67598	31,40027	14,43782
5,40	292,36113	54,14095	31,87270	14,72164
5,50	311,48556	56,63374	32,38903	15,01329
5,60	331,55939	59,20703	32,93440	15,33313
5,70	353,99460	62,10432	33,50690	15,70702
5.80	377,69909	65,12053	34.05571	16.00463
5,90	403,54002	68,39661	34,66174	16,34639
6,00	431,69344	71,94891	35,27503	16,70934
6,10	461,46353	75,64976	35,96226	17,06580
6,20	493,89123	79,65988	36,60631	17,42916
6,30	529,30119	84,01606	37,31607	17,86276
6,40	567,88699	88,73234	38,04863	18,27767
6,50	608,98643	93,69022	38,77945	18,67946
6,60	654,16586	99,11604	39,57608	19,10600
6,70	704,67970	105,17607	40,38748	19,60881
6,80	764,48184	112,42380	41,18583	20,08763
6,90	813,16814	117,85046	42,05900	20,55567
7,00	878,75979	125,53711	42,96969	21,10210
7,10	947,44691	133,44323	43,93775	21,66157
7,20	1023,44859	142,14564	44,88980	22,23683
7,30	1105,72361	151,46899	45,96060	22,84280
7,40	1194,61485	161,43444	46,97283	23,43167
7,50	1294,02381	172,53651	48,06411	24,12123
7,60	1402,23715	184,50489	49,42666	24,80650
7,70	1522,73245	197,75746	50,43263	25,53607
7,80	1654,62792	212,13178	51,68770	26,24870
7,90	1800,32910	227,88976	53,03454	27,06227
8,00	1964,05754	245,50719	54,43686	27,87594
8,10	2141,56558	264,39081	55,85317	28,69730
8,20	2338,35447	285,16518	57,34275	29,56125
8,30	2558,42328	308,24377	58,92691	30,59917
8,40	2806,53744	334,11160	60,60818	31,56957
8,50	3081,34559	362,51125	62,37388	32,74723
8,60	3399,43173	395,28276	64,23400	33,72020
8,70	3755,41910	431,65737	66,23013	34,88780
8,80	4163,72905	473,15103	68,39143	36,16651
8,90	4623,10221	519,44969	70,73377	37,61411
9,00	5183,08383	575,89820	73,32053	39,28960
9,10	5867,71205	644,80352	76,19353	41,01143
9,20	6708,76634	729,21373	79,49937	42,88743
9,30	7784,02717	836,99217	83,37689	45,31730
9,40	9196,41652	978,34218	88,00354	48,18426
9,50	11195,12014	1178,43370	93,89225	51,58697
9,60	13993,69239	1457,67629	101,05327	55,93011

Tab. B-4:Vergleich der mit XSDRNPM und MCNP4B ermittelten Multiplikations-
faktoren für kritische voll reflektierte Kugelgeometrien mit homogenen
Urandioxid-H2O-Systemen bei Anreicherungen mit 7 und 8 Gew.-% ²³⁵U.

Uran-		7 Gew% ²³⁵ U				8 Gew% ²³⁵ U			
dichte	Krit.	Multiplikationsfaktor			Krit.	Multiplikationsfaktor			
3	Kugel- radius	XSDR	NPM	MCNP4B	Kugel- radius	XSD	RNPM	MCNP4B	
g U/cm°	cm	44 Gr.	238 Gr.		cm	44 Gr.	238 Gr.		
0,6	20,4855	0,998184	0,997827	0,995010	19,0771	0,998653	0,998226	0,994450	
2,0	16,9999	0,998089	0,995079	0,991410	16,4882	0,998022	0,994762	0,992100	
4,0	20,0794	0,998074	0,991693	0,992120	19,4969	0,998055	0,991621	0,991760	
6,0	27,0986	0,998810	0,988409	0,989430	25,8015	0,998827	0,988430	0,990500	
8,0	44,3681	0,999709	0,985069	0,983300	38,8441	0,999475	0,985670	0,983770	

Tab. B-5:Vergleich der mit XSDRNPM und MCNP4B ermittelten Multiplikations-
faktoren für kritische voll reflektierte Zylindergeometrien mit homogenen
Urandioxid-H2O-Systemen bei Anreicherungen mit 7 und 8 Gew.-% ²³⁵U

Uran-	י- 7 Gew% ²³⁵ U				8 Gew% ²³⁵ U				
dichte	Krit.	Krit. Multiplikationsfaktor Zylin- der- XSDRNPM MCN		faktor	aktor Krit.		Multiplikationsfaktor		
	Zylin- der-			MCNP4B	∠yıın- der-	XSDRNPM		MCNP4B	
g	durch- messer	44 Gr.	238 Gr.		durch- messer	44 Gr.	238 Gr.		
0/cm	cm				cm				
0,6	28,5724	0,998161	0,997667	0,994490	26,3656	0,997721	0,997111	0,993130	
2,0	22,8980	0,998680	0,995559	0,993770	22,0682	0,998555	0,995202	0,992720	
4,0	27,0888	0,997597	0,991398	0,991310	26,2248	0,998211	0,991792	0,992940	
6,0	37,2724	0,997994	0,987962	0,988860	35,2750	0,997865	0,987917	0,990790	
8,0	62,6686	0,999195	0,984521	0,984780	54,4368	0,998930	0,985013	0,985160	

Tab. B-6:Vergleich der mit XSDRNPM und MCNP4B ermittelten Multiplikations-
faktoren für kritische voll reflektierte Schichtgeometrien mit homogenen
Urandioxid-H2O-Systemen bei Anreicherungen mit 7 und 8 Gew.-%

Uran-	7 Gew% ²³⁵ U			8 Gew% ²³⁵ U				
dichte	Kritische Multiplikationsfa		faktor Kritisc		Kritische Multiplikationsfaktor		aktor	
	dicke	XSDF	RNPM	MCNP4B Schicht- dicke	XSDRNPM		MCNP4B	
g U/cm ³	cm	44 Gr.	238 Gr.		cm	44 Gr.	238 Gr.	
0,6	14,5514	0,997664	0,996893	0,996710	13,1400	0,998182	0,997125	0,996370
2,0	10,3068	0,997817	0,994363	0,995000	9,7514	0,997924	0,994243	0,993440
4,0	12,2774	0,997015	0,990797	0,991170	11,6586	0,996599	0,990296	0,991830
6,0	17,9628	0,997756	0,988256	0,989440	16,7094	0,997989	0,988532	0,991080
8,0	33,1476	0,997975	0,983919	0,986040	27,8760	0,997934	0,984941	0,986480

Anhang C Berechnung der maximalen Dichte von homogenisierten Spaltstoff-Wasser Gemischen mit Restfeuchte

Gegeben ist eine Menge an Spaltmaterial S (z. B. Urandioxid) der Masse m_S, des Volumens V_S und der theoretischen Dichte $\rho_S = m_S/V_S$. Ein Gewichtsanteil RF des Spaltmaterials wird durch Wasser H₂O (Masse m_W, Volumen V_W, Dichte $\rho_W = m_W/V_W$) ergänzt ("Restfeuchte"), welches mit dem Spaltmaterial unter entsprechender Änderung des Gesamtvolumens V_{ges} homogen vermischt sein soll. Es gelten dann für das Gesamtsystem: V_W + V_S = 1,0 (\rightarrow 100 %) und M_W = RF × M_S. Aus diesen beiden Beziehungen errechnet sich die bei voller Volumenausfüllung maximal erreichbare Urandioxid-Konzentration zu

$$\rho_{\max}(UO_2) = \rho_S \times \left(RF \times \frac{\rho_W}{\rho_S} + 1\right)^{-1}$$

Mit $\rho_{S} = 10,96 \text{ g/cm}^{3}$ für UO₂ und $\rho_{W} = 0,9982 \text{ g/cm}^{3}$ für H₂O ergibt sich dann für die maximal mögliche Urandioxid-Konzentration:

RF = 0,01 Gew.-% → $\rho_{max}(UO_2)$ = 9,876 g/cm³ RF = 0,02 Gew.-% → $\rho_{max}(UO_2)$ = 8,987 g/cm³ RF = 0,03 Gew.-% → $\rho_{max}(UO_2)$ = 8,244 g/cm³ RF = 0,05 Gew.-% → $\rho_{max}(UO_2)$ = 7,076 g/cm³

<u>Achtung</u>: Die obige Betrachtung dient lediglich der Bestimmung der physikalisch erreichbaren maximalen Urandioxidkonzentration bis zur Volumenausfüllung.

Bei der Berechnung der kritischen Parameter sowie des Moderationsverhältnisses, und bei der Erstellung der Eingabedaten für SCALE gilt nicht die Gesamtmasse sondern die Urandioxidmasse als 100 %. Die Restfeuchte wird dem Urandioxid hinzugesetzt. Das bedeutet, bei einer Restfeuchte von z. B. 5 Gew.-% beträgt in den Kritikalitätsrechnungen die Gesamtmasse des Systems 105 % der Urandioxidmasse.

Anhang D Tabellarische Auflistung der errechneten kritischen Parameter

Kritische Parameter: Urandioxid 5%, Restfeuchte 2%, Kugel			
c(UO ₂) [g/cm ³]	Radius [cm]	Volumen [Liter]	Masse [kg UO ₂]
1,00	923,70	3301273,00	3301273,00
1,25	699,40	1433063,69	1791329,62
1,50	562,00	743528,39	1115292,59
1,75	469,30	432952,52	757666,91
2,00	402,60	273344,24	546688,47
2,25	352,60	183626,57	413159,79
2,50	313,70	129310,02	323275,04
2,75	282,60	94537,71	259978,70
3,00	257,20	71269,14	213807,41
3,25	235,90	54988,57	178712,86
3,50	218,00	43396,84	151888,93
3,75	202,70	34885,89	130822,10
4,00	189,50	28504,69	114018,74
4,25	177,90	23583,95	100231,77
4,50	167,60	19720,17	88740,76
4,75	158,50	16679,25	79226,42
5,00	150,30	14222,16	71110,80
5,25	143,00	12248,89	64306,67
5,50	136,30	10606,60	58336,30
5,75	130,30	9266,63	53283,13
6,00	124,80	8142,02	48852,14
6,25	119,70	7184,08	44900,49
6,50	115,00	6370,63	41409,07
6,75	110,70	5682,40	38356,17
7,00	106,70	5088,41	35618,85
7,25	103,00	4577,20	33184,73
7,50	99,55	4132,50	30993,72
7,75	96,32	3743,16	29009,47
8,00	93,30	3401,99	27215,95
8,25	90,45	3099,66	25572,21
8,50	87,80	2835,12	24098,56
8,75	85,28	2597,95	22732,03
8,987	83,02	2396,83	21540,29

Kritische Parameter: Urandioxid 5%, Restfeuchte 2%, Zylinder			
c(UO ₂) [g/cm ³]	Zylinderradius [cm]	Zylinderdurchmesser [cm]	
0,75	1128,22	2256,44	
1,00	730,151	1460,302	
1,25	540,854	1081,708	
1,50	429,901	859,802	
1,75	356,845	713,69	
2,00	305,101	610,202	
2,25	266,322	532,644	
2,50	236,531	473,062	
2,75	212,692	425,384	
3,00	193,246	386,492	
3,25	177,063	354,126	
3,50	163,369	326,738	
3,75	151,756	303,512	
4,00	141,575	283,15	
4,25	132,701	265,402	
4,50	124,912	249,824	
4,75	117,961	235,922	
5,00	111,818	223,636	
5,25	106,25	212,5	
5,50	101,21	202,42	
5,75	96,6327	193,2654	
6,00	92,453	184,906	
6,25	88,625	177,25	
6,50	85,129	170,258	
6,75	81,8542	163,7084	
7,00	79,4957	158,9914	
7,25	78,8627	157,7254	
7,50	76,0705	152,141	
7,75	73,4754	146,9508	
8,00	71,0207	142,0414	
8,25	68,7727	137,5454	
8,50	66,6416	133,2832	
8,75	64,6323	129,2646	
1,00	62,7661	125,5322	
8,987	60,28	120,56	

Kritische Parameter: Urandioxid 5%, Restfeuchte 2%, Schicht			
c(UO ₂) [g/cm ³]	Schichthalbdicke [cm]	Schichtdicke [cm]	
0,25	3155,76	6311,52	
0,50	884,072	1768,144	
0,75	515,547	1031,094	
1,00	363,949	727,898	
1,25	281,383	562,766	
1,50	229,248	458,496	
1,75	193,409	386,818	
2,00	167,209	334,418	
2,25	147,368	294,736	
2,50	131,652	263,304	
2,75	119,008	238,016	
3,00	108,56	217,12	
3,25	99,8602	199,7204	
3,50	92,3912	184,7824	
3,75	85,9876	171,9752	
4,00	80,3815	160,763	
4,25	75,4666	150,9332	
4,50	71,1316	142,2632	
4,75	67,3205	134,641	
5,00	63,8068	127,6136	
5,25	60,7058	121,4116	
5,50	57,8375	115,675	
5,75	55,2792	110,5584	
6,00	52,9282	105,8564	
6,25	50,7266	101,4532	
6,50	48,7674	97,5348	
6,75	46,8836	93,7672	
6,946	45,5518	91,1036	
7,00	45,1884	90,3768	
7,25	43,6136	87,2272	
7,50	42,1243	84,2486	
7,75	40,7527	81,5054	
8,00	39,4369	78,8738	
8,25	38,2034	76,4068	
8,50	37,0805	74,161	
8,75	36,0054	72,0108	
8,987	34,71	69,42	

Kritische Parameter: Urandioxid 5%, Restfeuchte 3%, Kugel			
c(UO ₂) [g/cm ³]	Radius [cm]	Volumen [Liter]	Masse [kg UO ₂]
0,25	5104	5,57E+08	1,39E+08
0,50	1292	9,03E+06	4,52E+06
0,75	730,3	1,63E+06	1,22E+06
1,00	506,9	545576,257	545576,257
1,25	387,6	243915,777	304894,722
1,50	313,9	129557,493	194336,239
1,75	263,5	76635,5797	134112,264
2,00	227,1	49061,4061	98122,8122
2,25	199,5	33259,6204	74834,1459
2,50	177,9	23583,9439	58959,8596
2,75	160,5	17318,6366	47626,2505
3,00	146,2	13089,7305	39269,1916
3,25	134,3	10146,5086	32976,1528
3,50	124,1	8005,78518	28020,2481
3,75	115,4	6437,33358	24140,0009
4,00	107,9	5262,02518	21048,1007
4,25	101,3	4354,28573	18505,7144
4,50	95,41	3638,0635	16371,2858
4,75	90,22	3076,07597	14611,3608
5,00	85,59	2626,38063	13131,9032
5,25	81,4	2259,23706	11860,9945
5,50	77,6	1957,37371	10765,5554
5,75	74,18	1709,81481	9831,43517
6,00	71	1499,21402	8995,28411
6,25	68,15	1325,82489	8286,40558
6,50	65,49	1176,55859	7647,63084
6,75	63,05	1049,89015	7086,75851
7,00	60,78	940,52572	6583,68002
7,25	58,68	846,36735	6136,16332
7,50	56,73	764,76312	5735,72343
7,75	54,89	692,73683	5368,71046
8,00	53,17	629,63458	5037,07661
8,244	51,61	575,82	4747,10

Kritische Parameter: Urandioxid 5%, Restfeuchte 3%, Zylinder			
c(UO ₂) [g/cm ³]	Zylinderradius [cm]	Zylinderdurchmesser [cm]	
0,25	2272	4544	
0,50	797	1594	
0,75	477,2	954,4	
1,00	339,8	679,6	
1,25	263,6	527,2	
1,50	215,4	430,8	
1,75	182	364	
2,00	157,5	315	
2,25	138,9	277,8	
2,50	124,2	248,4	
2,75	112,3	224,6	
3,00	102,5	205	
3,25	94,26	188,52	
3,50	87,29	174,58	
3,75	81,29	162,58	
4,00	76,07	152,14	
4,25	71,44	142,88	
4,50	67,39	134,78	
4,75	63,79	127,58	
5,00	60,53	121,06	
5,25	57,61	115,22	
5,50	54,98	109,96	
5,75	52,55	105,1	
6,00	50,36	100,72	
6,25	48,34	96,68	
6,50	46,49	92,98	
6,75	44,79	89,58	
7,00	43,18	86,36	
7,25	41,69	83,38	
7,50	40,31	80,62	
7,75	39,02	78,04	
8,00	37,82	75,64	
8,244	36,70	73,40	

Kritische Parameter: Urandioxid 5%, Restfeuchte 3%, Schicht			
c(UO ₂) [g/cm ³]	Schichthalbdicke [cm]	Schichtdicke [cm]	
0,10	3876	7752	
0,25	912	1824	
0,50	387,4	774,8	
0,75	244,6	489,2	
1,00	178,4	356,8	
1,25	140,4	280,8	
1,50	115,8	231,6	
1,75	98,35	196,7	
2,00	85,5	171	
2,25	75,54	151,08	
2,50	67,73	135,46	
2,75	61,4	122,8	
3,00	56,08	112,16	
3,25	51,63	103,26	
3,50	47,85	95,7	
3,75	44,56	89,12	
4,00	41,71	83,42	
4,25	39,21	78,42	
4,50	36,98	73,96	
4,75	35	70	
5,00	33,23	66,46	
5,25	31,6	63,2	
5,50	30,16	60,32	
5,75	28,82	57,64	
6,00	27,61	55,22	
6,25	26,49	52,98	
6,50	25,46	50,92	
6,75	24,5	49	
7,00	23,62	47,24	
7,25	22,79	45,58	
7,50	22,03	44,06	
7,75	21,2	42,4	
8,00	20,64	41,28	
8,244	20,03	40,06	

Kritische Parameter: Urandioxid 5%, Restfeuchte 5%, Kugel			
c(UO ₂) [g/cm ³]	Radius [cm]	Volumen [Liter]	Masse [kg UO ₂]
0,25	1138,75	6,19E+06	1,55E+06
0,50	511,736	561340,684	280670,342
0,75	328,751	148829,786	111622,339
1,00	242,266	59561,5534	59561,5534
1,25	191,957	29627,8728	37034,841
1,50	159,148	16884,654	25326,981
1,75	135,997	10536,0202	18438,0353
2,00	118,796	7022,53743	14045,0749
2,25	105,527	4922,42814	11075,4633
2,50	94,9725	3588,24609	8970,61522
2,75	86,37	2698,84143	7421,81393
3,00	79,2328	2083,54853	6250,64559
3,25	73,2125	1643,78238	5342,29273
3,50	68,0679	1321,03908	4623,63678
3,75	63,6192	1078,58213	4044,68298
4,00	59,722	892,26044	3569,04177
4,25	56,2855	746,92706	3174,44001
4,50	53,2288	631,72583	2842,76624
4,75	50,4994	539,44511	2562,36429
5,00	48,0515	464,73936	2323,69681
5,25	45,8414	403,51736	2118,46616
5,50	43,8167	352,37704	1938,07374
5,75	41,973	309,74096	1781,01053
6,00	40,2848	273,84968	1643,09811
6,25	38,7348	243,44035	1521,50218
6,50	37,2992	217,36377	1412,86451
6,75	35,9729	194,99118	1316,19044
7,076	34,39	170,37	1205,52

Kritische Parameter: Urandioxid 5%, Restfeuchte 5%, Zylinder			
c(UO ₂) [g/cm ³]	Zylinderradius [cm]	Zylinderdurchmesser [cm]	
0,25	754,998	1509,996	
0,50	348,751	697,502	
0,75	226,501	453,002	
1,00	167,825	335,65	
1,25	133,395	266,79	
1,50	110,843	221,686	
1,75	94,8016	189,6032	
2,00	82,9105	165,821	
2,25	73,7189	147,4378	
2,50	66,3453	132,6906	
2,75	60,3617	120,7234	
3,00	55,3977	110,7954	
3,25	51,1901	102,3802	
3,50	47,6016	95,2032	
3,75	44,4668	88,9336	
4,00	41,7417	83,4834	
4,25	39,343	78,686	
4,50	37,2125	74,425	
4,75	35,3109	70,6218	
5,00	33,5788	67,1576	
5,25	32,0435	64,087	
5,50	30,6351	61,2702	
5,75	29,3003	58,6006	
6,00	28,1619	56,3238	
6,25	27,0777	54,1554	
6,50	26,0735	52,147	
6,75	25,1375	50,275	
7,076	24,04	48,08	

Kritische Parameter: Urandioxid 5%, Restfeuchte 5%, Schicht			
c(UO ₂) [g/cm ³]	Schichthalbdicke [cm]	Schichtdicke [cm]	
0,25	384,156	768,312	
0,50	182,935	365,87	
0,75	119,953	239,906	
1,00	89,2004	178,4008	
1,25	71,0093	142,0186	
1,50	58,9831	117,9662	
1,75	50,4083	100,8166	
2,00	44,0337	88,0674	
2,25	39,0875	78,175	
2,50	35,1242	70,2484	
2,75	31,9075	63,815	
3,00	29,2179	58,4358	
3,25	26,9545	53,909	
3,50	25,0264	50,0528	
3,75	23,3441	46,6882	
4,00	21,8782	43,7564	
4,25	20,5829	41,1658	
4,50	19,4343	38,8686	
4,75	18,4059	36,8118	
5,00	17,4758	34,9516	
5,25	16,6438	33,2876	
5,50	15,8792	31,7584	
5,75	15,1917	30,3834	
6,00	14,5518	29,1036	
6,25	13,9719	27,9438	
6,50	13,4315	26,863	
6,75	12,933	25,866	
7,076	12,36	24,72	

Kritische Parameter: Urandioxid 6%, Restfeuchte 2%, Kugel			
c(UO ₂) [g/cm ³]	Radius [cm]	Volumen [Liter]	Masse [kg UO ₂]
0,50	1631,14	1,82E+07	9,09E+06
0,75	905,263	3,11E+06	2,33E+06
1,00	624,082	1,02E+06	1,02E+06
1,25	475,6	450623,822	563279,778
1,50	384,124	237412,148	356118,222
1,75	322,346	140299,288	245523,753
2,00	277,638	89644,8472	179289,694
2,25	243,86	60744,9694	136676,181
2,50	217,475	43084,0606	107710,151
2,75	196,271	31670,6528	87094,2951
3,00	178,883	23977,0538	71931,1615
3,25	164,306	18580,1356	60385,4406
3,50	152,006	14711,969	51491,8916
3,75	141,393	11840,5626	44402,1096
4,00	132,24	9686,72858	38746,9143
4,25	124,161	8017,59685	34074,7866
4,50	117,073	6721,38622	30246,238
4,75	110,741	5688,7118	27021,381
5,00	105,062	4857,64308	24288,2154
5,25	99,9578	4183,48943	21963,3195
5,50	95,3283	3628,72581	19957,992
5,75	91,1223	3169,29473	18223,4447
6,00	87,266	2783,7089	16702,2534
6,25	83,7394	2459,67736	15372,9835
6,50	80,4852	2183,91983	14195,4789
6,75	77,4802	1948,32233	13151,1757
6,946	75,2767	1786,77689	12410,9523
7,00	74,6929	1745,52701	12218,6891
7,25	72,099	1569,9157	11381,8888
7,50	69,6938	1417,98306	10634,873
7,75	67,4435	1285,01711	9958,88258
8,00	65,3364	1168,29956	9346,39649
8,25	63,3606	1065,48282	8790,23329
8,50	61,5021	974,4475	8282,80373
8,75	59,7519	893,60125	7819,01095
8,987	57,86	811,38	7291,87

Kritische Parameter: Urandioxid 6%, Restfeuchte 2%, Zylinder			
c(UO ₂) [g/cm ³]	Zylinderradius [cm]	Zylinderdurchmesser [cm]	
0,25	2975,86	5951,72	
0,50	990,526	1981,052	
0,75	588,108	1176,216	
1,00	417,315	834,63	
1,25	323,353	646,706	
1,50	263,898	527,796	
1,75	222,962	445,924	
2,00	193,014	386,028	
2,25	170,283	340,566	
2,50	152,308	304,616	
2,75	137,825	275,65	
3,00	125,922	251,844	
3,25	115,789	231,578	
3,50	107,29	214,58	
3,75	99,9475	199,895	
4,00	93,5333	187,0666	
4,25	87,9064	175,8128	
4,50	82,9393	165,8786	
4,75	78,5403	157,0806	
5,00	74,5524	149,1048	
5,25	70,9424	141,8848	
5,50	67,6873	135,3746	
5,75	64,7507	129,5014	
6,00	62,0278	124,0556	
6,25	59,541	119,082	
6,50	57,2451	114,4902	
6,75	55,1352	110,2704	
6,946	53,5806	107,1612	
7,00	53,1683	106,3366	
7,25	51,3516	102,7032	
7,50	49,6268	99,2536	
7,75	48,0431	96,0862	
8,00	46,551	93,102	
8,25	45,1376	90,2752	
8,50	43,8331	87,6662	
8,75	42,5778	85,1556	
8,987	41,33	82,66	

Kritische Parameter: Urandioxid 6%, Restfeuchte 2%, Schicht				
c(UO ₂) [g/cm ³]	Schichthalbdicke [cm]	Schichtdicke [cm]		
0,25	1159,71	2319,42		
0,50	482,654	4 965,308		
0,75	303,084	606,168		
1,00	220,771	441,542		
1,25	173,573	347,146		
1,50	142,943	285,886		
1,75	121,535	243,07		
2,00	105,693	211,386		
2,25	93,5083	187,0166		
2,50	83,8294	167,6588		
2,75	75,9726	151,9452		
3,00	69,4703	138,9406		
3,25	63,9813	127,9626		
3,50	59,2819	118,5638		
3,75	55,2585	110,517		
4,00	51,7414	103,4828		
4,25	48,6514	97,3028		
4,50	45,876	91,752		
4,75	43,4217	86,8434		
5,00	41,214	82,428		
5,25	39,2153	78,4306		
5,50	37,3984	74,7968		
5,75	35,766	71,532		
6,00	34,2471	68,4942		
6,25	32,8592	65,7184		
6,50	31,5649	63,1298		
6,75	30,399	60,798		
6,946	29,5305	59,061		
7,00	29,2982	58,5964		
7,25	28,276	56,552		
7,50	27,3244	54,6488		
7,75	26,4325	52,865		
8,00	25,5986	51,1972		
8,25	24,8115	49,623		
8,50	24,0751	48,1502		
8,75	23,3836	46,7672		
8,987	22,74	45,48		

Kritische Parameter: Urandioxid 6%, Restfeuchte 3%, Kugel				
c(UO ₂) [g/cm ³]	Radius [cm]	Volumen [Liter]	Masse [kg UO ₂]	
0,25	2482	6,40E+07	1,60E+07	
0,50	920,8	3,27E+06	1,64E+06	
0,75	555,1	716477,027	537357,771	
1,00	395,9	259923,229	259923,229	
1,25	307,4	121674,67	152093,338	
1,50	251,3	66476,1798	99714,2697	
1,75	212,5	40194,3853	70340,1743	
2,00	184,1	26136,6519	52273,3038	
2,25	162,5	17974,1633	40441,8675	
2,50	145,4	12876,0249	32190,0622	
2,75	131,6	9546,76552	26253,6052	
3,00	120,2	7274,48062	21823,4419	
3,25	110,6	5667,00987	18417,7821	
3,50	102,4	4497,67901	15741,8766	
3,75	95,47	3644,93137	13668,4927	
4,00	89,37	2989,94956	11959,7982	
4,25	84,02	2484,48638	10559,0671	
4,50	79,28	2087,27424	9392,73406	
4,75	75,05	1770,68243	8410,74154	
5,00	71,27	1516,38285	7581,91426	
5,25	67,87	1309,55015	6875,1383	
5,50	64,77	1138,17824	6259,98033	
5,75	61,96	996,37498	5729,15616	
6,00	59,38	877,01933	5262,11601	
6,25	57,02	776,55144	4853,44647	
6,50	54,85	691,22348	4492,95264	
6,75	52,84	617,98369	4171,38992	
7,00	50,97	554,66721	3882,67044	
7,25	49,24	500,08372	3625,60701	
7,50	47,63	452,61645	3394,62336	
7,75	46,12	410,91925	3184,62417	
8,00	44,7	374,1202	2992,9616	
8,244	43,41	342,66	2824,85	
Kritische Parameter: Urandioxid 6%, Restfeuchte 3%, Zylinder				
--	---------------------	--------------------------	--	
c(UO ₂) [g/cm ³]	Zylinderradius [cm]	Zylinderdurchmesser [cm]		
0,10	7135	14270		
0,25	1470	2940		
0,50	598	1196		
0,75	371,3	742,6		
1,00	268,8	537,6		
1,25	210,6	421,2		
1,50	173,1	346,2		
1,75	147	294		
2,00	127,9	255,8		
2,25	113	226		
2,50	101,3	202,6		
2,75	91,77	183,54		
3,00	83,96	167,92		
3,25	77,34	154,68		
3,50	71,73	143,46		
3,75	66,88	133,76		
4,00	62,65	125,3		
4,25	58,91	117,82		
4,50	55,64	111,28		
4,75	52,71	105,42		
5,00	50,06	100,12		
5,25	47,69	95,38		
5,50	45,54	91,08		
5,75	43,56	87,12		
6,00	41,79	83,58		
6,25	40,13	80,26		
6,50	38,6	77,2		
6,75	37,19	74,38		
7,00	35,89	71,78		
7,25	34,67	69,34		
7,50	33,54	67,08		
7,75	32,48	64,96		
8,00	31,49	62,98		
8,244	30,58	61,16		

Kritische Parameter: Urandioxid 6%, Restfeuchte 3%, Schicht			
c(UO ₂) [g/cm ³]	Schichthalbdicke [cm]	Schichtdicke [cm]	
0,10	2272	4544	
0,25	670,8	1341,6	
0,50	299,6	599,2	
0,75	191,9	383,8	
1,00	141,1	282,2	
1,25	111,5	223	
1,50	92,15	184,3	
1,75	78,54	157,08	
2,00	68,37	136,74	
2,25	60,52	121,04	
2,50	54,29	108,58	
2,75	49,23	98,46	
3,00	45,04	90,08	
3,25	41,48	82,96	
3,50	38,46	76,92	
3,75	35,85	71,7	
4,00	33,56	67,12	
4,25	31,55	63,1	
4,50	29,78	59,56	
4,75	28,19	56,38	
5,00	26,76	53,52	
5,25	25,47	50,94	
5,50	24,3	48,6	
5,75	23,23	46,46	
6,00	22,25	44,5	
6,25	21,35	42,7	
6,50	20,53	41,06	
6,75	19,76	39,52	
7,00	19,04	38,08	
7,25	18,39	36,78	
7,50	17,77	35,54	
7,75	17,19	34,38	
8,00	16,65	33,3	
8,244	16,15	32,30	

Kritische Parameter: Urandioxid 6%, Restfeuchte 5%, Kugel			
c(UO ₂) [g/cm ³]	Radius [cm]	Volumen [Liter]	Masse [kg UO ₂]
0,25	992,743	4,10E+06	1,02E+06
0,50	454,504	393279,889	196639,944
0,75	293,839	106271,527	79703,6453
1,00	217,445	43066,2331	43066,2331
1,25	172,703	21576,8605	26971,0757
1,50	143,439	12362,046	18543,069
1,75	122,769	7750,94695	13564,1572
2,00	107,389	5187,61819	10375,2364
2,25	95,5073	3649,20543	8210,71222
2,50	86,0399	2668,0152	6670,03801
2,75	78,324	2012,67284	5534,8503
3,00	71,9086	1557,51095	4672,53286
3,25	66,4929	1231,44334	4002,19084
3,50	61,8493	991,04409	3468,65431
3,75	57,8341	810,29014	3038,58802
4,00	54,3256	671,58688	2686,34753
4,25	51,2274	563,113	2393,23024
4,50	48,4692	476,96462	2146,34078
4,75	46,027	408,43845	1940,08262
5,00	43,8103	352,22266	1761,11329
5,25	41,8061	306,06071	1606,8187
5,50	39,9783	267,64651	1472,05578
5,75	38,3159	235,62735	1354,85727
6,00	36,7893	208,57064	1251,42387
6,25	35,3843	185,57541	1159,84633
6,50	34,0869	165,90181	1078,36178
6,75	32,8847	148,96021	1005,48139
7,076	31,45	130,30	922,016

Kritische Parameter: Urandioxid 6%, Restfeuchte 5%, Zylinder			
c(UO ₂) [g/cm ³]	Zylinderradius [cm]	Zylinderdurchmesser [cm]	
0,25	661,314	1322,628	
0,50	309,403	618,806	
0,75	201,882	403,764	
1,00	150,009	300,018	
1,25	119,517	239,034	
1,50	99,378	198,756	
1,75	85,1215	170,243	
2,00	74,515	149,03	
2,25	66,3158	132,6316	
2,50	59,74	119,48	
2,75	54,3728	108,7456	
3,00	49,9432	99,8864	
3,25	46,1799	92,3598	
3,50	42,943	85,886	
3,75	40,1562	80,3124	
4,00	37,7197	75,4394	
4,25	35,5759	71,1518	
4,50	33,6603	67,3206	
4,75	31,9497	63,8994	
5,00	30,4101	60,8202	
5,25	29,007	58,014	
5,50	27,7439	55,4878	
5,75	26,5828	53,1656	
6,00	25,5304	51,0608	
6,25	24,5452	49,0904	
6,50	23,6427	47,2854	
6,75	22,8147	45,6294	
7,076	21,82	43,64	

Kritische Parameter: Urandioxid 6%, Restfeuchte 5%, Schicht			
c(UO ₂) [g/cm ³]	Schichthalbdicke [cm]	Schichtdicke [cm]	
0,25	335,444	670,888	
0,50	160,793	321,586	
0,75	105,628	211,256	
1,00	78,5987	157,1974	
1,25	62,6507	125,3014	
1,50	52,0531	104,1062	
1,75	44,5243	89,0486	
2,00	38,8915	77,783	
2,25	34,5286	69,0572	
2,50	31,045	62,09	
2,75	28,2027	56,4054	
3,00	25,833	51,666	
3,25	23,8339	47,6678	
3,50	22,1167	44,2334	
3,75	20,6304	41,2608	
4,00	19,3372	38,6744	
4,25	18,1974	36,3948	
4,50	17,1769	34,3538	
4,75	16,2706	32,5412	
5,00	15,4563	30,9126	
5,25	14,7152	29,4304	
5,50	14,0409	28,0818	
5,75	13,4307	26,8614	
6,00	12,8691	25,7382	
6,25	12,3552	24,7104	
6,50	11,8762	23,7524	
6,75	11,4346	22,8692	
7,076	10,92	21,84	

Kritische Parameter: Urandioxid 7%, Restfeuchte 1%, Kugel			
c(UO ₂) [g/cm ³]	Radius [cm]	Volumen [Liter]	Masse [kg UO ₂]
0,50	4585,41	4,04E+08	2,02E+08
0,75	1618,46	1,78E+07	1,33E+07
1,00	994,619	4,12E+06	4,12E+06
1,25	716,517	1,54E+06	1,93E+06
1,50	559,035	731822,209	1,10E+06
1,75	458,063	402591,153	704534,518
2,00	387,861	244408,849	488817,699
2,25	336,389	159446,116	358753,762
2,50	296,873	109597,511	273993,778
2,75	265,73	78597,7929	216143,93
3,00	240,541	58298,3045	174894,914
3,25	219,784	44470,991	144530,721
3,50	202,31	34684,9153	121397,204
3,75	187,433	27582,0637	103432,739
4,00	174,617	22302,2231	89208,8924
4,25	163,461	18294,9422	77753,5045
4,50	153,649	15194,1987	68373,8943
4,75	144,967	12761,333	60616,3319
5,00	137,227	10824,4863	54122,4315
5,25	130,284	9263,21704	48631,8895
5,50	124,015	7989,3462	43941,4041
5,75	118,337	6941,45086	39913,3424
6,00	113,141	6066,64562	36399,8738
6,25	108,407	5336,5498	33353,4363
6,50	104,06	4719,97885	30679,8625
6,75	100,05	4195,07633	28316,7652
7,00	96,3464	3746,2354	26223,6478
7,25	92,9104	3359,55362	24356,7638
7,50	89,7169	3024,90239	22686,7679
7,75	86,7373	2733,41948	21184,001
8,00	83,9656	2479,66365	19837,3092
8,25	81,3595	2255,86653	18610,8989
8,50	78,9105	2058,22559	17494,9175
8,75	76,6123	1883,58008	16481,3257
9,00	74,4428	1728,05152	15552,4637
9,25	72,3997	1589,64039	14704,1736
9,50	70,4639	1465,50943	13922,3396
9,876	68,02	1318,25	13019

Kritische Parameter: Urandioxid 7%, Restfeuchte 1%, Zylinder			
c(UO ₂) [g/cm ³]	Zylinderradius [cm]	Zylinderdurchmesser [cm]	
0,50	1789,42	3578,84	
0,75	916,864	1833,728	
1,00	612,715	1225,43	
1,25	459,346	918,692	
1,50	366,884	733,768	
1,75	305,37	610,74	
2,00	261,627	523,254	
2,25	228,821	457,642	
2,50	203,31	406,62	
2,75	183,005	366,01	
3,00	166,385	332,77	
3,25	152,531	305,062	
3,50	140,793	281,586	
3,75	130,783	261,566	
4,00	122,121	244,242	
4,25	24,6147	230	
4,50	107,869	215,738	
4,75	101,928	203,856	
5,00	96,6046	193,2092	
5,25	20,306	183	
5,50	87,5238	175,0476	
5,75	83,5842	167,1684	
6,00	79,9939	159,9878	
6,25	76,72	153,44	
6,50	73,691	147,382	
6,75	70,898	141,796	
7,00	68,3114	136,6228	
7,25	65,9339	131,8678	
7,50	63,6738	127,3476	
7,75	61,603	123,206	
8,00	59,6295	119,259	
8,25	57,8015	115,603	
8,50	56,0852	112,1704	
8,75	54,4698	108,9396	
9,00	52,9452	105,8904	
9,25	51,5186	103,0372	
9,50	50,1441	100,2882	
9,876	48,71	97,42	

Kritische Parameter: Urandioxid 7%, Restfeuchte 1%, Schicht			
c(UO ₂) [g/cm ³]	Schichthalbdicke [cm]	Schichtdicke [cm]	
0,25	2108,19	4216,38	
0,50	720,049	1440,098	
0,75	427,762	855,524	
1,00	303,521	607,042	
1,25	234,935	469,87	
1,50	191,467	382,934	
1,75	161,694	323,388	
2,00	139,877	279,754	
2,25	123,188	246,376	
2,50	110,141	220,282	
2,75	99,563	199,126	
3,00	90,7969	181,5938	
3,25	83,4916	166,9832	
3,50	77,2339	154,4678	
3,75	71,9195	143,839	
4,00	67,2169	134,4338	
4,25	63,1705	126,341	
4,50	59,4989	118,9978	
4,75	56,2723	112,5446	
5,00	53,3774	106,7548	
5,25	50,7425	101,485	
5,50	48,373	96,746	
5,75	46,2159	92,4318	
6,00	44,2357	88,4714	
6,25	42,4277	84,8554	
6,50	40,7632	81,5264	
6,75	39,2212	78,4424	
7,00	37,7934	75,5868	
7,25	36,4672	72,9344	
7,50	35,213	70,426	
7,75	34,055	68,11	
8,00	32,9715	65,943	
8,25	31,9544	63,9088	
8,50	30,9985	61,997	
8,75	30,0955	60,191	
9,00	29,2514	58,5028	
9,25	28,4528	56,9056	
9,50	27,6846	55,3692	
9,876	27,24	54,48	

Kritische Parameter: Urandioxid 7%, Restfeuchte 2%, Kugel			
c(UO ₂) [g/cm ³]	Radius [cm]	Volumen [Liter]	Masse [kg UO ₂]
0,25	3602,74	1,96E+08	4,90E+07
0,50	1181,72	6,91E+06	3,46E+06
0,75	670,708	1,26E+06	947873,346
1,00	486,106	481151,155	481151,155
1,25	374,087	219283,743	274104,679
1,50	303,858	117516,978	176275,466
1,75	255,822	70129,7447	122727,053
2,00	220,959	45188,0578	90376,1155
2,25	194,479	30811,0661	69324,8988
2,50	173,767	21978,1179	54945,2947
2,75	157,04	16222,5622	44612,046
3,00	142,195	12043,1907	36129,5722
3,25	131,816	9593,85111	31180,0161
3,50	122,048	7615,18729	26653,1555
3,75	113,652	6149,21724	23059,5647
4,00	106,329	5035,51364	20142,0546
4,25	99,9388	4181,10409	17769,6924
4,50	94,2897	3511,40845	15801,338
4,75	89,2643	2979,35325	14151,9279
5,00	84,7469	2549,52955	12747,6478
5,25	80,6726	2199,21025	11545,8538
5,50	76,9842	1911,14391	10511,2915
5,75	73,6288	1671,98261	9613,89999
6,00	70,5481	1470,76929	8824,61575
6,25	67,7307	1301,50332	8134,39575
6,50	65,137	1157,63552	7524,63091
6,75	62,7441	1034,6829	6984,10956
7,00	60,5139	928,22662	6497,58632
7,25	58,4451	836,24379	6062,76748
7,50	56,5213	756,35384	5672,65378
7,75	54,7236	686,45578	5320,03231
8,00	53,0362	624,89318	4999,14547
8,25	51,4498	570,479	4706,45173
8,50	49,9639	522,46545	4440,95636
8,75	48,5623	479,71835	4197,53556
8,987	47,36	444,96	3998,88

Kritische Parameter: Urandioxid 7%, Restfeuchte 2%, Zylinder			
c(UO ₂) [g/cm ³]	Zylinderradius [cm]	Zylinderdurchmesser [cm]	
0,25	1836,83	3673,66	
0,50	748,037	1496,074	
0,75	455,127	910,254	
1,00	326,126	652,252	
1,25	253,823	507,646	
1,50	207,837	415,674	
1,75	175,98	351,96	
2,00	152,664	305,328	
2,25	134,844	269,688	
2,50	120,76	241,52	
2,75	109,341	218,682	
3,00	99,954	199,908	
3,25	92,1043	184,2086	
3,50	85,3356	170,6712	
3,75	79,5463	159,0926	
4,00	74,513	149,026	
4,25	70,0717	140,1434	
4,50	66,1694	132,3388	
4,75	62,6675	125,335	
5,00	59,5203	119,0406	
5,25	56,6967	113,3934	
5,50	54,1104	108,2208	
5,75	51,7651	103,5302	
6,00	49,6227	99,2454	
6,25	47,6527	95,3054	
6,50	45,8249	91,6498	
6,75	44,146	88,292	
7,00	42,5886	85,1772	
7,25	41,1382	82,2764	
7,50	39,7885	79,577	
7,75	38,5254	77,0508	
8,00	37,3428	74,6856	
8,25	36,2325	72,465	
8,50	35,188	70,376	
8,75	34,2138	68,4276	
8,987	33,38	66,76	

Kritische Parameter: Urandioxid 7%, Restfeuchte 2%, Schicht			
c(UO ₂) [g/cm ³]	Schichthalbdicke [cm]	Schichtdicke [cm]	
0,10	3220,93	6441,86	
0,25	852,416	1704,832	
0,50	367,805	735,61	
0,75	232,541	465,082	
1,00	170,007	340,014	
1,25	133,748	267,496	
1,50	110,284	220,568	
1,75	93,7883	187,5766	
2,00	81,6846	163,3692	
2,25	72,2347	144,4694	
2,50	64,7952	129,5904	
2,75	58,7383	117,4766	
3,00	53,7109	107,4218	
3,25	49,4855	98,971	
3,50	45,8557	91,7114	
3,75	42,7308	85,4616	
4,00	40,0208	80,0416	
4,25	37,6226	75,2452	
4,50	35,4953	70,9906	
4,75	33,5961	67,1922	
5,00	31,8898	63,7796	
5,25	30,348	60,696	
5,50	28,9488	57,8976	
5,75	27,6762	55,3524	
6,00	26,5105	53,021	
6,25	25,432	50,864	
6,50	24,4423	48,8846	
6,75	23,5207	47,0414	
7,00	22,6763	45,3526	
7,25	21,8883	43,7766	
7,50	21,1562	42,3124	
7,75	20,4595	40,919	
8,00	19,816	39,632	
8,25	19,2076	38,4152	
8,50	18,6381	37,2762	
8,75	18,1011	36,2022	
8,987	17,67	35,34	

Kritische Parameter: Urandioxid 7%, Restfeuchte 3%, Kugel			
c(UO ₂) [g/cm ³]	Radius [cm]	Volumen [Liter]	Masse [kg UO ₂]
0,10	7737	1,94E+09	1,94E+08
0,25	1824	2,54E+07	6,35E+06
0,50	747,5	1,75E+06	874766,581
0,75	463,2	416288,334	312216,25
1,00	334,8	157197,247	157197,247
1,25	262	75334,2488	94167,811
1,50	215,4	41862,5506	62793,8258
1,75	182,8	25586,87	44777,0225
2,00	158,9	16805,8421	33611,6843
2,25	140,6	11642,4545	26195,5227
2,50	126	8379,15499	20947,8875
2,75	114,3	6254,9995	17201,2486
3,00	104,6	4793,84118	14381,5235
3,25	96,39	3751,3236	12191,8017
3,50	89,43	2995,97566	10485,9148
3,75	83,41	2430,76487	9115,36827
4,00	78,17	2000,82416	8003,29666
4,25	73,56	1667,3	7086,02499
4,50	69,47	1404,36658	6319,64959
4,75	65,84	1195,52333	5678,73581
5,00	62,57	1026,09378	5130,46888
5,25	59,62	887,69649	4660,40658
5,50	56,94	773,28748	4253,08112
5,75	54,5	678,07557	3898,9345
6,00	52,27	598,19956	3589,19735
6,25	50,22	530,54071	3315,87943
6,50	48,33	472,86696	3073,63526
6,75	46,58	423,33779	2857,5301
7,00	44,96	380,68652	2664,80562
7,25	43,45	343,60378	2491,12739
7,50	42,05	311,44875	2335,86561
7,75	40,73	283,02957	2193,4792
8,00	39,5	258,1546	2065,23683
8,244	38,37	236,63	1950,75

Kritische Parameter: Urandioxid 7%, Restfeuchte 3%, Zylinder			
c(UO ₂) [g/cm ³]	Zylinderradius [cm]	Zylinderdurchmesser [cm]	
0,10	4170	8340	
0,25	1146	2292	
0,50	494,4	988,8	
0,75	312,5	625	
1,00	228,3	456,6	
1,25	179,8	359,6	
1,50	148,3	296,6	
1,75	126,3	252,6	
2,00	110	220	
2,25	97,51	195,02	
2,50	87,53	175,06	
2,75	79,49	158,98	
3,00	72,73	145,46	
3,25	67,08	134,16	
3,50	62,26	124,52	
3,75	58,11	116,22	
4,00	54,49	108,98	
4,25	51,3	102,6	
4,50	48,47	96,94	
4,75	45,94	91,88	
5,00	43,67	87,34	
5,25	41,62	83,24	
5,50	39,76	79,52	
5,75	38,07	76,14	
6,00	36,52	73,04	
6,25	35,09	70,18	
6,50	33,77	67,54	
6,75	32,55	65,1	
7,00	31,42	62,84	
7,25	30,37	60,74	
7,50	29,39	58,78	
7,75	28,47	56,94	
8,00	27,61	55,22	
8,244	26,82	53,64	

Kritische Parameter: Urandioxid 7%, Restfeuchte 3%, Schicht			
c(UO ₂) [g/cm ³]	Schichthalbdicke [cm]	Schichtdicke [cm]	
0,10	1696	3392	
0,25	545,4	1090,8	
0,50	249,8	499,6	
0,75	161,4	322,8	
1,00	119,1	238,2	
1,25	94,33	188,66	
1,50	78,11	156,22	
1,75	66,61	133,22	
2,00	58,05	116,1	
2,25	51,44	102,88	
2,50	46,18	92,36	
2,75	41,89	83,78	
3,00	38,33	76,66	
3,25	35,33	70,66	
3,50	32,76	65,52	
3,75	30,55	61,1	
4,00	28,61	57,22	
4,25	26,9	53,8	
4,50	25,37	50,74	
4,75	24,04	48,08	
5,00	22,82	45,64	
5,25	21,72	43,44	
5,50	20,72	41,44	
5,75	19,82	39,64	
6,00	18,99	37,98	
6,25	18,22	36,44	
6,50	17,51	35,02	
6,75	16,86	33,72	
7,00	16,25	32,5	
7,25	15,69	31,38	
7,50	15,16	30,32	
7,75	14,67	29,34	
8,00	14,21	28,42	
8,244	13,79	27,58	

Kritische Parameter: Urandioxid 7%, Restfeuchte 5%, Kugel			
c(UO ₂) [g/cm ³]	Radius [cm]	Volumen [Liter]	Masse [kg UO ₂]
0,10	2908	1,03E+08	1,03E+07
0,25	948,4	3,57E+06	893312,133
0,50	431,2	335834,141	167917,071
0,75	277,7	89704,9126	67278,6844
1,00	205	36086,9495	36086,9495
1,25	162,6	18007,3668	22509,2085
1,50	134,9	10283,109	15424,6634
1,75	115,4	6437,33358	11265,3338
2,00	100,9	4302,90826	8605,81652
2,25	89,66	3019,1507	6793,08908
2,50	80,73	2203,90792	5509,7698
2,75	73,46	1660,50948	4566,40108
3,00	67,42	1283,67426	3851,02278
3,25	62,32	1013,8435	3294,99138
3,50	57,96	815,59343	2854,577
3,75	54,2	666,93951	2501,02317
4,00	50,9	552,38507	2209,5403
4,25	48	463,24666	1968,79832
4,50	45,42	392,49125	1766,21062
4,75	43,12	335,83414	1595,21217
5,00	41,05	289,75309	1448,76544
5,25	39,17	251,7383	1321,6261
5,50	37,47	220,3635	1211,99927
5,75	35,92	194,1322	1116,26014
6,00	34,49	171,85737	1031,14424
6,25	33,18	153,00927	956,30792
6,50	31,96	136,7442	888,83727
6,75	30,84	122,86599	829,34546
7,076	29,49	107,43	760,153

Kritische Parameter: Urandioxid 7%, Restfeuchte 5%, Zylinder			
c(UO ₂) [g/cm ³]	Zylinderradius [cm]	Zylinderdurchmesser [cm]	
0,10	1860	3720	
0,25	627	1254	
0,50	291,3	582,6	
0,75	189,4	378,8	
1,00	140,4	280,8	
1,25	111,8	223,6	
1,50	92,82	185,64	
1,75	79,46	158,92	
2,00	69,51	139,02	
2,25	61,81	123,62	
2,50	55,67	111,34	
2,75	50,67	101,34	
3,00	46,53	93,06	
3,25	43	86	
3,50	40	80	
3,75	37,39	74,78	
4,00	35,13	70,26	
4,25	33,12	66,24	
4,50	31,35	62,7	
4,75	29,76	59,52	
5,00	28,33	56,66	
5,25	27,03	54,06	
5,50	25,85	51,7	
5,75	24,78	49,56	
6,00	23,79	47,58	
6,25	22,89	45,78	
6,50	22,05	44,1	
6,75	21,27	42,54	
7,076	20,34	40,68	

Kritische Parameter: Urandioxid 7%, Restfeuchte 5%, Schicht			
c(UO ₂) [g/cm ³]	Schichthalbdicke [cm]	Schichtdicke [cm]	
0,10	873,5	1747	
0,25	311,3	622,6	
0,50	148,5	297	
0,75	97,37	194,74	
1,00	72,39	144,78	
1,25	57,59	115,18	
1,50	47,81	95,62	
1,75	40,86	81,72	
2,00	35,68	71,36	
2,25	31,65	63,3	
2,50	28,45	56,9	
2,75	25,83	51,66	
3,00	23,67	47,34	
3,25	21,83	43,66	
3,50	20,25	40,5	
3,75	18,89	37,78	
4,00	17,7	35,4	
4,25	16,66	33,32	
4,50	15,72	31,44	
4,75	14,89	29,78	
5,00	14,14	28,28	
5,25	13,46	26,92	
5,50	12,85	25,7	
5,75	12,29	24,58	
6,00	11,78	23,56	
6,25	11,3	22,6	
6,50	10,87	21,74	
6,75	10,47	20,94	
7,076	9,983	19,97	

Kritiscl	Kritische Parameter: Urandioxid 8%, Restfeuchte 1%, Kugel			
c(UO ₂) [g/cm ³]	Radius [cm]	Volumen [Liter]	Masse [kg UO ₂]	
0,25	5279,18	6,16E+08	1,54E+08	
0,50	1556,21	1,58E+07	7,89E+06	
0,75	887,73	2,93E+06	2,20E+06	
1,00	615,189	975246,212	975246,212	
1,25	469,097	432390,909	540488,637	
1,50	378,593	227303,607	340955,411	
1,75	317,266	133770,142	234097,748	
2,00	272,99	85217,5028	170435,006	
2,25	239,576	57599,4739	129598,816	
2,50	213,49	40758,7822	101896,956	
2,75	192,539	29898,178	82219,9896	
3,00	175,385	22597,788	67793,3639	
3,25	161,071	17504,135	56888,4386	
3,50	148,961	13845,4261	48458,9913	
3,75	138,553	11141,3134	41779,9251	
4,00	129,524	9102,05241	36408,2097	
4,25	121,619	7535,16684	32024,4591	
4,50	114,639	6310,81945	28398,6875	
4,75	108,426	5339,35623	25361,9421	
5,00	102,87	4559,89463	22799,4732	
5,25	97,8547	3924,94574	20605,9652	
5,50	93,3351	3405,83481	18732,0914	
5,75	89,2194	2974,85966	17105,4431	
6,00	85,4541	2613,88997	15683,3398	
6,25	82,0007	2309,62391	14435,1495	
6,50	78,8245	2051,5035	13334,7727	
6,75	75,8887	1830,71158	12357,3031	
7,00	73,1726	1641,09623	11487,6736	
7,25	70,6424	1476,67501	10705,8938	
7,50	68,2937	1334,22943	10006,7207	
7,75	66,094	1209,41318	9372,95213	
8,00	64,0389	1100,06964	8800,5571	
8,25	62,1097	1003,6144	8279,81877	
8,50	60,2978	918,31777	7805,70106	
8,75	58,5901	842,48331	7371,72896	
9,00	56,9806	774,94279	6974,48511	
9,25	55,4586	714,48858	6609,0194	
9,50	54,0186	660,26543	6272,52161	
9,876	52,25	597,51	5901,04	

Kritische Parameter: Urandioxid 8%, Restfeuchte 1%, Zylinder			
c(UO ₂) [g/cm ³]	Zylinderradius [cm]	Zylinderdurchmesser [cm]	
0,25	2653,55	5307,1	
0,50	962,525	1925,05	
0,75	575,014	1150,028	
1,00	407,803	815,606	
1,25	310,088	620,176	
1,50	256,91	513,82	
1,75	216,785	433,57	
2,00	187,518	375,036	
2,25	165,286	330,572	
2,50	147,739	295,478	
2,75	133,616	267,232	
3,00	122,009	244,018	
3,25	112,22	224,44	
3,50	103,934	207,868	
3,75	96,8011	193,6022	
4,00	90,5937	181,1874	
4,25	85,1524	170,3048	
4,50	80,3379	160,6758	
4,75	76,0767	152,1534	
5,00	72,2042	144,4084	
5,25	68,7244	137,4488	
5,50	65,574	131,148	
5,75	62,7484	125,4968	
6,00	60,1049	120,2098	
6,25	57,688	115,376	
6,50	55,4663	110,9326	
6,75	53,4314	106,8628	
7,00	51,5295	103,059	
7,25	49,7459	99,4918	
7,50	48,11	96,22	
7,75	46,5575	93,115	
8,00	45,1253	90,2506	
8,25	43,7729	87,5458	
8,50	42,5041	85,0082	
8,75	41,3073	82,6146	
9,00	40,184	80,368	
9,25	39,1164	78,2328	
9,50	38,0969	76,1938	
9,876	36,99	73,98	

Kritische Parameter: Urandioxid 8%, Restfeuchte 1%, Schicht			
c(UO ₂) [g/cm ³]	Schichthalbdicke [cm]	Schichtdicke [cm]	
0,25	1101,45	2202,9	
0,50	462,155	924,31	
0,75	289,425	578,85	
1,00	210,107	420,214	
1,25	164,843	329,686	
1,50	135,56	271,12	
1,75	115,057	230,114	
2,00	100,015	200,03	
2,25	88,458	176,916	
2,50	79,2361	158,4722	
2,75	71,7507	143,5014	
3,00	65,599	131,198	
3,25	60,1895	120,379	
3,50	55,9705	111,941	
3,75	52,1402	104,2804	
4,00	48,7856	97,5712	
4,25	45,8719	91,7438	
4,50	43,2764	86,5528	
4,75	40,9591	81,9182	
5,00	38,8566	77,7132	
5,25	36,9707	73,9414	
5,50	35,2626	70,5252	
5,75	33,7027	67,4054	
6,00	32,2729	64,5458	
6,25	30,9658	61,9316	
6,50	29,7566	59,5132	
6,75	28,6529	57,3058	
7,00	27,6028	55,2056	
7,25	26,6366	53,2732	
7,50	25,7379	51,4758	
7,75	24,8973	49,7946	
8,00	24,1104	48,2208	
8,25	23,3729	46,7458	
8,50	22,6751	45,3502	
8,75	22,0218	44,0436	
9,00	21,4034	42,8068	
9,25	20,8194	41,6388	
9,50	20,2654	40,5308	
9,876	19,83	39,66	

Kritische Parameter: Urandioxid 8%, Restfeuchte 2%, Kugel			
c(UO ₂) [g/cm ³]	Radius [cm]	Volumen [Liter]	Masse [kg UO ₂]
0,10	11380,9	6,17E+09	6,17E+08
0,25	2272,89	4,92E+07	1,23E+07
0,50	899,032	3,04E+06	1,52E+06
0,75	550,234	697799,825	523349,869
1,00	394,707	257580,554	257580,554
1,25	307,346	121610,559	152013,198
1,50	251,712	66803,6742	100205,511
1,75	213,164	40572,3508	71001,6138
2,00	184,924	26489,1745	52978,3491
2,25	163,341	18254,6798	41073,0294
2,50	145,336	12859,0297	32147,5741
2,75	132,606	9767,38064	26860,2968
3,00	121,258	7468,26622	22404,7987
3,25	111,729	5842,33322	18987,583
3,50	103,609	4658,87474	16306,0616
3,75	96,6176	3777,95973	14167,349
4,00	90,5524	3110,2012	12440,8048
4,25	85,1871	2589,46527	11005,2274
4,50	80,4678	2182,50361	9821,26626
4,75	76,2431	1856,47979	8818,27902
5,00	72,4528	1593,14061	7965,70307
5,25	69,032	1377,97061	7234,34572
5,50	65,9292	1200,389	6602,13948
5,75	63,0994	1052,35987	6051,06923
6,00	60,5097	928,03336	5568,20015
6,25	58,1308	822,82502	5142,65636
6,50	55,9432	733,38243	4766,98581
6,75	53,9145	656,45556	4431,07506
7,00	52,0307	590,02117	4130,14819
7,25	50,2801	532,44774	3860,2461
7,50	48,6479	482,2596	3616,947
7,75	47,1139	438,06218	3394,98186
8,00	45,6907	399,55082	3196,40654
8,25	44,3459	365,29944	3013,72039
8,50	43,0817	334,94005	2846,99045
8,75	41,8903	307,91369	2694,2448
8,987	40,92	287,01	2579,35

Kritische Parameter: Urandioxid 8%, Restfeuchte 2%, Zylinder			
c(UO ₂) [g/cm ³]	Zylinderradius [cm]	Zylinderdurchmesser [cm]	
0,10	5490,95	10981,9	
0,25	1399,09	2798,18	
0,50	588,242	1176,484	
0,75	368,101	736,202	
1,00	267,24	534,48	
1,25	209,746	419,492	
1,50	172,733	345,466	
1,75	146,818	293,636	
2,00	127,724	255,448	
2,25	113,077	226,154	
2,50	101,506	203,012	
2,75	92,0904	184,1808	
3,00	84,2735	168,547	
3,25	77,7302	155,4604	
3,50	72,1407	144,2814	
3,75	67,3154	134,6308	
4,00	63,0921	126,1842	
4,25	59,4082	118,8164	
4,50	56,1266	112,2532	
4,75	53,197	106,394	
5,00	50,5601	101,1202	
5,25	48,1963	96,3926	
5,50	46,0281	92,0562	
5,75	44,0559	88,1118	
6,00	42,2534	84,5068	
6,25	40,6014	81,2028	
6,50	39,0728	78,1456	
6,75	37,6595	75,319	
7,00	36,3476	72,6952	
7,25	35,127	70,254	
7,50	33,9877	67,9754	
7,75	32,9223	65,8446	
8,00	31,9247	63,8494	
8,25	30,9867	61,9734	
8,50	30,1035	60,207	
8,75	29,2719	58,5438	
8,987	28,61	57,22	

Kritische Parameter: Urandioxid 8%, Restfeuchte 2%, Schicht			
c(UO ₂) [g/cm ³]	Schichthalbdicke [cm]	Schichtdicke [cm]	
0,10	2128,91	4257,82	
0,25	655,777	1311,554	
0,50	294,631	589,262	
0,75	189,016	378,032	
1,00	138,933	277,866	
1,25	109,849	219,698	
1,50	90,7837	181,5674	
1,75	77,4045	154,809	
2,00	67,4091	134,8182	
2,25	59,7107	119,4214	
2,50	53,5622	107,1244	
2,75	48,6179	97,2358	
3,00	44,3769	88,7538	
3,25	40,9961	81,9922	
3,50	38,0188	76,0376	
3,75	35,442	70,884	
4,00	33,1928	66,3856	
4,25	31,2135	62,427	
4,50	29,4557	58,9114	
4,75	27,8902	55,7804	
5,00	26,4782	52,9564	
5,25	25,1994	50,3988	
5,50	24,0387	48,0774	
5,75	22,9891	45,9782	
6,00	22,0234	44,0468	
6,25	21,1268	42,2536	
6,50	20,3053	40,6106	
6,75	19,558	39,116	
7,00	18,8489	37,6978	
7,25	18,1916	36,3832	
7,50	17,5783	35,1566	
7,75	17,0071	34,0142	
8,00	16,4754	32,9508	
8,25	15,9683	31,9366	
8,50	15,4954	30,9908	
8,75	15,0498	30,0996	
8,987	14,71	29,42	

Kritische Parameter: Urandioxid 8%, Restfeuchte 3%, Kugel			
c(UO ₂) [g/cm ³]	Radius [cm]	Volumen [Liter]	Masse [kg UO ₂]
0,10	5220	5,96E+08	5,96E+07
0,25	1494	1,40E+07	3,49E+06
0,50	642,8	1,11E+06	556270,715
0,75	404,7	277643,942	208232,956
1,00	294,8	107317,618	107317,618
1,25	231,9	52238,5164	65298,1455
1,50	191,4	29370,7062	44056,0592
1,75	162,9	18107,2226	31687,6396
2,00	141,9	11968,3912	23936,7823
2,25	125,8	8339,31755	18763,4645
2,50	112,9	6027,96072	15069,9018
2,75	102,6	4524,08411	12441,2313
3,00	93,94	3472,48402	10417,4521
3,25	86,69	2728,95012	8869,08787
3,50	80,49	2184,31048	7645,08669
3,75	75,15	1777,76988	6666,63703
4,00	70,48	1466,51421	5866,05682
4,25	66,38	1225,18122	5207,0202
4,50	62,74	1034,48008	4655,16035
4,75	59,49	881,90234	4189,03611
5,00	56,57	758,3106	3791,55298
5,25	53,93	657,0219	3449,365
5,50	51,54	573,48469	3154,16581
5,75	49,36	503,74882	2896,55571
6,00	47,35	444,68096	2668,08578
6,25	45,52	395,08937	2469,30858
6,50	43,83	352,698	2292,53702
6,75	42,25	315,91389	2132,41879
7,00	40,8	284,49136	1991,4395
7,25	39,45	257,17551	1864,52245
7,50	38,18	233,12903	1748,46774
7,75	37,01	212,34686	1645,68816
8,00	35,9	193,8081	1550,46484
8,244	34,88	177,75	1465,40

Kritische Parameter: Urandioxid 8%, Restfeuchte 3%, Zylinder		
c(UO ₂) [g/cm ³]	Zylinderradius [cm]	Zylinderdurchmesser [cm]
0,10	3148	6296
0,25	963,2	1926,4
0,50	428,9	857,8
0,75	273,9	547,8
1,00	201,3	402,6
1,25	159,1	318,2
1,50	131,6	263,2
1,75	112,3	224,6
2,00	98	196
2,25	86,94	173,88
2,50	78,15	156,3
2,75	70,99	141,98
3,00	65,08	130,16
3,25	60,08	120,16
3,50	55,8	111,6
3,75	52,11	104,22
4,00	48,88	97,76
4,25	46,05	92,1
4,50	43,53	87,06
4,75	41,3	82,6
5,00	39,26	78,52
5,25	37,44	74,88
5,50	35,78	71,56
5,75	34,26	68,52
6,00	32,88	65,76
6,25	31,61	63,22
6,50	30,43	60,86
6,75	29,35	58,7
7,00	28,34	56,68
7,25	27,4	54,8
7,50	26,52	53,04
7,75	25,7	51,4
8,00	24,93	49,86
8,244	24,23	48,46

Kritische Parameter: Urandioxid 8%, Restfeuchte 3%, Schicht			
c(UO ₂) [g/cm ³]	Schichthalbdicke [cm]	Schichtdicke [cm]	
0,10	1386	2772	
0,25	466,2	932,4	
0,50	216,9	433,8	
0,75	140,9	281,8	
1,00	104,3	208,6	
1,25	82,74	165,48	
1,50	68,57	137,14	
1,75	58,53	117,06	
2,00	51,04	102,08	
2,25	45,25	90,5	
2,50	40,64	81,28	
2,75	36,89	73,78	
3,00	33,77	67,54	
3,25	31,12	62,24	
3,50	28,87	57,74	
3,75	26,91	53,82	
4,00	25,21	50,42	
4,25	23,72	47,44	
4,50	22,38	44,76	
4,75	21,19	42,38	
5,00	20,12	40,24	
5,25	19,16	38,32	
5,50	18,28	36,56	
5,75	17,48	34,96	
6,00	16,74	33,48	
6,25	16,07	32,14	
6,50	15,45	30,9	
6,75	14,87	29,74	
7,00	14,34	28,68	
7,25	13,84	27,68	
7,50	13,37	26,74	
7,75	12,94	25,88	
8,00	12,53	25,06	
8,244	12,17	24,34	

Kritische Parameter: Urandioxid 8%, Restfeuchte 5%, Kugel			
c(UO ₂) [g/cm ³]	Radius [cm]	Volumen [Liter]	Masse [kg UO ₂]
0,10	2582	7,21E+07	7,21E+06
0,25	867	2,73E+06	682473,652
0,50	399	266076,963	133038,482
0,75	258,3	72187,4676	54140,6007
1,00	191,2	29278,7312	29278,7312
1,25	152	14710,2262	18387,7828
1,50	126,3	8439,14871	12658,7231
1,75	108,1	5291,34002	9259,84503
2,00	94,6	3546,18997	7092,37994
2,25	84,15	2496,0366	5616,08235
2,50	75,84	1827,18937	4567,97344
2,75	69,06	1379,64805	3794,03213
3,00	63,41	1067,97687	3203,93062
3,25	58,66	845,50224	2747,88229
3,50	54,59	681,44039	2385,04136
3,75	51,06	557,6106	2091,03974
4,00	47,98	462,66785	1850,67139
4,25	45,27	388,61546	1651,6157
4,50	42,85	329,56499	1483,04244
4,75	40,7	282,40463	1341,422
5,00	38,75	243,72704	1218,63518
5,25	37	212,17478	1113,91759
5,50	35,4	185,82253	1022,02393
5,75	33,94	163,76614	941,65528
6,00	32,6	145,12472	870,74831
6,25	31,37	129,31001	808,18756
6,50	30,23	115,71856	752,17066
6,75	29,17	103,96757	701,78107
7,076	27,91	91,068	644,40

Kritische Parameter: Urandioxid 8%, Restfeuchte 5%, Zylinder		
c(UO ₂) [g/cm ³]	Zylinderradius [cm]	Zylinderdurchmesser [cm]
0,10	1668	3336
0,25	575,1	1150,2
0,50	269,4	538,8
0,75	175,8	351,6
1,00	130,7	261,4
1,25	104,1	208,2
1,50	86,59	173,18
1,75	74,19	148,38
2,00	64,94	129,88
2,25	57,79	115,58
2,50	52,09	104,18
2,75	47,44	94,88
3,00	43,56	87,12
3,25	40,29	80,58
3,50	37,5	75
3,75	35,07	70,14
4,00	32,96	65,92
4,25	31,09	62,18
4,50	29,43	58,86
4,75	27,95	55,9
5,00	26,61	53,22
5,25	25,41	50,82
5,50	24,3	48,6
5,75	23,3	46,6
6,00	22,38	44,76
6,25	21,53	43,06
6,50	20,75	41,5
6,75	20,02	40,04
7,076	19,15	38,30

Kritische Parameter: Urandioxid 8%, Restfeuchte 5%, Schicht			
c(UO ₂) [g/cm ³]	Schichthalbdicke [cm]	Schichtdicke [cm]	
0,10	790,2	1580,4	
0,25	285,1	570,2	
0,50	136,6	273,2	
0,75	89,74	179,48	
1,00	66,77	133,54	
1,25	53,16	106,32	
1,50	44,14	88,28	
1,75	37,73	75,46	
2,00	32,94	65,88	
2,25	29,23	58,46	
2,50	26,28	52,56	
2,75	23,85	47,7	
3,00	21,86	43,72	
3,25	20,16	40,32	
3,50	18,71	37,42	
3,75	17,45	34,9	
4,00	16,35	32,7	
4,25	15,39	30,78	
4,50	14,53	29,06	
4,75	13,76	27,52	
5,00	13,07	26,14	
5,25	12,44	24,88	
5,50	11,88	23,76	
5,75	11,35	22,7	
6,00	10,88	21,76	
6,25	10,45	20,9	
6,50	10,04	20,08	
6,75	9,672	19,344	
7,076	9,227	18,454	

Verteiler

Druckexemplare:

nwelt, Naturschutz und Reaktorsicherl	neit
	2 x
enschutz	
	1 x 1 x
(hog) (kig, mof, beh)	1 x je 1 x
	8 x
(wfp, stj) (erv, prg, rot, tes, zir) (mes) (gma) (rop)	je 1 x je 1 x 1 x 1 x 1 x
	10 x
	(hog) (kig, mof, beh) (wfp, stj) (erv, prg, rot, tes, zir) (mes) (gma) (rop)

Gesellschaft für Anlagenund Reaktorsicherheit (GRS) mbH

Schwertnergasse 1 50667 Köln Telefon +49 221 2068-0 Telefax +49 221 2068-888

Forschungszentrum **85748 Garching b. München** Telefon +49 89 32004-0 Telefax +49 89 32004-300

Kurfürstendamm 200 **10719 Berlin** Telefon +49 30 88589-0 Telefax +49 30 88589-111

Theodor-Heuss-Straße 4 **38122 Braunschweig** Telefon +49 531 8012-0 Telefax +49 531 8012-200

www.grs.de